book3s_pr.c 32 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268
  1. /*
  2. * Copyright (C) 2009. SUSE Linux Products GmbH. All rights reserved.
  3. *
  4. * Authors:
  5. * Alexander Graf <agraf@suse.de>
  6. * Kevin Wolf <mail@kevin-wolf.de>
  7. * Paul Mackerras <paulus@samba.org>
  8. *
  9. * Description:
  10. * Functions relating to running KVM on Book 3S processors where
  11. * we don't have access to hypervisor mode, and we run the guest
  12. * in problem state (user mode).
  13. *
  14. * This file is derived from arch/powerpc/kvm/44x.c,
  15. * by Hollis Blanchard <hollisb@us.ibm.com>.
  16. *
  17. * This program is free software; you can redistribute it and/or modify
  18. * it under the terms of the GNU General Public License, version 2, as
  19. * published by the Free Software Foundation.
  20. */
  21. #include <linux/kvm_host.h>
  22. #include <linux/export.h>
  23. #include <linux/err.h>
  24. #include <linux/slab.h>
  25. #include <asm/reg.h>
  26. #include <asm/cputable.h>
  27. #include <asm/cacheflush.h>
  28. #include <asm/tlbflush.h>
  29. #include <asm/uaccess.h>
  30. #include <asm/io.h>
  31. #include <asm/kvm_ppc.h>
  32. #include <asm/kvm_book3s.h>
  33. #include <asm/mmu_context.h>
  34. #include <asm/switch_to.h>
  35. #include <linux/gfp.h>
  36. #include <linux/sched.h>
  37. #include <linux/vmalloc.h>
  38. #include <linux/highmem.h>
  39. #include "trace.h"
  40. /* #define EXIT_DEBUG */
  41. /* #define DEBUG_EXT */
  42. static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
  43. ulong msr);
  44. /* Some compatibility defines */
  45. #ifdef CONFIG_PPC_BOOK3S_32
  46. #define MSR_USER32 MSR_USER
  47. #define MSR_USER64 MSR_USER
  48. #define HW_PAGE_SIZE PAGE_SIZE
  49. #endif
  50. void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  51. {
  52. #ifdef CONFIG_PPC_BOOK3S_64
  53. struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
  54. memcpy(svcpu->slb, to_book3s(vcpu)->slb_shadow, sizeof(svcpu->slb));
  55. memcpy(&get_paca()->shadow_vcpu, to_book3s(vcpu)->shadow_vcpu,
  56. sizeof(get_paca()->shadow_vcpu));
  57. svcpu->slb_max = to_book3s(vcpu)->slb_shadow_max;
  58. svcpu_put(svcpu);
  59. #endif
  60. #ifdef CONFIG_PPC_BOOK3S_32
  61. current->thread.kvm_shadow_vcpu = to_book3s(vcpu)->shadow_vcpu;
  62. #endif
  63. }
  64. void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu)
  65. {
  66. #ifdef CONFIG_PPC_BOOK3S_64
  67. struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
  68. memcpy(to_book3s(vcpu)->slb_shadow, svcpu->slb, sizeof(svcpu->slb));
  69. memcpy(to_book3s(vcpu)->shadow_vcpu, &get_paca()->shadow_vcpu,
  70. sizeof(get_paca()->shadow_vcpu));
  71. to_book3s(vcpu)->slb_shadow_max = svcpu->slb_max;
  72. svcpu_put(svcpu);
  73. #endif
  74. kvmppc_giveup_ext(vcpu, MSR_FP);
  75. kvmppc_giveup_ext(vcpu, MSR_VEC);
  76. kvmppc_giveup_ext(vcpu, MSR_VSX);
  77. }
  78. void kvmppc_core_check_requests(struct kvm_vcpu *vcpu)
  79. {
  80. /* We misuse TLB_FLUSH to indicate that we want to clear
  81. all shadow cache entries */
  82. if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
  83. kvmppc_mmu_pte_flush(vcpu, 0, 0);
  84. }
  85. /************* MMU Notifiers *************/
  86. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  87. {
  88. trace_kvm_unmap_hva(hva);
  89. /*
  90. * Flush all shadow tlb entries everywhere. This is slow, but
  91. * we are 100% sure that we catch the to be unmapped page
  92. */
  93. kvm_flush_remote_tlbs(kvm);
  94. return 0;
  95. }
  96. int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
  97. {
  98. /* kvm_unmap_hva flushes everything anyways */
  99. kvm_unmap_hva(kvm, start);
  100. return 0;
  101. }
  102. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  103. {
  104. /* XXX could be more clever ;) */
  105. return 0;
  106. }
  107. int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
  108. {
  109. /* XXX could be more clever ;) */
  110. return 0;
  111. }
  112. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  113. {
  114. /* The page will get remapped properly on its next fault */
  115. kvm_unmap_hva(kvm, hva);
  116. }
  117. /*****************************************/
  118. static void kvmppc_recalc_shadow_msr(struct kvm_vcpu *vcpu)
  119. {
  120. ulong smsr = vcpu->arch.shared->msr;
  121. /* Guest MSR values */
  122. smsr &= MSR_FE0 | MSR_FE1 | MSR_SF | MSR_SE | MSR_BE | MSR_DE;
  123. /* Process MSR values */
  124. smsr |= MSR_ME | MSR_RI | MSR_IR | MSR_DR | MSR_PR | MSR_EE;
  125. /* External providers the guest reserved */
  126. smsr |= (vcpu->arch.shared->msr & vcpu->arch.guest_owned_ext);
  127. /* 64-bit Process MSR values */
  128. #ifdef CONFIG_PPC_BOOK3S_64
  129. smsr |= MSR_ISF | MSR_HV;
  130. #endif
  131. vcpu->arch.shadow_msr = smsr;
  132. }
  133. void kvmppc_set_msr(struct kvm_vcpu *vcpu, u64 msr)
  134. {
  135. ulong old_msr = vcpu->arch.shared->msr;
  136. #ifdef EXIT_DEBUG
  137. printk(KERN_INFO "KVM: Set MSR to 0x%llx\n", msr);
  138. #endif
  139. msr &= to_book3s(vcpu)->msr_mask;
  140. vcpu->arch.shared->msr = msr;
  141. kvmppc_recalc_shadow_msr(vcpu);
  142. if (msr & MSR_POW) {
  143. if (!vcpu->arch.pending_exceptions) {
  144. kvm_vcpu_block(vcpu);
  145. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  146. vcpu->stat.halt_wakeup++;
  147. /* Unset POW bit after we woke up */
  148. msr &= ~MSR_POW;
  149. vcpu->arch.shared->msr = msr;
  150. }
  151. }
  152. if ((vcpu->arch.shared->msr & (MSR_PR|MSR_IR|MSR_DR)) !=
  153. (old_msr & (MSR_PR|MSR_IR|MSR_DR))) {
  154. kvmppc_mmu_flush_segments(vcpu);
  155. kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
  156. /* Preload magic page segment when in kernel mode */
  157. if (!(msr & MSR_PR) && vcpu->arch.magic_page_pa) {
  158. struct kvm_vcpu_arch *a = &vcpu->arch;
  159. if (msr & MSR_DR)
  160. kvmppc_mmu_map_segment(vcpu, a->magic_page_ea);
  161. else
  162. kvmppc_mmu_map_segment(vcpu, a->magic_page_pa);
  163. }
  164. }
  165. /*
  166. * When switching from 32 to 64-bit, we may have a stale 32-bit
  167. * magic page around, we need to flush it. Typically 32-bit magic
  168. * page will be instanciated when calling into RTAS. Note: We
  169. * assume that such transition only happens while in kernel mode,
  170. * ie, we never transition from user 32-bit to kernel 64-bit with
  171. * a 32-bit magic page around.
  172. */
  173. if (vcpu->arch.magic_page_pa &&
  174. !(old_msr & MSR_PR) && !(old_msr & MSR_SF) && (msr & MSR_SF)) {
  175. /* going from RTAS to normal kernel code */
  176. kvmppc_mmu_pte_flush(vcpu, (uint32_t)vcpu->arch.magic_page_pa,
  177. ~0xFFFUL);
  178. }
  179. /* Preload FPU if it's enabled */
  180. if (vcpu->arch.shared->msr & MSR_FP)
  181. kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
  182. }
  183. void kvmppc_set_pvr(struct kvm_vcpu *vcpu, u32 pvr)
  184. {
  185. u32 host_pvr;
  186. vcpu->arch.hflags &= ~BOOK3S_HFLAG_SLB;
  187. vcpu->arch.pvr = pvr;
  188. #ifdef CONFIG_PPC_BOOK3S_64
  189. if ((pvr >= 0x330000) && (pvr < 0x70330000)) {
  190. kvmppc_mmu_book3s_64_init(vcpu);
  191. if (!to_book3s(vcpu)->hior_explicit)
  192. to_book3s(vcpu)->hior = 0xfff00000;
  193. to_book3s(vcpu)->msr_mask = 0xffffffffffffffffULL;
  194. vcpu->arch.cpu_type = KVM_CPU_3S_64;
  195. } else
  196. #endif
  197. {
  198. kvmppc_mmu_book3s_32_init(vcpu);
  199. if (!to_book3s(vcpu)->hior_explicit)
  200. to_book3s(vcpu)->hior = 0;
  201. to_book3s(vcpu)->msr_mask = 0xffffffffULL;
  202. vcpu->arch.cpu_type = KVM_CPU_3S_32;
  203. }
  204. kvmppc_sanity_check(vcpu);
  205. /* If we are in hypervisor level on 970, we can tell the CPU to
  206. * treat DCBZ as 32 bytes store */
  207. vcpu->arch.hflags &= ~BOOK3S_HFLAG_DCBZ32;
  208. if (vcpu->arch.mmu.is_dcbz32(vcpu) && (mfmsr() & MSR_HV) &&
  209. !strcmp(cur_cpu_spec->platform, "ppc970"))
  210. vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
  211. /* Cell performs badly if MSR_FEx are set. So let's hope nobody
  212. really needs them in a VM on Cell and force disable them. */
  213. if (!strcmp(cur_cpu_spec->platform, "ppc-cell-be"))
  214. to_book3s(vcpu)->msr_mask &= ~(MSR_FE0 | MSR_FE1);
  215. #ifdef CONFIG_PPC_BOOK3S_32
  216. /* 32 bit Book3S always has 32 byte dcbz */
  217. vcpu->arch.hflags |= BOOK3S_HFLAG_DCBZ32;
  218. #endif
  219. /* On some CPUs we can execute paired single operations natively */
  220. asm ( "mfpvr %0" : "=r"(host_pvr));
  221. switch (host_pvr) {
  222. case 0x00080200: /* lonestar 2.0 */
  223. case 0x00088202: /* lonestar 2.2 */
  224. case 0x70000100: /* gekko 1.0 */
  225. case 0x00080100: /* gekko 2.0 */
  226. case 0x00083203: /* gekko 2.3a */
  227. case 0x00083213: /* gekko 2.3b */
  228. case 0x00083204: /* gekko 2.4 */
  229. case 0x00083214: /* gekko 2.4e (8SE) - retail HW2 */
  230. case 0x00087200: /* broadway */
  231. vcpu->arch.hflags |= BOOK3S_HFLAG_NATIVE_PS;
  232. /* Enable HID2.PSE - in case we need it later */
  233. mtspr(SPRN_HID2_GEKKO, mfspr(SPRN_HID2_GEKKO) | (1 << 29));
  234. }
  235. }
  236. /* Book3s_32 CPUs always have 32 bytes cache line size, which Linux assumes. To
  237. * make Book3s_32 Linux work on Book3s_64, we have to make sure we trap dcbz to
  238. * emulate 32 bytes dcbz length.
  239. *
  240. * The Book3s_64 inventors also realized this case and implemented a special bit
  241. * in the HID5 register, which is a hypervisor ressource. Thus we can't use it.
  242. *
  243. * My approach here is to patch the dcbz instruction on executing pages.
  244. */
  245. static void kvmppc_patch_dcbz(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte)
  246. {
  247. struct page *hpage;
  248. u64 hpage_offset;
  249. u32 *page;
  250. int i;
  251. hpage = gfn_to_page(vcpu->kvm, pte->raddr >> PAGE_SHIFT);
  252. if (is_error_page(hpage))
  253. return;
  254. hpage_offset = pte->raddr & ~PAGE_MASK;
  255. hpage_offset &= ~0xFFFULL;
  256. hpage_offset /= 4;
  257. get_page(hpage);
  258. page = kmap_atomic(hpage);
  259. /* patch dcbz into reserved instruction, so we trap */
  260. for (i=hpage_offset; i < hpage_offset + (HW_PAGE_SIZE / 4); i++)
  261. if ((page[i] & 0xff0007ff) == INS_DCBZ)
  262. page[i] &= 0xfffffff7;
  263. kunmap_atomic(page);
  264. put_page(hpage);
  265. }
  266. static int kvmppc_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
  267. {
  268. ulong mp_pa = vcpu->arch.magic_page_pa;
  269. if (!(vcpu->arch.shared->msr & MSR_SF))
  270. mp_pa = (uint32_t)mp_pa;
  271. if (unlikely(mp_pa) &&
  272. unlikely((mp_pa & KVM_PAM) >> PAGE_SHIFT == gfn)) {
  273. return 1;
  274. }
  275. return kvm_is_visible_gfn(vcpu->kvm, gfn);
  276. }
  277. int kvmppc_handle_pagefault(struct kvm_run *run, struct kvm_vcpu *vcpu,
  278. ulong eaddr, int vec)
  279. {
  280. bool data = (vec == BOOK3S_INTERRUPT_DATA_STORAGE);
  281. int r = RESUME_GUEST;
  282. int relocated;
  283. int page_found = 0;
  284. struct kvmppc_pte pte;
  285. bool is_mmio = false;
  286. bool dr = (vcpu->arch.shared->msr & MSR_DR) ? true : false;
  287. bool ir = (vcpu->arch.shared->msr & MSR_IR) ? true : false;
  288. u64 vsid;
  289. relocated = data ? dr : ir;
  290. /* Resolve real address if translation turned on */
  291. if (relocated) {
  292. page_found = vcpu->arch.mmu.xlate(vcpu, eaddr, &pte, data);
  293. } else {
  294. pte.may_execute = true;
  295. pte.may_read = true;
  296. pte.may_write = true;
  297. pte.raddr = eaddr & KVM_PAM;
  298. pte.eaddr = eaddr;
  299. pte.vpage = eaddr >> 12;
  300. }
  301. switch (vcpu->arch.shared->msr & (MSR_DR|MSR_IR)) {
  302. case 0:
  303. pte.vpage |= ((u64)VSID_REAL << (SID_SHIFT - 12));
  304. break;
  305. case MSR_DR:
  306. case MSR_IR:
  307. vcpu->arch.mmu.esid_to_vsid(vcpu, eaddr >> SID_SHIFT, &vsid);
  308. if ((vcpu->arch.shared->msr & (MSR_DR|MSR_IR)) == MSR_DR)
  309. pte.vpage |= ((u64)VSID_REAL_DR << (SID_SHIFT - 12));
  310. else
  311. pte.vpage |= ((u64)VSID_REAL_IR << (SID_SHIFT - 12));
  312. pte.vpage |= vsid;
  313. if (vsid == -1)
  314. page_found = -EINVAL;
  315. break;
  316. }
  317. if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
  318. (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
  319. /*
  320. * If we do the dcbz hack, we have to NX on every execution,
  321. * so we can patch the executing code. This renders our guest
  322. * NX-less.
  323. */
  324. pte.may_execute = !data;
  325. }
  326. if (page_found == -ENOENT) {
  327. /* Page not found in guest PTE entries */
  328. struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
  329. vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu);
  330. vcpu->arch.shared->dsisr = svcpu->fault_dsisr;
  331. vcpu->arch.shared->msr |=
  332. (svcpu->shadow_srr1 & 0x00000000f8000000ULL);
  333. svcpu_put(svcpu);
  334. kvmppc_book3s_queue_irqprio(vcpu, vec);
  335. } else if (page_found == -EPERM) {
  336. /* Storage protection */
  337. struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
  338. vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu);
  339. vcpu->arch.shared->dsisr = svcpu->fault_dsisr & ~DSISR_NOHPTE;
  340. vcpu->arch.shared->dsisr |= DSISR_PROTFAULT;
  341. vcpu->arch.shared->msr |=
  342. svcpu->shadow_srr1 & 0x00000000f8000000ULL;
  343. svcpu_put(svcpu);
  344. kvmppc_book3s_queue_irqprio(vcpu, vec);
  345. } else if (page_found == -EINVAL) {
  346. /* Page not found in guest SLB */
  347. vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu);
  348. kvmppc_book3s_queue_irqprio(vcpu, vec + 0x80);
  349. } else if (!is_mmio &&
  350. kvmppc_visible_gfn(vcpu, pte.raddr >> PAGE_SHIFT)) {
  351. /* The guest's PTE is not mapped yet. Map on the host */
  352. kvmppc_mmu_map_page(vcpu, &pte);
  353. if (data)
  354. vcpu->stat.sp_storage++;
  355. else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
  356. (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32)))
  357. kvmppc_patch_dcbz(vcpu, &pte);
  358. } else {
  359. /* MMIO */
  360. vcpu->stat.mmio_exits++;
  361. vcpu->arch.paddr_accessed = pte.raddr;
  362. vcpu->arch.vaddr_accessed = pte.eaddr;
  363. r = kvmppc_emulate_mmio(run, vcpu);
  364. if ( r == RESUME_HOST_NV )
  365. r = RESUME_HOST;
  366. }
  367. return r;
  368. }
  369. static inline int get_fpr_index(int i)
  370. {
  371. #ifdef CONFIG_VSX
  372. i *= 2;
  373. #endif
  374. return i;
  375. }
  376. /* Give up external provider (FPU, Altivec, VSX) */
  377. void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr)
  378. {
  379. struct thread_struct *t = &current->thread;
  380. u64 *vcpu_fpr = vcpu->arch.fpr;
  381. #ifdef CONFIG_VSX
  382. u64 *vcpu_vsx = vcpu->arch.vsr;
  383. #endif
  384. u64 *thread_fpr = (u64*)t->fpr;
  385. int i;
  386. if (!(vcpu->arch.guest_owned_ext & msr))
  387. return;
  388. #ifdef DEBUG_EXT
  389. printk(KERN_INFO "Giving up ext 0x%lx\n", msr);
  390. #endif
  391. switch (msr) {
  392. case MSR_FP:
  393. giveup_fpu(current);
  394. for (i = 0; i < ARRAY_SIZE(vcpu->arch.fpr); i++)
  395. vcpu_fpr[i] = thread_fpr[get_fpr_index(i)];
  396. vcpu->arch.fpscr = t->fpscr.val;
  397. break;
  398. case MSR_VEC:
  399. #ifdef CONFIG_ALTIVEC
  400. giveup_altivec(current);
  401. memcpy(vcpu->arch.vr, t->vr, sizeof(vcpu->arch.vr));
  402. vcpu->arch.vscr = t->vscr;
  403. #endif
  404. break;
  405. case MSR_VSX:
  406. #ifdef CONFIG_VSX
  407. __giveup_vsx(current);
  408. for (i = 0; i < ARRAY_SIZE(vcpu->arch.vsr); i++)
  409. vcpu_vsx[i] = thread_fpr[get_fpr_index(i) + 1];
  410. #endif
  411. break;
  412. default:
  413. BUG();
  414. }
  415. vcpu->arch.guest_owned_ext &= ~msr;
  416. current->thread.regs->msr &= ~msr;
  417. kvmppc_recalc_shadow_msr(vcpu);
  418. }
  419. static int kvmppc_read_inst(struct kvm_vcpu *vcpu)
  420. {
  421. ulong srr0 = kvmppc_get_pc(vcpu);
  422. u32 last_inst = kvmppc_get_last_inst(vcpu);
  423. int ret;
  424. ret = kvmppc_ld(vcpu, &srr0, sizeof(u32), &last_inst, false);
  425. if (ret == -ENOENT) {
  426. ulong msr = vcpu->arch.shared->msr;
  427. msr = kvmppc_set_field(msr, 33, 33, 1);
  428. msr = kvmppc_set_field(msr, 34, 36, 0);
  429. vcpu->arch.shared->msr = kvmppc_set_field(msr, 42, 47, 0);
  430. kvmppc_book3s_queue_irqprio(vcpu, BOOK3S_INTERRUPT_INST_STORAGE);
  431. return EMULATE_AGAIN;
  432. }
  433. return EMULATE_DONE;
  434. }
  435. static int kvmppc_check_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr)
  436. {
  437. /* Need to do paired single emulation? */
  438. if (!(vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE))
  439. return EMULATE_DONE;
  440. /* Read out the instruction */
  441. if (kvmppc_read_inst(vcpu) == EMULATE_DONE)
  442. /* Need to emulate */
  443. return EMULATE_FAIL;
  444. return EMULATE_AGAIN;
  445. }
  446. /* Handle external providers (FPU, Altivec, VSX) */
  447. static int kvmppc_handle_ext(struct kvm_vcpu *vcpu, unsigned int exit_nr,
  448. ulong msr)
  449. {
  450. struct thread_struct *t = &current->thread;
  451. u64 *vcpu_fpr = vcpu->arch.fpr;
  452. #ifdef CONFIG_VSX
  453. u64 *vcpu_vsx = vcpu->arch.vsr;
  454. #endif
  455. u64 *thread_fpr = (u64*)t->fpr;
  456. int i;
  457. /* When we have paired singles, we emulate in software */
  458. if (vcpu->arch.hflags & BOOK3S_HFLAG_PAIRED_SINGLE)
  459. return RESUME_GUEST;
  460. if (!(vcpu->arch.shared->msr & msr)) {
  461. kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
  462. return RESUME_GUEST;
  463. }
  464. /* We already own the ext */
  465. if (vcpu->arch.guest_owned_ext & msr) {
  466. return RESUME_GUEST;
  467. }
  468. #ifdef DEBUG_EXT
  469. printk(KERN_INFO "Loading up ext 0x%lx\n", msr);
  470. #endif
  471. current->thread.regs->msr |= msr;
  472. switch (msr) {
  473. case MSR_FP:
  474. for (i = 0; i < ARRAY_SIZE(vcpu->arch.fpr); i++)
  475. thread_fpr[get_fpr_index(i)] = vcpu_fpr[i];
  476. t->fpscr.val = vcpu->arch.fpscr;
  477. t->fpexc_mode = 0;
  478. kvmppc_load_up_fpu();
  479. break;
  480. case MSR_VEC:
  481. #ifdef CONFIG_ALTIVEC
  482. memcpy(t->vr, vcpu->arch.vr, sizeof(vcpu->arch.vr));
  483. t->vscr = vcpu->arch.vscr;
  484. t->vrsave = -1;
  485. kvmppc_load_up_altivec();
  486. #endif
  487. break;
  488. case MSR_VSX:
  489. #ifdef CONFIG_VSX
  490. for (i = 0; i < ARRAY_SIZE(vcpu->arch.vsr); i++)
  491. thread_fpr[get_fpr_index(i) + 1] = vcpu_vsx[i];
  492. kvmppc_load_up_vsx();
  493. #endif
  494. break;
  495. default:
  496. BUG();
  497. }
  498. vcpu->arch.guest_owned_ext |= msr;
  499. kvmppc_recalc_shadow_msr(vcpu);
  500. return RESUME_GUEST;
  501. }
  502. int kvmppc_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu,
  503. unsigned int exit_nr)
  504. {
  505. int r = RESUME_HOST;
  506. vcpu->stat.sum_exits++;
  507. run->exit_reason = KVM_EXIT_UNKNOWN;
  508. run->ready_for_interrupt_injection = 1;
  509. /* We get here with MSR.EE=1 */
  510. trace_kvm_exit(exit_nr, vcpu);
  511. kvm_guest_exit();
  512. switch (exit_nr) {
  513. case BOOK3S_INTERRUPT_INST_STORAGE:
  514. {
  515. struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
  516. ulong shadow_srr1 = svcpu->shadow_srr1;
  517. vcpu->stat.pf_instruc++;
  518. #ifdef CONFIG_PPC_BOOK3S_32
  519. /* We set segments as unused segments when invalidating them. So
  520. * treat the respective fault as segment fault. */
  521. if (svcpu->sr[kvmppc_get_pc(vcpu) >> SID_SHIFT] == SR_INVALID) {
  522. kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu));
  523. r = RESUME_GUEST;
  524. svcpu_put(svcpu);
  525. break;
  526. }
  527. #endif
  528. svcpu_put(svcpu);
  529. /* only care about PTEG not found errors, but leave NX alone */
  530. if (shadow_srr1 & 0x40000000) {
  531. r = kvmppc_handle_pagefault(run, vcpu, kvmppc_get_pc(vcpu), exit_nr);
  532. vcpu->stat.sp_instruc++;
  533. } else if (vcpu->arch.mmu.is_dcbz32(vcpu) &&
  534. (!(vcpu->arch.hflags & BOOK3S_HFLAG_DCBZ32))) {
  535. /*
  536. * XXX If we do the dcbz hack we use the NX bit to flush&patch the page,
  537. * so we can't use the NX bit inside the guest. Let's cross our fingers,
  538. * that no guest that needs the dcbz hack does NX.
  539. */
  540. kvmppc_mmu_pte_flush(vcpu, kvmppc_get_pc(vcpu), ~0xFFFUL);
  541. r = RESUME_GUEST;
  542. } else {
  543. vcpu->arch.shared->msr |= shadow_srr1 & 0x58000000;
  544. kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
  545. r = RESUME_GUEST;
  546. }
  547. break;
  548. }
  549. case BOOK3S_INTERRUPT_DATA_STORAGE:
  550. {
  551. ulong dar = kvmppc_get_fault_dar(vcpu);
  552. struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
  553. u32 fault_dsisr = svcpu->fault_dsisr;
  554. vcpu->stat.pf_storage++;
  555. #ifdef CONFIG_PPC_BOOK3S_32
  556. /* We set segments as unused segments when invalidating them. So
  557. * treat the respective fault as segment fault. */
  558. if ((svcpu->sr[dar >> SID_SHIFT]) == SR_INVALID) {
  559. kvmppc_mmu_map_segment(vcpu, dar);
  560. r = RESUME_GUEST;
  561. svcpu_put(svcpu);
  562. break;
  563. }
  564. #endif
  565. svcpu_put(svcpu);
  566. /* The only case we need to handle is missing shadow PTEs */
  567. if (fault_dsisr & DSISR_NOHPTE) {
  568. r = kvmppc_handle_pagefault(run, vcpu, dar, exit_nr);
  569. } else {
  570. vcpu->arch.shared->dar = dar;
  571. vcpu->arch.shared->dsisr = fault_dsisr;
  572. kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
  573. r = RESUME_GUEST;
  574. }
  575. break;
  576. }
  577. case BOOK3S_INTERRUPT_DATA_SEGMENT:
  578. if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_fault_dar(vcpu)) < 0) {
  579. vcpu->arch.shared->dar = kvmppc_get_fault_dar(vcpu);
  580. kvmppc_book3s_queue_irqprio(vcpu,
  581. BOOK3S_INTERRUPT_DATA_SEGMENT);
  582. }
  583. r = RESUME_GUEST;
  584. break;
  585. case BOOK3S_INTERRUPT_INST_SEGMENT:
  586. if (kvmppc_mmu_map_segment(vcpu, kvmppc_get_pc(vcpu)) < 0) {
  587. kvmppc_book3s_queue_irqprio(vcpu,
  588. BOOK3S_INTERRUPT_INST_SEGMENT);
  589. }
  590. r = RESUME_GUEST;
  591. break;
  592. /* We're good on these - the host merely wanted to get our attention */
  593. case BOOK3S_INTERRUPT_DECREMENTER:
  594. case BOOK3S_INTERRUPT_HV_DECREMENTER:
  595. vcpu->stat.dec_exits++;
  596. r = RESUME_GUEST;
  597. break;
  598. case BOOK3S_INTERRUPT_EXTERNAL:
  599. case BOOK3S_INTERRUPT_EXTERNAL_LEVEL:
  600. case BOOK3S_INTERRUPT_EXTERNAL_HV:
  601. vcpu->stat.ext_intr_exits++;
  602. r = RESUME_GUEST;
  603. break;
  604. case BOOK3S_INTERRUPT_PERFMON:
  605. r = RESUME_GUEST;
  606. break;
  607. case BOOK3S_INTERRUPT_PROGRAM:
  608. case BOOK3S_INTERRUPT_H_EMUL_ASSIST:
  609. {
  610. enum emulation_result er;
  611. struct kvmppc_book3s_shadow_vcpu *svcpu;
  612. ulong flags;
  613. program_interrupt:
  614. svcpu = svcpu_get(vcpu);
  615. flags = svcpu->shadow_srr1 & 0x1f0000ull;
  616. svcpu_put(svcpu);
  617. if (vcpu->arch.shared->msr & MSR_PR) {
  618. #ifdef EXIT_DEBUG
  619. printk(KERN_INFO "Userspace triggered 0x700 exception at 0x%lx (0x%x)\n", kvmppc_get_pc(vcpu), kvmppc_get_last_inst(vcpu));
  620. #endif
  621. if ((kvmppc_get_last_inst(vcpu) & 0xff0007ff) !=
  622. (INS_DCBZ & 0xfffffff7)) {
  623. kvmppc_core_queue_program(vcpu, flags);
  624. r = RESUME_GUEST;
  625. break;
  626. }
  627. }
  628. vcpu->stat.emulated_inst_exits++;
  629. er = kvmppc_emulate_instruction(run, vcpu);
  630. switch (er) {
  631. case EMULATE_DONE:
  632. r = RESUME_GUEST_NV;
  633. break;
  634. case EMULATE_AGAIN:
  635. r = RESUME_GUEST;
  636. break;
  637. case EMULATE_FAIL:
  638. printk(KERN_CRIT "%s: emulation at %lx failed (%08x)\n",
  639. __func__, kvmppc_get_pc(vcpu), kvmppc_get_last_inst(vcpu));
  640. kvmppc_core_queue_program(vcpu, flags);
  641. r = RESUME_GUEST;
  642. break;
  643. case EMULATE_DO_MMIO:
  644. run->exit_reason = KVM_EXIT_MMIO;
  645. r = RESUME_HOST_NV;
  646. break;
  647. default:
  648. BUG();
  649. }
  650. break;
  651. }
  652. case BOOK3S_INTERRUPT_SYSCALL:
  653. if (vcpu->arch.papr_enabled &&
  654. (kvmppc_get_last_inst(vcpu) == 0x44000022) &&
  655. !(vcpu->arch.shared->msr & MSR_PR)) {
  656. /* SC 1 papr hypercalls */
  657. ulong cmd = kvmppc_get_gpr(vcpu, 3);
  658. int i;
  659. #ifdef CONFIG_KVM_BOOK3S_64_PR
  660. if (kvmppc_h_pr(vcpu, cmd) == EMULATE_DONE) {
  661. r = RESUME_GUEST;
  662. break;
  663. }
  664. #endif
  665. run->papr_hcall.nr = cmd;
  666. for (i = 0; i < 9; ++i) {
  667. ulong gpr = kvmppc_get_gpr(vcpu, 4 + i);
  668. run->papr_hcall.args[i] = gpr;
  669. }
  670. run->exit_reason = KVM_EXIT_PAPR_HCALL;
  671. vcpu->arch.hcall_needed = 1;
  672. r = RESUME_HOST;
  673. } else if (vcpu->arch.osi_enabled &&
  674. (((u32)kvmppc_get_gpr(vcpu, 3)) == OSI_SC_MAGIC_R3) &&
  675. (((u32)kvmppc_get_gpr(vcpu, 4)) == OSI_SC_MAGIC_R4)) {
  676. /* MOL hypercalls */
  677. u64 *gprs = run->osi.gprs;
  678. int i;
  679. run->exit_reason = KVM_EXIT_OSI;
  680. for (i = 0; i < 32; i++)
  681. gprs[i] = kvmppc_get_gpr(vcpu, i);
  682. vcpu->arch.osi_needed = 1;
  683. r = RESUME_HOST_NV;
  684. } else if (!(vcpu->arch.shared->msr & MSR_PR) &&
  685. (((u32)kvmppc_get_gpr(vcpu, 0)) == KVM_SC_MAGIC_R0)) {
  686. /* KVM PV hypercalls */
  687. kvmppc_set_gpr(vcpu, 3, kvmppc_kvm_pv(vcpu));
  688. r = RESUME_GUEST;
  689. } else {
  690. /* Guest syscalls */
  691. vcpu->stat.syscall_exits++;
  692. kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
  693. r = RESUME_GUEST;
  694. }
  695. break;
  696. case BOOK3S_INTERRUPT_FP_UNAVAIL:
  697. case BOOK3S_INTERRUPT_ALTIVEC:
  698. case BOOK3S_INTERRUPT_VSX:
  699. {
  700. int ext_msr = 0;
  701. switch (exit_nr) {
  702. case BOOK3S_INTERRUPT_FP_UNAVAIL: ext_msr = MSR_FP; break;
  703. case BOOK3S_INTERRUPT_ALTIVEC: ext_msr = MSR_VEC; break;
  704. case BOOK3S_INTERRUPT_VSX: ext_msr = MSR_VSX; break;
  705. }
  706. switch (kvmppc_check_ext(vcpu, exit_nr)) {
  707. case EMULATE_DONE:
  708. /* everything ok - let's enable the ext */
  709. r = kvmppc_handle_ext(vcpu, exit_nr, ext_msr);
  710. break;
  711. case EMULATE_FAIL:
  712. /* we need to emulate this instruction */
  713. goto program_interrupt;
  714. break;
  715. default:
  716. /* nothing to worry about - go again */
  717. break;
  718. }
  719. break;
  720. }
  721. case BOOK3S_INTERRUPT_ALIGNMENT:
  722. if (kvmppc_read_inst(vcpu) == EMULATE_DONE) {
  723. vcpu->arch.shared->dsisr = kvmppc_alignment_dsisr(vcpu,
  724. kvmppc_get_last_inst(vcpu));
  725. vcpu->arch.shared->dar = kvmppc_alignment_dar(vcpu,
  726. kvmppc_get_last_inst(vcpu));
  727. kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
  728. }
  729. r = RESUME_GUEST;
  730. break;
  731. case BOOK3S_INTERRUPT_MACHINE_CHECK:
  732. case BOOK3S_INTERRUPT_TRACE:
  733. kvmppc_book3s_queue_irqprio(vcpu, exit_nr);
  734. r = RESUME_GUEST;
  735. break;
  736. default:
  737. {
  738. struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
  739. ulong shadow_srr1 = svcpu->shadow_srr1;
  740. svcpu_put(svcpu);
  741. /* Ugh - bork here! What did we get? */
  742. printk(KERN_EMERG "exit_nr=0x%x | pc=0x%lx | msr=0x%lx\n",
  743. exit_nr, kvmppc_get_pc(vcpu), shadow_srr1);
  744. r = RESUME_HOST;
  745. BUG();
  746. break;
  747. }
  748. }
  749. if (!(r & RESUME_HOST)) {
  750. /* To avoid clobbering exit_reason, only check for signals if
  751. * we aren't already exiting to userspace for some other
  752. * reason. */
  753. /*
  754. * Interrupts could be timers for the guest which we have to
  755. * inject again, so let's postpone them until we're in the guest
  756. * and if we really did time things so badly, then we just exit
  757. * again due to a host external interrupt.
  758. */
  759. local_irq_disable();
  760. if (kvmppc_prepare_to_enter(vcpu)) {
  761. local_irq_enable();
  762. run->exit_reason = KVM_EXIT_INTR;
  763. r = -EINTR;
  764. } else {
  765. kvmppc_lazy_ee_enable();
  766. }
  767. }
  768. trace_kvm_book3s_reenter(r, vcpu);
  769. return r;
  770. }
  771. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  772. struct kvm_sregs *sregs)
  773. {
  774. struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
  775. int i;
  776. sregs->pvr = vcpu->arch.pvr;
  777. sregs->u.s.sdr1 = to_book3s(vcpu)->sdr1;
  778. if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
  779. for (i = 0; i < 64; i++) {
  780. sregs->u.s.ppc64.slb[i].slbe = vcpu->arch.slb[i].orige | i;
  781. sregs->u.s.ppc64.slb[i].slbv = vcpu->arch.slb[i].origv;
  782. }
  783. } else {
  784. for (i = 0; i < 16; i++)
  785. sregs->u.s.ppc32.sr[i] = vcpu->arch.shared->sr[i];
  786. for (i = 0; i < 8; i++) {
  787. sregs->u.s.ppc32.ibat[i] = vcpu3s->ibat[i].raw;
  788. sregs->u.s.ppc32.dbat[i] = vcpu3s->dbat[i].raw;
  789. }
  790. }
  791. return 0;
  792. }
  793. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  794. struct kvm_sregs *sregs)
  795. {
  796. struct kvmppc_vcpu_book3s *vcpu3s = to_book3s(vcpu);
  797. int i;
  798. kvmppc_set_pvr(vcpu, sregs->pvr);
  799. vcpu3s->sdr1 = sregs->u.s.sdr1;
  800. if (vcpu->arch.hflags & BOOK3S_HFLAG_SLB) {
  801. for (i = 0; i < 64; i++) {
  802. vcpu->arch.mmu.slbmte(vcpu, sregs->u.s.ppc64.slb[i].slbv,
  803. sregs->u.s.ppc64.slb[i].slbe);
  804. }
  805. } else {
  806. for (i = 0; i < 16; i++) {
  807. vcpu->arch.mmu.mtsrin(vcpu, i, sregs->u.s.ppc32.sr[i]);
  808. }
  809. for (i = 0; i < 8; i++) {
  810. kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), false,
  811. (u32)sregs->u.s.ppc32.ibat[i]);
  812. kvmppc_set_bat(vcpu, &(vcpu3s->ibat[i]), true,
  813. (u32)(sregs->u.s.ppc32.ibat[i] >> 32));
  814. kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), false,
  815. (u32)sregs->u.s.ppc32.dbat[i]);
  816. kvmppc_set_bat(vcpu, &(vcpu3s->dbat[i]), true,
  817. (u32)(sregs->u.s.ppc32.dbat[i] >> 32));
  818. }
  819. }
  820. /* Flush the MMU after messing with the segments */
  821. kvmppc_mmu_pte_flush(vcpu, 0, 0);
  822. return 0;
  823. }
  824. int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
  825. {
  826. int r = -EINVAL;
  827. switch (reg->id) {
  828. case KVM_REG_PPC_HIOR:
  829. r = copy_to_user((u64 __user *)(long)reg->addr,
  830. &to_book3s(vcpu)->hior, sizeof(u64));
  831. break;
  832. default:
  833. break;
  834. }
  835. return r;
  836. }
  837. int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
  838. {
  839. int r = -EINVAL;
  840. switch (reg->id) {
  841. case KVM_REG_PPC_HIOR:
  842. r = copy_from_user(&to_book3s(vcpu)->hior,
  843. (u64 __user *)(long)reg->addr, sizeof(u64));
  844. if (!r)
  845. to_book3s(vcpu)->hior_explicit = true;
  846. break;
  847. default:
  848. break;
  849. }
  850. return r;
  851. }
  852. int kvmppc_core_check_processor_compat(void)
  853. {
  854. return 0;
  855. }
  856. struct kvm_vcpu *kvmppc_core_vcpu_create(struct kvm *kvm, unsigned int id)
  857. {
  858. struct kvmppc_vcpu_book3s *vcpu_book3s;
  859. struct kvm_vcpu *vcpu;
  860. int err = -ENOMEM;
  861. unsigned long p;
  862. vcpu_book3s = vzalloc(sizeof(struct kvmppc_vcpu_book3s));
  863. if (!vcpu_book3s)
  864. goto out;
  865. vcpu_book3s->shadow_vcpu = (struct kvmppc_book3s_shadow_vcpu *)
  866. kzalloc(sizeof(*vcpu_book3s->shadow_vcpu), GFP_KERNEL);
  867. if (!vcpu_book3s->shadow_vcpu)
  868. goto free_vcpu;
  869. vcpu = &vcpu_book3s->vcpu;
  870. err = kvm_vcpu_init(vcpu, kvm, id);
  871. if (err)
  872. goto free_shadow_vcpu;
  873. p = __get_free_page(GFP_KERNEL|__GFP_ZERO);
  874. /* the real shared page fills the last 4k of our page */
  875. vcpu->arch.shared = (void*)(p + PAGE_SIZE - 4096);
  876. if (!p)
  877. goto uninit_vcpu;
  878. #ifdef CONFIG_PPC_BOOK3S_64
  879. /* default to book3s_64 (970fx) */
  880. vcpu->arch.pvr = 0x3C0301;
  881. #else
  882. /* default to book3s_32 (750) */
  883. vcpu->arch.pvr = 0x84202;
  884. #endif
  885. kvmppc_set_pvr(vcpu, vcpu->arch.pvr);
  886. vcpu->arch.slb_nr = 64;
  887. vcpu->arch.shadow_msr = MSR_USER64;
  888. err = kvmppc_mmu_init(vcpu);
  889. if (err < 0)
  890. goto uninit_vcpu;
  891. return vcpu;
  892. uninit_vcpu:
  893. kvm_vcpu_uninit(vcpu);
  894. free_shadow_vcpu:
  895. kfree(vcpu_book3s->shadow_vcpu);
  896. free_vcpu:
  897. vfree(vcpu_book3s);
  898. out:
  899. return ERR_PTR(err);
  900. }
  901. void kvmppc_core_vcpu_free(struct kvm_vcpu *vcpu)
  902. {
  903. struct kvmppc_vcpu_book3s *vcpu_book3s = to_book3s(vcpu);
  904. free_page((unsigned long)vcpu->arch.shared & PAGE_MASK);
  905. kvm_vcpu_uninit(vcpu);
  906. kfree(vcpu_book3s->shadow_vcpu);
  907. vfree(vcpu_book3s);
  908. }
  909. int kvmppc_vcpu_run(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  910. {
  911. int ret;
  912. double fpr[32][TS_FPRWIDTH];
  913. unsigned int fpscr;
  914. int fpexc_mode;
  915. #ifdef CONFIG_ALTIVEC
  916. vector128 vr[32];
  917. vector128 vscr;
  918. unsigned long uninitialized_var(vrsave);
  919. int used_vr;
  920. #endif
  921. #ifdef CONFIG_VSX
  922. int used_vsr;
  923. #endif
  924. ulong ext_msr;
  925. /* Check if we can run the vcpu at all */
  926. if (!vcpu->arch.sane) {
  927. kvm_run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
  928. ret = -EINVAL;
  929. goto out;
  930. }
  931. /*
  932. * Interrupts could be timers for the guest which we have to inject
  933. * again, so let's postpone them until we're in the guest and if we
  934. * really did time things so badly, then we just exit again due to
  935. * a host external interrupt.
  936. */
  937. local_irq_disable();
  938. if (kvmppc_prepare_to_enter(vcpu)) {
  939. local_irq_enable();
  940. kvm_run->exit_reason = KVM_EXIT_INTR;
  941. ret = -EINTR;
  942. goto out;
  943. }
  944. /* Save FPU state in stack */
  945. if (current->thread.regs->msr & MSR_FP)
  946. giveup_fpu(current);
  947. memcpy(fpr, current->thread.fpr, sizeof(current->thread.fpr));
  948. fpscr = current->thread.fpscr.val;
  949. fpexc_mode = current->thread.fpexc_mode;
  950. #ifdef CONFIG_ALTIVEC
  951. /* Save Altivec state in stack */
  952. used_vr = current->thread.used_vr;
  953. if (used_vr) {
  954. if (current->thread.regs->msr & MSR_VEC)
  955. giveup_altivec(current);
  956. memcpy(vr, current->thread.vr, sizeof(current->thread.vr));
  957. vscr = current->thread.vscr;
  958. vrsave = current->thread.vrsave;
  959. }
  960. #endif
  961. #ifdef CONFIG_VSX
  962. /* Save VSX state in stack */
  963. used_vsr = current->thread.used_vsr;
  964. if (used_vsr && (current->thread.regs->msr & MSR_VSX))
  965. __giveup_vsx(current);
  966. #endif
  967. /* Remember the MSR with disabled extensions */
  968. ext_msr = current->thread.regs->msr;
  969. /* Preload FPU if it's enabled */
  970. if (vcpu->arch.shared->msr & MSR_FP)
  971. kvmppc_handle_ext(vcpu, BOOK3S_INTERRUPT_FP_UNAVAIL, MSR_FP);
  972. kvmppc_lazy_ee_enable();
  973. ret = __kvmppc_vcpu_run(kvm_run, vcpu);
  974. /* No need for kvm_guest_exit. It's done in handle_exit.
  975. We also get here with interrupts enabled. */
  976. current->thread.regs->msr = ext_msr;
  977. /* Make sure we save the guest FPU/Altivec/VSX state */
  978. kvmppc_giveup_ext(vcpu, MSR_FP);
  979. kvmppc_giveup_ext(vcpu, MSR_VEC);
  980. kvmppc_giveup_ext(vcpu, MSR_VSX);
  981. /* Restore FPU state from stack */
  982. memcpy(current->thread.fpr, fpr, sizeof(current->thread.fpr));
  983. current->thread.fpscr.val = fpscr;
  984. current->thread.fpexc_mode = fpexc_mode;
  985. #ifdef CONFIG_ALTIVEC
  986. /* Restore Altivec state from stack */
  987. if (used_vr && current->thread.used_vr) {
  988. memcpy(current->thread.vr, vr, sizeof(current->thread.vr));
  989. current->thread.vscr = vscr;
  990. current->thread.vrsave = vrsave;
  991. }
  992. current->thread.used_vr = used_vr;
  993. #endif
  994. #ifdef CONFIG_VSX
  995. current->thread.used_vsr = used_vsr;
  996. #endif
  997. out:
  998. vcpu->mode = OUTSIDE_GUEST_MODE;
  999. return ret;
  1000. }
  1001. /*
  1002. * Get (and clear) the dirty memory log for a memory slot.
  1003. */
  1004. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1005. struct kvm_dirty_log *log)
  1006. {
  1007. struct kvm_memory_slot *memslot;
  1008. struct kvm_vcpu *vcpu;
  1009. ulong ga, ga_end;
  1010. int is_dirty = 0;
  1011. int r;
  1012. unsigned long n;
  1013. mutex_lock(&kvm->slots_lock);
  1014. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1015. if (r)
  1016. goto out;
  1017. /* If nothing is dirty, don't bother messing with page tables. */
  1018. if (is_dirty) {
  1019. memslot = id_to_memslot(kvm->memslots, log->slot);
  1020. ga = memslot->base_gfn << PAGE_SHIFT;
  1021. ga_end = ga + (memslot->npages << PAGE_SHIFT);
  1022. kvm_for_each_vcpu(n, vcpu, kvm)
  1023. kvmppc_mmu_pte_pflush(vcpu, ga, ga_end);
  1024. n = kvm_dirty_bitmap_bytes(memslot);
  1025. memset(memslot->dirty_bitmap, 0, n);
  1026. }
  1027. r = 0;
  1028. out:
  1029. mutex_unlock(&kvm->slots_lock);
  1030. return r;
  1031. }
  1032. #ifdef CONFIG_PPC64
  1033. int kvm_vm_ioctl_get_smmu_info(struct kvm *kvm, struct kvm_ppc_smmu_info *info)
  1034. {
  1035. /* No flags */
  1036. info->flags = 0;
  1037. /* SLB is always 64 entries */
  1038. info->slb_size = 64;
  1039. /* Standard 4k base page size segment */
  1040. info->sps[0].page_shift = 12;
  1041. info->sps[0].slb_enc = 0;
  1042. info->sps[0].enc[0].page_shift = 12;
  1043. info->sps[0].enc[0].pte_enc = 0;
  1044. /* Standard 16M large page size segment */
  1045. info->sps[1].page_shift = 24;
  1046. info->sps[1].slb_enc = SLB_VSID_L;
  1047. info->sps[1].enc[0].page_shift = 24;
  1048. info->sps[1].enc[0].pte_enc = 0;
  1049. return 0;
  1050. }
  1051. #endif /* CONFIG_PPC64 */
  1052. int kvmppc_core_prepare_memory_region(struct kvm *kvm,
  1053. struct kvm_userspace_memory_region *mem)
  1054. {
  1055. return 0;
  1056. }
  1057. void kvmppc_core_commit_memory_region(struct kvm *kvm,
  1058. struct kvm_userspace_memory_region *mem)
  1059. {
  1060. }
  1061. int kvmppc_core_init_vm(struct kvm *kvm)
  1062. {
  1063. #ifdef CONFIG_PPC64
  1064. INIT_LIST_HEAD(&kvm->arch.spapr_tce_tables);
  1065. #endif
  1066. return 0;
  1067. }
  1068. void kvmppc_core_destroy_vm(struct kvm *kvm)
  1069. {
  1070. #ifdef CONFIG_PPC64
  1071. WARN_ON(!list_empty(&kvm->arch.spapr_tce_tables));
  1072. #endif
  1073. }
  1074. static int kvmppc_book3s_init(void)
  1075. {
  1076. int r;
  1077. r = kvm_init(NULL, sizeof(struct kvmppc_vcpu_book3s), 0,
  1078. THIS_MODULE);
  1079. if (r)
  1080. return r;
  1081. r = kvmppc_mmu_hpte_sysinit();
  1082. return r;
  1083. }
  1084. static void kvmppc_book3s_exit(void)
  1085. {
  1086. kvmppc_mmu_hpte_sysexit();
  1087. kvm_exit();
  1088. }
  1089. module_init(kvmppc_book3s_init);
  1090. module_exit(kvmppc_book3s_exit);