x86.c 93 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. *
  8. * Authors:
  9. * Avi Kivity <avi@qumranet.com>
  10. * Yaniv Kamay <yaniv@qumranet.com>
  11. *
  12. * This work is licensed under the terms of the GNU GPL, version 2. See
  13. * the COPYING file in the top-level directory.
  14. *
  15. */
  16. #include <linux/kvm_host.h>
  17. #include "irq.h"
  18. #include "mmu.h"
  19. #include "i8254.h"
  20. #include "tss.h"
  21. #include <linux/clocksource.h>
  22. #include <linux/kvm.h>
  23. #include <linux/fs.h>
  24. #include <linux/vmalloc.h>
  25. #include <linux/module.h>
  26. #include <linux/mman.h>
  27. #include <linux/highmem.h>
  28. #include <asm/uaccess.h>
  29. #include <asm/msr.h>
  30. #include <asm/desc.h>
  31. #define MAX_IO_MSRS 256
  32. #define CR0_RESERVED_BITS \
  33. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  34. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  35. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  36. #define CR4_RESERVED_BITS \
  37. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  38. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  39. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  40. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  41. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  42. /* EFER defaults:
  43. * - enable syscall per default because its emulated by KVM
  44. * - enable LME and LMA per default on 64 bit KVM
  45. */
  46. #ifdef CONFIG_X86_64
  47. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  48. #else
  49. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  50. #endif
  51. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  52. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  53. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  54. struct kvm_cpuid_entry2 __user *entries);
  55. struct kvm_x86_ops *kvm_x86_ops;
  56. struct kvm_stats_debugfs_item debugfs_entries[] = {
  57. { "pf_fixed", VCPU_STAT(pf_fixed) },
  58. { "pf_guest", VCPU_STAT(pf_guest) },
  59. { "tlb_flush", VCPU_STAT(tlb_flush) },
  60. { "invlpg", VCPU_STAT(invlpg) },
  61. { "exits", VCPU_STAT(exits) },
  62. { "io_exits", VCPU_STAT(io_exits) },
  63. { "mmio_exits", VCPU_STAT(mmio_exits) },
  64. { "signal_exits", VCPU_STAT(signal_exits) },
  65. { "irq_window", VCPU_STAT(irq_window_exits) },
  66. { "halt_exits", VCPU_STAT(halt_exits) },
  67. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  68. { "hypercalls", VCPU_STAT(hypercalls) },
  69. { "request_irq", VCPU_STAT(request_irq_exits) },
  70. { "irq_exits", VCPU_STAT(irq_exits) },
  71. { "host_state_reload", VCPU_STAT(host_state_reload) },
  72. { "efer_reload", VCPU_STAT(efer_reload) },
  73. { "fpu_reload", VCPU_STAT(fpu_reload) },
  74. { "insn_emulation", VCPU_STAT(insn_emulation) },
  75. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  76. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  77. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  78. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  79. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  80. { "mmu_flooded", VM_STAT(mmu_flooded) },
  81. { "mmu_recycled", VM_STAT(mmu_recycled) },
  82. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  83. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  84. { "largepages", VM_STAT(lpages) },
  85. { NULL }
  86. };
  87. unsigned long segment_base(u16 selector)
  88. {
  89. struct descriptor_table gdt;
  90. struct desc_struct *d;
  91. unsigned long table_base;
  92. unsigned long v;
  93. if (selector == 0)
  94. return 0;
  95. asm("sgdt %0" : "=m"(gdt));
  96. table_base = gdt.base;
  97. if (selector & 4) { /* from ldt */
  98. u16 ldt_selector;
  99. asm("sldt %0" : "=g"(ldt_selector));
  100. table_base = segment_base(ldt_selector);
  101. }
  102. d = (struct desc_struct *)(table_base + (selector & ~7));
  103. v = d->base0 | ((unsigned long)d->base1 << 16) |
  104. ((unsigned long)d->base2 << 24);
  105. #ifdef CONFIG_X86_64
  106. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  107. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  108. #endif
  109. return v;
  110. }
  111. EXPORT_SYMBOL_GPL(segment_base);
  112. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  113. {
  114. if (irqchip_in_kernel(vcpu->kvm))
  115. return vcpu->arch.apic_base;
  116. else
  117. return vcpu->arch.apic_base;
  118. }
  119. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  120. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  121. {
  122. /* TODO: reserve bits check */
  123. if (irqchip_in_kernel(vcpu->kvm))
  124. kvm_lapic_set_base(vcpu, data);
  125. else
  126. vcpu->arch.apic_base = data;
  127. }
  128. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  129. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  130. {
  131. WARN_ON(vcpu->arch.exception.pending);
  132. vcpu->arch.exception.pending = true;
  133. vcpu->arch.exception.has_error_code = false;
  134. vcpu->arch.exception.nr = nr;
  135. }
  136. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  137. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  138. u32 error_code)
  139. {
  140. ++vcpu->stat.pf_guest;
  141. if (vcpu->arch.exception.pending) {
  142. if (vcpu->arch.exception.nr == PF_VECTOR) {
  143. printk(KERN_DEBUG "kvm: inject_page_fault:"
  144. " double fault 0x%lx\n", addr);
  145. vcpu->arch.exception.nr = DF_VECTOR;
  146. vcpu->arch.exception.error_code = 0;
  147. } else if (vcpu->arch.exception.nr == DF_VECTOR) {
  148. /* triple fault -> shutdown */
  149. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  150. }
  151. return;
  152. }
  153. vcpu->arch.cr2 = addr;
  154. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  155. }
  156. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  157. {
  158. WARN_ON(vcpu->arch.exception.pending);
  159. vcpu->arch.exception.pending = true;
  160. vcpu->arch.exception.has_error_code = true;
  161. vcpu->arch.exception.nr = nr;
  162. vcpu->arch.exception.error_code = error_code;
  163. }
  164. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  165. static void __queue_exception(struct kvm_vcpu *vcpu)
  166. {
  167. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  168. vcpu->arch.exception.has_error_code,
  169. vcpu->arch.exception.error_code);
  170. }
  171. /*
  172. * Load the pae pdptrs. Return true is they are all valid.
  173. */
  174. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  175. {
  176. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  177. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  178. int i;
  179. int ret;
  180. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  181. down_read(&vcpu->kvm->slots_lock);
  182. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  183. offset * sizeof(u64), sizeof(pdpte));
  184. if (ret < 0) {
  185. ret = 0;
  186. goto out;
  187. }
  188. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  189. if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
  190. ret = 0;
  191. goto out;
  192. }
  193. }
  194. ret = 1;
  195. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  196. out:
  197. up_read(&vcpu->kvm->slots_lock);
  198. return ret;
  199. }
  200. EXPORT_SYMBOL_GPL(load_pdptrs);
  201. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  202. {
  203. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  204. bool changed = true;
  205. int r;
  206. if (is_long_mode(vcpu) || !is_pae(vcpu))
  207. return false;
  208. down_read(&vcpu->kvm->slots_lock);
  209. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  210. if (r < 0)
  211. goto out;
  212. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  213. out:
  214. up_read(&vcpu->kvm->slots_lock);
  215. return changed;
  216. }
  217. void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  218. {
  219. if (cr0 & CR0_RESERVED_BITS) {
  220. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  221. cr0, vcpu->arch.cr0);
  222. kvm_inject_gp(vcpu, 0);
  223. return;
  224. }
  225. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  226. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  227. kvm_inject_gp(vcpu, 0);
  228. return;
  229. }
  230. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  231. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  232. "and a clear PE flag\n");
  233. kvm_inject_gp(vcpu, 0);
  234. return;
  235. }
  236. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  237. #ifdef CONFIG_X86_64
  238. if ((vcpu->arch.shadow_efer & EFER_LME)) {
  239. int cs_db, cs_l;
  240. if (!is_pae(vcpu)) {
  241. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  242. "in long mode while PAE is disabled\n");
  243. kvm_inject_gp(vcpu, 0);
  244. return;
  245. }
  246. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  247. if (cs_l) {
  248. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  249. "in long mode while CS.L == 1\n");
  250. kvm_inject_gp(vcpu, 0);
  251. return;
  252. }
  253. } else
  254. #endif
  255. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  256. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  257. "reserved bits\n");
  258. kvm_inject_gp(vcpu, 0);
  259. return;
  260. }
  261. }
  262. kvm_x86_ops->set_cr0(vcpu, cr0);
  263. vcpu->arch.cr0 = cr0;
  264. kvm_mmu_reset_context(vcpu);
  265. return;
  266. }
  267. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  268. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  269. {
  270. kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
  271. }
  272. EXPORT_SYMBOL_GPL(kvm_lmsw);
  273. void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  274. {
  275. if (cr4 & CR4_RESERVED_BITS) {
  276. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  277. kvm_inject_gp(vcpu, 0);
  278. return;
  279. }
  280. if (is_long_mode(vcpu)) {
  281. if (!(cr4 & X86_CR4_PAE)) {
  282. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  283. "in long mode\n");
  284. kvm_inject_gp(vcpu, 0);
  285. return;
  286. }
  287. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
  288. && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  289. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  290. kvm_inject_gp(vcpu, 0);
  291. return;
  292. }
  293. if (cr4 & X86_CR4_VMXE) {
  294. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  295. kvm_inject_gp(vcpu, 0);
  296. return;
  297. }
  298. kvm_x86_ops->set_cr4(vcpu, cr4);
  299. vcpu->arch.cr4 = cr4;
  300. kvm_mmu_reset_context(vcpu);
  301. }
  302. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  303. void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  304. {
  305. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  306. kvm_mmu_flush_tlb(vcpu);
  307. return;
  308. }
  309. if (is_long_mode(vcpu)) {
  310. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  311. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  312. kvm_inject_gp(vcpu, 0);
  313. return;
  314. }
  315. } else {
  316. if (is_pae(vcpu)) {
  317. if (cr3 & CR3_PAE_RESERVED_BITS) {
  318. printk(KERN_DEBUG
  319. "set_cr3: #GP, reserved bits\n");
  320. kvm_inject_gp(vcpu, 0);
  321. return;
  322. }
  323. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  324. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  325. "reserved bits\n");
  326. kvm_inject_gp(vcpu, 0);
  327. return;
  328. }
  329. }
  330. /*
  331. * We don't check reserved bits in nonpae mode, because
  332. * this isn't enforced, and VMware depends on this.
  333. */
  334. }
  335. down_read(&vcpu->kvm->slots_lock);
  336. /*
  337. * Does the new cr3 value map to physical memory? (Note, we
  338. * catch an invalid cr3 even in real-mode, because it would
  339. * cause trouble later on when we turn on paging anyway.)
  340. *
  341. * A real CPU would silently accept an invalid cr3 and would
  342. * attempt to use it - with largely undefined (and often hard
  343. * to debug) behavior on the guest side.
  344. */
  345. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  346. kvm_inject_gp(vcpu, 0);
  347. else {
  348. vcpu->arch.cr3 = cr3;
  349. vcpu->arch.mmu.new_cr3(vcpu);
  350. }
  351. up_read(&vcpu->kvm->slots_lock);
  352. }
  353. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  354. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  355. {
  356. if (cr8 & CR8_RESERVED_BITS) {
  357. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  358. kvm_inject_gp(vcpu, 0);
  359. return;
  360. }
  361. if (irqchip_in_kernel(vcpu->kvm))
  362. kvm_lapic_set_tpr(vcpu, cr8);
  363. else
  364. vcpu->arch.cr8 = cr8;
  365. }
  366. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  367. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  368. {
  369. if (irqchip_in_kernel(vcpu->kvm))
  370. return kvm_lapic_get_cr8(vcpu);
  371. else
  372. return vcpu->arch.cr8;
  373. }
  374. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  375. /*
  376. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  377. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  378. *
  379. * This list is modified at module load time to reflect the
  380. * capabilities of the host cpu.
  381. */
  382. static u32 msrs_to_save[] = {
  383. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  384. MSR_K6_STAR,
  385. #ifdef CONFIG_X86_64
  386. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  387. #endif
  388. MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  389. MSR_IA32_PERF_STATUS,
  390. };
  391. static unsigned num_msrs_to_save;
  392. static u32 emulated_msrs[] = {
  393. MSR_IA32_MISC_ENABLE,
  394. };
  395. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  396. {
  397. if (efer & efer_reserved_bits) {
  398. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  399. efer);
  400. kvm_inject_gp(vcpu, 0);
  401. return;
  402. }
  403. if (is_paging(vcpu)
  404. && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  405. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  406. kvm_inject_gp(vcpu, 0);
  407. return;
  408. }
  409. kvm_x86_ops->set_efer(vcpu, efer);
  410. efer &= ~EFER_LMA;
  411. efer |= vcpu->arch.shadow_efer & EFER_LMA;
  412. vcpu->arch.shadow_efer = efer;
  413. }
  414. void kvm_enable_efer_bits(u64 mask)
  415. {
  416. efer_reserved_bits &= ~mask;
  417. }
  418. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  419. /*
  420. * Writes msr value into into the appropriate "register".
  421. * Returns 0 on success, non-0 otherwise.
  422. * Assumes vcpu_load() was already called.
  423. */
  424. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  425. {
  426. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  427. }
  428. /*
  429. * Adapt set_msr() to msr_io()'s calling convention
  430. */
  431. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  432. {
  433. return kvm_set_msr(vcpu, index, *data);
  434. }
  435. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  436. {
  437. static int version;
  438. struct kvm_wall_clock wc;
  439. struct timespec wc_ts;
  440. if (!wall_clock)
  441. return;
  442. version++;
  443. down_read(&kvm->slots_lock);
  444. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  445. wc_ts = current_kernel_time();
  446. wc.wc_sec = wc_ts.tv_sec;
  447. wc.wc_nsec = wc_ts.tv_nsec;
  448. wc.wc_version = version;
  449. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  450. version++;
  451. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  452. up_read(&kvm->slots_lock);
  453. }
  454. static void kvm_write_guest_time(struct kvm_vcpu *v)
  455. {
  456. struct timespec ts;
  457. unsigned long flags;
  458. struct kvm_vcpu_arch *vcpu = &v->arch;
  459. void *shared_kaddr;
  460. if ((!vcpu->time_page))
  461. return;
  462. /* Keep irq disabled to prevent changes to the clock */
  463. local_irq_save(flags);
  464. kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER,
  465. &vcpu->hv_clock.tsc_timestamp);
  466. ktime_get_ts(&ts);
  467. local_irq_restore(flags);
  468. /* With all the info we got, fill in the values */
  469. vcpu->hv_clock.system_time = ts.tv_nsec +
  470. (NSEC_PER_SEC * (u64)ts.tv_sec);
  471. /*
  472. * The interface expects us to write an even number signaling that the
  473. * update is finished. Since the guest won't see the intermediate
  474. * state, we just write "2" at the end
  475. */
  476. vcpu->hv_clock.version = 2;
  477. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  478. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  479. sizeof(vcpu->hv_clock));
  480. kunmap_atomic(shared_kaddr, KM_USER0);
  481. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  482. }
  483. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  484. {
  485. switch (msr) {
  486. case MSR_EFER:
  487. set_efer(vcpu, data);
  488. break;
  489. case MSR_IA32_MC0_STATUS:
  490. pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  491. __func__, data);
  492. break;
  493. case MSR_IA32_MCG_STATUS:
  494. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  495. __func__, data);
  496. break;
  497. case MSR_IA32_MCG_CTL:
  498. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n",
  499. __func__, data);
  500. break;
  501. case MSR_IA32_UCODE_REV:
  502. case MSR_IA32_UCODE_WRITE:
  503. case 0x200 ... 0x2ff: /* MTRRs */
  504. break;
  505. case MSR_IA32_APICBASE:
  506. kvm_set_apic_base(vcpu, data);
  507. break;
  508. case MSR_IA32_MISC_ENABLE:
  509. vcpu->arch.ia32_misc_enable_msr = data;
  510. break;
  511. case MSR_KVM_WALL_CLOCK:
  512. vcpu->kvm->arch.wall_clock = data;
  513. kvm_write_wall_clock(vcpu->kvm, data);
  514. break;
  515. case MSR_KVM_SYSTEM_TIME: {
  516. if (vcpu->arch.time_page) {
  517. kvm_release_page_dirty(vcpu->arch.time_page);
  518. vcpu->arch.time_page = NULL;
  519. }
  520. vcpu->arch.time = data;
  521. /* we verify if the enable bit is set... */
  522. if (!(data & 1))
  523. break;
  524. /* ...but clean it before doing the actual write */
  525. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  526. vcpu->arch.hv_clock.tsc_to_system_mul =
  527. clocksource_khz2mult(tsc_khz, 22);
  528. vcpu->arch.hv_clock.tsc_shift = 22;
  529. down_read(&current->mm->mmap_sem);
  530. down_read(&vcpu->kvm->slots_lock);
  531. vcpu->arch.time_page =
  532. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  533. up_read(&vcpu->kvm->slots_lock);
  534. up_read(&current->mm->mmap_sem);
  535. if (is_error_page(vcpu->arch.time_page)) {
  536. kvm_release_page_clean(vcpu->arch.time_page);
  537. vcpu->arch.time_page = NULL;
  538. }
  539. kvm_write_guest_time(vcpu);
  540. break;
  541. }
  542. default:
  543. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data);
  544. return 1;
  545. }
  546. return 0;
  547. }
  548. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  549. /*
  550. * Reads an msr value (of 'msr_index') into 'pdata'.
  551. * Returns 0 on success, non-0 otherwise.
  552. * Assumes vcpu_load() was already called.
  553. */
  554. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  555. {
  556. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  557. }
  558. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  559. {
  560. u64 data;
  561. switch (msr) {
  562. case 0xc0010010: /* SYSCFG */
  563. case 0xc0010015: /* HWCR */
  564. case MSR_IA32_PLATFORM_ID:
  565. case MSR_IA32_P5_MC_ADDR:
  566. case MSR_IA32_P5_MC_TYPE:
  567. case MSR_IA32_MC0_CTL:
  568. case MSR_IA32_MCG_STATUS:
  569. case MSR_IA32_MCG_CAP:
  570. case MSR_IA32_MCG_CTL:
  571. case MSR_IA32_MC0_MISC:
  572. case MSR_IA32_MC0_MISC+4:
  573. case MSR_IA32_MC0_MISC+8:
  574. case MSR_IA32_MC0_MISC+12:
  575. case MSR_IA32_MC0_MISC+16:
  576. case MSR_IA32_UCODE_REV:
  577. case MSR_IA32_EBL_CR_POWERON:
  578. /* MTRR registers */
  579. case 0xfe:
  580. case 0x200 ... 0x2ff:
  581. data = 0;
  582. break;
  583. case 0xcd: /* fsb frequency */
  584. data = 3;
  585. break;
  586. case MSR_IA32_APICBASE:
  587. data = kvm_get_apic_base(vcpu);
  588. break;
  589. case MSR_IA32_MISC_ENABLE:
  590. data = vcpu->arch.ia32_misc_enable_msr;
  591. break;
  592. case MSR_IA32_PERF_STATUS:
  593. /* TSC increment by tick */
  594. data = 1000ULL;
  595. /* CPU multiplier */
  596. data |= (((uint64_t)4ULL) << 40);
  597. break;
  598. case MSR_EFER:
  599. data = vcpu->arch.shadow_efer;
  600. break;
  601. case MSR_KVM_WALL_CLOCK:
  602. data = vcpu->kvm->arch.wall_clock;
  603. break;
  604. case MSR_KVM_SYSTEM_TIME:
  605. data = vcpu->arch.time;
  606. break;
  607. default:
  608. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  609. return 1;
  610. }
  611. *pdata = data;
  612. return 0;
  613. }
  614. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  615. /*
  616. * Read or write a bunch of msrs. All parameters are kernel addresses.
  617. *
  618. * @return number of msrs set successfully.
  619. */
  620. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  621. struct kvm_msr_entry *entries,
  622. int (*do_msr)(struct kvm_vcpu *vcpu,
  623. unsigned index, u64 *data))
  624. {
  625. int i;
  626. vcpu_load(vcpu);
  627. for (i = 0; i < msrs->nmsrs; ++i)
  628. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  629. break;
  630. vcpu_put(vcpu);
  631. return i;
  632. }
  633. /*
  634. * Read or write a bunch of msrs. Parameters are user addresses.
  635. *
  636. * @return number of msrs set successfully.
  637. */
  638. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  639. int (*do_msr)(struct kvm_vcpu *vcpu,
  640. unsigned index, u64 *data),
  641. int writeback)
  642. {
  643. struct kvm_msrs msrs;
  644. struct kvm_msr_entry *entries;
  645. int r, n;
  646. unsigned size;
  647. r = -EFAULT;
  648. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  649. goto out;
  650. r = -E2BIG;
  651. if (msrs.nmsrs >= MAX_IO_MSRS)
  652. goto out;
  653. r = -ENOMEM;
  654. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  655. entries = vmalloc(size);
  656. if (!entries)
  657. goto out;
  658. r = -EFAULT;
  659. if (copy_from_user(entries, user_msrs->entries, size))
  660. goto out_free;
  661. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  662. if (r < 0)
  663. goto out_free;
  664. r = -EFAULT;
  665. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  666. goto out_free;
  667. r = n;
  668. out_free:
  669. vfree(entries);
  670. out:
  671. return r;
  672. }
  673. /*
  674. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  675. * cached on it.
  676. */
  677. void decache_vcpus_on_cpu(int cpu)
  678. {
  679. struct kvm *vm;
  680. struct kvm_vcpu *vcpu;
  681. int i;
  682. spin_lock(&kvm_lock);
  683. list_for_each_entry(vm, &vm_list, vm_list)
  684. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  685. vcpu = vm->vcpus[i];
  686. if (!vcpu)
  687. continue;
  688. /*
  689. * If the vcpu is locked, then it is running on some
  690. * other cpu and therefore it is not cached on the
  691. * cpu in question.
  692. *
  693. * If it's not locked, check the last cpu it executed
  694. * on.
  695. */
  696. if (mutex_trylock(&vcpu->mutex)) {
  697. if (vcpu->cpu == cpu) {
  698. kvm_x86_ops->vcpu_decache(vcpu);
  699. vcpu->cpu = -1;
  700. }
  701. mutex_unlock(&vcpu->mutex);
  702. }
  703. }
  704. spin_unlock(&kvm_lock);
  705. }
  706. int kvm_dev_ioctl_check_extension(long ext)
  707. {
  708. int r;
  709. switch (ext) {
  710. case KVM_CAP_IRQCHIP:
  711. case KVM_CAP_HLT:
  712. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  713. case KVM_CAP_USER_MEMORY:
  714. case KVM_CAP_SET_TSS_ADDR:
  715. case KVM_CAP_EXT_CPUID:
  716. case KVM_CAP_CLOCKSOURCE:
  717. case KVM_CAP_PIT:
  718. case KVM_CAP_NOP_IO_DELAY:
  719. r = 1;
  720. break;
  721. case KVM_CAP_VAPIC:
  722. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  723. break;
  724. case KVM_CAP_NR_VCPUS:
  725. r = KVM_MAX_VCPUS;
  726. break;
  727. case KVM_CAP_NR_MEMSLOTS:
  728. r = KVM_MEMORY_SLOTS;
  729. break;
  730. case KVM_CAP_PV_MMU:
  731. r = !tdp_enabled;
  732. break;
  733. default:
  734. r = 0;
  735. break;
  736. }
  737. return r;
  738. }
  739. long kvm_arch_dev_ioctl(struct file *filp,
  740. unsigned int ioctl, unsigned long arg)
  741. {
  742. void __user *argp = (void __user *)arg;
  743. long r;
  744. switch (ioctl) {
  745. case KVM_GET_MSR_INDEX_LIST: {
  746. struct kvm_msr_list __user *user_msr_list = argp;
  747. struct kvm_msr_list msr_list;
  748. unsigned n;
  749. r = -EFAULT;
  750. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  751. goto out;
  752. n = msr_list.nmsrs;
  753. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  754. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  755. goto out;
  756. r = -E2BIG;
  757. if (n < num_msrs_to_save)
  758. goto out;
  759. r = -EFAULT;
  760. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  761. num_msrs_to_save * sizeof(u32)))
  762. goto out;
  763. if (copy_to_user(user_msr_list->indices
  764. + num_msrs_to_save * sizeof(u32),
  765. &emulated_msrs,
  766. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  767. goto out;
  768. r = 0;
  769. break;
  770. }
  771. case KVM_GET_SUPPORTED_CPUID: {
  772. struct kvm_cpuid2 __user *cpuid_arg = argp;
  773. struct kvm_cpuid2 cpuid;
  774. r = -EFAULT;
  775. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  776. goto out;
  777. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  778. cpuid_arg->entries);
  779. if (r)
  780. goto out;
  781. r = -EFAULT;
  782. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  783. goto out;
  784. r = 0;
  785. break;
  786. }
  787. default:
  788. r = -EINVAL;
  789. }
  790. out:
  791. return r;
  792. }
  793. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  794. {
  795. kvm_x86_ops->vcpu_load(vcpu, cpu);
  796. kvm_write_guest_time(vcpu);
  797. }
  798. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  799. {
  800. kvm_x86_ops->vcpu_put(vcpu);
  801. kvm_put_guest_fpu(vcpu);
  802. }
  803. static int is_efer_nx(void)
  804. {
  805. u64 efer;
  806. rdmsrl(MSR_EFER, efer);
  807. return efer & EFER_NX;
  808. }
  809. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  810. {
  811. int i;
  812. struct kvm_cpuid_entry2 *e, *entry;
  813. entry = NULL;
  814. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  815. e = &vcpu->arch.cpuid_entries[i];
  816. if (e->function == 0x80000001) {
  817. entry = e;
  818. break;
  819. }
  820. }
  821. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  822. entry->edx &= ~(1 << 20);
  823. printk(KERN_INFO "kvm: guest NX capability removed\n");
  824. }
  825. }
  826. /* when an old userspace process fills a new kernel module */
  827. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  828. struct kvm_cpuid *cpuid,
  829. struct kvm_cpuid_entry __user *entries)
  830. {
  831. int r, i;
  832. struct kvm_cpuid_entry *cpuid_entries;
  833. r = -E2BIG;
  834. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  835. goto out;
  836. r = -ENOMEM;
  837. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  838. if (!cpuid_entries)
  839. goto out;
  840. r = -EFAULT;
  841. if (copy_from_user(cpuid_entries, entries,
  842. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  843. goto out_free;
  844. for (i = 0; i < cpuid->nent; i++) {
  845. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  846. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  847. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  848. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  849. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  850. vcpu->arch.cpuid_entries[i].index = 0;
  851. vcpu->arch.cpuid_entries[i].flags = 0;
  852. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  853. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  854. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  855. }
  856. vcpu->arch.cpuid_nent = cpuid->nent;
  857. cpuid_fix_nx_cap(vcpu);
  858. r = 0;
  859. out_free:
  860. vfree(cpuid_entries);
  861. out:
  862. return r;
  863. }
  864. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  865. struct kvm_cpuid2 *cpuid,
  866. struct kvm_cpuid_entry2 __user *entries)
  867. {
  868. int r;
  869. r = -E2BIG;
  870. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  871. goto out;
  872. r = -EFAULT;
  873. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  874. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  875. goto out;
  876. vcpu->arch.cpuid_nent = cpuid->nent;
  877. return 0;
  878. out:
  879. return r;
  880. }
  881. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  882. struct kvm_cpuid2 *cpuid,
  883. struct kvm_cpuid_entry2 __user *entries)
  884. {
  885. int r;
  886. r = -E2BIG;
  887. if (cpuid->nent < vcpu->arch.cpuid_nent)
  888. goto out;
  889. r = -EFAULT;
  890. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  891. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  892. goto out;
  893. return 0;
  894. out:
  895. cpuid->nent = vcpu->arch.cpuid_nent;
  896. return r;
  897. }
  898. static inline u32 bit(int bitno)
  899. {
  900. return 1 << (bitno & 31);
  901. }
  902. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  903. u32 index)
  904. {
  905. entry->function = function;
  906. entry->index = index;
  907. cpuid_count(entry->function, entry->index,
  908. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  909. entry->flags = 0;
  910. }
  911. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  912. u32 index, int *nent, int maxnent)
  913. {
  914. const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) |
  915. bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
  916. bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
  917. bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
  918. bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
  919. bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) |
  920. bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
  921. bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) |
  922. bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) |
  923. bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP);
  924. const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) |
  925. bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) |
  926. bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) |
  927. bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) |
  928. bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) |
  929. bit(X86_FEATURE_PGE) |
  930. bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) |
  931. bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) |
  932. bit(X86_FEATURE_SYSCALL) |
  933. (bit(X86_FEATURE_NX) && is_efer_nx()) |
  934. #ifdef CONFIG_X86_64
  935. bit(X86_FEATURE_LM) |
  936. #endif
  937. bit(X86_FEATURE_MMXEXT) |
  938. bit(X86_FEATURE_3DNOWEXT) |
  939. bit(X86_FEATURE_3DNOW);
  940. const u32 kvm_supported_word3_x86_features =
  941. bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16);
  942. const u32 kvm_supported_word6_x86_features =
  943. bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY);
  944. /* all func 2 cpuid_count() should be called on the same cpu */
  945. get_cpu();
  946. do_cpuid_1_ent(entry, function, index);
  947. ++*nent;
  948. switch (function) {
  949. case 0:
  950. entry->eax = min(entry->eax, (u32)0xb);
  951. break;
  952. case 1:
  953. entry->edx &= kvm_supported_word0_x86_features;
  954. entry->ecx &= kvm_supported_word3_x86_features;
  955. break;
  956. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  957. * may return different values. This forces us to get_cpu() before
  958. * issuing the first command, and also to emulate this annoying behavior
  959. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  960. case 2: {
  961. int t, times = entry->eax & 0xff;
  962. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  963. for (t = 1; t < times && *nent < maxnent; ++t) {
  964. do_cpuid_1_ent(&entry[t], function, 0);
  965. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  966. ++*nent;
  967. }
  968. break;
  969. }
  970. /* function 4 and 0xb have additional index. */
  971. case 4: {
  972. int i, cache_type;
  973. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  974. /* read more entries until cache_type is zero */
  975. for (i = 1; *nent < maxnent; ++i) {
  976. cache_type = entry[i - 1].eax & 0x1f;
  977. if (!cache_type)
  978. break;
  979. do_cpuid_1_ent(&entry[i], function, i);
  980. entry[i].flags |=
  981. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  982. ++*nent;
  983. }
  984. break;
  985. }
  986. case 0xb: {
  987. int i, level_type;
  988. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  989. /* read more entries until level_type is zero */
  990. for (i = 1; *nent < maxnent; ++i) {
  991. level_type = entry[i - 1].ecx & 0xff;
  992. if (!level_type)
  993. break;
  994. do_cpuid_1_ent(&entry[i], function, i);
  995. entry[i].flags |=
  996. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  997. ++*nent;
  998. }
  999. break;
  1000. }
  1001. case 0x80000000:
  1002. entry->eax = min(entry->eax, 0x8000001a);
  1003. break;
  1004. case 0x80000001:
  1005. entry->edx &= kvm_supported_word1_x86_features;
  1006. entry->ecx &= kvm_supported_word6_x86_features;
  1007. break;
  1008. }
  1009. put_cpu();
  1010. }
  1011. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1012. struct kvm_cpuid_entry2 __user *entries)
  1013. {
  1014. struct kvm_cpuid_entry2 *cpuid_entries;
  1015. int limit, nent = 0, r = -E2BIG;
  1016. u32 func;
  1017. if (cpuid->nent < 1)
  1018. goto out;
  1019. r = -ENOMEM;
  1020. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1021. if (!cpuid_entries)
  1022. goto out;
  1023. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1024. limit = cpuid_entries[0].eax;
  1025. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1026. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1027. &nent, cpuid->nent);
  1028. r = -E2BIG;
  1029. if (nent >= cpuid->nent)
  1030. goto out_free;
  1031. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1032. limit = cpuid_entries[nent - 1].eax;
  1033. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1034. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1035. &nent, cpuid->nent);
  1036. r = -EFAULT;
  1037. if (copy_to_user(entries, cpuid_entries,
  1038. nent * sizeof(struct kvm_cpuid_entry2)))
  1039. goto out_free;
  1040. cpuid->nent = nent;
  1041. r = 0;
  1042. out_free:
  1043. vfree(cpuid_entries);
  1044. out:
  1045. return r;
  1046. }
  1047. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1048. struct kvm_lapic_state *s)
  1049. {
  1050. vcpu_load(vcpu);
  1051. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1052. vcpu_put(vcpu);
  1053. return 0;
  1054. }
  1055. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1056. struct kvm_lapic_state *s)
  1057. {
  1058. vcpu_load(vcpu);
  1059. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1060. kvm_apic_post_state_restore(vcpu);
  1061. vcpu_put(vcpu);
  1062. return 0;
  1063. }
  1064. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1065. struct kvm_interrupt *irq)
  1066. {
  1067. if (irq->irq < 0 || irq->irq >= 256)
  1068. return -EINVAL;
  1069. if (irqchip_in_kernel(vcpu->kvm))
  1070. return -ENXIO;
  1071. vcpu_load(vcpu);
  1072. set_bit(irq->irq, vcpu->arch.irq_pending);
  1073. set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary);
  1074. vcpu_put(vcpu);
  1075. return 0;
  1076. }
  1077. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1078. struct kvm_tpr_access_ctl *tac)
  1079. {
  1080. if (tac->flags)
  1081. return -EINVAL;
  1082. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1083. return 0;
  1084. }
  1085. long kvm_arch_vcpu_ioctl(struct file *filp,
  1086. unsigned int ioctl, unsigned long arg)
  1087. {
  1088. struct kvm_vcpu *vcpu = filp->private_data;
  1089. void __user *argp = (void __user *)arg;
  1090. int r;
  1091. switch (ioctl) {
  1092. case KVM_GET_LAPIC: {
  1093. struct kvm_lapic_state lapic;
  1094. memset(&lapic, 0, sizeof lapic);
  1095. r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
  1096. if (r)
  1097. goto out;
  1098. r = -EFAULT;
  1099. if (copy_to_user(argp, &lapic, sizeof lapic))
  1100. goto out;
  1101. r = 0;
  1102. break;
  1103. }
  1104. case KVM_SET_LAPIC: {
  1105. struct kvm_lapic_state lapic;
  1106. r = -EFAULT;
  1107. if (copy_from_user(&lapic, argp, sizeof lapic))
  1108. goto out;
  1109. r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
  1110. if (r)
  1111. goto out;
  1112. r = 0;
  1113. break;
  1114. }
  1115. case KVM_INTERRUPT: {
  1116. struct kvm_interrupt irq;
  1117. r = -EFAULT;
  1118. if (copy_from_user(&irq, argp, sizeof irq))
  1119. goto out;
  1120. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1121. if (r)
  1122. goto out;
  1123. r = 0;
  1124. break;
  1125. }
  1126. case KVM_SET_CPUID: {
  1127. struct kvm_cpuid __user *cpuid_arg = argp;
  1128. struct kvm_cpuid cpuid;
  1129. r = -EFAULT;
  1130. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1131. goto out;
  1132. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  1133. if (r)
  1134. goto out;
  1135. break;
  1136. }
  1137. case KVM_SET_CPUID2: {
  1138. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1139. struct kvm_cpuid2 cpuid;
  1140. r = -EFAULT;
  1141. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1142. goto out;
  1143. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  1144. cpuid_arg->entries);
  1145. if (r)
  1146. goto out;
  1147. break;
  1148. }
  1149. case KVM_GET_CPUID2: {
  1150. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1151. struct kvm_cpuid2 cpuid;
  1152. r = -EFAULT;
  1153. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1154. goto out;
  1155. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  1156. cpuid_arg->entries);
  1157. if (r)
  1158. goto out;
  1159. r = -EFAULT;
  1160. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1161. goto out;
  1162. r = 0;
  1163. break;
  1164. }
  1165. case KVM_GET_MSRS:
  1166. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  1167. break;
  1168. case KVM_SET_MSRS:
  1169. r = msr_io(vcpu, argp, do_set_msr, 0);
  1170. break;
  1171. case KVM_TPR_ACCESS_REPORTING: {
  1172. struct kvm_tpr_access_ctl tac;
  1173. r = -EFAULT;
  1174. if (copy_from_user(&tac, argp, sizeof tac))
  1175. goto out;
  1176. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  1177. if (r)
  1178. goto out;
  1179. r = -EFAULT;
  1180. if (copy_to_user(argp, &tac, sizeof tac))
  1181. goto out;
  1182. r = 0;
  1183. break;
  1184. };
  1185. case KVM_SET_VAPIC_ADDR: {
  1186. struct kvm_vapic_addr va;
  1187. r = -EINVAL;
  1188. if (!irqchip_in_kernel(vcpu->kvm))
  1189. goto out;
  1190. r = -EFAULT;
  1191. if (copy_from_user(&va, argp, sizeof va))
  1192. goto out;
  1193. r = 0;
  1194. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  1195. break;
  1196. }
  1197. default:
  1198. r = -EINVAL;
  1199. }
  1200. out:
  1201. return r;
  1202. }
  1203. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  1204. {
  1205. int ret;
  1206. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  1207. return -1;
  1208. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  1209. return ret;
  1210. }
  1211. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  1212. u32 kvm_nr_mmu_pages)
  1213. {
  1214. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  1215. return -EINVAL;
  1216. down_write(&kvm->slots_lock);
  1217. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  1218. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  1219. up_write(&kvm->slots_lock);
  1220. return 0;
  1221. }
  1222. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  1223. {
  1224. return kvm->arch.n_alloc_mmu_pages;
  1225. }
  1226. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1227. {
  1228. int i;
  1229. struct kvm_mem_alias *alias;
  1230. for (i = 0; i < kvm->arch.naliases; ++i) {
  1231. alias = &kvm->arch.aliases[i];
  1232. if (gfn >= alias->base_gfn
  1233. && gfn < alias->base_gfn + alias->npages)
  1234. return alias->target_gfn + gfn - alias->base_gfn;
  1235. }
  1236. return gfn;
  1237. }
  1238. /*
  1239. * Set a new alias region. Aliases map a portion of physical memory into
  1240. * another portion. This is useful for memory windows, for example the PC
  1241. * VGA region.
  1242. */
  1243. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  1244. struct kvm_memory_alias *alias)
  1245. {
  1246. int r, n;
  1247. struct kvm_mem_alias *p;
  1248. r = -EINVAL;
  1249. /* General sanity checks */
  1250. if (alias->memory_size & (PAGE_SIZE - 1))
  1251. goto out;
  1252. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  1253. goto out;
  1254. if (alias->slot >= KVM_ALIAS_SLOTS)
  1255. goto out;
  1256. if (alias->guest_phys_addr + alias->memory_size
  1257. < alias->guest_phys_addr)
  1258. goto out;
  1259. if (alias->target_phys_addr + alias->memory_size
  1260. < alias->target_phys_addr)
  1261. goto out;
  1262. down_write(&kvm->slots_lock);
  1263. p = &kvm->arch.aliases[alias->slot];
  1264. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  1265. p->npages = alias->memory_size >> PAGE_SHIFT;
  1266. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  1267. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  1268. if (kvm->arch.aliases[n - 1].npages)
  1269. break;
  1270. kvm->arch.naliases = n;
  1271. kvm_mmu_zap_all(kvm);
  1272. up_write(&kvm->slots_lock);
  1273. return 0;
  1274. out:
  1275. return r;
  1276. }
  1277. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1278. {
  1279. int r;
  1280. r = 0;
  1281. switch (chip->chip_id) {
  1282. case KVM_IRQCHIP_PIC_MASTER:
  1283. memcpy(&chip->chip.pic,
  1284. &pic_irqchip(kvm)->pics[0],
  1285. sizeof(struct kvm_pic_state));
  1286. break;
  1287. case KVM_IRQCHIP_PIC_SLAVE:
  1288. memcpy(&chip->chip.pic,
  1289. &pic_irqchip(kvm)->pics[1],
  1290. sizeof(struct kvm_pic_state));
  1291. break;
  1292. case KVM_IRQCHIP_IOAPIC:
  1293. memcpy(&chip->chip.ioapic,
  1294. ioapic_irqchip(kvm),
  1295. sizeof(struct kvm_ioapic_state));
  1296. break;
  1297. default:
  1298. r = -EINVAL;
  1299. break;
  1300. }
  1301. return r;
  1302. }
  1303. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1304. {
  1305. int r;
  1306. r = 0;
  1307. switch (chip->chip_id) {
  1308. case KVM_IRQCHIP_PIC_MASTER:
  1309. memcpy(&pic_irqchip(kvm)->pics[0],
  1310. &chip->chip.pic,
  1311. sizeof(struct kvm_pic_state));
  1312. break;
  1313. case KVM_IRQCHIP_PIC_SLAVE:
  1314. memcpy(&pic_irqchip(kvm)->pics[1],
  1315. &chip->chip.pic,
  1316. sizeof(struct kvm_pic_state));
  1317. break;
  1318. case KVM_IRQCHIP_IOAPIC:
  1319. memcpy(ioapic_irqchip(kvm),
  1320. &chip->chip.ioapic,
  1321. sizeof(struct kvm_ioapic_state));
  1322. break;
  1323. default:
  1324. r = -EINVAL;
  1325. break;
  1326. }
  1327. kvm_pic_update_irq(pic_irqchip(kvm));
  1328. return r;
  1329. }
  1330. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1331. {
  1332. int r = 0;
  1333. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  1334. return r;
  1335. }
  1336. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1337. {
  1338. int r = 0;
  1339. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  1340. kvm_pit_load_count(kvm, 0, ps->channels[0].count);
  1341. return r;
  1342. }
  1343. /*
  1344. * Get (and clear) the dirty memory log for a memory slot.
  1345. */
  1346. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1347. struct kvm_dirty_log *log)
  1348. {
  1349. int r;
  1350. int n;
  1351. struct kvm_memory_slot *memslot;
  1352. int is_dirty = 0;
  1353. down_write(&kvm->slots_lock);
  1354. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1355. if (r)
  1356. goto out;
  1357. /* If nothing is dirty, don't bother messing with page tables. */
  1358. if (is_dirty) {
  1359. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  1360. kvm_flush_remote_tlbs(kvm);
  1361. memslot = &kvm->memslots[log->slot];
  1362. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1363. memset(memslot->dirty_bitmap, 0, n);
  1364. }
  1365. r = 0;
  1366. out:
  1367. up_write(&kvm->slots_lock);
  1368. return r;
  1369. }
  1370. long kvm_arch_vm_ioctl(struct file *filp,
  1371. unsigned int ioctl, unsigned long arg)
  1372. {
  1373. struct kvm *kvm = filp->private_data;
  1374. void __user *argp = (void __user *)arg;
  1375. int r = -EINVAL;
  1376. switch (ioctl) {
  1377. case KVM_SET_TSS_ADDR:
  1378. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  1379. if (r < 0)
  1380. goto out;
  1381. break;
  1382. case KVM_SET_MEMORY_REGION: {
  1383. struct kvm_memory_region kvm_mem;
  1384. struct kvm_userspace_memory_region kvm_userspace_mem;
  1385. r = -EFAULT;
  1386. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  1387. goto out;
  1388. kvm_userspace_mem.slot = kvm_mem.slot;
  1389. kvm_userspace_mem.flags = kvm_mem.flags;
  1390. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  1391. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  1392. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1393. if (r)
  1394. goto out;
  1395. break;
  1396. }
  1397. case KVM_SET_NR_MMU_PAGES:
  1398. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  1399. if (r)
  1400. goto out;
  1401. break;
  1402. case KVM_GET_NR_MMU_PAGES:
  1403. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  1404. break;
  1405. case KVM_SET_MEMORY_ALIAS: {
  1406. struct kvm_memory_alias alias;
  1407. r = -EFAULT;
  1408. if (copy_from_user(&alias, argp, sizeof alias))
  1409. goto out;
  1410. r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
  1411. if (r)
  1412. goto out;
  1413. break;
  1414. }
  1415. case KVM_CREATE_IRQCHIP:
  1416. r = -ENOMEM;
  1417. kvm->arch.vpic = kvm_create_pic(kvm);
  1418. if (kvm->arch.vpic) {
  1419. r = kvm_ioapic_init(kvm);
  1420. if (r) {
  1421. kfree(kvm->arch.vpic);
  1422. kvm->arch.vpic = NULL;
  1423. goto out;
  1424. }
  1425. } else
  1426. goto out;
  1427. break;
  1428. case KVM_CREATE_PIT:
  1429. r = -ENOMEM;
  1430. kvm->arch.vpit = kvm_create_pit(kvm);
  1431. if (kvm->arch.vpit)
  1432. r = 0;
  1433. break;
  1434. case KVM_IRQ_LINE: {
  1435. struct kvm_irq_level irq_event;
  1436. r = -EFAULT;
  1437. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  1438. goto out;
  1439. if (irqchip_in_kernel(kvm)) {
  1440. mutex_lock(&kvm->lock);
  1441. if (irq_event.irq < 16)
  1442. kvm_pic_set_irq(pic_irqchip(kvm),
  1443. irq_event.irq,
  1444. irq_event.level);
  1445. kvm_ioapic_set_irq(kvm->arch.vioapic,
  1446. irq_event.irq,
  1447. irq_event.level);
  1448. mutex_unlock(&kvm->lock);
  1449. r = 0;
  1450. }
  1451. break;
  1452. }
  1453. case KVM_GET_IRQCHIP: {
  1454. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1455. struct kvm_irqchip chip;
  1456. r = -EFAULT;
  1457. if (copy_from_user(&chip, argp, sizeof chip))
  1458. goto out;
  1459. r = -ENXIO;
  1460. if (!irqchip_in_kernel(kvm))
  1461. goto out;
  1462. r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
  1463. if (r)
  1464. goto out;
  1465. r = -EFAULT;
  1466. if (copy_to_user(argp, &chip, sizeof chip))
  1467. goto out;
  1468. r = 0;
  1469. break;
  1470. }
  1471. case KVM_SET_IRQCHIP: {
  1472. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  1473. struct kvm_irqchip chip;
  1474. r = -EFAULT;
  1475. if (copy_from_user(&chip, argp, sizeof chip))
  1476. goto out;
  1477. r = -ENXIO;
  1478. if (!irqchip_in_kernel(kvm))
  1479. goto out;
  1480. r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
  1481. if (r)
  1482. goto out;
  1483. r = 0;
  1484. break;
  1485. }
  1486. case KVM_GET_PIT: {
  1487. struct kvm_pit_state ps;
  1488. r = -EFAULT;
  1489. if (copy_from_user(&ps, argp, sizeof ps))
  1490. goto out;
  1491. r = -ENXIO;
  1492. if (!kvm->arch.vpit)
  1493. goto out;
  1494. r = kvm_vm_ioctl_get_pit(kvm, &ps);
  1495. if (r)
  1496. goto out;
  1497. r = -EFAULT;
  1498. if (copy_to_user(argp, &ps, sizeof ps))
  1499. goto out;
  1500. r = 0;
  1501. break;
  1502. }
  1503. case KVM_SET_PIT: {
  1504. struct kvm_pit_state ps;
  1505. r = -EFAULT;
  1506. if (copy_from_user(&ps, argp, sizeof ps))
  1507. goto out;
  1508. r = -ENXIO;
  1509. if (!kvm->arch.vpit)
  1510. goto out;
  1511. r = kvm_vm_ioctl_set_pit(kvm, &ps);
  1512. if (r)
  1513. goto out;
  1514. r = 0;
  1515. break;
  1516. }
  1517. default:
  1518. ;
  1519. }
  1520. out:
  1521. return r;
  1522. }
  1523. static void kvm_init_msr_list(void)
  1524. {
  1525. u32 dummy[2];
  1526. unsigned i, j;
  1527. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1528. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1529. continue;
  1530. if (j < i)
  1531. msrs_to_save[j] = msrs_to_save[i];
  1532. j++;
  1533. }
  1534. num_msrs_to_save = j;
  1535. }
  1536. /*
  1537. * Only apic need an MMIO device hook, so shortcut now..
  1538. */
  1539. static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
  1540. gpa_t addr)
  1541. {
  1542. struct kvm_io_device *dev;
  1543. if (vcpu->arch.apic) {
  1544. dev = &vcpu->arch.apic->dev;
  1545. if (dev->in_range(dev, addr))
  1546. return dev;
  1547. }
  1548. return NULL;
  1549. }
  1550. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  1551. gpa_t addr)
  1552. {
  1553. struct kvm_io_device *dev;
  1554. dev = vcpu_find_pervcpu_dev(vcpu, addr);
  1555. if (dev == NULL)
  1556. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
  1557. return dev;
  1558. }
  1559. int emulator_read_std(unsigned long addr,
  1560. void *val,
  1561. unsigned int bytes,
  1562. struct kvm_vcpu *vcpu)
  1563. {
  1564. void *data = val;
  1565. int r = X86EMUL_CONTINUE;
  1566. down_read(&vcpu->kvm->slots_lock);
  1567. while (bytes) {
  1568. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1569. unsigned offset = addr & (PAGE_SIZE-1);
  1570. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  1571. int ret;
  1572. if (gpa == UNMAPPED_GVA) {
  1573. r = X86EMUL_PROPAGATE_FAULT;
  1574. goto out;
  1575. }
  1576. ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy);
  1577. if (ret < 0) {
  1578. r = X86EMUL_UNHANDLEABLE;
  1579. goto out;
  1580. }
  1581. bytes -= tocopy;
  1582. data += tocopy;
  1583. addr += tocopy;
  1584. }
  1585. out:
  1586. up_read(&vcpu->kvm->slots_lock);
  1587. return r;
  1588. }
  1589. EXPORT_SYMBOL_GPL(emulator_read_std);
  1590. static int emulator_read_emulated(unsigned long addr,
  1591. void *val,
  1592. unsigned int bytes,
  1593. struct kvm_vcpu *vcpu)
  1594. {
  1595. struct kvm_io_device *mmio_dev;
  1596. gpa_t gpa;
  1597. if (vcpu->mmio_read_completed) {
  1598. memcpy(val, vcpu->mmio_data, bytes);
  1599. vcpu->mmio_read_completed = 0;
  1600. return X86EMUL_CONTINUE;
  1601. }
  1602. down_read(&vcpu->kvm->slots_lock);
  1603. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1604. up_read(&vcpu->kvm->slots_lock);
  1605. /* For APIC access vmexit */
  1606. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1607. goto mmio;
  1608. if (emulator_read_std(addr, val, bytes, vcpu)
  1609. == X86EMUL_CONTINUE)
  1610. return X86EMUL_CONTINUE;
  1611. if (gpa == UNMAPPED_GVA)
  1612. return X86EMUL_PROPAGATE_FAULT;
  1613. mmio:
  1614. /*
  1615. * Is this MMIO handled locally?
  1616. */
  1617. mutex_lock(&vcpu->kvm->lock);
  1618. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  1619. if (mmio_dev) {
  1620. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  1621. mutex_unlock(&vcpu->kvm->lock);
  1622. return X86EMUL_CONTINUE;
  1623. }
  1624. mutex_unlock(&vcpu->kvm->lock);
  1625. vcpu->mmio_needed = 1;
  1626. vcpu->mmio_phys_addr = gpa;
  1627. vcpu->mmio_size = bytes;
  1628. vcpu->mmio_is_write = 0;
  1629. return X86EMUL_UNHANDLEABLE;
  1630. }
  1631. int __emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  1632. const void *val, int bytes)
  1633. {
  1634. int ret;
  1635. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  1636. if (ret < 0)
  1637. return 0;
  1638. kvm_mmu_pte_write(vcpu, gpa, val, bytes);
  1639. return 1;
  1640. }
  1641. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  1642. const void *val, int bytes)
  1643. {
  1644. int ret;
  1645. down_read(&vcpu->kvm->slots_lock);
  1646. ret =__emulator_write_phys(vcpu, gpa, val, bytes);
  1647. up_read(&vcpu->kvm->slots_lock);
  1648. return ret;
  1649. }
  1650. static int emulator_write_emulated_onepage(unsigned long addr,
  1651. const void *val,
  1652. unsigned int bytes,
  1653. struct kvm_vcpu *vcpu)
  1654. {
  1655. struct kvm_io_device *mmio_dev;
  1656. gpa_t gpa;
  1657. down_read(&vcpu->kvm->slots_lock);
  1658. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1659. up_read(&vcpu->kvm->slots_lock);
  1660. if (gpa == UNMAPPED_GVA) {
  1661. kvm_inject_page_fault(vcpu, addr, 2);
  1662. return X86EMUL_PROPAGATE_FAULT;
  1663. }
  1664. /* For APIC access vmexit */
  1665. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1666. goto mmio;
  1667. if (emulator_write_phys(vcpu, gpa, val, bytes))
  1668. return X86EMUL_CONTINUE;
  1669. mmio:
  1670. /*
  1671. * Is this MMIO handled locally?
  1672. */
  1673. mutex_lock(&vcpu->kvm->lock);
  1674. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  1675. if (mmio_dev) {
  1676. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  1677. mutex_unlock(&vcpu->kvm->lock);
  1678. return X86EMUL_CONTINUE;
  1679. }
  1680. mutex_unlock(&vcpu->kvm->lock);
  1681. vcpu->mmio_needed = 1;
  1682. vcpu->mmio_phys_addr = gpa;
  1683. vcpu->mmio_size = bytes;
  1684. vcpu->mmio_is_write = 1;
  1685. memcpy(vcpu->mmio_data, val, bytes);
  1686. return X86EMUL_CONTINUE;
  1687. }
  1688. int emulator_write_emulated(unsigned long addr,
  1689. const void *val,
  1690. unsigned int bytes,
  1691. struct kvm_vcpu *vcpu)
  1692. {
  1693. /* Crossing a page boundary? */
  1694. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  1695. int rc, now;
  1696. now = -addr & ~PAGE_MASK;
  1697. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  1698. if (rc != X86EMUL_CONTINUE)
  1699. return rc;
  1700. addr += now;
  1701. val += now;
  1702. bytes -= now;
  1703. }
  1704. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  1705. }
  1706. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  1707. static int emulator_cmpxchg_emulated(unsigned long addr,
  1708. const void *old,
  1709. const void *new,
  1710. unsigned int bytes,
  1711. struct kvm_vcpu *vcpu)
  1712. {
  1713. static int reported;
  1714. if (!reported) {
  1715. reported = 1;
  1716. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  1717. }
  1718. #ifndef CONFIG_X86_64
  1719. /* guests cmpxchg8b have to be emulated atomically */
  1720. if (bytes == 8) {
  1721. gpa_t gpa;
  1722. struct page *page;
  1723. char *kaddr;
  1724. u64 val;
  1725. down_read(&vcpu->kvm->slots_lock);
  1726. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  1727. if (gpa == UNMAPPED_GVA ||
  1728. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  1729. goto emul_write;
  1730. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  1731. goto emul_write;
  1732. val = *(u64 *)new;
  1733. down_read(&current->mm->mmap_sem);
  1734. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  1735. up_read(&current->mm->mmap_sem);
  1736. kaddr = kmap_atomic(page, KM_USER0);
  1737. set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
  1738. kunmap_atomic(kaddr, KM_USER0);
  1739. kvm_release_page_dirty(page);
  1740. emul_write:
  1741. up_read(&vcpu->kvm->slots_lock);
  1742. }
  1743. #endif
  1744. return emulator_write_emulated(addr, new, bytes, vcpu);
  1745. }
  1746. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1747. {
  1748. return kvm_x86_ops->get_segment_base(vcpu, seg);
  1749. }
  1750. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  1751. {
  1752. return X86EMUL_CONTINUE;
  1753. }
  1754. int emulate_clts(struct kvm_vcpu *vcpu)
  1755. {
  1756. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
  1757. return X86EMUL_CONTINUE;
  1758. }
  1759. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  1760. {
  1761. struct kvm_vcpu *vcpu = ctxt->vcpu;
  1762. switch (dr) {
  1763. case 0 ... 3:
  1764. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  1765. return X86EMUL_CONTINUE;
  1766. default:
  1767. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
  1768. return X86EMUL_UNHANDLEABLE;
  1769. }
  1770. }
  1771. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  1772. {
  1773. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  1774. int exception;
  1775. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  1776. if (exception) {
  1777. /* FIXME: better handling */
  1778. return X86EMUL_UNHANDLEABLE;
  1779. }
  1780. return X86EMUL_CONTINUE;
  1781. }
  1782. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  1783. {
  1784. static int reported;
  1785. u8 opcodes[4];
  1786. unsigned long rip = vcpu->arch.rip;
  1787. unsigned long rip_linear;
  1788. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  1789. if (reported)
  1790. return;
  1791. emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu);
  1792. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  1793. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  1794. reported = 1;
  1795. }
  1796. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  1797. static struct x86_emulate_ops emulate_ops = {
  1798. .read_std = emulator_read_std,
  1799. .read_emulated = emulator_read_emulated,
  1800. .write_emulated = emulator_write_emulated,
  1801. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1802. };
  1803. int emulate_instruction(struct kvm_vcpu *vcpu,
  1804. struct kvm_run *run,
  1805. unsigned long cr2,
  1806. u16 error_code,
  1807. int emulation_type)
  1808. {
  1809. int r;
  1810. struct decode_cache *c;
  1811. vcpu->arch.mmio_fault_cr2 = cr2;
  1812. kvm_x86_ops->cache_regs(vcpu);
  1813. vcpu->mmio_is_write = 0;
  1814. vcpu->arch.pio.string = 0;
  1815. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  1816. int cs_db, cs_l;
  1817. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1818. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  1819. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  1820. vcpu->arch.emulate_ctxt.mode =
  1821. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  1822. ? X86EMUL_MODE_REAL : cs_l
  1823. ? X86EMUL_MODE_PROT64 : cs_db
  1824. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  1825. if (vcpu->arch.emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  1826. vcpu->arch.emulate_ctxt.cs_base = 0;
  1827. vcpu->arch.emulate_ctxt.ds_base = 0;
  1828. vcpu->arch.emulate_ctxt.es_base = 0;
  1829. vcpu->arch.emulate_ctxt.ss_base = 0;
  1830. } else {
  1831. vcpu->arch.emulate_ctxt.cs_base =
  1832. get_segment_base(vcpu, VCPU_SREG_CS);
  1833. vcpu->arch.emulate_ctxt.ds_base =
  1834. get_segment_base(vcpu, VCPU_SREG_DS);
  1835. vcpu->arch.emulate_ctxt.es_base =
  1836. get_segment_base(vcpu, VCPU_SREG_ES);
  1837. vcpu->arch.emulate_ctxt.ss_base =
  1838. get_segment_base(vcpu, VCPU_SREG_SS);
  1839. }
  1840. vcpu->arch.emulate_ctxt.gs_base =
  1841. get_segment_base(vcpu, VCPU_SREG_GS);
  1842. vcpu->arch.emulate_ctxt.fs_base =
  1843. get_segment_base(vcpu, VCPU_SREG_FS);
  1844. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  1845. /* Reject the instructions other than VMCALL/VMMCALL when
  1846. * try to emulate invalid opcode */
  1847. c = &vcpu->arch.emulate_ctxt.decode;
  1848. if ((emulation_type & EMULTYPE_TRAP_UD) &&
  1849. (!(c->twobyte && c->b == 0x01 &&
  1850. (c->modrm_reg == 0 || c->modrm_reg == 3) &&
  1851. c->modrm_mod == 3 && c->modrm_rm == 1)))
  1852. return EMULATE_FAIL;
  1853. ++vcpu->stat.insn_emulation;
  1854. if (r) {
  1855. ++vcpu->stat.insn_emulation_fail;
  1856. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1857. return EMULATE_DONE;
  1858. return EMULATE_FAIL;
  1859. }
  1860. }
  1861. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  1862. if (vcpu->arch.pio.string)
  1863. return EMULATE_DO_MMIO;
  1864. if ((r || vcpu->mmio_is_write) && run) {
  1865. run->exit_reason = KVM_EXIT_MMIO;
  1866. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  1867. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  1868. run->mmio.len = vcpu->mmio_size;
  1869. run->mmio.is_write = vcpu->mmio_is_write;
  1870. }
  1871. if (r) {
  1872. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1873. return EMULATE_DONE;
  1874. if (!vcpu->mmio_needed) {
  1875. kvm_report_emulation_failure(vcpu, "mmio");
  1876. return EMULATE_FAIL;
  1877. }
  1878. return EMULATE_DO_MMIO;
  1879. }
  1880. kvm_x86_ops->decache_regs(vcpu);
  1881. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  1882. if (vcpu->mmio_is_write) {
  1883. vcpu->mmio_needed = 0;
  1884. return EMULATE_DO_MMIO;
  1885. }
  1886. return EMULATE_DONE;
  1887. }
  1888. EXPORT_SYMBOL_GPL(emulate_instruction);
  1889. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  1890. {
  1891. int i;
  1892. for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i)
  1893. if (vcpu->arch.pio.guest_pages[i]) {
  1894. kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]);
  1895. vcpu->arch.pio.guest_pages[i] = NULL;
  1896. }
  1897. }
  1898. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1899. {
  1900. void *p = vcpu->arch.pio_data;
  1901. void *q;
  1902. unsigned bytes;
  1903. int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1;
  1904. q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1905. PAGE_KERNEL);
  1906. if (!q) {
  1907. free_pio_guest_pages(vcpu);
  1908. return -ENOMEM;
  1909. }
  1910. q += vcpu->arch.pio.guest_page_offset;
  1911. bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
  1912. if (vcpu->arch.pio.in)
  1913. memcpy(q, p, bytes);
  1914. else
  1915. memcpy(p, q, bytes);
  1916. q -= vcpu->arch.pio.guest_page_offset;
  1917. vunmap(q);
  1918. free_pio_guest_pages(vcpu);
  1919. return 0;
  1920. }
  1921. int complete_pio(struct kvm_vcpu *vcpu)
  1922. {
  1923. struct kvm_pio_request *io = &vcpu->arch.pio;
  1924. long delta;
  1925. int r;
  1926. kvm_x86_ops->cache_regs(vcpu);
  1927. if (!io->string) {
  1928. if (io->in)
  1929. memcpy(&vcpu->arch.regs[VCPU_REGS_RAX], vcpu->arch.pio_data,
  1930. io->size);
  1931. } else {
  1932. if (io->in) {
  1933. r = pio_copy_data(vcpu);
  1934. if (r) {
  1935. kvm_x86_ops->cache_regs(vcpu);
  1936. return r;
  1937. }
  1938. }
  1939. delta = 1;
  1940. if (io->rep) {
  1941. delta *= io->cur_count;
  1942. /*
  1943. * The size of the register should really depend on
  1944. * current address size.
  1945. */
  1946. vcpu->arch.regs[VCPU_REGS_RCX] -= delta;
  1947. }
  1948. if (io->down)
  1949. delta = -delta;
  1950. delta *= io->size;
  1951. if (io->in)
  1952. vcpu->arch.regs[VCPU_REGS_RDI] += delta;
  1953. else
  1954. vcpu->arch.regs[VCPU_REGS_RSI] += delta;
  1955. }
  1956. kvm_x86_ops->decache_regs(vcpu);
  1957. io->count -= io->cur_count;
  1958. io->cur_count = 0;
  1959. return 0;
  1960. }
  1961. static void kernel_pio(struct kvm_io_device *pio_dev,
  1962. struct kvm_vcpu *vcpu,
  1963. void *pd)
  1964. {
  1965. /* TODO: String I/O for in kernel device */
  1966. mutex_lock(&vcpu->kvm->lock);
  1967. if (vcpu->arch.pio.in)
  1968. kvm_iodevice_read(pio_dev, vcpu->arch.pio.port,
  1969. vcpu->arch.pio.size,
  1970. pd);
  1971. else
  1972. kvm_iodevice_write(pio_dev, vcpu->arch.pio.port,
  1973. vcpu->arch.pio.size,
  1974. pd);
  1975. mutex_unlock(&vcpu->kvm->lock);
  1976. }
  1977. static void pio_string_write(struct kvm_io_device *pio_dev,
  1978. struct kvm_vcpu *vcpu)
  1979. {
  1980. struct kvm_pio_request *io = &vcpu->arch.pio;
  1981. void *pd = vcpu->arch.pio_data;
  1982. int i;
  1983. mutex_lock(&vcpu->kvm->lock);
  1984. for (i = 0; i < io->cur_count; i++) {
  1985. kvm_iodevice_write(pio_dev, io->port,
  1986. io->size,
  1987. pd);
  1988. pd += io->size;
  1989. }
  1990. mutex_unlock(&vcpu->kvm->lock);
  1991. }
  1992. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  1993. gpa_t addr)
  1994. {
  1995. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
  1996. }
  1997. int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1998. int size, unsigned port)
  1999. {
  2000. struct kvm_io_device *pio_dev;
  2001. vcpu->run->exit_reason = KVM_EXIT_IO;
  2002. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2003. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2004. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2005. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
  2006. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2007. vcpu->arch.pio.in = in;
  2008. vcpu->arch.pio.string = 0;
  2009. vcpu->arch.pio.down = 0;
  2010. vcpu->arch.pio.guest_page_offset = 0;
  2011. vcpu->arch.pio.rep = 0;
  2012. kvm_x86_ops->cache_regs(vcpu);
  2013. memcpy(vcpu->arch.pio_data, &vcpu->arch.regs[VCPU_REGS_RAX], 4);
  2014. kvm_x86_ops->decache_regs(vcpu);
  2015. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2016. pio_dev = vcpu_find_pio_dev(vcpu, port);
  2017. if (pio_dev) {
  2018. kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data);
  2019. complete_pio(vcpu);
  2020. return 1;
  2021. }
  2022. return 0;
  2023. }
  2024. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  2025. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  2026. int size, unsigned long count, int down,
  2027. gva_t address, int rep, unsigned port)
  2028. {
  2029. unsigned now, in_page;
  2030. int i, ret = 0;
  2031. int nr_pages = 1;
  2032. struct page *page;
  2033. struct kvm_io_device *pio_dev;
  2034. vcpu->run->exit_reason = KVM_EXIT_IO;
  2035. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2036. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2037. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2038. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
  2039. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2040. vcpu->arch.pio.in = in;
  2041. vcpu->arch.pio.string = 1;
  2042. vcpu->arch.pio.down = down;
  2043. vcpu->arch.pio.guest_page_offset = offset_in_page(address);
  2044. vcpu->arch.pio.rep = rep;
  2045. if (!count) {
  2046. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2047. return 1;
  2048. }
  2049. if (!down)
  2050. in_page = PAGE_SIZE - offset_in_page(address);
  2051. else
  2052. in_page = offset_in_page(address) + size;
  2053. now = min(count, (unsigned long)in_page / size);
  2054. if (!now) {
  2055. /*
  2056. * String I/O straddles page boundary. Pin two guest pages
  2057. * so that we satisfy atomicity constraints. Do just one
  2058. * transaction to avoid complexity.
  2059. */
  2060. nr_pages = 2;
  2061. now = 1;
  2062. }
  2063. if (down) {
  2064. /*
  2065. * String I/O in reverse. Yuck. Kill the guest, fix later.
  2066. */
  2067. pr_unimpl(vcpu, "guest string pio down\n");
  2068. kvm_inject_gp(vcpu, 0);
  2069. return 1;
  2070. }
  2071. vcpu->run->io.count = now;
  2072. vcpu->arch.pio.cur_count = now;
  2073. if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
  2074. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2075. for (i = 0; i < nr_pages; ++i) {
  2076. down_read(&vcpu->kvm->slots_lock);
  2077. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  2078. vcpu->arch.pio.guest_pages[i] = page;
  2079. up_read(&vcpu->kvm->slots_lock);
  2080. if (!page) {
  2081. kvm_inject_gp(vcpu, 0);
  2082. free_pio_guest_pages(vcpu);
  2083. return 1;
  2084. }
  2085. }
  2086. pio_dev = vcpu_find_pio_dev(vcpu, port);
  2087. if (!vcpu->arch.pio.in) {
  2088. /* string PIO write */
  2089. ret = pio_copy_data(vcpu);
  2090. if (ret >= 0 && pio_dev) {
  2091. pio_string_write(pio_dev, vcpu);
  2092. complete_pio(vcpu);
  2093. if (vcpu->arch.pio.count == 0)
  2094. ret = 1;
  2095. }
  2096. } else if (pio_dev)
  2097. pr_unimpl(vcpu, "no string pio read support yet, "
  2098. "port %x size %d count %ld\n",
  2099. port, size, count);
  2100. return ret;
  2101. }
  2102. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  2103. int kvm_arch_init(void *opaque)
  2104. {
  2105. int r;
  2106. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  2107. if (kvm_x86_ops) {
  2108. printk(KERN_ERR "kvm: already loaded the other module\n");
  2109. r = -EEXIST;
  2110. goto out;
  2111. }
  2112. if (!ops->cpu_has_kvm_support()) {
  2113. printk(KERN_ERR "kvm: no hardware support\n");
  2114. r = -EOPNOTSUPP;
  2115. goto out;
  2116. }
  2117. if (ops->disabled_by_bios()) {
  2118. printk(KERN_ERR "kvm: disabled by bios\n");
  2119. r = -EOPNOTSUPP;
  2120. goto out;
  2121. }
  2122. r = kvm_mmu_module_init();
  2123. if (r)
  2124. goto out;
  2125. kvm_init_msr_list();
  2126. kvm_x86_ops = ops;
  2127. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  2128. return 0;
  2129. out:
  2130. return r;
  2131. }
  2132. void kvm_arch_exit(void)
  2133. {
  2134. kvm_x86_ops = NULL;
  2135. kvm_mmu_module_exit();
  2136. }
  2137. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  2138. {
  2139. ++vcpu->stat.halt_exits;
  2140. if (irqchip_in_kernel(vcpu->kvm)) {
  2141. vcpu->arch.mp_state = VCPU_MP_STATE_HALTED;
  2142. kvm_vcpu_block(vcpu);
  2143. if (vcpu->arch.mp_state != VCPU_MP_STATE_RUNNABLE)
  2144. return -EINTR;
  2145. return 1;
  2146. } else {
  2147. vcpu->run->exit_reason = KVM_EXIT_HLT;
  2148. return 0;
  2149. }
  2150. }
  2151. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  2152. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  2153. unsigned long a1)
  2154. {
  2155. if (is_long_mode(vcpu))
  2156. return a0;
  2157. else
  2158. return a0 | ((gpa_t)a1 << 32);
  2159. }
  2160. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  2161. {
  2162. unsigned long nr, a0, a1, a2, a3, ret;
  2163. int r = 1;
  2164. kvm_x86_ops->cache_regs(vcpu);
  2165. nr = vcpu->arch.regs[VCPU_REGS_RAX];
  2166. a0 = vcpu->arch.regs[VCPU_REGS_RBX];
  2167. a1 = vcpu->arch.regs[VCPU_REGS_RCX];
  2168. a2 = vcpu->arch.regs[VCPU_REGS_RDX];
  2169. a3 = vcpu->arch.regs[VCPU_REGS_RSI];
  2170. if (!is_long_mode(vcpu)) {
  2171. nr &= 0xFFFFFFFF;
  2172. a0 &= 0xFFFFFFFF;
  2173. a1 &= 0xFFFFFFFF;
  2174. a2 &= 0xFFFFFFFF;
  2175. a3 &= 0xFFFFFFFF;
  2176. }
  2177. switch (nr) {
  2178. case KVM_HC_VAPIC_POLL_IRQ:
  2179. ret = 0;
  2180. break;
  2181. case KVM_HC_MMU_OP:
  2182. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  2183. break;
  2184. default:
  2185. ret = -KVM_ENOSYS;
  2186. break;
  2187. }
  2188. vcpu->arch.regs[VCPU_REGS_RAX] = ret;
  2189. kvm_x86_ops->decache_regs(vcpu);
  2190. ++vcpu->stat.hypercalls;
  2191. return r;
  2192. }
  2193. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  2194. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  2195. {
  2196. char instruction[3];
  2197. int ret = 0;
  2198. /*
  2199. * Blow out the MMU to ensure that no other VCPU has an active mapping
  2200. * to ensure that the updated hypercall appears atomically across all
  2201. * VCPUs.
  2202. */
  2203. kvm_mmu_zap_all(vcpu->kvm);
  2204. kvm_x86_ops->cache_regs(vcpu);
  2205. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  2206. if (emulator_write_emulated(vcpu->arch.rip, instruction, 3, vcpu)
  2207. != X86EMUL_CONTINUE)
  2208. ret = -EFAULT;
  2209. return ret;
  2210. }
  2211. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  2212. {
  2213. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  2214. }
  2215. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2216. {
  2217. struct descriptor_table dt = { limit, base };
  2218. kvm_x86_ops->set_gdt(vcpu, &dt);
  2219. }
  2220. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2221. {
  2222. struct descriptor_table dt = { limit, base };
  2223. kvm_x86_ops->set_idt(vcpu, &dt);
  2224. }
  2225. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  2226. unsigned long *rflags)
  2227. {
  2228. kvm_lmsw(vcpu, msw);
  2229. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2230. }
  2231. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  2232. {
  2233. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2234. switch (cr) {
  2235. case 0:
  2236. return vcpu->arch.cr0;
  2237. case 2:
  2238. return vcpu->arch.cr2;
  2239. case 3:
  2240. return vcpu->arch.cr3;
  2241. case 4:
  2242. return vcpu->arch.cr4;
  2243. case 8:
  2244. return kvm_get_cr8(vcpu);
  2245. default:
  2246. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2247. return 0;
  2248. }
  2249. }
  2250. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  2251. unsigned long *rflags)
  2252. {
  2253. switch (cr) {
  2254. case 0:
  2255. kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
  2256. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2257. break;
  2258. case 2:
  2259. vcpu->arch.cr2 = val;
  2260. break;
  2261. case 3:
  2262. kvm_set_cr3(vcpu, val);
  2263. break;
  2264. case 4:
  2265. kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
  2266. break;
  2267. case 8:
  2268. kvm_set_cr8(vcpu, val & 0xfUL);
  2269. break;
  2270. default:
  2271. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2272. }
  2273. }
  2274. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  2275. {
  2276. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  2277. int j, nent = vcpu->arch.cpuid_nent;
  2278. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  2279. /* when no next entry is found, the current entry[i] is reselected */
  2280. for (j = i + 1; j == i; j = (j + 1) % nent) {
  2281. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  2282. if (ej->function == e->function) {
  2283. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  2284. return j;
  2285. }
  2286. }
  2287. return 0; /* silence gcc, even though control never reaches here */
  2288. }
  2289. /* find an entry with matching function, matching index (if needed), and that
  2290. * should be read next (if it's stateful) */
  2291. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  2292. u32 function, u32 index)
  2293. {
  2294. if (e->function != function)
  2295. return 0;
  2296. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  2297. return 0;
  2298. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  2299. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  2300. return 0;
  2301. return 1;
  2302. }
  2303. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  2304. {
  2305. int i;
  2306. u32 function, index;
  2307. struct kvm_cpuid_entry2 *e, *best;
  2308. kvm_x86_ops->cache_regs(vcpu);
  2309. function = vcpu->arch.regs[VCPU_REGS_RAX];
  2310. index = vcpu->arch.regs[VCPU_REGS_RCX];
  2311. vcpu->arch.regs[VCPU_REGS_RAX] = 0;
  2312. vcpu->arch.regs[VCPU_REGS_RBX] = 0;
  2313. vcpu->arch.regs[VCPU_REGS_RCX] = 0;
  2314. vcpu->arch.regs[VCPU_REGS_RDX] = 0;
  2315. best = NULL;
  2316. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  2317. e = &vcpu->arch.cpuid_entries[i];
  2318. if (is_matching_cpuid_entry(e, function, index)) {
  2319. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  2320. move_to_next_stateful_cpuid_entry(vcpu, i);
  2321. best = e;
  2322. break;
  2323. }
  2324. /*
  2325. * Both basic or both extended?
  2326. */
  2327. if (((e->function ^ function) & 0x80000000) == 0)
  2328. if (!best || e->function > best->function)
  2329. best = e;
  2330. }
  2331. if (best) {
  2332. vcpu->arch.regs[VCPU_REGS_RAX] = best->eax;
  2333. vcpu->arch.regs[VCPU_REGS_RBX] = best->ebx;
  2334. vcpu->arch.regs[VCPU_REGS_RCX] = best->ecx;
  2335. vcpu->arch.regs[VCPU_REGS_RDX] = best->edx;
  2336. }
  2337. kvm_x86_ops->decache_regs(vcpu);
  2338. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2339. }
  2340. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  2341. /*
  2342. * Check if userspace requested an interrupt window, and that the
  2343. * interrupt window is open.
  2344. *
  2345. * No need to exit to userspace if we already have an interrupt queued.
  2346. */
  2347. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  2348. struct kvm_run *kvm_run)
  2349. {
  2350. return (!vcpu->arch.irq_summary &&
  2351. kvm_run->request_interrupt_window &&
  2352. vcpu->arch.interrupt_window_open &&
  2353. (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF));
  2354. }
  2355. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  2356. struct kvm_run *kvm_run)
  2357. {
  2358. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  2359. kvm_run->cr8 = kvm_get_cr8(vcpu);
  2360. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  2361. if (irqchip_in_kernel(vcpu->kvm))
  2362. kvm_run->ready_for_interrupt_injection = 1;
  2363. else
  2364. kvm_run->ready_for_interrupt_injection =
  2365. (vcpu->arch.interrupt_window_open &&
  2366. vcpu->arch.irq_summary == 0);
  2367. }
  2368. static void vapic_enter(struct kvm_vcpu *vcpu)
  2369. {
  2370. struct kvm_lapic *apic = vcpu->arch.apic;
  2371. struct page *page;
  2372. if (!apic || !apic->vapic_addr)
  2373. return;
  2374. down_read(&current->mm->mmap_sem);
  2375. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2376. up_read(&current->mm->mmap_sem);
  2377. vcpu->arch.apic->vapic_page = page;
  2378. }
  2379. static void vapic_exit(struct kvm_vcpu *vcpu)
  2380. {
  2381. struct kvm_lapic *apic = vcpu->arch.apic;
  2382. if (!apic || !apic->vapic_addr)
  2383. return;
  2384. kvm_release_page_dirty(apic->vapic_page);
  2385. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  2386. }
  2387. static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2388. {
  2389. int r;
  2390. if (unlikely(vcpu->arch.mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
  2391. pr_debug("vcpu %d received sipi with vector # %x\n",
  2392. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  2393. kvm_lapic_reset(vcpu);
  2394. r = kvm_x86_ops->vcpu_reset(vcpu);
  2395. if (r)
  2396. return r;
  2397. vcpu->arch.mp_state = VCPU_MP_STATE_RUNNABLE;
  2398. }
  2399. vapic_enter(vcpu);
  2400. preempted:
  2401. if (vcpu->guest_debug.enabled)
  2402. kvm_x86_ops->guest_debug_pre(vcpu);
  2403. again:
  2404. if (vcpu->requests)
  2405. if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  2406. kvm_mmu_unload(vcpu);
  2407. r = kvm_mmu_reload(vcpu);
  2408. if (unlikely(r))
  2409. goto out;
  2410. if (vcpu->requests) {
  2411. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  2412. __kvm_migrate_apic_timer(vcpu);
  2413. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  2414. &vcpu->requests)) {
  2415. kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
  2416. r = 0;
  2417. goto out;
  2418. }
  2419. if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
  2420. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  2421. r = 0;
  2422. goto out;
  2423. }
  2424. }
  2425. kvm_inject_pending_timer_irqs(vcpu);
  2426. preempt_disable();
  2427. kvm_x86_ops->prepare_guest_switch(vcpu);
  2428. kvm_load_guest_fpu(vcpu);
  2429. local_irq_disable();
  2430. if (need_resched()) {
  2431. local_irq_enable();
  2432. preempt_enable();
  2433. r = 1;
  2434. goto out;
  2435. }
  2436. if (vcpu->requests)
  2437. if (test_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests)) {
  2438. local_irq_enable();
  2439. preempt_enable();
  2440. r = 1;
  2441. goto out;
  2442. }
  2443. if (signal_pending(current)) {
  2444. local_irq_enable();
  2445. preempt_enable();
  2446. r = -EINTR;
  2447. kvm_run->exit_reason = KVM_EXIT_INTR;
  2448. ++vcpu->stat.signal_exits;
  2449. goto out;
  2450. }
  2451. if (vcpu->arch.exception.pending)
  2452. __queue_exception(vcpu);
  2453. else if (irqchip_in_kernel(vcpu->kvm))
  2454. kvm_x86_ops->inject_pending_irq(vcpu);
  2455. else
  2456. kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run);
  2457. kvm_lapic_sync_to_vapic(vcpu);
  2458. vcpu->guest_mode = 1;
  2459. kvm_guest_enter();
  2460. if (vcpu->requests)
  2461. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  2462. kvm_x86_ops->tlb_flush(vcpu);
  2463. kvm_x86_ops->run(vcpu, kvm_run);
  2464. vcpu->guest_mode = 0;
  2465. local_irq_enable();
  2466. ++vcpu->stat.exits;
  2467. /*
  2468. * We must have an instruction between local_irq_enable() and
  2469. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  2470. * the interrupt shadow. The stat.exits increment will do nicely.
  2471. * But we need to prevent reordering, hence this barrier():
  2472. */
  2473. barrier();
  2474. kvm_guest_exit();
  2475. preempt_enable();
  2476. /*
  2477. * Profile KVM exit RIPs:
  2478. */
  2479. if (unlikely(prof_on == KVM_PROFILING)) {
  2480. kvm_x86_ops->cache_regs(vcpu);
  2481. profile_hit(KVM_PROFILING, (void *)vcpu->arch.rip);
  2482. }
  2483. if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu))
  2484. vcpu->arch.exception.pending = false;
  2485. kvm_lapic_sync_from_vapic(vcpu);
  2486. r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
  2487. if (r > 0) {
  2488. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  2489. r = -EINTR;
  2490. kvm_run->exit_reason = KVM_EXIT_INTR;
  2491. ++vcpu->stat.request_irq_exits;
  2492. goto out;
  2493. }
  2494. if (!need_resched())
  2495. goto again;
  2496. }
  2497. out:
  2498. if (r > 0) {
  2499. kvm_resched(vcpu);
  2500. goto preempted;
  2501. }
  2502. post_kvm_run_save(vcpu, kvm_run);
  2503. vapic_exit(vcpu);
  2504. return r;
  2505. }
  2506. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  2507. {
  2508. int r;
  2509. sigset_t sigsaved;
  2510. vcpu_load(vcpu);
  2511. if (unlikely(vcpu->arch.mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
  2512. kvm_vcpu_block(vcpu);
  2513. vcpu_put(vcpu);
  2514. return -EAGAIN;
  2515. }
  2516. if (vcpu->sigset_active)
  2517. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  2518. /* re-sync apic's tpr */
  2519. if (!irqchip_in_kernel(vcpu->kvm))
  2520. kvm_set_cr8(vcpu, kvm_run->cr8);
  2521. if (vcpu->arch.pio.cur_count) {
  2522. r = complete_pio(vcpu);
  2523. if (r)
  2524. goto out;
  2525. }
  2526. #if CONFIG_HAS_IOMEM
  2527. if (vcpu->mmio_needed) {
  2528. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  2529. vcpu->mmio_read_completed = 1;
  2530. vcpu->mmio_needed = 0;
  2531. r = emulate_instruction(vcpu, kvm_run,
  2532. vcpu->arch.mmio_fault_cr2, 0,
  2533. EMULTYPE_NO_DECODE);
  2534. if (r == EMULATE_DO_MMIO) {
  2535. /*
  2536. * Read-modify-write. Back to userspace.
  2537. */
  2538. r = 0;
  2539. goto out;
  2540. }
  2541. }
  2542. #endif
  2543. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  2544. kvm_x86_ops->cache_regs(vcpu);
  2545. vcpu->arch.regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  2546. kvm_x86_ops->decache_regs(vcpu);
  2547. }
  2548. r = __vcpu_run(vcpu, kvm_run);
  2549. out:
  2550. if (vcpu->sigset_active)
  2551. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  2552. vcpu_put(vcpu);
  2553. return r;
  2554. }
  2555. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  2556. {
  2557. vcpu_load(vcpu);
  2558. kvm_x86_ops->cache_regs(vcpu);
  2559. regs->rax = vcpu->arch.regs[VCPU_REGS_RAX];
  2560. regs->rbx = vcpu->arch.regs[VCPU_REGS_RBX];
  2561. regs->rcx = vcpu->arch.regs[VCPU_REGS_RCX];
  2562. regs->rdx = vcpu->arch.regs[VCPU_REGS_RDX];
  2563. regs->rsi = vcpu->arch.regs[VCPU_REGS_RSI];
  2564. regs->rdi = vcpu->arch.regs[VCPU_REGS_RDI];
  2565. regs->rsp = vcpu->arch.regs[VCPU_REGS_RSP];
  2566. regs->rbp = vcpu->arch.regs[VCPU_REGS_RBP];
  2567. #ifdef CONFIG_X86_64
  2568. regs->r8 = vcpu->arch.regs[VCPU_REGS_R8];
  2569. regs->r9 = vcpu->arch.regs[VCPU_REGS_R9];
  2570. regs->r10 = vcpu->arch.regs[VCPU_REGS_R10];
  2571. regs->r11 = vcpu->arch.regs[VCPU_REGS_R11];
  2572. regs->r12 = vcpu->arch.regs[VCPU_REGS_R12];
  2573. regs->r13 = vcpu->arch.regs[VCPU_REGS_R13];
  2574. regs->r14 = vcpu->arch.regs[VCPU_REGS_R14];
  2575. regs->r15 = vcpu->arch.regs[VCPU_REGS_R15];
  2576. #endif
  2577. regs->rip = vcpu->arch.rip;
  2578. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  2579. /*
  2580. * Don't leak debug flags in case they were set for guest debugging
  2581. */
  2582. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  2583. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  2584. vcpu_put(vcpu);
  2585. return 0;
  2586. }
  2587. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  2588. {
  2589. vcpu_load(vcpu);
  2590. vcpu->arch.regs[VCPU_REGS_RAX] = regs->rax;
  2591. vcpu->arch.regs[VCPU_REGS_RBX] = regs->rbx;
  2592. vcpu->arch.regs[VCPU_REGS_RCX] = regs->rcx;
  2593. vcpu->arch.regs[VCPU_REGS_RDX] = regs->rdx;
  2594. vcpu->arch.regs[VCPU_REGS_RSI] = regs->rsi;
  2595. vcpu->arch.regs[VCPU_REGS_RDI] = regs->rdi;
  2596. vcpu->arch.regs[VCPU_REGS_RSP] = regs->rsp;
  2597. vcpu->arch.regs[VCPU_REGS_RBP] = regs->rbp;
  2598. #ifdef CONFIG_X86_64
  2599. vcpu->arch.regs[VCPU_REGS_R8] = regs->r8;
  2600. vcpu->arch.regs[VCPU_REGS_R9] = regs->r9;
  2601. vcpu->arch.regs[VCPU_REGS_R10] = regs->r10;
  2602. vcpu->arch.regs[VCPU_REGS_R11] = regs->r11;
  2603. vcpu->arch.regs[VCPU_REGS_R12] = regs->r12;
  2604. vcpu->arch.regs[VCPU_REGS_R13] = regs->r13;
  2605. vcpu->arch.regs[VCPU_REGS_R14] = regs->r14;
  2606. vcpu->arch.regs[VCPU_REGS_R15] = regs->r15;
  2607. #endif
  2608. vcpu->arch.rip = regs->rip;
  2609. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  2610. kvm_x86_ops->decache_regs(vcpu);
  2611. vcpu_put(vcpu);
  2612. return 0;
  2613. }
  2614. static void get_segment(struct kvm_vcpu *vcpu,
  2615. struct kvm_segment *var, int seg)
  2616. {
  2617. kvm_x86_ops->get_segment(vcpu, var, seg);
  2618. }
  2619. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  2620. {
  2621. struct kvm_segment cs;
  2622. get_segment(vcpu, &cs, VCPU_SREG_CS);
  2623. *db = cs.db;
  2624. *l = cs.l;
  2625. }
  2626. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  2627. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  2628. struct kvm_sregs *sregs)
  2629. {
  2630. struct descriptor_table dt;
  2631. int pending_vec;
  2632. vcpu_load(vcpu);
  2633. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  2634. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  2635. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  2636. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  2637. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  2638. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  2639. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  2640. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  2641. kvm_x86_ops->get_idt(vcpu, &dt);
  2642. sregs->idt.limit = dt.limit;
  2643. sregs->idt.base = dt.base;
  2644. kvm_x86_ops->get_gdt(vcpu, &dt);
  2645. sregs->gdt.limit = dt.limit;
  2646. sregs->gdt.base = dt.base;
  2647. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2648. sregs->cr0 = vcpu->arch.cr0;
  2649. sregs->cr2 = vcpu->arch.cr2;
  2650. sregs->cr3 = vcpu->arch.cr3;
  2651. sregs->cr4 = vcpu->arch.cr4;
  2652. sregs->cr8 = kvm_get_cr8(vcpu);
  2653. sregs->efer = vcpu->arch.shadow_efer;
  2654. sregs->apic_base = kvm_get_apic_base(vcpu);
  2655. if (irqchip_in_kernel(vcpu->kvm)) {
  2656. memset(sregs->interrupt_bitmap, 0,
  2657. sizeof sregs->interrupt_bitmap);
  2658. pending_vec = kvm_x86_ops->get_irq(vcpu);
  2659. if (pending_vec >= 0)
  2660. set_bit(pending_vec,
  2661. (unsigned long *)sregs->interrupt_bitmap);
  2662. } else
  2663. memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending,
  2664. sizeof sregs->interrupt_bitmap);
  2665. vcpu_put(vcpu);
  2666. return 0;
  2667. }
  2668. static void set_segment(struct kvm_vcpu *vcpu,
  2669. struct kvm_segment *var, int seg)
  2670. {
  2671. kvm_x86_ops->set_segment(vcpu, var, seg);
  2672. }
  2673. static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
  2674. struct kvm_segment *kvm_desct)
  2675. {
  2676. kvm_desct->base = seg_desc->base0;
  2677. kvm_desct->base |= seg_desc->base1 << 16;
  2678. kvm_desct->base |= seg_desc->base2 << 24;
  2679. kvm_desct->limit = seg_desc->limit0;
  2680. kvm_desct->limit |= seg_desc->limit << 16;
  2681. kvm_desct->selector = selector;
  2682. kvm_desct->type = seg_desc->type;
  2683. kvm_desct->present = seg_desc->p;
  2684. kvm_desct->dpl = seg_desc->dpl;
  2685. kvm_desct->db = seg_desc->d;
  2686. kvm_desct->s = seg_desc->s;
  2687. kvm_desct->l = seg_desc->l;
  2688. kvm_desct->g = seg_desc->g;
  2689. kvm_desct->avl = seg_desc->avl;
  2690. if (!selector)
  2691. kvm_desct->unusable = 1;
  2692. else
  2693. kvm_desct->unusable = 0;
  2694. kvm_desct->padding = 0;
  2695. }
  2696. static void get_segment_descritptor_dtable(struct kvm_vcpu *vcpu,
  2697. u16 selector,
  2698. struct descriptor_table *dtable)
  2699. {
  2700. if (selector & 1 << 2) {
  2701. struct kvm_segment kvm_seg;
  2702. get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
  2703. if (kvm_seg.unusable)
  2704. dtable->limit = 0;
  2705. else
  2706. dtable->limit = kvm_seg.limit;
  2707. dtable->base = kvm_seg.base;
  2708. }
  2709. else
  2710. kvm_x86_ops->get_gdt(vcpu, dtable);
  2711. }
  2712. /* allowed just for 8 bytes segments */
  2713. static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  2714. struct desc_struct *seg_desc)
  2715. {
  2716. struct descriptor_table dtable;
  2717. u16 index = selector >> 3;
  2718. get_segment_descritptor_dtable(vcpu, selector, &dtable);
  2719. if (dtable.limit < index * 8 + 7) {
  2720. kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
  2721. return 1;
  2722. }
  2723. return kvm_read_guest(vcpu->kvm, dtable.base + index * 8, seg_desc, 8);
  2724. }
  2725. /* allowed just for 8 bytes segments */
  2726. static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  2727. struct desc_struct *seg_desc)
  2728. {
  2729. struct descriptor_table dtable;
  2730. u16 index = selector >> 3;
  2731. get_segment_descritptor_dtable(vcpu, selector, &dtable);
  2732. if (dtable.limit < index * 8 + 7)
  2733. return 1;
  2734. return kvm_write_guest(vcpu->kvm, dtable.base + index * 8, seg_desc, 8);
  2735. }
  2736. static u32 get_tss_base_addr(struct kvm_vcpu *vcpu,
  2737. struct desc_struct *seg_desc)
  2738. {
  2739. u32 base_addr;
  2740. base_addr = seg_desc->base0;
  2741. base_addr |= (seg_desc->base1 << 16);
  2742. base_addr |= (seg_desc->base2 << 24);
  2743. return base_addr;
  2744. }
  2745. static int load_tss_segment32(struct kvm_vcpu *vcpu,
  2746. struct desc_struct *seg_desc,
  2747. struct tss_segment_32 *tss)
  2748. {
  2749. u32 base_addr;
  2750. base_addr = get_tss_base_addr(vcpu, seg_desc);
  2751. return kvm_read_guest(vcpu->kvm, base_addr, tss,
  2752. sizeof(struct tss_segment_32));
  2753. }
  2754. static int save_tss_segment32(struct kvm_vcpu *vcpu,
  2755. struct desc_struct *seg_desc,
  2756. struct tss_segment_32 *tss)
  2757. {
  2758. u32 base_addr;
  2759. base_addr = get_tss_base_addr(vcpu, seg_desc);
  2760. return kvm_write_guest(vcpu->kvm, base_addr, tss,
  2761. sizeof(struct tss_segment_32));
  2762. }
  2763. static int load_tss_segment16(struct kvm_vcpu *vcpu,
  2764. struct desc_struct *seg_desc,
  2765. struct tss_segment_16 *tss)
  2766. {
  2767. u32 base_addr;
  2768. base_addr = get_tss_base_addr(vcpu, seg_desc);
  2769. return kvm_read_guest(vcpu->kvm, base_addr, tss,
  2770. sizeof(struct tss_segment_16));
  2771. }
  2772. static int save_tss_segment16(struct kvm_vcpu *vcpu,
  2773. struct desc_struct *seg_desc,
  2774. struct tss_segment_16 *tss)
  2775. {
  2776. u32 base_addr;
  2777. base_addr = get_tss_base_addr(vcpu, seg_desc);
  2778. return kvm_write_guest(vcpu->kvm, base_addr, tss,
  2779. sizeof(struct tss_segment_16));
  2780. }
  2781. static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
  2782. {
  2783. struct kvm_segment kvm_seg;
  2784. get_segment(vcpu, &kvm_seg, seg);
  2785. return kvm_seg.selector;
  2786. }
  2787. static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
  2788. u16 selector,
  2789. struct kvm_segment *kvm_seg)
  2790. {
  2791. struct desc_struct seg_desc;
  2792. if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
  2793. return 1;
  2794. seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
  2795. return 0;
  2796. }
  2797. static int load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  2798. int type_bits, int seg)
  2799. {
  2800. struct kvm_segment kvm_seg;
  2801. if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
  2802. return 1;
  2803. kvm_seg.type |= type_bits;
  2804. if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
  2805. seg != VCPU_SREG_LDTR)
  2806. if (!kvm_seg.s)
  2807. kvm_seg.unusable = 1;
  2808. set_segment(vcpu, &kvm_seg, seg);
  2809. return 0;
  2810. }
  2811. static void save_state_to_tss32(struct kvm_vcpu *vcpu,
  2812. struct tss_segment_32 *tss)
  2813. {
  2814. tss->cr3 = vcpu->arch.cr3;
  2815. tss->eip = vcpu->arch.rip;
  2816. tss->eflags = kvm_x86_ops->get_rflags(vcpu);
  2817. tss->eax = vcpu->arch.regs[VCPU_REGS_RAX];
  2818. tss->ecx = vcpu->arch.regs[VCPU_REGS_RCX];
  2819. tss->edx = vcpu->arch.regs[VCPU_REGS_RDX];
  2820. tss->ebx = vcpu->arch.regs[VCPU_REGS_RBX];
  2821. tss->esp = vcpu->arch.regs[VCPU_REGS_RSP];
  2822. tss->ebp = vcpu->arch.regs[VCPU_REGS_RBP];
  2823. tss->esi = vcpu->arch.regs[VCPU_REGS_RSI];
  2824. tss->edi = vcpu->arch.regs[VCPU_REGS_RDI];
  2825. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  2826. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  2827. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  2828. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  2829. tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
  2830. tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
  2831. tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  2832. tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
  2833. }
  2834. static int load_state_from_tss32(struct kvm_vcpu *vcpu,
  2835. struct tss_segment_32 *tss)
  2836. {
  2837. kvm_set_cr3(vcpu, tss->cr3);
  2838. vcpu->arch.rip = tss->eip;
  2839. kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
  2840. vcpu->arch.regs[VCPU_REGS_RAX] = tss->eax;
  2841. vcpu->arch.regs[VCPU_REGS_RCX] = tss->ecx;
  2842. vcpu->arch.regs[VCPU_REGS_RDX] = tss->edx;
  2843. vcpu->arch.regs[VCPU_REGS_RBX] = tss->ebx;
  2844. vcpu->arch.regs[VCPU_REGS_RSP] = tss->esp;
  2845. vcpu->arch.regs[VCPU_REGS_RBP] = tss->ebp;
  2846. vcpu->arch.regs[VCPU_REGS_RSI] = tss->esi;
  2847. vcpu->arch.regs[VCPU_REGS_RDI] = tss->edi;
  2848. if (load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
  2849. return 1;
  2850. if (load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  2851. return 1;
  2852. if (load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  2853. return 1;
  2854. if (load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  2855. return 1;
  2856. if (load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  2857. return 1;
  2858. if (load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
  2859. return 1;
  2860. if (load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
  2861. return 1;
  2862. return 0;
  2863. }
  2864. static void save_state_to_tss16(struct kvm_vcpu *vcpu,
  2865. struct tss_segment_16 *tss)
  2866. {
  2867. tss->ip = vcpu->arch.rip;
  2868. tss->flag = kvm_x86_ops->get_rflags(vcpu);
  2869. tss->ax = vcpu->arch.regs[VCPU_REGS_RAX];
  2870. tss->cx = vcpu->arch.regs[VCPU_REGS_RCX];
  2871. tss->dx = vcpu->arch.regs[VCPU_REGS_RDX];
  2872. tss->bx = vcpu->arch.regs[VCPU_REGS_RBX];
  2873. tss->sp = vcpu->arch.regs[VCPU_REGS_RSP];
  2874. tss->bp = vcpu->arch.regs[VCPU_REGS_RBP];
  2875. tss->si = vcpu->arch.regs[VCPU_REGS_RSI];
  2876. tss->di = vcpu->arch.regs[VCPU_REGS_RDI];
  2877. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  2878. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  2879. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  2880. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  2881. tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  2882. tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
  2883. }
  2884. static int load_state_from_tss16(struct kvm_vcpu *vcpu,
  2885. struct tss_segment_16 *tss)
  2886. {
  2887. vcpu->arch.rip = tss->ip;
  2888. kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
  2889. vcpu->arch.regs[VCPU_REGS_RAX] = tss->ax;
  2890. vcpu->arch.regs[VCPU_REGS_RCX] = tss->cx;
  2891. vcpu->arch.regs[VCPU_REGS_RDX] = tss->dx;
  2892. vcpu->arch.regs[VCPU_REGS_RBX] = tss->bx;
  2893. vcpu->arch.regs[VCPU_REGS_RSP] = tss->sp;
  2894. vcpu->arch.regs[VCPU_REGS_RBP] = tss->bp;
  2895. vcpu->arch.regs[VCPU_REGS_RSI] = tss->si;
  2896. vcpu->arch.regs[VCPU_REGS_RDI] = tss->di;
  2897. if (load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
  2898. return 1;
  2899. if (load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  2900. return 1;
  2901. if (load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  2902. return 1;
  2903. if (load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  2904. return 1;
  2905. if (load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  2906. return 1;
  2907. return 0;
  2908. }
  2909. int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
  2910. struct desc_struct *cseg_desc,
  2911. struct desc_struct *nseg_desc)
  2912. {
  2913. struct tss_segment_16 tss_segment_16;
  2914. int ret = 0;
  2915. if (load_tss_segment16(vcpu, cseg_desc, &tss_segment_16))
  2916. goto out;
  2917. save_state_to_tss16(vcpu, &tss_segment_16);
  2918. save_tss_segment16(vcpu, cseg_desc, &tss_segment_16);
  2919. if (load_tss_segment16(vcpu, nseg_desc, &tss_segment_16))
  2920. goto out;
  2921. if (load_state_from_tss16(vcpu, &tss_segment_16))
  2922. goto out;
  2923. ret = 1;
  2924. out:
  2925. return ret;
  2926. }
  2927. int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
  2928. struct desc_struct *cseg_desc,
  2929. struct desc_struct *nseg_desc)
  2930. {
  2931. struct tss_segment_32 tss_segment_32;
  2932. int ret = 0;
  2933. if (load_tss_segment32(vcpu, cseg_desc, &tss_segment_32))
  2934. goto out;
  2935. save_state_to_tss32(vcpu, &tss_segment_32);
  2936. save_tss_segment32(vcpu, cseg_desc, &tss_segment_32);
  2937. if (load_tss_segment32(vcpu, nseg_desc, &tss_segment_32))
  2938. goto out;
  2939. if (load_state_from_tss32(vcpu, &tss_segment_32))
  2940. goto out;
  2941. ret = 1;
  2942. out:
  2943. return ret;
  2944. }
  2945. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
  2946. {
  2947. struct kvm_segment tr_seg;
  2948. struct desc_struct cseg_desc;
  2949. struct desc_struct nseg_desc;
  2950. int ret = 0;
  2951. get_segment(vcpu, &tr_seg, VCPU_SREG_TR);
  2952. if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
  2953. goto out;
  2954. if (load_guest_segment_descriptor(vcpu, tr_seg.selector, &cseg_desc))
  2955. goto out;
  2956. if (reason != TASK_SWITCH_IRET) {
  2957. int cpl;
  2958. cpl = kvm_x86_ops->get_cpl(vcpu);
  2959. if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
  2960. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  2961. return 1;
  2962. }
  2963. }
  2964. if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) {
  2965. kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
  2966. return 1;
  2967. }
  2968. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  2969. cseg_desc.type &= ~(1 << 8); //clear the B flag
  2970. save_guest_segment_descriptor(vcpu, tr_seg.selector,
  2971. &cseg_desc);
  2972. }
  2973. if (reason == TASK_SWITCH_IRET) {
  2974. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  2975. kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
  2976. }
  2977. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2978. kvm_x86_ops->cache_regs(vcpu);
  2979. if (nseg_desc.type & 8)
  2980. ret = kvm_task_switch_32(vcpu, tss_selector, &cseg_desc,
  2981. &nseg_desc);
  2982. else
  2983. ret = kvm_task_switch_16(vcpu, tss_selector, &cseg_desc,
  2984. &nseg_desc);
  2985. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
  2986. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  2987. kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
  2988. }
  2989. if (reason != TASK_SWITCH_IRET) {
  2990. nseg_desc.type |= (1 << 8);
  2991. save_guest_segment_descriptor(vcpu, tss_selector,
  2992. &nseg_desc);
  2993. }
  2994. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
  2995. seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
  2996. tr_seg.type = 11;
  2997. set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
  2998. out:
  2999. kvm_x86_ops->decache_regs(vcpu);
  3000. return ret;
  3001. }
  3002. EXPORT_SYMBOL_GPL(kvm_task_switch);
  3003. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  3004. struct kvm_sregs *sregs)
  3005. {
  3006. int mmu_reset_needed = 0;
  3007. int i, pending_vec, max_bits;
  3008. struct descriptor_table dt;
  3009. vcpu_load(vcpu);
  3010. dt.limit = sregs->idt.limit;
  3011. dt.base = sregs->idt.base;
  3012. kvm_x86_ops->set_idt(vcpu, &dt);
  3013. dt.limit = sregs->gdt.limit;
  3014. dt.base = sregs->gdt.base;
  3015. kvm_x86_ops->set_gdt(vcpu, &dt);
  3016. vcpu->arch.cr2 = sregs->cr2;
  3017. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  3018. vcpu->arch.cr3 = sregs->cr3;
  3019. kvm_set_cr8(vcpu, sregs->cr8);
  3020. mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
  3021. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  3022. kvm_set_apic_base(vcpu, sregs->apic_base);
  3023. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3024. mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
  3025. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  3026. vcpu->arch.cr0 = sregs->cr0;
  3027. mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
  3028. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  3029. if (!is_long_mode(vcpu) && is_pae(vcpu))
  3030. load_pdptrs(vcpu, vcpu->arch.cr3);
  3031. if (mmu_reset_needed)
  3032. kvm_mmu_reset_context(vcpu);
  3033. if (!irqchip_in_kernel(vcpu->kvm)) {
  3034. memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap,
  3035. sizeof vcpu->arch.irq_pending);
  3036. vcpu->arch.irq_summary = 0;
  3037. for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i)
  3038. if (vcpu->arch.irq_pending[i])
  3039. __set_bit(i, &vcpu->arch.irq_summary);
  3040. } else {
  3041. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  3042. pending_vec = find_first_bit(
  3043. (const unsigned long *)sregs->interrupt_bitmap,
  3044. max_bits);
  3045. /* Only pending external irq is handled here */
  3046. if (pending_vec < max_bits) {
  3047. kvm_x86_ops->set_irq(vcpu, pending_vec);
  3048. pr_debug("Set back pending irq %d\n",
  3049. pending_vec);
  3050. }
  3051. }
  3052. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3053. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3054. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3055. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3056. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3057. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3058. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3059. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3060. vcpu_put(vcpu);
  3061. return 0;
  3062. }
  3063. int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  3064. struct kvm_debug_guest *dbg)
  3065. {
  3066. int r;
  3067. vcpu_load(vcpu);
  3068. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  3069. vcpu_put(vcpu);
  3070. return r;
  3071. }
  3072. /*
  3073. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  3074. * we have asm/x86/processor.h
  3075. */
  3076. struct fxsave {
  3077. u16 cwd;
  3078. u16 swd;
  3079. u16 twd;
  3080. u16 fop;
  3081. u64 rip;
  3082. u64 rdp;
  3083. u32 mxcsr;
  3084. u32 mxcsr_mask;
  3085. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  3086. #ifdef CONFIG_X86_64
  3087. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  3088. #else
  3089. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  3090. #endif
  3091. };
  3092. /*
  3093. * Translate a guest virtual address to a guest physical address.
  3094. */
  3095. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  3096. struct kvm_translation *tr)
  3097. {
  3098. unsigned long vaddr = tr->linear_address;
  3099. gpa_t gpa;
  3100. vcpu_load(vcpu);
  3101. down_read(&vcpu->kvm->slots_lock);
  3102. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
  3103. up_read(&vcpu->kvm->slots_lock);
  3104. tr->physical_address = gpa;
  3105. tr->valid = gpa != UNMAPPED_GVA;
  3106. tr->writeable = 1;
  3107. tr->usermode = 0;
  3108. vcpu_put(vcpu);
  3109. return 0;
  3110. }
  3111. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3112. {
  3113. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3114. vcpu_load(vcpu);
  3115. memcpy(fpu->fpr, fxsave->st_space, 128);
  3116. fpu->fcw = fxsave->cwd;
  3117. fpu->fsw = fxsave->swd;
  3118. fpu->ftwx = fxsave->twd;
  3119. fpu->last_opcode = fxsave->fop;
  3120. fpu->last_ip = fxsave->rip;
  3121. fpu->last_dp = fxsave->rdp;
  3122. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  3123. vcpu_put(vcpu);
  3124. return 0;
  3125. }
  3126. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3127. {
  3128. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3129. vcpu_load(vcpu);
  3130. memcpy(fxsave->st_space, fpu->fpr, 128);
  3131. fxsave->cwd = fpu->fcw;
  3132. fxsave->swd = fpu->fsw;
  3133. fxsave->twd = fpu->ftwx;
  3134. fxsave->fop = fpu->last_opcode;
  3135. fxsave->rip = fpu->last_ip;
  3136. fxsave->rdp = fpu->last_dp;
  3137. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  3138. vcpu_put(vcpu);
  3139. return 0;
  3140. }
  3141. void fx_init(struct kvm_vcpu *vcpu)
  3142. {
  3143. unsigned after_mxcsr_mask;
  3144. /* Initialize guest FPU by resetting ours and saving into guest's */
  3145. preempt_disable();
  3146. fx_save(&vcpu->arch.host_fx_image);
  3147. fpu_init();
  3148. fx_save(&vcpu->arch.guest_fx_image);
  3149. fx_restore(&vcpu->arch.host_fx_image);
  3150. preempt_enable();
  3151. vcpu->arch.cr0 |= X86_CR0_ET;
  3152. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  3153. vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
  3154. memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
  3155. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  3156. }
  3157. EXPORT_SYMBOL_GPL(fx_init);
  3158. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  3159. {
  3160. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  3161. return;
  3162. vcpu->guest_fpu_loaded = 1;
  3163. fx_save(&vcpu->arch.host_fx_image);
  3164. fx_restore(&vcpu->arch.guest_fx_image);
  3165. }
  3166. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  3167. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  3168. {
  3169. if (!vcpu->guest_fpu_loaded)
  3170. return;
  3171. vcpu->guest_fpu_loaded = 0;
  3172. fx_save(&vcpu->arch.guest_fx_image);
  3173. fx_restore(&vcpu->arch.host_fx_image);
  3174. ++vcpu->stat.fpu_reload;
  3175. }
  3176. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  3177. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  3178. {
  3179. kvm_x86_ops->vcpu_free(vcpu);
  3180. }
  3181. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  3182. unsigned int id)
  3183. {
  3184. return kvm_x86_ops->vcpu_create(kvm, id);
  3185. }
  3186. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  3187. {
  3188. int r;
  3189. /* We do fxsave: this must be aligned. */
  3190. BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
  3191. vcpu_load(vcpu);
  3192. r = kvm_arch_vcpu_reset(vcpu);
  3193. if (r == 0)
  3194. r = kvm_mmu_setup(vcpu);
  3195. vcpu_put(vcpu);
  3196. if (r < 0)
  3197. goto free_vcpu;
  3198. return 0;
  3199. free_vcpu:
  3200. kvm_x86_ops->vcpu_free(vcpu);
  3201. return r;
  3202. }
  3203. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  3204. {
  3205. vcpu_load(vcpu);
  3206. kvm_mmu_unload(vcpu);
  3207. vcpu_put(vcpu);
  3208. kvm_x86_ops->vcpu_free(vcpu);
  3209. }
  3210. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  3211. {
  3212. return kvm_x86_ops->vcpu_reset(vcpu);
  3213. }
  3214. void kvm_arch_hardware_enable(void *garbage)
  3215. {
  3216. kvm_x86_ops->hardware_enable(garbage);
  3217. }
  3218. void kvm_arch_hardware_disable(void *garbage)
  3219. {
  3220. kvm_x86_ops->hardware_disable(garbage);
  3221. }
  3222. int kvm_arch_hardware_setup(void)
  3223. {
  3224. return kvm_x86_ops->hardware_setup();
  3225. }
  3226. void kvm_arch_hardware_unsetup(void)
  3227. {
  3228. kvm_x86_ops->hardware_unsetup();
  3229. }
  3230. void kvm_arch_check_processor_compat(void *rtn)
  3231. {
  3232. kvm_x86_ops->check_processor_compatibility(rtn);
  3233. }
  3234. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  3235. {
  3236. struct page *page;
  3237. struct kvm *kvm;
  3238. int r;
  3239. BUG_ON(vcpu->kvm == NULL);
  3240. kvm = vcpu->kvm;
  3241. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  3242. if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0)
  3243. vcpu->arch.mp_state = VCPU_MP_STATE_RUNNABLE;
  3244. else
  3245. vcpu->arch.mp_state = VCPU_MP_STATE_UNINITIALIZED;
  3246. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  3247. if (!page) {
  3248. r = -ENOMEM;
  3249. goto fail;
  3250. }
  3251. vcpu->arch.pio_data = page_address(page);
  3252. r = kvm_mmu_create(vcpu);
  3253. if (r < 0)
  3254. goto fail_free_pio_data;
  3255. if (irqchip_in_kernel(kvm)) {
  3256. r = kvm_create_lapic(vcpu);
  3257. if (r < 0)
  3258. goto fail_mmu_destroy;
  3259. }
  3260. return 0;
  3261. fail_mmu_destroy:
  3262. kvm_mmu_destroy(vcpu);
  3263. fail_free_pio_data:
  3264. free_page((unsigned long)vcpu->arch.pio_data);
  3265. fail:
  3266. return r;
  3267. }
  3268. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  3269. {
  3270. kvm_free_lapic(vcpu);
  3271. kvm_mmu_destroy(vcpu);
  3272. free_page((unsigned long)vcpu->arch.pio_data);
  3273. }
  3274. struct kvm *kvm_arch_create_vm(void)
  3275. {
  3276. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  3277. if (!kvm)
  3278. return ERR_PTR(-ENOMEM);
  3279. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  3280. return kvm;
  3281. }
  3282. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  3283. {
  3284. vcpu_load(vcpu);
  3285. kvm_mmu_unload(vcpu);
  3286. vcpu_put(vcpu);
  3287. }
  3288. static void kvm_free_vcpus(struct kvm *kvm)
  3289. {
  3290. unsigned int i;
  3291. /*
  3292. * Unpin any mmu pages first.
  3293. */
  3294. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  3295. if (kvm->vcpus[i])
  3296. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  3297. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  3298. if (kvm->vcpus[i]) {
  3299. kvm_arch_vcpu_free(kvm->vcpus[i]);
  3300. kvm->vcpus[i] = NULL;
  3301. }
  3302. }
  3303. }
  3304. void kvm_arch_destroy_vm(struct kvm *kvm)
  3305. {
  3306. kvm_free_pit(kvm);
  3307. kfree(kvm->arch.vpic);
  3308. kfree(kvm->arch.vioapic);
  3309. kvm_free_vcpus(kvm);
  3310. kvm_free_physmem(kvm);
  3311. kfree(kvm);
  3312. }
  3313. int kvm_arch_set_memory_region(struct kvm *kvm,
  3314. struct kvm_userspace_memory_region *mem,
  3315. struct kvm_memory_slot old,
  3316. int user_alloc)
  3317. {
  3318. int npages = mem->memory_size >> PAGE_SHIFT;
  3319. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  3320. /*To keep backward compatibility with older userspace,
  3321. *x86 needs to hanlde !user_alloc case.
  3322. */
  3323. if (!user_alloc) {
  3324. if (npages && !old.rmap) {
  3325. down_write(&current->mm->mmap_sem);
  3326. memslot->userspace_addr = do_mmap(NULL, 0,
  3327. npages * PAGE_SIZE,
  3328. PROT_READ | PROT_WRITE,
  3329. MAP_SHARED | MAP_ANONYMOUS,
  3330. 0);
  3331. up_write(&current->mm->mmap_sem);
  3332. if (IS_ERR((void *)memslot->userspace_addr))
  3333. return PTR_ERR((void *)memslot->userspace_addr);
  3334. } else {
  3335. if (!old.user_alloc && old.rmap) {
  3336. int ret;
  3337. down_write(&current->mm->mmap_sem);
  3338. ret = do_munmap(current->mm, old.userspace_addr,
  3339. old.npages * PAGE_SIZE);
  3340. up_write(&current->mm->mmap_sem);
  3341. if (ret < 0)
  3342. printk(KERN_WARNING
  3343. "kvm_vm_ioctl_set_memory_region: "
  3344. "failed to munmap memory\n");
  3345. }
  3346. }
  3347. }
  3348. if (!kvm->arch.n_requested_mmu_pages) {
  3349. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  3350. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  3351. }
  3352. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  3353. kvm_flush_remote_tlbs(kvm);
  3354. return 0;
  3355. }
  3356. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  3357. {
  3358. return vcpu->arch.mp_state == VCPU_MP_STATE_RUNNABLE
  3359. || vcpu->arch.mp_state == VCPU_MP_STATE_SIPI_RECEIVED;
  3360. }
  3361. static void vcpu_kick_intr(void *info)
  3362. {
  3363. #ifdef DEBUG
  3364. struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info;
  3365. printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu);
  3366. #endif
  3367. }
  3368. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  3369. {
  3370. int ipi_pcpu = vcpu->cpu;
  3371. if (waitqueue_active(&vcpu->wq)) {
  3372. wake_up_interruptible(&vcpu->wq);
  3373. ++vcpu->stat.halt_wakeup;
  3374. }
  3375. if (vcpu->guest_mode)
  3376. smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0, 0);
  3377. }