mlme.c 123 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357
  1. /*
  2. * BSS client mode implementation
  3. * Copyright 2003, Jouni Malinen <jkmaline@cc.hut.fi>
  4. * Copyright 2004, Instant802 Networks, Inc.
  5. * Copyright 2005, Devicescape Software, Inc.
  6. * Copyright 2006-2007 Jiri Benc <jbenc@suse.cz>
  7. * Copyright 2007, Michael Wu <flamingice@sourmilk.net>
  8. *
  9. * This program is free software; you can redistribute it and/or modify
  10. * it under the terms of the GNU General Public License version 2 as
  11. * published by the Free Software Foundation.
  12. */
  13. /* TODO:
  14. * order BSS list by RSSI(?) ("quality of AP")
  15. * scan result table filtering (by capability (privacy, IBSS/BSS, WPA/RSN IE,
  16. * SSID)
  17. */
  18. #include <linux/delay.h>
  19. #include <linux/if_ether.h>
  20. #include <linux/skbuff.h>
  21. #include <linux/netdevice.h>
  22. #include <linux/if_arp.h>
  23. #include <linux/wireless.h>
  24. #include <linux/random.h>
  25. #include <linux/etherdevice.h>
  26. #include <linux/rtnetlink.h>
  27. #include <net/iw_handler.h>
  28. #include <asm/types.h>
  29. #include <net/mac80211.h>
  30. #include "ieee80211_i.h"
  31. #include "rate.h"
  32. #include "led.h"
  33. #include "mesh.h"
  34. #define IEEE80211_AUTH_TIMEOUT (HZ / 5)
  35. #define IEEE80211_AUTH_MAX_TRIES 3
  36. #define IEEE80211_ASSOC_TIMEOUT (HZ / 5)
  37. #define IEEE80211_ASSOC_MAX_TRIES 3
  38. #define IEEE80211_MONITORING_INTERVAL (2 * HZ)
  39. #define IEEE80211_MESH_HOUSEKEEPING_INTERVAL (60 * HZ)
  40. #define IEEE80211_PROBE_INTERVAL (60 * HZ)
  41. #define IEEE80211_RETRY_AUTH_INTERVAL (1 * HZ)
  42. #define IEEE80211_SCAN_INTERVAL (2 * HZ)
  43. #define IEEE80211_SCAN_INTERVAL_SLOW (15 * HZ)
  44. #define IEEE80211_IBSS_JOIN_TIMEOUT (20 * HZ)
  45. #define IEEE80211_PROBE_DELAY (HZ / 33)
  46. #define IEEE80211_CHANNEL_TIME (HZ / 33)
  47. #define IEEE80211_PASSIVE_CHANNEL_TIME (HZ / 5)
  48. #define IEEE80211_SCAN_RESULT_EXPIRE (10 * HZ)
  49. #define IEEE80211_IBSS_MERGE_INTERVAL (30 * HZ)
  50. #define IEEE80211_IBSS_INACTIVITY_LIMIT (60 * HZ)
  51. #define IEEE80211_MESH_PEER_INACTIVITY_LIMIT (1800 * HZ)
  52. #define IEEE80211_IBSS_MAX_STA_ENTRIES 128
  53. #define ERP_INFO_USE_PROTECTION BIT(1)
  54. /* mgmt header + 1 byte action code */
  55. #define IEEE80211_MIN_ACTION_SIZE (24 + 1)
  56. #define IEEE80211_ADDBA_PARAM_POLICY_MASK 0x0002
  57. #define IEEE80211_ADDBA_PARAM_TID_MASK 0x003C
  58. #define IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK 0xFFA0
  59. #define IEEE80211_DELBA_PARAM_TID_MASK 0xF000
  60. #define IEEE80211_DELBA_PARAM_INITIATOR_MASK 0x0800
  61. /* next values represent the buffer size for A-MPDU frame.
  62. * According to IEEE802.11n spec size varies from 8K to 64K (in powers of 2) */
  63. #define IEEE80211_MIN_AMPDU_BUF 0x8
  64. #define IEEE80211_MAX_AMPDU_BUF 0x40
  65. static void ieee80211_send_probe_req(struct net_device *dev, u8 *dst,
  66. u8 *ssid, size_t ssid_len);
  67. static struct ieee80211_sta_bss *
  68. ieee80211_rx_bss_get(struct net_device *dev, u8 *bssid, int freq,
  69. u8 *ssid, u8 ssid_len);
  70. static void ieee80211_rx_bss_put(struct net_device *dev,
  71. struct ieee80211_sta_bss *bss);
  72. static int ieee80211_sta_find_ibss(struct net_device *dev,
  73. struct ieee80211_if_sta *ifsta);
  74. static int ieee80211_sta_wep_configured(struct net_device *dev);
  75. static int ieee80211_sta_start_scan(struct net_device *dev,
  76. u8 *ssid, size_t ssid_len);
  77. static int ieee80211_sta_config_auth(struct net_device *dev,
  78. struct ieee80211_if_sta *ifsta);
  79. void ieee802_11_parse_elems(u8 *start, size_t len,
  80. struct ieee802_11_elems *elems)
  81. {
  82. size_t left = len;
  83. u8 *pos = start;
  84. memset(elems, 0, sizeof(*elems));
  85. while (left >= 2) {
  86. u8 id, elen;
  87. id = *pos++;
  88. elen = *pos++;
  89. left -= 2;
  90. if (elen > left)
  91. return;
  92. switch (id) {
  93. case WLAN_EID_SSID:
  94. elems->ssid = pos;
  95. elems->ssid_len = elen;
  96. break;
  97. case WLAN_EID_SUPP_RATES:
  98. elems->supp_rates = pos;
  99. elems->supp_rates_len = elen;
  100. break;
  101. case WLAN_EID_FH_PARAMS:
  102. elems->fh_params = pos;
  103. elems->fh_params_len = elen;
  104. break;
  105. case WLAN_EID_DS_PARAMS:
  106. elems->ds_params = pos;
  107. elems->ds_params_len = elen;
  108. break;
  109. case WLAN_EID_CF_PARAMS:
  110. elems->cf_params = pos;
  111. elems->cf_params_len = elen;
  112. break;
  113. case WLAN_EID_TIM:
  114. elems->tim = pos;
  115. elems->tim_len = elen;
  116. break;
  117. case WLAN_EID_IBSS_PARAMS:
  118. elems->ibss_params = pos;
  119. elems->ibss_params_len = elen;
  120. break;
  121. case WLAN_EID_CHALLENGE:
  122. elems->challenge = pos;
  123. elems->challenge_len = elen;
  124. break;
  125. case WLAN_EID_WPA:
  126. if (elen >= 4 && pos[0] == 0x00 && pos[1] == 0x50 &&
  127. pos[2] == 0xf2) {
  128. /* Microsoft OUI (00:50:F2) */
  129. if (pos[3] == 1) {
  130. /* OUI Type 1 - WPA IE */
  131. elems->wpa = pos;
  132. elems->wpa_len = elen;
  133. } else if (elen >= 5 && pos[3] == 2) {
  134. if (pos[4] == 0) {
  135. elems->wmm_info = pos;
  136. elems->wmm_info_len = elen;
  137. } else if (pos[4] == 1) {
  138. elems->wmm_param = pos;
  139. elems->wmm_param_len = elen;
  140. }
  141. }
  142. }
  143. break;
  144. case WLAN_EID_RSN:
  145. elems->rsn = pos;
  146. elems->rsn_len = elen;
  147. break;
  148. case WLAN_EID_ERP_INFO:
  149. elems->erp_info = pos;
  150. elems->erp_info_len = elen;
  151. break;
  152. case WLAN_EID_EXT_SUPP_RATES:
  153. elems->ext_supp_rates = pos;
  154. elems->ext_supp_rates_len = elen;
  155. break;
  156. case WLAN_EID_HT_CAPABILITY:
  157. elems->ht_cap_elem = pos;
  158. elems->ht_cap_elem_len = elen;
  159. break;
  160. case WLAN_EID_HT_EXTRA_INFO:
  161. elems->ht_info_elem = pos;
  162. elems->ht_info_elem_len = elen;
  163. break;
  164. case WLAN_EID_MESH_ID:
  165. elems->mesh_id = pos;
  166. elems->mesh_id_len = elen;
  167. break;
  168. case WLAN_EID_MESH_CONFIG:
  169. elems->mesh_config = pos;
  170. elems->mesh_config_len = elen;
  171. break;
  172. case WLAN_EID_PEER_LINK:
  173. elems->peer_link = pos;
  174. elems->peer_link_len = elen;
  175. break;
  176. case WLAN_EID_PREQ:
  177. elems->preq = pos;
  178. elems->preq_len = elen;
  179. break;
  180. case WLAN_EID_PREP:
  181. elems->prep = pos;
  182. elems->prep_len = elen;
  183. break;
  184. case WLAN_EID_PERR:
  185. elems->perr = pos;
  186. elems->perr_len = elen;
  187. break;
  188. default:
  189. break;
  190. }
  191. left -= elen;
  192. pos += elen;
  193. }
  194. }
  195. static int ecw2cw(int ecw)
  196. {
  197. return (1 << ecw) - 1;
  198. }
  199. static void ieee80211_sta_def_wmm_params(struct net_device *dev,
  200. struct ieee80211_sta_bss *bss,
  201. int ibss)
  202. {
  203. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  204. struct ieee80211_local *local = sdata->local;
  205. int i, have_higher_than_11mbit = 0;
  206. /* cf. IEEE 802.11 9.2.12 */
  207. for (i = 0; i < bss->supp_rates_len; i++)
  208. if ((bss->supp_rates[i] & 0x7f) * 5 > 110)
  209. have_higher_than_11mbit = 1;
  210. if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ &&
  211. have_higher_than_11mbit)
  212. sdata->flags |= IEEE80211_SDATA_OPERATING_GMODE;
  213. else
  214. sdata->flags &= ~IEEE80211_SDATA_OPERATING_GMODE;
  215. if (local->ops->conf_tx) {
  216. struct ieee80211_tx_queue_params qparam;
  217. memset(&qparam, 0, sizeof(qparam));
  218. qparam.aifs = 2;
  219. if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ &&
  220. !(sdata->flags & IEEE80211_SDATA_OPERATING_GMODE))
  221. qparam.cw_min = 31;
  222. else
  223. qparam.cw_min = 15;
  224. qparam.cw_max = 1023;
  225. qparam.txop = 0;
  226. for (i = IEEE80211_TX_QUEUE_DATA0; i < NUM_TX_DATA_QUEUES; i++)
  227. local->ops->conf_tx(local_to_hw(local),
  228. i + IEEE80211_TX_QUEUE_DATA0,
  229. &qparam);
  230. if (ibss) {
  231. /* IBSS uses different parameters for Beacon sending */
  232. qparam.cw_min++;
  233. qparam.cw_min *= 2;
  234. qparam.cw_min--;
  235. local->ops->conf_tx(local_to_hw(local),
  236. IEEE80211_TX_QUEUE_BEACON, &qparam);
  237. }
  238. }
  239. }
  240. static void ieee80211_sta_wmm_params(struct net_device *dev,
  241. struct ieee80211_if_sta *ifsta,
  242. u8 *wmm_param, size_t wmm_param_len)
  243. {
  244. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  245. struct ieee80211_tx_queue_params params;
  246. size_t left;
  247. int count;
  248. u8 *pos;
  249. if (wmm_param_len < 8 || wmm_param[5] /* version */ != 1)
  250. return;
  251. count = wmm_param[6] & 0x0f;
  252. if (count == ifsta->wmm_last_param_set)
  253. return;
  254. ifsta->wmm_last_param_set = count;
  255. pos = wmm_param + 8;
  256. left = wmm_param_len - 8;
  257. memset(&params, 0, sizeof(params));
  258. if (!local->ops->conf_tx)
  259. return;
  260. local->wmm_acm = 0;
  261. for (; left >= 4; left -= 4, pos += 4) {
  262. int aci = (pos[0] >> 5) & 0x03;
  263. int acm = (pos[0] >> 4) & 0x01;
  264. int queue;
  265. switch (aci) {
  266. case 1:
  267. queue = IEEE80211_TX_QUEUE_DATA3;
  268. if (acm) {
  269. local->wmm_acm |= BIT(0) | BIT(3);
  270. }
  271. break;
  272. case 2:
  273. queue = IEEE80211_TX_QUEUE_DATA1;
  274. if (acm) {
  275. local->wmm_acm |= BIT(4) | BIT(5);
  276. }
  277. break;
  278. case 3:
  279. queue = IEEE80211_TX_QUEUE_DATA0;
  280. if (acm) {
  281. local->wmm_acm |= BIT(6) | BIT(7);
  282. }
  283. break;
  284. case 0:
  285. default:
  286. queue = IEEE80211_TX_QUEUE_DATA2;
  287. if (acm) {
  288. local->wmm_acm |= BIT(1) | BIT(2);
  289. }
  290. break;
  291. }
  292. params.aifs = pos[0] & 0x0f;
  293. params.cw_max = ecw2cw((pos[1] & 0xf0) >> 4);
  294. params.cw_min = ecw2cw(pos[1] & 0x0f);
  295. params.txop = pos[2] | (pos[3] << 8);
  296. #ifdef CONFIG_MAC80211_DEBUG
  297. printk(KERN_DEBUG "%s: WMM queue=%d aci=%d acm=%d aifs=%d "
  298. "cWmin=%d cWmax=%d txop=%d\n",
  299. dev->name, queue, aci, acm, params.aifs, params.cw_min,
  300. params.cw_max, params.txop);
  301. #endif
  302. /* TODO: handle ACM (block TX, fallback to next lowest allowed
  303. * AC for now) */
  304. if (local->ops->conf_tx(local_to_hw(local), queue, &params)) {
  305. printk(KERN_DEBUG "%s: failed to set TX queue "
  306. "parameters for queue %d\n", dev->name, queue);
  307. }
  308. }
  309. }
  310. static u32 ieee80211_handle_protect_preamb(struct ieee80211_sub_if_data *sdata,
  311. bool use_protection,
  312. bool use_short_preamble)
  313. {
  314. struct ieee80211_bss_conf *bss_conf = &sdata->bss_conf;
  315. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  316. DECLARE_MAC_BUF(mac);
  317. u32 changed = 0;
  318. if (use_protection != bss_conf->use_cts_prot) {
  319. if (net_ratelimit()) {
  320. printk(KERN_DEBUG "%s: CTS protection %s (BSSID="
  321. "%s)\n",
  322. sdata->dev->name,
  323. use_protection ? "enabled" : "disabled",
  324. print_mac(mac, ifsta->bssid));
  325. }
  326. bss_conf->use_cts_prot = use_protection;
  327. changed |= BSS_CHANGED_ERP_CTS_PROT;
  328. }
  329. if (use_short_preamble != bss_conf->use_short_preamble) {
  330. if (net_ratelimit()) {
  331. printk(KERN_DEBUG "%s: switched to %s barker preamble"
  332. " (BSSID=%s)\n",
  333. sdata->dev->name,
  334. use_short_preamble ? "short" : "long",
  335. print_mac(mac, ifsta->bssid));
  336. }
  337. bss_conf->use_short_preamble = use_short_preamble;
  338. changed |= BSS_CHANGED_ERP_PREAMBLE;
  339. }
  340. return changed;
  341. }
  342. static u32 ieee80211_handle_erp_ie(struct ieee80211_sub_if_data *sdata,
  343. u8 erp_value)
  344. {
  345. bool use_protection = (erp_value & WLAN_ERP_USE_PROTECTION) != 0;
  346. bool use_short_preamble = (erp_value & WLAN_ERP_BARKER_PREAMBLE) == 0;
  347. return ieee80211_handle_protect_preamb(sdata,
  348. use_protection, use_short_preamble);
  349. }
  350. static u32 ieee80211_handle_bss_capability(struct ieee80211_sub_if_data *sdata,
  351. struct ieee80211_sta_bss *bss)
  352. {
  353. u32 changed = 0;
  354. if (bss->has_erp_value)
  355. changed |= ieee80211_handle_erp_ie(sdata, bss->erp_value);
  356. else {
  357. u16 capab = bss->capability;
  358. changed |= ieee80211_handle_protect_preamb(sdata, false,
  359. (capab & WLAN_CAPABILITY_SHORT_PREAMBLE) != 0);
  360. }
  361. return changed;
  362. }
  363. int ieee80211_ht_cap_ie_to_ht_info(struct ieee80211_ht_cap *ht_cap_ie,
  364. struct ieee80211_ht_info *ht_info)
  365. {
  366. if (ht_info == NULL)
  367. return -EINVAL;
  368. memset(ht_info, 0, sizeof(*ht_info));
  369. if (ht_cap_ie) {
  370. u8 ampdu_info = ht_cap_ie->ampdu_params_info;
  371. ht_info->ht_supported = 1;
  372. ht_info->cap = le16_to_cpu(ht_cap_ie->cap_info);
  373. ht_info->ampdu_factor =
  374. ampdu_info & IEEE80211_HT_CAP_AMPDU_FACTOR;
  375. ht_info->ampdu_density =
  376. (ampdu_info & IEEE80211_HT_CAP_AMPDU_DENSITY) >> 2;
  377. memcpy(ht_info->supp_mcs_set, ht_cap_ie->supp_mcs_set, 16);
  378. } else
  379. ht_info->ht_supported = 0;
  380. return 0;
  381. }
  382. int ieee80211_ht_addt_info_ie_to_ht_bss_info(
  383. struct ieee80211_ht_addt_info *ht_add_info_ie,
  384. struct ieee80211_ht_bss_info *bss_info)
  385. {
  386. if (bss_info == NULL)
  387. return -EINVAL;
  388. memset(bss_info, 0, sizeof(*bss_info));
  389. if (ht_add_info_ie) {
  390. u16 op_mode;
  391. op_mode = le16_to_cpu(ht_add_info_ie->operation_mode);
  392. bss_info->primary_channel = ht_add_info_ie->control_chan;
  393. bss_info->bss_cap = ht_add_info_ie->ht_param;
  394. bss_info->bss_op_mode = (u8)(op_mode & 0xff);
  395. }
  396. return 0;
  397. }
  398. static void ieee80211_sta_send_associnfo(struct net_device *dev,
  399. struct ieee80211_if_sta *ifsta)
  400. {
  401. char *buf;
  402. size_t len;
  403. int i;
  404. union iwreq_data wrqu;
  405. if (!ifsta->assocreq_ies && !ifsta->assocresp_ies)
  406. return;
  407. buf = kmalloc(50 + 2 * (ifsta->assocreq_ies_len +
  408. ifsta->assocresp_ies_len), GFP_KERNEL);
  409. if (!buf)
  410. return;
  411. len = sprintf(buf, "ASSOCINFO(");
  412. if (ifsta->assocreq_ies) {
  413. len += sprintf(buf + len, "ReqIEs=");
  414. for (i = 0; i < ifsta->assocreq_ies_len; i++) {
  415. len += sprintf(buf + len, "%02x",
  416. ifsta->assocreq_ies[i]);
  417. }
  418. }
  419. if (ifsta->assocresp_ies) {
  420. if (ifsta->assocreq_ies)
  421. len += sprintf(buf + len, " ");
  422. len += sprintf(buf + len, "RespIEs=");
  423. for (i = 0; i < ifsta->assocresp_ies_len; i++) {
  424. len += sprintf(buf + len, "%02x",
  425. ifsta->assocresp_ies[i]);
  426. }
  427. }
  428. len += sprintf(buf + len, ")");
  429. if (len > IW_CUSTOM_MAX) {
  430. len = sprintf(buf, "ASSOCRESPIE=");
  431. for (i = 0; i < ifsta->assocresp_ies_len; i++) {
  432. len += sprintf(buf + len, "%02x",
  433. ifsta->assocresp_ies[i]);
  434. }
  435. }
  436. memset(&wrqu, 0, sizeof(wrqu));
  437. wrqu.data.length = len;
  438. wireless_send_event(dev, IWEVCUSTOM, &wrqu, buf);
  439. kfree(buf);
  440. }
  441. static void ieee80211_set_associated(struct net_device *dev,
  442. struct ieee80211_if_sta *ifsta,
  443. bool assoc)
  444. {
  445. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  446. struct ieee80211_local *local = sdata->local;
  447. struct ieee80211_conf *conf = &local_to_hw(local)->conf;
  448. union iwreq_data wrqu;
  449. u32 changed = BSS_CHANGED_ASSOC;
  450. if (assoc) {
  451. struct ieee80211_sta_bss *bss;
  452. ifsta->flags |= IEEE80211_STA_ASSOCIATED;
  453. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  454. return;
  455. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  456. conf->channel->center_freq,
  457. ifsta->ssid, ifsta->ssid_len);
  458. if (bss) {
  459. /* set timing information */
  460. sdata->bss_conf.beacon_int = bss->beacon_int;
  461. sdata->bss_conf.timestamp = bss->timestamp;
  462. changed |= ieee80211_handle_bss_capability(sdata, bss);
  463. ieee80211_rx_bss_put(dev, bss);
  464. }
  465. if (conf->flags & IEEE80211_CONF_SUPPORT_HT_MODE) {
  466. changed |= BSS_CHANGED_HT;
  467. sdata->bss_conf.assoc_ht = 1;
  468. sdata->bss_conf.ht_conf = &conf->ht_conf;
  469. sdata->bss_conf.ht_bss_conf = &conf->ht_bss_conf;
  470. }
  471. netif_carrier_on(dev);
  472. ifsta->flags |= IEEE80211_STA_PREV_BSSID_SET;
  473. memcpy(ifsta->prev_bssid, sdata->u.sta.bssid, ETH_ALEN);
  474. memcpy(wrqu.ap_addr.sa_data, sdata->u.sta.bssid, ETH_ALEN);
  475. ieee80211_sta_send_associnfo(dev, ifsta);
  476. } else {
  477. ieee80211_sta_tear_down_BA_sessions(dev, ifsta->bssid);
  478. ifsta->flags &= ~IEEE80211_STA_ASSOCIATED;
  479. netif_carrier_off(dev);
  480. ieee80211_reset_erp_info(dev);
  481. sdata->bss_conf.assoc_ht = 0;
  482. sdata->bss_conf.ht_conf = NULL;
  483. sdata->bss_conf.ht_bss_conf = NULL;
  484. memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
  485. }
  486. ifsta->last_probe = jiffies;
  487. ieee80211_led_assoc(local, assoc);
  488. sdata->bss_conf.assoc = assoc;
  489. ieee80211_bss_info_change_notify(sdata, changed);
  490. wrqu.ap_addr.sa_family = ARPHRD_ETHER;
  491. wireless_send_event(dev, SIOCGIWAP, &wrqu, NULL);
  492. }
  493. static void ieee80211_set_disassoc(struct net_device *dev,
  494. struct ieee80211_if_sta *ifsta, int deauth)
  495. {
  496. if (deauth)
  497. ifsta->auth_tries = 0;
  498. ifsta->assoc_tries = 0;
  499. ieee80211_set_associated(dev, ifsta, 0);
  500. }
  501. void ieee80211_sta_tx(struct net_device *dev, struct sk_buff *skb,
  502. int encrypt)
  503. {
  504. struct ieee80211_sub_if_data *sdata;
  505. struct ieee80211_tx_packet_data *pkt_data;
  506. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  507. skb->dev = sdata->local->mdev;
  508. skb_set_mac_header(skb, 0);
  509. skb_set_network_header(skb, 0);
  510. skb_set_transport_header(skb, 0);
  511. pkt_data = (struct ieee80211_tx_packet_data *) skb->cb;
  512. memset(pkt_data, 0, sizeof(struct ieee80211_tx_packet_data));
  513. pkt_data->ifindex = sdata->dev->ifindex;
  514. if (!encrypt)
  515. pkt_data->flags |= IEEE80211_TXPD_DO_NOT_ENCRYPT;
  516. dev_queue_xmit(skb);
  517. }
  518. static void ieee80211_send_auth(struct net_device *dev,
  519. struct ieee80211_if_sta *ifsta,
  520. int transaction, u8 *extra, size_t extra_len,
  521. int encrypt)
  522. {
  523. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  524. struct sk_buff *skb;
  525. struct ieee80211_mgmt *mgmt;
  526. skb = dev_alloc_skb(local->hw.extra_tx_headroom +
  527. sizeof(*mgmt) + 6 + extra_len);
  528. if (!skb) {
  529. printk(KERN_DEBUG "%s: failed to allocate buffer for auth "
  530. "frame\n", dev->name);
  531. return;
  532. }
  533. skb_reserve(skb, local->hw.extra_tx_headroom);
  534. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24 + 6);
  535. memset(mgmt, 0, 24 + 6);
  536. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  537. IEEE80211_STYPE_AUTH);
  538. if (encrypt)
  539. mgmt->frame_control |= cpu_to_le16(IEEE80211_FCTL_PROTECTED);
  540. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  541. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  542. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  543. mgmt->u.auth.auth_alg = cpu_to_le16(ifsta->auth_alg);
  544. mgmt->u.auth.auth_transaction = cpu_to_le16(transaction);
  545. ifsta->auth_transaction = transaction + 1;
  546. mgmt->u.auth.status_code = cpu_to_le16(0);
  547. if (extra)
  548. memcpy(skb_put(skb, extra_len), extra, extra_len);
  549. ieee80211_sta_tx(dev, skb, encrypt);
  550. }
  551. static void ieee80211_authenticate(struct net_device *dev,
  552. struct ieee80211_if_sta *ifsta)
  553. {
  554. DECLARE_MAC_BUF(mac);
  555. ifsta->auth_tries++;
  556. if (ifsta->auth_tries > IEEE80211_AUTH_MAX_TRIES) {
  557. printk(KERN_DEBUG "%s: authentication with AP %s"
  558. " timed out\n",
  559. dev->name, print_mac(mac, ifsta->bssid));
  560. ifsta->state = IEEE80211_DISABLED;
  561. return;
  562. }
  563. ifsta->state = IEEE80211_AUTHENTICATE;
  564. printk(KERN_DEBUG "%s: authenticate with AP %s\n",
  565. dev->name, print_mac(mac, ifsta->bssid));
  566. ieee80211_send_auth(dev, ifsta, 1, NULL, 0, 0);
  567. mod_timer(&ifsta->timer, jiffies + IEEE80211_AUTH_TIMEOUT);
  568. }
  569. static int ieee80211_compatible_rates(struct ieee80211_sta_bss *bss,
  570. struct ieee80211_supported_band *sband,
  571. u64 *rates)
  572. {
  573. int i, j, count;
  574. *rates = 0;
  575. count = 0;
  576. for (i = 0; i < bss->supp_rates_len; i++) {
  577. int rate = (bss->supp_rates[i] & 0x7F) * 5;
  578. for (j = 0; j < sband->n_bitrates; j++)
  579. if (sband->bitrates[j].bitrate == rate) {
  580. *rates |= BIT(j);
  581. count++;
  582. break;
  583. }
  584. }
  585. return count;
  586. }
  587. static void ieee80211_send_assoc(struct net_device *dev,
  588. struct ieee80211_if_sta *ifsta)
  589. {
  590. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  591. struct sk_buff *skb;
  592. struct ieee80211_mgmt *mgmt;
  593. u8 *pos, *ies;
  594. int i, len, count, rates_len, supp_rates_len;
  595. u16 capab;
  596. struct ieee80211_sta_bss *bss;
  597. int wmm = 0;
  598. struct ieee80211_supported_band *sband;
  599. u64 rates = 0;
  600. skb = dev_alloc_skb(local->hw.extra_tx_headroom +
  601. sizeof(*mgmt) + 200 + ifsta->extra_ie_len +
  602. ifsta->ssid_len);
  603. if (!skb) {
  604. printk(KERN_DEBUG "%s: failed to allocate buffer for assoc "
  605. "frame\n", dev->name);
  606. return;
  607. }
  608. skb_reserve(skb, local->hw.extra_tx_headroom);
  609. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  610. capab = ifsta->capab;
  611. if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ) {
  612. if (!(local->hw.flags & IEEE80211_HW_2GHZ_SHORT_SLOT_INCAPABLE))
  613. capab |= WLAN_CAPABILITY_SHORT_SLOT_TIME;
  614. if (!(local->hw.flags & IEEE80211_HW_2GHZ_SHORT_PREAMBLE_INCAPABLE))
  615. capab |= WLAN_CAPABILITY_SHORT_PREAMBLE;
  616. }
  617. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  618. local->hw.conf.channel->center_freq,
  619. ifsta->ssid, ifsta->ssid_len);
  620. if (bss) {
  621. if (bss->capability & WLAN_CAPABILITY_PRIVACY)
  622. capab |= WLAN_CAPABILITY_PRIVACY;
  623. if (bss->wmm_ie) {
  624. wmm = 1;
  625. }
  626. ieee80211_rx_bss_put(dev, bss);
  627. }
  628. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  629. memset(mgmt, 0, 24);
  630. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  631. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  632. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  633. if (ifsta->flags & IEEE80211_STA_PREV_BSSID_SET) {
  634. skb_put(skb, 10);
  635. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  636. IEEE80211_STYPE_REASSOC_REQ);
  637. mgmt->u.reassoc_req.capab_info = cpu_to_le16(capab);
  638. mgmt->u.reassoc_req.listen_interval = cpu_to_le16(1);
  639. memcpy(mgmt->u.reassoc_req.current_ap, ifsta->prev_bssid,
  640. ETH_ALEN);
  641. } else {
  642. skb_put(skb, 4);
  643. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  644. IEEE80211_STYPE_ASSOC_REQ);
  645. mgmt->u.assoc_req.capab_info = cpu_to_le16(capab);
  646. mgmt->u.assoc_req.listen_interval = cpu_to_le16(1);
  647. }
  648. /* SSID */
  649. ies = pos = skb_put(skb, 2 + ifsta->ssid_len);
  650. *pos++ = WLAN_EID_SSID;
  651. *pos++ = ifsta->ssid_len;
  652. memcpy(pos, ifsta->ssid, ifsta->ssid_len);
  653. /* all supported rates should be added here but some APs
  654. * (e.g. D-Link DAP 1353 in b-only mode) don't like that
  655. * Therefore only add rates the AP supports */
  656. rates_len = ieee80211_compatible_rates(bss, sband, &rates);
  657. supp_rates_len = rates_len;
  658. if (supp_rates_len > 8)
  659. supp_rates_len = 8;
  660. len = sband->n_bitrates;
  661. pos = skb_put(skb, supp_rates_len + 2);
  662. *pos++ = WLAN_EID_SUPP_RATES;
  663. *pos++ = supp_rates_len;
  664. count = 0;
  665. for (i = 0; i < sband->n_bitrates; i++) {
  666. if (BIT(i) & rates) {
  667. int rate = sband->bitrates[i].bitrate;
  668. *pos++ = (u8) (rate / 5);
  669. if (++count == 8)
  670. break;
  671. }
  672. }
  673. if (count == 8) {
  674. pos = skb_put(skb, rates_len - count + 2);
  675. *pos++ = WLAN_EID_EXT_SUPP_RATES;
  676. *pos++ = rates_len - count;
  677. for (i++; i < sband->n_bitrates; i++) {
  678. if (BIT(i) & rates) {
  679. int rate = sband->bitrates[i].bitrate;
  680. *pos++ = (u8) (rate / 5);
  681. }
  682. }
  683. }
  684. if (ifsta->extra_ie) {
  685. pos = skb_put(skb, ifsta->extra_ie_len);
  686. memcpy(pos, ifsta->extra_ie, ifsta->extra_ie_len);
  687. }
  688. if (wmm && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
  689. pos = skb_put(skb, 9);
  690. *pos++ = WLAN_EID_VENDOR_SPECIFIC;
  691. *pos++ = 7; /* len */
  692. *pos++ = 0x00; /* Microsoft OUI 00:50:F2 */
  693. *pos++ = 0x50;
  694. *pos++ = 0xf2;
  695. *pos++ = 2; /* WME */
  696. *pos++ = 0; /* WME info */
  697. *pos++ = 1; /* WME ver */
  698. *pos++ = 0;
  699. }
  700. /* wmm support is a must to HT */
  701. if (wmm && sband->ht_info.ht_supported) {
  702. __le16 tmp = cpu_to_le16(sband->ht_info.cap);
  703. pos = skb_put(skb, sizeof(struct ieee80211_ht_cap)+2);
  704. *pos++ = WLAN_EID_HT_CAPABILITY;
  705. *pos++ = sizeof(struct ieee80211_ht_cap);
  706. memset(pos, 0, sizeof(struct ieee80211_ht_cap));
  707. memcpy(pos, &tmp, sizeof(u16));
  708. pos += sizeof(u16);
  709. /* TODO: needs a define here for << 2 */
  710. *pos++ = sband->ht_info.ampdu_factor |
  711. (sband->ht_info.ampdu_density << 2);
  712. memcpy(pos, sband->ht_info.supp_mcs_set, 16);
  713. }
  714. kfree(ifsta->assocreq_ies);
  715. ifsta->assocreq_ies_len = (skb->data + skb->len) - ies;
  716. ifsta->assocreq_ies = kmalloc(ifsta->assocreq_ies_len, GFP_KERNEL);
  717. if (ifsta->assocreq_ies)
  718. memcpy(ifsta->assocreq_ies, ies, ifsta->assocreq_ies_len);
  719. ieee80211_sta_tx(dev, skb, 0);
  720. }
  721. static void ieee80211_send_deauth(struct net_device *dev,
  722. struct ieee80211_if_sta *ifsta, u16 reason)
  723. {
  724. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  725. struct sk_buff *skb;
  726. struct ieee80211_mgmt *mgmt;
  727. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt));
  728. if (!skb) {
  729. printk(KERN_DEBUG "%s: failed to allocate buffer for deauth "
  730. "frame\n", dev->name);
  731. return;
  732. }
  733. skb_reserve(skb, local->hw.extra_tx_headroom);
  734. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  735. memset(mgmt, 0, 24);
  736. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  737. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  738. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  739. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  740. IEEE80211_STYPE_DEAUTH);
  741. skb_put(skb, 2);
  742. mgmt->u.deauth.reason_code = cpu_to_le16(reason);
  743. ieee80211_sta_tx(dev, skb, 0);
  744. }
  745. static void ieee80211_send_disassoc(struct net_device *dev,
  746. struct ieee80211_if_sta *ifsta, u16 reason)
  747. {
  748. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  749. struct sk_buff *skb;
  750. struct ieee80211_mgmt *mgmt;
  751. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt));
  752. if (!skb) {
  753. printk(KERN_DEBUG "%s: failed to allocate buffer for disassoc "
  754. "frame\n", dev->name);
  755. return;
  756. }
  757. skb_reserve(skb, local->hw.extra_tx_headroom);
  758. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  759. memset(mgmt, 0, 24);
  760. memcpy(mgmt->da, ifsta->bssid, ETH_ALEN);
  761. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  762. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  763. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  764. IEEE80211_STYPE_DISASSOC);
  765. skb_put(skb, 2);
  766. mgmt->u.disassoc.reason_code = cpu_to_le16(reason);
  767. ieee80211_sta_tx(dev, skb, 0);
  768. }
  769. static int ieee80211_privacy_mismatch(struct net_device *dev,
  770. struct ieee80211_if_sta *ifsta)
  771. {
  772. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  773. struct ieee80211_sta_bss *bss;
  774. int bss_privacy;
  775. int wep_privacy;
  776. int privacy_invoked;
  777. if (!ifsta || (ifsta->flags & IEEE80211_STA_MIXED_CELL))
  778. return 0;
  779. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  780. local->hw.conf.channel->center_freq,
  781. ifsta->ssid, ifsta->ssid_len);
  782. if (!bss)
  783. return 0;
  784. bss_privacy = !!(bss->capability & WLAN_CAPABILITY_PRIVACY);
  785. wep_privacy = !!ieee80211_sta_wep_configured(dev);
  786. privacy_invoked = !!(ifsta->flags & IEEE80211_STA_PRIVACY_INVOKED);
  787. ieee80211_rx_bss_put(dev, bss);
  788. if ((bss_privacy == wep_privacy) || (bss_privacy == privacy_invoked))
  789. return 0;
  790. return 1;
  791. }
  792. static void ieee80211_associate(struct net_device *dev,
  793. struct ieee80211_if_sta *ifsta)
  794. {
  795. DECLARE_MAC_BUF(mac);
  796. ifsta->assoc_tries++;
  797. if (ifsta->assoc_tries > IEEE80211_ASSOC_MAX_TRIES) {
  798. printk(KERN_DEBUG "%s: association with AP %s"
  799. " timed out\n",
  800. dev->name, print_mac(mac, ifsta->bssid));
  801. ifsta->state = IEEE80211_DISABLED;
  802. return;
  803. }
  804. ifsta->state = IEEE80211_ASSOCIATE;
  805. printk(KERN_DEBUG "%s: associate with AP %s\n",
  806. dev->name, print_mac(mac, ifsta->bssid));
  807. if (ieee80211_privacy_mismatch(dev, ifsta)) {
  808. printk(KERN_DEBUG "%s: mismatch in privacy configuration and "
  809. "mixed-cell disabled - abort association\n", dev->name);
  810. ifsta->state = IEEE80211_DISABLED;
  811. return;
  812. }
  813. ieee80211_send_assoc(dev, ifsta);
  814. mod_timer(&ifsta->timer, jiffies + IEEE80211_ASSOC_TIMEOUT);
  815. }
  816. static void ieee80211_associated(struct net_device *dev,
  817. struct ieee80211_if_sta *ifsta)
  818. {
  819. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  820. struct sta_info *sta;
  821. int disassoc;
  822. DECLARE_MAC_BUF(mac);
  823. /* TODO: start monitoring current AP signal quality and number of
  824. * missed beacons. Scan other channels every now and then and search
  825. * for better APs. */
  826. /* TODO: remove expired BSSes */
  827. ifsta->state = IEEE80211_ASSOCIATED;
  828. rcu_read_lock();
  829. sta = sta_info_get(local, ifsta->bssid);
  830. if (!sta) {
  831. printk(KERN_DEBUG "%s: No STA entry for own AP %s\n",
  832. dev->name, print_mac(mac, ifsta->bssid));
  833. disassoc = 1;
  834. } else {
  835. disassoc = 0;
  836. if (time_after(jiffies,
  837. sta->last_rx + IEEE80211_MONITORING_INTERVAL)) {
  838. if (ifsta->flags & IEEE80211_STA_PROBEREQ_POLL) {
  839. printk(KERN_DEBUG "%s: No ProbeResp from "
  840. "current AP %s - assume out of "
  841. "range\n",
  842. dev->name, print_mac(mac, ifsta->bssid));
  843. disassoc = 1;
  844. sta_info_unlink(&sta);
  845. } else
  846. ieee80211_send_probe_req(dev, ifsta->bssid,
  847. local->scan_ssid,
  848. local->scan_ssid_len);
  849. ifsta->flags ^= IEEE80211_STA_PROBEREQ_POLL;
  850. } else {
  851. ifsta->flags &= ~IEEE80211_STA_PROBEREQ_POLL;
  852. if (time_after(jiffies, ifsta->last_probe +
  853. IEEE80211_PROBE_INTERVAL)) {
  854. ifsta->last_probe = jiffies;
  855. ieee80211_send_probe_req(dev, ifsta->bssid,
  856. ifsta->ssid,
  857. ifsta->ssid_len);
  858. }
  859. }
  860. }
  861. rcu_read_unlock();
  862. if (disassoc && sta)
  863. sta_info_destroy(sta);
  864. if (disassoc) {
  865. ifsta->state = IEEE80211_DISABLED;
  866. ieee80211_set_associated(dev, ifsta, 0);
  867. } else {
  868. mod_timer(&ifsta->timer, jiffies +
  869. IEEE80211_MONITORING_INTERVAL);
  870. }
  871. }
  872. static void ieee80211_send_probe_req(struct net_device *dev, u8 *dst,
  873. u8 *ssid, size_t ssid_len)
  874. {
  875. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  876. struct ieee80211_supported_band *sband;
  877. struct sk_buff *skb;
  878. struct ieee80211_mgmt *mgmt;
  879. u8 *pos, *supp_rates, *esupp_rates = NULL;
  880. int i;
  881. skb = dev_alloc_skb(local->hw.extra_tx_headroom + sizeof(*mgmt) + 200);
  882. if (!skb) {
  883. printk(KERN_DEBUG "%s: failed to allocate buffer for probe "
  884. "request\n", dev->name);
  885. return;
  886. }
  887. skb_reserve(skb, local->hw.extra_tx_headroom);
  888. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  889. memset(mgmt, 0, 24);
  890. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  891. IEEE80211_STYPE_PROBE_REQ);
  892. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  893. if (dst) {
  894. memcpy(mgmt->da, dst, ETH_ALEN);
  895. memcpy(mgmt->bssid, dst, ETH_ALEN);
  896. } else {
  897. memset(mgmt->da, 0xff, ETH_ALEN);
  898. memset(mgmt->bssid, 0xff, ETH_ALEN);
  899. }
  900. pos = skb_put(skb, 2 + ssid_len);
  901. *pos++ = WLAN_EID_SSID;
  902. *pos++ = ssid_len;
  903. memcpy(pos, ssid, ssid_len);
  904. supp_rates = skb_put(skb, 2);
  905. supp_rates[0] = WLAN_EID_SUPP_RATES;
  906. supp_rates[1] = 0;
  907. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  908. for (i = 0; i < sband->n_bitrates; i++) {
  909. struct ieee80211_rate *rate = &sband->bitrates[i];
  910. if (esupp_rates) {
  911. pos = skb_put(skb, 1);
  912. esupp_rates[1]++;
  913. } else if (supp_rates[1] == 8) {
  914. esupp_rates = skb_put(skb, 3);
  915. esupp_rates[0] = WLAN_EID_EXT_SUPP_RATES;
  916. esupp_rates[1] = 1;
  917. pos = &esupp_rates[2];
  918. } else {
  919. pos = skb_put(skb, 1);
  920. supp_rates[1]++;
  921. }
  922. *pos = rate->bitrate / 5;
  923. }
  924. ieee80211_sta_tx(dev, skb, 0);
  925. }
  926. static int ieee80211_sta_wep_configured(struct net_device *dev)
  927. {
  928. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  929. if (!sdata || !sdata->default_key ||
  930. sdata->default_key->conf.alg != ALG_WEP)
  931. return 0;
  932. return 1;
  933. }
  934. static void ieee80211_auth_completed(struct net_device *dev,
  935. struct ieee80211_if_sta *ifsta)
  936. {
  937. printk(KERN_DEBUG "%s: authenticated\n", dev->name);
  938. ifsta->flags |= IEEE80211_STA_AUTHENTICATED;
  939. ieee80211_associate(dev, ifsta);
  940. }
  941. static void ieee80211_auth_challenge(struct net_device *dev,
  942. struct ieee80211_if_sta *ifsta,
  943. struct ieee80211_mgmt *mgmt,
  944. size_t len)
  945. {
  946. u8 *pos;
  947. struct ieee802_11_elems elems;
  948. printk(KERN_DEBUG "%s: replying to auth challenge\n", dev->name);
  949. pos = mgmt->u.auth.variable;
  950. ieee802_11_parse_elems(pos, len - (pos - (u8 *) mgmt), &elems);
  951. if (!elems.challenge) {
  952. printk(KERN_DEBUG "%s: no challenge IE in shared key auth "
  953. "frame\n", dev->name);
  954. return;
  955. }
  956. ieee80211_send_auth(dev, ifsta, 3, elems.challenge - 2,
  957. elems.challenge_len + 2, 1);
  958. }
  959. static void ieee80211_send_addba_resp(struct net_device *dev, u8 *da, u16 tid,
  960. u8 dialog_token, u16 status, u16 policy,
  961. u16 buf_size, u16 timeout)
  962. {
  963. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  964. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  965. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  966. struct sk_buff *skb;
  967. struct ieee80211_mgmt *mgmt;
  968. u16 capab;
  969. skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom + 1 +
  970. sizeof(mgmt->u.action.u.addba_resp));
  971. if (!skb) {
  972. printk(KERN_DEBUG "%s: failed to allocate buffer "
  973. "for addba resp frame\n", dev->name);
  974. return;
  975. }
  976. skb_reserve(skb, local->hw.extra_tx_headroom);
  977. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  978. memset(mgmt, 0, 24);
  979. memcpy(mgmt->da, da, ETH_ALEN);
  980. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  981. if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
  982. memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
  983. else
  984. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  985. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  986. IEEE80211_STYPE_ACTION);
  987. skb_put(skb, 1 + sizeof(mgmt->u.action.u.addba_resp));
  988. mgmt->u.action.category = WLAN_CATEGORY_BACK;
  989. mgmt->u.action.u.addba_resp.action_code = WLAN_ACTION_ADDBA_RESP;
  990. mgmt->u.action.u.addba_resp.dialog_token = dialog_token;
  991. capab = (u16)(policy << 1); /* bit 1 aggregation policy */
  992. capab |= (u16)(tid << 2); /* bit 5:2 TID number */
  993. capab |= (u16)(buf_size << 6); /* bit 15:6 max size of aggregation */
  994. mgmt->u.action.u.addba_resp.capab = cpu_to_le16(capab);
  995. mgmt->u.action.u.addba_resp.timeout = cpu_to_le16(timeout);
  996. mgmt->u.action.u.addba_resp.status = cpu_to_le16(status);
  997. ieee80211_sta_tx(dev, skb, 0);
  998. return;
  999. }
  1000. void ieee80211_send_addba_request(struct net_device *dev, const u8 *da,
  1001. u16 tid, u8 dialog_token, u16 start_seq_num,
  1002. u16 agg_size, u16 timeout)
  1003. {
  1004. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1005. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1006. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  1007. struct sk_buff *skb;
  1008. struct ieee80211_mgmt *mgmt;
  1009. u16 capab;
  1010. skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom + 1 +
  1011. sizeof(mgmt->u.action.u.addba_req));
  1012. if (!skb) {
  1013. printk(KERN_ERR "%s: failed to allocate buffer "
  1014. "for addba request frame\n", dev->name);
  1015. return;
  1016. }
  1017. skb_reserve(skb, local->hw.extra_tx_headroom);
  1018. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  1019. memset(mgmt, 0, 24);
  1020. memcpy(mgmt->da, da, ETH_ALEN);
  1021. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  1022. if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
  1023. memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
  1024. else
  1025. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  1026. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  1027. IEEE80211_STYPE_ACTION);
  1028. skb_put(skb, 1 + sizeof(mgmt->u.action.u.addba_req));
  1029. mgmt->u.action.category = WLAN_CATEGORY_BACK;
  1030. mgmt->u.action.u.addba_req.action_code = WLAN_ACTION_ADDBA_REQ;
  1031. mgmt->u.action.u.addba_req.dialog_token = dialog_token;
  1032. capab = (u16)(1 << 1); /* bit 1 aggregation policy */
  1033. capab |= (u16)(tid << 2); /* bit 5:2 TID number */
  1034. capab |= (u16)(agg_size << 6); /* bit 15:6 max size of aggergation */
  1035. mgmt->u.action.u.addba_req.capab = cpu_to_le16(capab);
  1036. mgmt->u.action.u.addba_req.timeout = cpu_to_le16(timeout);
  1037. mgmt->u.action.u.addba_req.start_seq_num =
  1038. cpu_to_le16(start_seq_num << 4);
  1039. ieee80211_sta_tx(dev, skb, 0);
  1040. }
  1041. static void ieee80211_sta_process_addba_request(struct net_device *dev,
  1042. struct ieee80211_mgmt *mgmt,
  1043. size_t len)
  1044. {
  1045. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1046. struct ieee80211_hw *hw = &local->hw;
  1047. struct ieee80211_conf *conf = &hw->conf;
  1048. struct sta_info *sta;
  1049. struct tid_ampdu_rx *tid_agg_rx;
  1050. u16 capab, tid, timeout, ba_policy, buf_size, start_seq_num, status;
  1051. u8 dialog_token;
  1052. int ret = -EOPNOTSUPP;
  1053. DECLARE_MAC_BUF(mac);
  1054. rcu_read_lock();
  1055. sta = sta_info_get(local, mgmt->sa);
  1056. if (!sta) {
  1057. rcu_read_unlock();
  1058. return;
  1059. }
  1060. /* extract session parameters from addba request frame */
  1061. dialog_token = mgmt->u.action.u.addba_req.dialog_token;
  1062. timeout = le16_to_cpu(mgmt->u.action.u.addba_req.timeout);
  1063. start_seq_num =
  1064. le16_to_cpu(mgmt->u.action.u.addba_req.start_seq_num) >> 4;
  1065. capab = le16_to_cpu(mgmt->u.action.u.addba_req.capab);
  1066. ba_policy = (capab & IEEE80211_ADDBA_PARAM_POLICY_MASK) >> 1;
  1067. tid = (capab & IEEE80211_ADDBA_PARAM_TID_MASK) >> 2;
  1068. buf_size = (capab & IEEE80211_ADDBA_PARAM_BUF_SIZE_MASK) >> 6;
  1069. status = WLAN_STATUS_REQUEST_DECLINED;
  1070. /* sanity check for incoming parameters:
  1071. * check if configuration can support the BA policy
  1072. * and if buffer size does not exceeds max value */
  1073. if (((ba_policy != 1)
  1074. && (!(conf->ht_conf.cap & IEEE80211_HT_CAP_DELAY_BA)))
  1075. || (buf_size > IEEE80211_MAX_AMPDU_BUF)) {
  1076. status = WLAN_STATUS_INVALID_QOS_PARAM;
  1077. #ifdef CONFIG_MAC80211_HT_DEBUG
  1078. if (net_ratelimit())
  1079. printk(KERN_DEBUG "AddBA Req with bad params from "
  1080. "%s on tid %u. policy %d, buffer size %d\n",
  1081. print_mac(mac, mgmt->sa), tid, ba_policy,
  1082. buf_size);
  1083. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1084. goto end_no_lock;
  1085. }
  1086. /* determine default buffer size */
  1087. if (buf_size == 0) {
  1088. struct ieee80211_supported_band *sband;
  1089. sband = local->hw.wiphy->bands[conf->channel->band];
  1090. buf_size = IEEE80211_MIN_AMPDU_BUF;
  1091. buf_size = buf_size << sband->ht_info.ampdu_factor;
  1092. }
  1093. /* examine state machine */
  1094. spin_lock_bh(&sta->ampdu_mlme.ampdu_rx);
  1095. if (sta->ampdu_mlme.tid_state_rx[tid] != HT_AGG_STATE_IDLE) {
  1096. #ifdef CONFIG_MAC80211_HT_DEBUG
  1097. if (net_ratelimit())
  1098. printk(KERN_DEBUG "unexpected AddBA Req from "
  1099. "%s on tid %u\n",
  1100. print_mac(mac, mgmt->sa), tid);
  1101. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1102. goto end;
  1103. }
  1104. /* prepare A-MPDU MLME for Rx aggregation */
  1105. sta->ampdu_mlme.tid_rx[tid] =
  1106. kmalloc(sizeof(struct tid_ampdu_rx), GFP_ATOMIC);
  1107. if (!sta->ampdu_mlme.tid_rx[tid]) {
  1108. if (net_ratelimit())
  1109. printk(KERN_ERR "allocate rx mlme to tid %d failed\n",
  1110. tid);
  1111. goto end;
  1112. }
  1113. /* rx timer */
  1114. sta->ampdu_mlme.tid_rx[tid]->session_timer.function =
  1115. sta_rx_agg_session_timer_expired;
  1116. sta->ampdu_mlme.tid_rx[tid]->session_timer.data =
  1117. (unsigned long)&sta->timer_to_tid[tid];
  1118. init_timer(&sta->ampdu_mlme.tid_rx[tid]->session_timer);
  1119. tid_agg_rx = sta->ampdu_mlme.tid_rx[tid];
  1120. /* prepare reordering buffer */
  1121. tid_agg_rx->reorder_buf =
  1122. kmalloc(buf_size * sizeof(struct sk_buf *), GFP_ATOMIC);
  1123. if (!tid_agg_rx->reorder_buf) {
  1124. if (net_ratelimit())
  1125. printk(KERN_ERR "can not allocate reordering buffer "
  1126. "to tid %d\n", tid);
  1127. kfree(sta->ampdu_mlme.tid_rx[tid]);
  1128. goto end;
  1129. }
  1130. memset(tid_agg_rx->reorder_buf, 0,
  1131. buf_size * sizeof(struct sk_buf *));
  1132. if (local->ops->ampdu_action)
  1133. ret = local->ops->ampdu_action(hw, IEEE80211_AMPDU_RX_START,
  1134. sta->addr, tid, &start_seq_num);
  1135. #ifdef CONFIG_MAC80211_HT_DEBUG
  1136. printk(KERN_DEBUG "Rx A-MPDU request on tid %d result %d\n", tid, ret);
  1137. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1138. if (ret) {
  1139. kfree(tid_agg_rx->reorder_buf);
  1140. kfree(tid_agg_rx);
  1141. sta->ampdu_mlme.tid_rx[tid] = NULL;
  1142. goto end;
  1143. }
  1144. /* change state and send addba resp */
  1145. sta->ampdu_mlme.tid_state_rx[tid] = HT_AGG_STATE_OPERATIONAL;
  1146. tid_agg_rx->dialog_token = dialog_token;
  1147. tid_agg_rx->ssn = start_seq_num;
  1148. tid_agg_rx->head_seq_num = start_seq_num;
  1149. tid_agg_rx->buf_size = buf_size;
  1150. tid_agg_rx->timeout = timeout;
  1151. tid_agg_rx->stored_mpdu_num = 0;
  1152. status = WLAN_STATUS_SUCCESS;
  1153. end:
  1154. spin_unlock_bh(&sta->ampdu_mlme.ampdu_rx);
  1155. end_no_lock:
  1156. ieee80211_send_addba_resp(sta->sdata->dev, sta->addr, tid,
  1157. dialog_token, status, 1, buf_size, timeout);
  1158. rcu_read_unlock();
  1159. }
  1160. static void ieee80211_sta_process_addba_resp(struct net_device *dev,
  1161. struct ieee80211_mgmt *mgmt,
  1162. size_t len)
  1163. {
  1164. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1165. struct ieee80211_hw *hw = &local->hw;
  1166. struct sta_info *sta;
  1167. u16 capab;
  1168. u16 tid;
  1169. u8 *state;
  1170. rcu_read_lock();
  1171. sta = sta_info_get(local, mgmt->sa);
  1172. if (!sta) {
  1173. rcu_read_unlock();
  1174. return;
  1175. }
  1176. capab = le16_to_cpu(mgmt->u.action.u.addba_resp.capab);
  1177. tid = (capab & IEEE80211_ADDBA_PARAM_TID_MASK) >> 2;
  1178. state = &sta->ampdu_mlme.tid_state_tx[tid];
  1179. spin_lock_bh(&sta->ampdu_mlme.ampdu_tx);
  1180. if (!(*state & HT_ADDBA_REQUESTED_MSK)) {
  1181. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1182. printk(KERN_DEBUG "state not HT_ADDBA_REQUESTED_MSK:"
  1183. "%d\n", *state);
  1184. goto addba_resp_exit;
  1185. }
  1186. if (mgmt->u.action.u.addba_resp.dialog_token !=
  1187. sta->ampdu_mlme.tid_tx[tid]->dialog_token) {
  1188. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1189. #ifdef CONFIG_MAC80211_HT_DEBUG
  1190. printk(KERN_DEBUG "wrong addBA response token, tid %d\n", tid);
  1191. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1192. goto addba_resp_exit;
  1193. }
  1194. del_timer_sync(&sta->ampdu_mlme.tid_tx[tid]->addba_resp_timer);
  1195. #ifdef CONFIG_MAC80211_HT_DEBUG
  1196. printk(KERN_DEBUG "switched off addBA timer for tid %d \n", tid);
  1197. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1198. if (le16_to_cpu(mgmt->u.action.u.addba_resp.status)
  1199. == WLAN_STATUS_SUCCESS) {
  1200. if (*state & HT_ADDBA_RECEIVED_MSK)
  1201. printk(KERN_DEBUG "double addBA response\n");
  1202. *state |= HT_ADDBA_RECEIVED_MSK;
  1203. sta->ampdu_mlme.addba_req_num[tid] = 0;
  1204. if (*state == HT_AGG_STATE_OPERATIONAL) {
  1205. printk(KERN_DEBUG "Aggregation on for tid %d \n", tid);
  1206. ieee80211_wake_queue(hw, sta->tid_to_tx_q[tid]);
  1207. }
  1208. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1209. printk(KERN_DEBUG "recipient accepted agg: tid %d \n", tid);
  1210. } else {
  1211. printk(KERN_DEBUG "recipient rejected agg: tid %d \n", tid);
  1212. sta->ampdu_mlme.addba_req_num[tid]++;
  1213. /* this will allow the state check in stop_BA_session */
  1214. *state = HT_AGG_STATE_OPERATIONAL;
  1215. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1216. ieee80211_stop_tx_ba_session(hw, sta->addr, tid,
  1217. WLAN_BACK_INITIATOR);
  1218. }
  1219. addba_resp_exit:
  1220. rcu_read_unlock();
  1221. }
  1222. void ieee80211_send_delba(struct net_device *dev, const u8 *da, u16 tid,
  1223. u16 initiator, u16 reason_code)
  1224. {
  1225. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1226. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1227. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  1228. struct sk_buff *skb;
  1229. struct ieee80211_mgmt *mgmt;
  1230. u16 params;
  1231. skb = dev_alloc_skb(sizeof(*mgmt) + local->hw.extra_tx_headroom + 1 +
  1232. sizeof(mgmt->u.action.u.delba));
  1233. if (!skb) {
  1234. printk(KERN_ERR "%s: failed to allocate buffer "
  1235. "for delba frame\n", dev->name);
  1236. return;
  1237. }
  1238. skb_reserve(skb, local->hw.extra_tx_headroom);
  1239. mgmt = (struct ieee80211_mgmt *) skb_put(skb, 24);
  1240. memset(mgmt, 0, 24);
  1241. memcpy(mgmt->da, da, ETH_ALEN);
  1242. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  1243. if (sdata->vif.type == IEEE80211_IF_TYPE_AP)
  1244. memcpy(mgmt->bssid, dev->dev_addr, ETH_ALEN);
  1245. else
  1246. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  1247. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  1248. IEEE80211_STYPE_ACTION);
  1249. skb_put(skb, 1 + sizeof(mgmt->u.action.u.delba));
  1250. mgmt->u.action.category = WLAN_CATEGORY_BACK;
  1251. mgmt->u.action.u.delba.action_code = WLAN_ACTION_DELBA;
  1252. params = (u16)(initiator << 11); /* bit 11 initiator */
  1253. params |= (u16)(tid << 12); /* bit 15:12 TID number */
  1254. mgmt->u.action.u.delba.params = cpu_to_le16(params);
  1255. mgmt->u.action.u.delba.reason_code = cpu_to_le16(reason_code);
  1256. ieee80211_sta_tx(dev, skb, 0);
  1257. }
  1258. void ieee80211_sta_stop_rx_ba_session(struct net_device *dev, u8 *ra, u16 tid,
  1259. u16 initiator, u16 reason)
  1260. {
  1261. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1262. struct ieee80211_hw *hw = &local->hw;
  1263. struct sta_info *sta;
  1264. int ret, i;
  1265. DECLARE_MAC_BUF(mac);
  1266. rcu_read_lock();
  1267. sta = sta_info_get(local, ra);
  1268. if (!sta) {
  1269. rcu_read_unlock();
  1270. return;
  1271. }
  1272. /* check if TID is in operational state */
  1273. spin_lock_bh(&sta->ampdu_mlme.ampdu_rx);
  1274. if (sta->ampdu_mlme.tid_state_rx[tid]
  1275. != HT_AGG_STATE_OPERATIONAL) {
  1276. spin_unlock_bh(&sta->ampdu_mlme.ampdu_rx);
  1277. rcu_read_unlock();
  1278. return;
  1279. }
  1280. sta->ampdu_mlme.tid_state_rx[tid] =
  1281. HT_AGG_STATE_REQ_STOP_BA_MSK |
  1282. (initiator << HT_AGG_STATE_INITIATOR_SHIFT);
  1283. spin_unlock_bh(&sta->ampdu_mlme.ampdu_rx);
  1284. /* stop HW Rx aggregation. ampdu_action existence
  1285. * already verified in session init so we add the BUG_ON */
  1286. BUG_ON(!local->ops->ampdu_action);
  1287. #ifdef CONFIG_MAC80211_HT_DEBUG
  1288. printk(KERN_DEBUG "Rx BA session stop requested for %s tid %u\n",
  1289. print_mac(mac, ra), tid);
  1290. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1291. ret = local->ops->ampdu_action(hw, IEEE80211_AMPDU_RX_STOP,
  1292. ra, tid, NULL);
  1293. if (ret)
  1294. printk(KERN_DEBUG "HW problem - can not stop rx "
  1295. "aggergation for tid %d\n", tid);
  1296. /* shutdown timer has not expired */
  1297. if (initiator != WLAN_BACK_TIMER)
  1298. del_timer_sync(&sta->ampdu_mlme.tid_rx[tid]->session_timer);
  1299. /* check if this is a self generated aggregation halt */
  1300. if (initiator == WLAN_BACK_RECIPIENT || initiator == WLAN_BACK_TIMER)
  1301. ieee80211_send_delba(dev, ra, tid, 0, reason);
  1302. /* free the reordering buffer */
  1303. for (i = 0; i < sta->ampdu_mlme.tid_rx[tid]->buf_size; i++) {
  1304. if (sta->ampdu_mlme.tid_rx[tid]->reorder_buf[i]) {
  1305. /* release the reordered frames */
  1306. dev_kfree_skb(sta->ampdu_mlme.tid_rx[tid]->reorder_buf[i]);
  1307. sta->ampdu_mlme.tid_rx[tid]->stored_mpdu_num--;
  1308. sta->ampdu_mlme.tid_rx[tid]->reorder_buf[i] = NULL;
  1309. }
  1310. }
  1311. /* free resources */
  1312. kfree(sta->ampdu_mlme.tid_rx[tid]->reorder_buf);
  1313. kfree(sta->ampdu_mlme.tid_rx[tid]);
  1314. sta->ampdu_mlme.tid_rx[tid] = NULL;
  1315. sta->ampdu_mlme.tid_state_rx[tid] = HT_AGG_STATE_IDLE;
  1316. rcu_read_unlock();
  1317. }
  1318. static void ieee80211_sta_process_delba(struct net_device *dev,
  1319. struct ieee80211_mgmt *mgmt, size_t len)
  1320. {
  1321. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1322. struct sta_info *sta;
  1323. u16 tid, params;
  1324. u16 initiator;
  1325. DECLARE_MAC_BUF(mac);
  1326. rcu_read_lock();
  1327. sta = sta_info_get(local, mgmt->sa);
  1328. if (!sta) {
  1329. rcu_read_unlock();
  1330. return;
  1331. }
  1332. params = le16_to_cpu(mgmt->u.action.u.delba.params);
  1333. tid = (params & IEEE80211_DELBA_PARAM_TID_MASK) >> 12;
  1334. initiator = (params & IEEE80211_DELBA_PARAM_INITIATOR_MASK) >> 11;
  1335. #ifdef CONFIG_MAC80211_HT_DEBUG
  1336. if (net_ratelimit())
  1337. printk(KERN_DEBUG "delba from %s (%s) tid %d reason code %d\n",
  1338. print_mac(mac, mgmt->sa),
  1339. initiator ? "initiator" : "recipient", tid,
  1340. mgmt->u.action.u.delba.reason_code);
  1341. #endif /* CONFIG_MAC80211_HT_DEBUG */
  1342. if (initiator == WLAN_BACK_INITIATOR)
  1343. ieee80211_sta_stop_rx_ba_session(dev, sta->addr, tid,
  1344. WLAN_BACK_INITIATOR, 0);
  1345. else { /* WLAN_BACK_RECIPIENT */
  1346. spin_lock_bh(&sta->ampdu_mlme.ampdu_tx);
  1347. sta->ampdu_mlme.tid_state_tx[tid] =
  1348. HT_AGG_STATE_OPERATIONAL;
  1349. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1350. ieee80211_stop_tx_ba_session(&local->hw, sta->addr, tid,
  1351. WLAN_BACK_RECIPIENT);
  1352. }
  1353. rcu_read_unlock();
  1354. }
  1355. /*
  1356. * After sending add Block Ack request we activated a timer until
  1357. * add Block Ack response will arrive from the recipient.
  1358. * If this timer expires sta_addba_resp_timer_expired will be executed.
  1359. */
  1360. void sta_addba_resp_timer_expired(unsigned long data)
  1361. {
  1362. /* not an elegant detour, but there is no choice as the timer passes
  1363. * only one argument, and both sta_info and TID are needed, so init
  1364. * flow in sta_info_create gives the TID as data, while the timer_to_id
  1365. * array gives the sta through container_of */
  1366. u16 tid = *(int *)data;
  1367. struct sta_info *temp_sta = container_of((void *)data,
  1368. struct sta_info, timer_to_tid[tid]);
  1369. struct ieee80211_local *local = temp_sta->local;
  1370. struct ieee80211_hw *hw = &local->hw;
  1371. struct sta_info *sta;
  1372. u8 *state;
  1373. rcu_read_lock();
  1374. sta = sta_info_get(local, temp_sta->addr);
  1375. if (!sta) {
  1376. rcu_read_unlock();
  1377. return;
  1378. }
  1379. state = &sta->ampdu_mlme.tid_state_tx[tid];
  1380. /* check if the TID waits for addBA response */
  1381. spin_lock_bh(&sta->ampdu_mlme.ampdu_tx);
  1382. if (!(*state & HT_ADDBA_REQUESTED_MSK)) {
  1383. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1384. *state = HT_AGG_STATE_IDLE;
  1385. printk(KERN_DEBUG "timer expired on tid %d but we are not "
  1386. "expecting addBA response there", tid);
  1387. goto timer_expired_exit;
  1388. }
  1389. printk(KERN_DEBUG "addBA response timer expired on tid %d\n", tid);
  1390. /* go through the state check in stop_BA_session */
  1391. *state = HT_AGG_STATE_OPERATIONAL;
  1392. spin_unlock_bh(&sta->ampdu_mlme.ampdu_tx);
  1393. ieee80211_stop_tx_ba_session(hw, temp_sta->addr, tid,
  1394. WLAN_BACK_INITIATOR);
  1395. timer_expired_exit:
  1396. rcu_read_unlock();
  1397. }
  1398. /*
  1399. * After accepting the AddBA Request we activated a timer,
  1400. * resetting it after each frame that arrives from the originator.
  1401. * if this timer expires ieee80211_sta_stop_rx_ba_session will be executed.
  1402. */
  1403. void sta_rx_agg_session_timer_expired(unsigned long data)
  1404. {
  1405. /* not an elegant detour, but there is no choice as the timer passes
  1406. * only one argument, and verious sta_info are needed here, so init
  1407. * flow in sta_info_create gives the TID as data, while the timer_to_id
  1408. * array gives the sta through container_of */
  1409. u8 *ptid = (u8 *)data;
  1410. u8 *timer_to_id = ptid - *ptid;
  1411. struct sta_info *sta = container_of(timer_to_id, struct sta_info,
  1412. timer_to_tid[0]);
  1413. printk(KERN_DEBUG "rx session timer expired on tid %d\n", (u16)*ptid);
  1414. ieee80211_sta_stop_rx_ba_session(sta->sdata->dev, sta->addr,
  1415. (u16)*ptid, WLAN_BACK_TIMER,
  1416. WLAN_REASON_QSTA_TIMEOUT);
  1417. }
  1418. void ieee80211_sta_tear_down_BA_sessions(struct net_device *dev, u8 *addr)
  1419. {
  1420. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1421. int i;
  1422. for (i = 0; i < STA_TID_NUM; i++) {
  1423. ieee80211_stop_tx_ba_session(&local->hw, addr, i,
  1424. WLAN_BACK_INITIATOR);
  1425. ieee80211_sta_stop_rx_ba_session(dev, addr, i,
  1426. WLAN_BACK_RECIPIENT,
  1427. WLAN_REASON_QSTA_LEAVE_QBSS);
  1428. }
  1429. }
  1430. static void ieee80211_rx_mgmt_auth(struct net_device *dev,
  1431. struct ieee80211_if_sta *ifsta,
  1432. struct ieee80211_mgmt *mgmt,
  1433. size_t len)
  1434. {
  1435. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1436. u16 auth_alg, auth_transaction, status_code;
  1437. DECLARE_MAC_BUF(mac);
  1438. if (ifsta->state != IEEE80211_AUTHENTICATE &&
  1439. sdata->vif.type != IEEE80211_IF_TYPE_IBSS) {
  1440. printk(KERN_DEBUG "%s: authentication frame received from "
  1441. "%s, but not in authenticate state - ignored\n",
  1442. dev->name, print_mac(mac, mgmt->sa));
  1443. return;
  1444. }
  1445. if (len < 24 + 6) {
  1446. printk(KERN_DEBUG "%s: too short (%zd) authentication frame "
  1447. "received from %s - ignored\n",
  1448. dev->name, len, print_mac(mac, mgmt->sa));
  1449. return;
  1450. }
  1451. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  1452. memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1453. printk(KERN_DEBUG "%s: authentication frame received from "
  1454. "unknown AP (SA=%s BSSID=%s) - "
  1455. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1456. print_mac(mac, mgmt->bssid));
  1457. return;
  1458. }
  1459. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  1460. memcmp(ifsta->bssid, mgmt->bssid, ETH_ALEN) != 0) {
  1461. printk(KERN_DEBUG "%s: authentication frame received from "
  1462. "unknown BSSID (SA=%s BSSID=%s) - "
  1463. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1464. print_mac(mac, mgmt->bssid));
  1465. return;
  1466. }
  1467. auth_alg = le16_to_cpu(mgmt->u.auth.auth_alg);
  1468. auth_transaction = le16_to_cpu(mgmt->u.auth.auth_transaction);
  1469. status_code = le16_to_cpu(mgmt->u.auth.status_code);
  1470. printk(KERN_DEBUG "%s: RX authentication from %s (alg=%d "
  1471. "transaction=%d status=%d)\n",
  1472. dev->name, print_mac(mac, mgmt->sa), auth_alg,
  1473. auth_transaction, status_code);
  1474. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
  1475. /* IEEE 802.11 standard does not require authentication in IBSS
  1476. * networks and most implementations do not seem to use it.
  1477. * However, try to reply to authentication attempts if someone
  1478. * has actually implemented this.
  1479. * TODO: Could implement shared key authentication. */
  1480. if (auth_alg != WLAN_AUTH_OPEN || auth_transaction != 1) {
  1481. printk(KERN_DEBUG "%s: unexpected IBSS authentication "
  1482. "frame (alg=%d transaction=%d)\n",
  1483. dev->name, auth_alg, auth_transaction);
  1484. return;
  1485. }
  1486. ieee80211_send_auth(dev, ifsta, 2, NULL, 0, 0);
  1487. }
  1488. if (auth_alg != ifsta->auth_alg ||
  1489. auth_transaction != ifsta->auth_transaction) {
  1490. printk(KERN_DEBUG "%s: unexpected authentication frame "
  1491. "(alg=%d transaction=%d)\n",
  1492. dev->name, auth_alg, auth_transaction);
  1493. return;
  1494. }
  1495. if (status_code != WLAN_STATUS_SUCCESS) {
  1496. printk(KERN_DEBUG "%s: AP denied authentication (auth_alg=%d "
  1497. "code=%d)\n", dev->name, ifsta->auth_alg, status_code);
  1498. if (status_code == WLAN_STATUS_NOT_SUPPORTED_AUTH_ALG) {
  1499. u8 algs[3];
  1500. const int num_algs = ARRAY_SIZE(algs);
  1501. int i, pos;
  1502. algs[0] = algs[1] = algs[2] = 0xff;
  1503. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_OPEN)
  1504. algs[0] = WLAN_AUTH_OPEN;
  1505. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_SHARED_KEY)
  1506. algs[1] = WLAN_AUTH_SHARED_KEY;
  1507. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_LEAP)
  1508. algs[2] = WLAN_AUTH_LEAP;
  1509. if (ifsta->auth_alg == WLAN_AUTH_OPEN)
  1510. pos = 0;
  1511. else if (ifsta->auth_alg == WLAN_AUTH_SHARED_KEY)
  1512. pos = 1;
  1513. else
  1514. pos = 2;
  1515. for (i = 0; i < num_algs; i++) {
  1516. pos++;
  1517. if (pos >= num_algs)
  1518. pos = 0;
  1519. if (algs[pos] == ifsta->auth_alg ||
  1520. algs[pos] == 0xff)
  1521. continue;
  1522. if (algs[pos] == WLAN_AUTH_SHARED_KEY &&
  1523. !ieee80211_sta_wep_configured(dev))
  1524. continue;
  1525. ifsta->auth_alg = algs[pos];
  1526. printk(KERN_DEBUG "%s: set auth_alg=%d for "
  1527. "next try\n",
  1528. dev->name, ifsta->auth_alg);
  1529. break;
  1530. }
  1531. }
  1532. return;
  1533. }
  1534. switch (ifsta->auth_alg) {
  1535. case WLAN_AUTH_OPEN:
  1536. case WLAN_AUTH_LEAP:
  1537. ieee80211_auth_completed(dev, ifsta);
  1538. break;
  1539. case WLAN_AUTH_SHARED_KEY:
  1540. if (ifsta->auth_transaction == 4)
  1541. ieee80211_auth_completed(dev, ifsta);
  1542. else
  1543. ieee80211_auth_challenge(dev, ifsta, mgmt, len);
  1544. break;
  1545. }
  1546. }
  1547. static void ieee80211_rx_mgmt_deauth(struct net_device *dev,
  1548. struct ieee80211_if_sta *ifsta,
  1549. struct ieee80211_mgmt *mgmt,
  1550. size_t len)
  1551. {
  1552. u16 reason_code;
  1553. DECLARE_MAC_BUF(mac);
  1554. if (len < 24 + 2) {
  1555. printk(KERN_DEBUG "%s: too short (%zd) deauthentication frame "
  1556. "received from %s - ignored\n",
  1557. dev->name, len, print_mac(mac, mgmt->sa));
  1558. return;
  1559. }
  1560. if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1561. printk(KERN_DEBUG "%s: deauthentication frame received from "
  1562. "unknown AP (SA=%s BSSID=%s) - "
  1563. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1564. print_mac(mac, mgmt->bssid));
  1565. return;
  1566. }
  1567. reason_code = le16_to_cpu(mgmt->u.deauth.reason_code);
  1568. printk(KERN_DEBUG "%s: RX deauthentication from %s"
  1569. " (reason=%d)\n",
  1570. dev->name, print_mac(mac, mgmt->sa), reason_code);
  1571. if (ifsta->flags & IEEE80211_STA_AUTHENTICATED) {
  1572. printk(KERN_DEBUG "%s: deauthenticated\n", dev->name);
  1573. }
  1574. if (ifsta->state == IEEE80211_AUTHENTICATE ||
  1575. ifsta->state == IEEE80211_ASSOCIATE ||
  1576. ifsta->state == IEEE80211_ASSOCIATED) {
  1577. ifsta->state = IEEE80211_AUTHENTICATE;
  1578. mod_timer(&ifsta->timer, jiffies +
  1579. IEEE80211_RETRY_AUTH_INTERVAL);
  1580. }
  1581. ieee80211_set_disassoc(dev, ifsta, 1);
  1582. ifsta->flags &= ~IEEE80211_STA_AUTHENTICATED;
  1583. }
  1584. static void ieee80211_rx_mgmt_disassoc(struct net_device *dev,
  1585. struct ieee80211_if_sta *ifsta,
  1586. struct ieee80211_mgmt *mgmt,
  1587. size_t len)
  1588. {
  1589. u16 reason_code;
  1590. DECLARE_MAC_BUF(mac);
  1591. if (len < 24 + 2) {
  1592. printk(KERN_DEBUG "%s: too short (%zd) disassociation frame "
  1593. "received from %s - ignored\n",
  1594. dev->name, len, print_mac(mac, mgmt->sa));
  1595. return;
  1596. }
  1597. if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1598. printk(KERN_DEBUG "%s: disassociation frame received from "
  1599. "unknown AP (SA=%s BSSID=%s) - "
  1600. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1601. print_mac(mac, mgmt->bssid));
  1602. return;
  1603. }
  1604. reason_code = le16_to_cpu(mgmt->u.disassoc.reason_code);
  1605. printk(KERN_DEBUG "%s: RX disassociation from %s"
  1606. " (reason=%d)\n",
  1607. dev->name, print_mac(mac, mgmt->sa), reason_code);
  1608. if (ifsta->flags & IEEE80211_STA_ASSOCIATED)
  1609. printk(KERN_DEBUG "%s: disassociated\n", dev->name);
  1610. if (ifsta->state == IEEE80211_ASSOCIATED) {
  1611. ifsta->state = IEEE80211_ASSOCIATE;
  1612. mod_timer(&ifsta->timer, jiffies +
  1613. IEEE80211_RETRY_AUTH_INTERVAL);
  1614. }
  1615. ieee80211_set_disassoc(dev, ifsta, 0);
  1616. }
  1617. static void ieee80211_rx_mgmt_assoc_resp(struct ieee80211_sub_if_data *sdata,
  1618. struct ieee80211_if_sta *ifsta,
  1619. struct ieee80211_mgmt *mgmt,
  1620. size_t len,
  1621. int reassoc)
  1622. {
  1623. struct ieee80211_local *local = sdata->local;
  1624. struct net_device *dev = sdata->dev;
  1625. struct ieee80211_supported_band *sband;
  1626. struct sta_info *sta;
  1627. u64 rates, basic_rates;
  1628. u16 capab_info, status_code, aid;
  1629. struct ieee802_11_elems elems;
  1630. struct ieee80211_bss_conf *bss_conf = &sdata->bss_conf;
  1631. u8 *pos;
  1632. int i, j;
  1633. DECLARE_MAC_BUF(mac);
  1634. bool have_higher_than_11mbit = false;
  1635. /* AssocResp and ReassocResp have identical structure, so process both
  1636. * of them in this function. */
  1637. if (ifsta->state != IEEE80211_ASSOCIATE) {
  1638. printk(KERN_DEBUG "%s: association frame received from "
  1639. "%s, but not in associate state - ignored\n",
  1640. dev->name, print_mac(mac, mgmt->sa));
  1641. return;
  1642. }
  1643. if (len < 24 + 6) {
  1644. printk(KERN_DEBUG "%s: too short (%zd) association frame "
  1645. "received from %s - ignored\n",
  1646. dev->name, len, print_mac(mac, mgmt->sa));
  1647. return;
  1648. }
  1649. if (memcmp(ifsta->bssid, mgmt->sa, ETH_ALEN) != 0) {
  1650. printk(KERN_DEBUG "%s: association frame received from "
  1651. "unknown AP (SA=%s BSSID=%s) - "
  1652. "ignored\n", dev->name, print_mac(mac, mgmt->sa),
  1653. print_mac(mac, mgmt->bssid));
  1654. return;
  1655. }
  1656. capab_info = le16_to_cpu(mgmt->u.assoc_resp.capab_info);
  1657. status_code = le16_to_cpu(mgmt->u.assoc_resp.status_code);
  1658. aid = le16_to_cpu(mgmt->u.assoc_resp.aid);
  1659. printk(KERN_DEBUG "%s: RX %sssocResp from %s (capab=0x%x "
  1660. "status=%d aid=%d)\n",
  1661. dev->name, reassoc ? "Rea" : "A", print_mac(mac, mgmt->sa),
  1662. capab_info, status_code, (u16)(aid & ~(BIT(15) | BIT(14))));
  1663. if (status_code != WLAN_STATUS_SUCCESS) {
  1664. printk(KERN_DEBUG "%s: AP denied association (code=%d)\n",
  1665. dev->name, status_code);
  1666. /* if this was a reassociation, ensure we try a "full"
  1667. * association next time. This works around some broken APs
  1668. * which do not correctly reject reassociation requests. */
  1669. ifsta->flags &= ~IEEE80211_STA_PREV_BSSID_SET;
  1670. return;
  1671. }
  1672. if ((aid & (BIT(15) | BIT(14))) != (BIT(15) | BIT(14)))
  1673. printk(KERN_DEBUG "%s: invalid aid value %d; bits 15:14 not "
  1674. "set\n", dev->name, aid);
  1675. aid &= ~(BIT(15) | BIT(14));
  1676. pos = mgmt->u.assoc_resp.variable;
  1677. ieee802_11_parse_elems(pos, len - (pos - (u8 *) mgmt), &elems);
  1678. if (!elems.supp_rates) {
  1679. printk(KERN_DEBUG "%s: no SuppRates element in AssocResp\n",
  1680. dev->name);
  1681. return;
  1682. }
  1683. printk(KERN_DEBUG "%s: associated\n", dev->name);
  1684. ifsta->aid = aid;
  1685. ifsta->ap_capab = capab_info;
  1686. kfree(ifsta->assocresp_ies);
  1687. ifsta->assocresp_ies_len = len - (pos - (u8 *) mgmt);
  1688. ifsta->assocresp_ies = kmalloc(ifsta->assocresp_ies_len, GFP_KERNEL);
  1689. if (ifsta->assocresp_ies)
  1690. memcpy(ifsta->assocresp_ies, pos, ifsta->assocresp_ies_len);
  1691. rcu_read_lock();
  1692. /* Add STA entry for the AP */
  1693. sta = sta_info_get(local, ifsta->bssid);
  1694. if (!sta) {
  1695. struct ieee80211_sta_bss *bss;
  1696. int err;
  1697. sta = sta_info_alloc(sdata, ifsta->bssid, GFP_ATOMIC);
  1698. if (!sta) {
  1699. printk(KERN_DEBUG "%s: failed to alloc STA entry for"
  1700. " the AP\n", dev->name);
  1701. rcu_read_unlock();
  1702. return;
  1703. }
  1704. bss = ieee80211_rx_bss_get(dev, ifsta->bssid,
  1705. local->hw.conf.channel->center_freq,
  1706. ifsta->ssid, ifsta->ssid_len);
  1707. if (bss) {
  1708. sta->last_rssi = bss->rssi;
  1709. sta->last_signal = bss->signal;
  1710. sta->last_noise = bss->noise;
  1711. ieee80211_rx_bss_put(dev, bss);
  1712. }
  1713. err = sta_info_insert(sta);
  1714. if (err) {
  1715. printk(KERN_DEBUG "%s: failed to insert STA entry for"
  1716. " the AP (error %d)\n", dev->name, err);
  1717. rcu_read_unlock();
  1718. return;
  1719. }
  1720. }
  1721. /*
  1722. * FIXME: Do we really need to update the sta_info's information here?
  1723. * We already know about the AP (we found it in our list) so it
  1724. * should already be filled with the right info, no?
  1725. * As is stands, all this is racy because typically we assume
  1726. * the information that is filled in here (except flags) doesn't
  1727. * change while a STA structure is alive. As such, it should move
  1728. * to between the sta_info_alloc() and sta_info_insert() above.
  1729. */
  1730. sta->flags |= WLAN_STA_AUTH | WLAN_STA_ASSOC | WLAN_STA_ASSOC_AP |
  1731. WLAN_STA_AUTHORIZED;
  1732. rates = 0;
  1733. basic_rates = 0;
  1734. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  1735. for (i = 0; i < elems.supp_rates_len; i++) {
  1736. int rate = (elems.supp_rates[i] & 0x7f) * 5;
  1737. if (rate > 110)
  1738. have_higher_than_11mbit = true;
  1739. for (j = 0; j < sband->n_bitrates; j++) {
  1740. if (sband->bitrates[j].bitrate == rate)
  1741. rates |= BIT(j);
  1742. if (elems.supp_rates[i] & 0x80)
  1743. basic_rates |= BIT(j);
  1744. }
  1745. }
  1746. for (i = 0; i < elems.ext_supp_rates_len; i++) {
  1747. int rate = (elems.ext_supp_rates[i] & 0x7f) * 5;
  1748. if (rate > 110)
  1749. have_higher_than_11mbit = true;
  1750. for (j = 0; j < sband->n_bitrates; j++) {
  1751. if (sband->bitrates[j].bitrate == rate)
  1752. rates |= BIT(j);
  1753. if (elems.ext_supp_rates[i] & 0x80)
  1754. basic_rates |= BIT(j);
  1755. }
  1756. }
  1757. sta->supp_rates[local->hw.conf.channel->band] = rates;
  1758. sdata->basic_rates = basic_rates;
  1759. /* cf. IEEE 802.11 9.2.12 */
  1760. if (local->hw.conf.channel->band == IEEE80211_BAND_2GHZ &&
  1761. have_higher_than_11mbit)
  1762. sdata->flags |= IEEE80211_SDATA_OPERATING_GMODE;
  1763. else
  1764. sdata->flags &= ~IEEE80211_SDATA_OPERATING_GMODE;
  1765. if (elems.ht_cap_elem && elems.ht_info_elem && elems.wmm_param) {
  1766. struct ieee80211_ht_bss_info bss_info;
  1767. ieee80211_ht_cap_ie_to_ht_info(
  1768. (struct ieee80211_ht_cap *)
  1769. elems.ht_cap_elem, &sta->ht_info);
  1770. ieee80211_ht_addt_info_ie_to_ht_bss_info(
  1771. (struct ieee80211_ht_addt_info *)
  1772. elems.ht_info_elem, &bss_info);
  1773. ieee80211_handle_ht(local, 1, &sta->ht_info, &bss_info);
  1774. }
  1775. rate_control_rate_init(sta, local);
  1776. if (elems.wmm_param && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
  1777. sta->flags |= WLAN_STA_WME;
  1778. rcu_read_unlock();
  1779. ieee80211_sta_wmm_params(dev, ifsta, elems.wmm_param,
  1780. elems.wmm_param_len);
  1781. } else
  1782. rcu_read_unlock();
  1783. /* set AID and assoc capability,
  1784. * ieee80211_set_associated() will tell the driver */
  1785. bss_conf->aid = aid;
  1786. bss_conf->assoc_capability = capab_info;
  1787. ieee80211_set_associated(dev, ifsta, 1);
  1788. ieee80211_associated(dev, ifsta);
  1789. }
  1790. /* Caller must hold local->sta_bss_lock */
  1791. static void __ieee80211_rx_bss_hash_add(struct net_device *dev,
  1792. struct ieee80211_sta_bss *bss)
  1793. {
  1794. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1795. u8 hash_idx;
  1796. if (bss_mesh_cfg(bss))
  1797. hash_idx = mesh_id_hash(bss_mesh_id(bss),
  1798. bss_mesh_id_len(bss));
  1799. else
  1800. hash_idx = STA_HASH(bss->bssid);
  1801. bss->hnext = local->sta_bss_hash[hash_idx];
  1802. local->sta_bss_hash[hash_idx] = bss;
  1803. }
  1804. /* Caller must hold local->sta_bss_lock */
  1805. static void __ieee80211_rx_bss_hash_del(struct net_device *dev,
  1806. struct ieee80211_sta_bss *bss)
  1807. {
  1808. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1809. struct ieee80211_sta_bss *b, *prev = NULL;
  1810. b = local->sta_bss_hash[STA_HASH(bss->bssid)];
  1811. while (b) {
  1812. if (b == bss) {
  1813. if (!prev)
  1814. local->sta_bss_hash[STA_HASH(bss->bssid)] =
  1815. bss->hnext;
  1816. else
  1817. prev->hnext = bss->hnext;
  1818. break;
  1819. }
  1820. prev = b;
  1821. b = b->hnext;
  1822. }
  1823. }
  1824. static struct ieee80211_sta_bss *
  1825. ieee80211_rx_bss_add(struct net_device *dev, u8 *bssid, int freq,
  1826. u8 *ssid, u8 ssid_len)
  1827. {
  1828. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1829. struct ieee80211_sta_bss *bss;
  1830. bss = kzalloc(sizeof(*bss), GFP_ATOMIC);
  1831. if (!bss)
  1832. return NULL;
  1833. atomic_inc(&bss->users);
  1834. atomic_inc(&bss->users);
  1835. memcpy(bss->bssid, bssid, ETH_ALEN);
  1836. bss->freq = freq;
  1837. if (ssid && ssid_len <= IEEE80211_MAX_SSID_LEN) {
  1838. memcpy(bss->ssid, ssid, ssid_len);
  1839. bss->ssid_len = ssid_len;
  1840. }
  1841. spin_lock_bh(&local->sta_bss_lock);
  1842. /* TODO: order by RSSI? */
  1843. list_add_tail(&bss->list, &local->sta_bss_list);
  1844. __ieee80211_rx_bss_hash_add(dev, bss);
  1845. spin_unlock_bh(&local->sta_bss_lock);
  1846. return bss;
  1847. }
  1848. static struct ieee80211_sta_bss *
  1849. ieee80211_rx_bss_get(struct net_device *dev, u8 *bssid, int freq,
  1850. u8 *ssid, u8 ssid_len)
  1851. {
  1852. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1853. struct ieee80211_sta_bss *bss;
  1854. spin_lock_bh(&local->sta_bss_lock);
  1855. bss = local->sta_bss_hash[STA_HASH(bssid)];
  1856. while (bss) {
  1857. if (!bss_mesh_cfg(bss) &&
  1858. !memcmp(bss->bssid, bssid, ETH_ALEN) &&
  1859. bss->freq == freq &&
  1860. bss->ssid_len == ssid_len &&
  1861. (ssid_len == 0 || !memcmp(bss->ssid, ssid, ssid_len))) {
  1862. atomic_inc(&bss->users);
  1863. break;
  1864. }
  1865. bss = bss->hnext;
  1866. }
  1867. spin_unlock_bh(&local->sta_bss_lock);
  1868. return bss;
  1869. }
  1870. #ifdef CONFIG_MAC80211_MESH
  1871. static struct ieee80211_sta_bss *
  1872. ieee80211_rx_mesh_bss_get(struct net_device *dev, u8 *mesh_id, int mesh_id_len,
  1873. u8 *mesh_cfg, int freq)
  1874. {
  1875. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1876. struct ieee80211_sta_bss *bss;
  1877. spin_lock_bh(&local->sta_bss_lock);
  1878. bss = local->sta_bss_hash[mesh_id_hash(mesh_id, mesh_id_len)];
  1879. while (bss) {
  1880. if (bss_mesh_cfg(bss) &&
  1881. !memcmp(bss_mesh_cfg(bss), mesh_cfg, MESH_CFG_CMP_LEN) &&
  1882. bss->freq == freq &&
  1883. mesh_id_len == bss->mesh_id_len &&
  1884. (mesh_id_len == 0 || !memcmp(bss->mesh_id, mesh_id,
  1885. mesh_id_len))) {
  1886. atomic_inc(&bss->users);
  1887. break;
  1888. }
  1889. bss = bss->hnext;
  1890. }
  1891. spin_unlock_bh(&local->sta_bss_lock);
  1892. return bss;
  1893. }
  1894. static struct ieee80211_sta_bss *
  1895. ieee80211_rx_mesh_bss_add(struct net_device *dev, u8 *mesh_id, int mesh_id_len,
  1896. u8 *mesh_cfg, int mesh_config_len, int freq)
  1897. {
  1898. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1899. struct ieee80211_sta_bss *bss;
  1900. if (mesh_config_len != MESH_CFG_LEN)
  1901. return NULL;
  1902. bss = kzalloc(sizeof(*bss), GFP_ATOMIC);
  1903. if (!bss)
  1904. return NULL;
  1905. bss->mesh_cfg = kmalloc(MESH_CFG_CMP_LEN, GFP_ATOMIC);
  1906. if (!bss->mesh_cfg) {
  1907. kfree(bss);
  1908. return NULL;
  1909. }
  1910. if (mesh_id_len && mesh_id_len <= IEEE80211_MAX_MESH_ID_LEN) {
  1911. bss->mesh_id = kmalloc(mesh_id_len, GFP_ATOMIC);
  1912. if (!bss->mesh_id) {
  1913. kfree(bss->mesh_cfg);
  1914. kfree(bss);
  1915. return NULL;
  1916. }
  1917. memcpy(bss->mesh_id, mesh_id, mesh_id_len);
  1918. }
  1919. atomic_inc(&bss->users);
  1920. atomic_inc(&bss->users);
  1921. memcpy(bss->mesh_cfg, mesh_cfg, MESH_CFG_CMP_LEN);
  1922. bss->mesh_id_len = mesh_id_len;
  1923. bss->freq = freq;
  1924. spin_lock_bh(&local->sta_bss_lock);
  1925. /* TODO: order by RSSI? */
  1926. list_add_tail(&bss->list, &local->sta_bss_list);
  1927. __ieee80211_rx_bss_hash_add(dev, bss);
  1928. spin_unlock_bh(&local->sta_bss_lock);
  1929. return bss;
  1930. }
  1931. #endif
  1932. static void ieee80211_rx_bss_free(struct ieee80211_sta_bss *bss)
  1933. {
  1934. kfree(bss->wpa_ie);
  1935. kfree(bss->rsn_ie);
  1936. kfree(bss->wmm_ie);
  1937. kfree(bss->ht_ie);
  1938. kfree(bss_mesh_id(bss));
  1939. kfree(bss_mesh_cfg(bss));
  1940. kfree(bss);
  1941. }
  1942. static void ieee80211_rx_bss_put(struct net_device *dev,
  1943. struct ieee80211_sta_bss *bss)
  1944. {
  1945. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1946. local_bh_disable();
  1947. if (!atomic_dec_and_lock(&bss->users, &local->sta_bss_lock)) {
  1948. local_bh_enable();
  1949. return;
  1950. }
  1951. __ieee80211_rx_bss_hash_del(dev, bss);
  1952. list_del(&bss->list);
  1953. spin_unlock_bh(&local->sta_bss_lock);
  1954. ieee80211_rx_bss_free(bss);
  1955. }
  1956. void ieee80211_rx_bss_list_init(struct net_device *dev)
  1957. {
  1958. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1959. spin_lock_init(&local->sta_bss_lock);
  1960. INIT_LIST_HEAD(&local->sta_bss_list);
  1961. }
  1962. void ieee80211_rx_bss_list_deinit(struct net_device *dev)
  1963. {
  1964. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1965. struct ieee80211_sta_bss *bss, *tmp;
  1966. list_for_each_entry_safe(bss, tmp, &local->sta_bss_list, list)
  1967. ieee80211_rx_bss_put(dev, bss);
  1968. }
  1969. static int ieee80211_sta_join_ibss(struct net_device *dev,
  1970. struct ieee80211_if_sta *ifsta,
  1971. struct ieee80211_sta_bss *bss)
  1972. {
  1973. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  1974. int res, rates, i, j;
  1975. struct sk_buff *skb;
  1976. struct ieee80211_mgmt *mgmt;
  1977. struct ieee80211_tx_control control;
  1978. struct rate_selection ratesel;
  1979. u8 *pos;
  1980. struct ieee80211_sub_if_data *sdata;
  1981. struct ieee80211_supported_band *sband;
  1982. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  1983. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  1984. /* Remove possible STA entries from other IBSS networks. */
  1985. sta_info_flush_delayed(sdata);
  1986. if (local->ops->reset_tsf) {
  1987. /* Reset own TSF to allow time synchronization work. */
  1988. local->ops->reset_tsf(local_to_hw(local));
  1989. }
  1990. memcpy(ifsta->bssid, bss->bssid, ETH_ALEN);
  1991. res = ieee80211_if_config(dev);
  1992. if (res)
  1993. return res;
  1994. local->hw.conf.beacon_int = bss->beacon_int >= 10 ? bss->beacon_int : 10;
  1995. sdata->drop_unencrypted = bss->capability &
  1996. WLAN_CAPABILITY_PRIVACY ? 1 : 0;
  1997. res = ieee80211_set_freq(local, bss->freq);
  1998. if (local->oper_channel->flags & IEEE80211_CHAN_NO_IBSS) {
  1999. printk(KERN_DEBUG "%s: IBSS not allowed on frequency "
  2000. "%d MHz\n", dev->name, local->oper_channel->center_freq);
  2001. return -1;
  2002. }
  2003. /* Set beacon template */
  2004. skb = dev_alloc_skb(local->hw.extra_tx_headroom + 400);
  2005. do {
  2006. if (!skb)
  2007. break;
  2008. skb_reserve(skb, local->hw.extra_tx_headroom);
  2009. mgmt = (struct ieee80211_mgmt *)
  2010. skb_put(skb, 24 + sizeof(mgmt->u.beacon));
  2011. memset(mgmt, 0, 24 + sizeof(mgmt->u.beacon));
  2012. mgmt->frame_control = IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  2013. IEEE80211_STYPE_BEACON);
  2014. memset(mgmt->da, 0xff, ETH_ALEN);
  2015. memcpy(mgmt->sa, dev->dev_addr, ETH_ALEN);
  2016. memcpy(mgmt->bssid, ifsta->bssid, ETH_ALEN);
  2017. mgmt->u.beacon.beacon_int =
  2018. cpu_to_le16(local->hw.conf.beacon_int);
  2019. mgmt->u.beacon.capab_info = cpu_to_le16(bss->capability);
  2020. pos = skb_put(skb, 2 + ifsta->ssid_len);
  2021. *pos++ = WLAN_EID_SSID;
  2022. *pos++ = ifsta->ssid_len;
  2023. memcpy(pos, ifsta->ssid, ifsta->ssid_len);
  2024. rates = bss->supp_rates_len;
  2025. if (rates > 8)
  2026. rates = 8;
  2027. pos = skb_put(skb, 2 + rates);
  2028. *pos++ = WLAN_EID_SUPP_RATES;
  2029. *pos++ = rates;
  2030. memcpy(pos, bss->supp_rates, rates);
  2031. if (bss->band == IEEE80211_BAND_2GHZ) {
  2032. pos = skb_put(skb, 2 + 1);
  2033. *pos++ = WLAN_EID_DS_PARAMS;
  2034. *pos++ = 1;
  2035. *pos++ = ieee80211_frequency_to_channel(bss->freq);
  2036. }
  2037. pos = skb_put(skb, 2 + 2);
  2038. *pos++ = WLAN_EID_IBSS_PARAMS;
  2039. *pos++ = 2;
  2040. /* FIX: set ATIM window based on scan results */
  2041. *pos++ = 0;
  2042. *pos++ = 0;
  2043. if (bss->supp_rates_len > 8) {
  2044. rates = bss->supp_rates_len - 8;
  2045. pos = skb_put(skb, 2 + rates);
  2046. *pos++ = WLAN_EID_EXT_SUPP_RATES;
  2047. *pos++ = rates;
  2048. memcpy(pos, &bss->supp_rates[8], rates);
  2049. }
  2050. memset(&control, 0, sizeof(control));
  2051. rate_control_get_rate(dev, sband, skb, &ratesel);
  2052. if (!ratesel.rate) {
  2053. printk(KERN_DEBUG "%s: Failed to determine TX rate "
  2054. "for IBSS beacon\n", dev->name);
  2055. break;
  2056. }
  2057. control.vif = &sdata->vif;
  2058. control.tx_rate = ratesel.rate;
  2059. if (sdata->bss_conf.use_short_preamble &&
  2060. ratesel.rate->flags & IEEE80211_RATE_SHORT_PREAMBLE)
  2061. control.flags |= IEEE80211_TXCTL_SHORT_PREAMBLE;
  2062. control.antenna_sel_tx = local->hw.conf.antenna_sel_tx;
  2063. control.flags |= IEEE80211_TXCTL_NO_ACK;
  2064. control.retry_limit = 1;
  2065. ifsta->probe_resp = skb_copy(skb, GFP_ATOMIC);
  2066. if (ifsta->probe_resp) {
  2067. mgmt = (struct ieee80211_mgmt *)
  2068. ifsta->probe_resp->data;
  2069. mgmt->frame_control =
  2070. IEEE80211_FC(IEEE80211_FTYPE_MGMT,
  2071. IEEE80211_STYPE_PROBE_RESP);
  2072. } else {
  2073. printk(KERN_DEBUG "%s: Could not allocate ProbeResp "
  2074. "template for IBSS\n", dev->name);
  2075. }
  2076. if (local->ops->beacon_update &&
  2077. local->ops->beacon_update(local_to_hw(local),
  2078. skb, &control) == 0) {
  2079. printk(KERN_DEBUG "%s: Configured IBSS beacon "
  2080. "template\n", dev->name);
  2081. skb = NULL;
  2082. }
  2083. rates = 0;
  2084. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  2085. for (i = 0; i < bss->supp_rates_len; i++) {
  2086. int bitrate = (bss->supp_rates[i] & 0x7f) * 5;
  2087. for (j = 0; j < sband->n_bitrates; j++)
  2088. if (sband->bitrates[j].bitrate == bitrate)
  2089. rates |= BIT(j);
  2090. }
  2091. ifsta->supp_rates_bits[local->hw.conf.channel->band] = rates;
  2092. ieee80211_sta_def_wmm_params(dev, bss, 1);
  2093. } while (0);
  2094. if (skb) {
  2095. printk(KERN_DEBUG "%s: Failed to configure IBSS beacon "
  2096. "template\n", dev->name);
  2097. dev_kfree_skb(skb);
  2098. }
  2099. ifsta->state = IEEE80211_IBSS_JOINED;
  2100. mod_timer(&ifsta->timer, jiffies + IEEE80211_IBSS_MERGE_INTERVAL);
  2101. ieee80211_rx_bss_put(dev, bss);
  2102. return res;
  2103. }
  2104. u64 ieee80211_sta_get_rates(struct ieee80211_local *local,
  2105. struct ieee802_11_elems *elems,
  2106. enum ieee80211_band band)
  2107. {
  2108. struct ieee80211_supported_band *sband;
  2109. struct ieee80211_rate *bitrates;
  2110. size_t num_rates;
  2111. u64 supp_rates;
  2112. int i, j;
  2113. sband = local->hw.wiphy->bands[band];
  2114. if (!sband) {
  2115. WARN_ON(1);
  2116. sband = local->hw.wiphy->bands[local->hw.conf.channel->band];
  2117. }
  2118. bitrates = sband->bitrates;
  2119. num_rates = sband->n_bitrates;
  2120. supp_rates = 0;
  2121. for (i = 0; i < elems->supp_rates_len +
  2122. elems->ext_supp_rates_len; i++) {
  2123. u8 rate = 0;
  2124. int own_rate;
  2125. if (i < elems->supp_rates_len)
  2126. rate = elems->supp_rates[i];
  2127. else if (elems->ext_supp_rates)
  2128. rate = elems->ext_supp_rates
  2129. [i - elems->supp_rates_len];
  2130. own_rate = 5 * (rate & 0x7f);
  2131. for (j = 0; j < num_rates; j++)
  2132. if (bitrates[j].bitrate == own_rate)
  2133. supp_rates |= BIT(j);
  2134. }
  2135. return supp_rates;
  2136. }
  2137. static void ieee80211_rx_bss_info(struct net_device *dev,
  2138. struct ieee80211_mgmt *mgmt,
  2139. size_t len,
  2140. struct ieee80211_rx_status *rx_status,
  2141. int beacon)
  2142. {
  2143. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2144. struct ieee802_11_elems elems;
  2145. size_t baselen;
  2146. int freq, clen;
  2147. struct ieee80211_sta_bss *bss;
  2148. struct sta_info *sta;
  2149. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2150. u64 beacon_timestamp, rx_timestamp;
  2151. struct ieee80211_channel *channel;
  2152. DECLARE_MAC_BUF(mac);
  2153. DECLARE_MAC_BUF(mac2);
  2154. if (!beacon && memcmp(mgmt->da, dev->dev_addr, ETH_ALEN))
  2155. return; /* ignore ProbeResp to foreign address */
  2156. #if 0
  2157. printk(KERN_DEBUG "%s: RX %s from %s to %s\n",
  2158. dev->name, beacon ? "Beacon" : "Probe Response",
  2159. print_mac(mac, mgmt->sa), print_mac(mac2, mgmt->da));
  2160. #endif
  2161. baselen = (u8 *) mgmt->u.beacon.variable - (u8 *) mgmt;
  2162. if (baselen > len)
  2163. return;
  2164. beacon_timestamp = le64_to_cpu(mgmt->u.beacon.timestamp);
  2165. ieee802_11_parse_elems(mgmt->u.beacon.variable, len - baselen, &elems);
  2166. if (ieee80211_vif_is_mesh(&sdata->vif) && elems.mesh_id &&
  2167. elems.mesh_config && mesh_matches_local(&elems, dev)) {
  2168. u64 rates = ieee80211_sta_get_rates(local, &elems,
  2169. rx_status->band);
  2170. mesh_neighbour_update(mgmt->sa, rates, dev,
  2171. mesh_peer_accepts_plinks(&elems, dev));
  2172. }
  2173. rcu_read_lock();
  2174. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS && elems.supp_rates &&
  2175. memcmp(mgmt->bssid, sdata->u.sta.bssid, ETH_ALEN) == 0 &&
  2176. (sta = sta_info_get(local, mgmt->sa))) {
  2177. u64 prev_rates;
  2178. u64 supp_rates = ieee80211_sta_get_rates(local, &elems,
  2179. rx_status->band);
  2180. prev_rates = sta->supp_rates[rx_status->band];
  2181. sta->supp_rates[rx_status->band] &= supp_rates;
  2182. if (sta->supp_rates[rx_status->band] == 0) {
  2183. /* No matching rates - this should not really happen.
  2184. * Make sure that at least one rate is marked
  2185. * supported to avoid issues with TX rate ctrl. */
  2186. sta->supp_rates[rx_status->band] =
  2187. sdata->u.sta.supp_rates_bits[rx_status->band];
  2188. }
  2189. if (sta->supp_rates[rx_status->band] != prev_rates) {
  2190. printk(KERN_DEBUG "%s: updated supp_rates set for "
  2191. "%s based on beacon info (0x%llx & 0x%llx -> "
  2192. "0x%llx)\n",
  2193. dev->name, print_mac(mac, sta->addr),
  2194. (unsigned long long) prev_rates,
  2195. (unsigned long long) supp_rates,
  2196. (unsigned long long) sta->supp_rates[rx_status->band]);
  2197. }
  2198. }
  2199. rcu_read_unlock();
  2200. if (elems.ds_params && elems.ds_params_len == 1)
  2201. freq = ieee80211_channel_to_frequency(elems.ds_params[0]);
  2202. else
  2203. freq = rx_status->freq;
  2204. channel = ieee80211_get_channel(local->hw.wiphy, freq);
  2205. if (!channel || channel->flags & IEEE80211_CHAN_DISABLED)
  2206. return;
  2207. #ifdef CONFIG_MAC80211_MESH
  2208. if (elems.mesh_config)
  2209. bss = ieee80211_rx_mesh_bss_get(dev, elems.mesh_id,
  2210. elems.mesh_id_len, elems.mesh_config, freq);
  2211. else
  2212. #endif
  2213. bss = ieee80211_rx_bss_get(dev, mgmt->bssid, freq,
  2214. elems.ssid, elems.ssid_len);
  2215. if (!bss) {
  2216. #ifdef CONFIG_MAC80211_MESH
  2217. if (elems.mesh_config)
  2218. bss = ieee80211_rx_mesh_bss_add(dev, elems.mesh_id,
  2219. elems.mesh_id_len, elems.mesh_config,
  2220. elems.mesh_config_len, freq);
  2221. else
  2222. #endif
  2223. bss = ieee80211_rx_bss_add(dev, mgmt->bssid, freq,
  2224. elems.ssid, elems.ssid_len);
  2225. if (!bss)
  2226. return;
  2227. } else {
  2228. #if 0
  2229. /* TODO: order by RSSI? */
  2230. spin_lock_bh(&local->sta_bss_lock);
  2231. list_move_tail(&bss->list, &local->sta_bss_list);
  2232. spin_unlock_bh(&local->sta_bss_lock);
  2233. #endif
  2234. }
  2235. /* save the ERP value so that it is available at association time */
  2236. if (elems.erp_info && elems.erp_info_len >= 1) {
  2237. bss->erp_value = elems.erp_info[0];
  2238. bss->has_erp_value = 1;
  2239. }
  2240. if (elems.ht_cap_elem &&
  2241. (!bss->ht_ie || bss->ht_ie_len != elems.ht_cap_elem_len ||
  2242. memcmp(bss->ht_ie, elems.ht_cap_elem, elems.ht_cap_elem_len))) {
  2243. kfree(bss->ht_ie);
  2244. bss->ht_ie = kmalloc(elems.ht_cap_elem_len + 2, GFP_ATOMIC);
  2245. if (bss->ht_ie) {
  2246. memcpy(bss->ht_ie, elems.ht_cap_elem - 2,
  2247. elems.ht_cap_elem_len + 2);
  2248. bss->ht_ie_len = elems.ht_cap_elem_len + 2;
  2249. } else
  2250. bss->ht_ie_len = 0;
  2251. } else if (!elems.ht_cap_elem && bss->ht_ie) {
  2252. kfree(bss->ht_ie);
  2253. bss->ht_ie = NULL;
  2254. bss->ht_ie_len = 0;
  2255. }
  2256. bss->beacon_int = le16_to_cpu(mgmt->u.beacon.beacon_int);
  2257. bss->capability = le16_to_cpu(mgmt->u.beacon.capab_info);
  2258. bss->supp_rates_len = 0;
  2259. if (elems.supp_rates) {
  2260. clen = IEEE80211_MAX_SUPP_RATES - bss->supp_rates_len;
  2261. if (clen > elems.supp_rates_len)
  2262. clen = elems.supp_rates_len;
  2263. memcpy(&bss->supp_rates[bss->supp_rates_len], elems.supp_rates,
  2264. clen);
  2265. bss->supp_rates_len += clen;
  2266. }
  2267. if (elems.ext_supp_rates) {
  2268. clen = IEEE80211_MAX_SUPP_RATES - bss->supp_rates_len;
  2269. if (clen > elems.ext_supp_rates_len)
  2270. clen = elems.ext_supp_rates_len;
  2271. memcpy(&bss->supp_rates[bss->supp_rates_len],
  2272. elems.ext_supp_rates, clen);
  2273. bss->supp_rates_len += clen;
  2274. }
  2275. bss->band = rx_status->band;
  2276. bss->timestamp = beacon_timestamp;
  2277. bss->last_update = jiffies;
  2278. bss->rssi = rx_status->ssi;
  2279. bss->signal = rx_status->signal;
  2280. bss->noise = rx_status->noise;
  2281. if (!beacon && !bss->probe_resp)
  2282. bss->probe_resp = true;
  2283. /*
  2284. * In STA mode, the remaining parameters should not be overridden
  2285. * by beacons because they're not necessarily accurate there.
  2286. */
  2287. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  2288. bss->probe_resp && beacon) {
  2289. ieee80211_rx_bss_put(dev, bss);
  2290. return;
  2291. }
  2292. if (elems.wpa &&
  2293. (!bss->wpa_ie || bss->wpa_ie_len != elems.wpa_len ||
  2294. memcmp(bss->wpa_ie, elems.wpa, elems.wpa_len))) {
  2295. kfree(bss->wpa_ie);
  2296. bss->wpa_ie = kmalloc(elems.wpa_len + 2, GFP_ATOMIC);
  2297. if (bss->wpa_ie) {
  2298. memcpy(bss->wpa_ie, elems.wpa - 2, elems.wpa_len + 2);
  2299. bss->wpa_ie_len = elems.wpa_len + 2;
  2300. } else
  2301. bss->wpa_ie_len = 0;
  2302. } else if (!elems.wpa && bss->wpa_ie) {
  2303. kfree(bss->wpa_ie);
  2304. bss->wpa_ie = NULL;
  2305. bss->wpa_ie_len = 0;
  2306. }
  2307. if (elems.rsn &&
  2308. (!bss->rsn_ie || bss->rsn_ie_len != elems.rsn_len ||
  2309. memcmp(bss->rsn_ie, elems.rsn, elems.rsn_len))) {
  2310. kfree(bss->rsn_ie);
  2311. bss->rsn_ie = kmalloc(elems.rsn_len + 2, GFP_ATOMIC);
  2312. if (bss->rsn_ie) {
  2313. memcpy(bss->rsn_ie, elems.rsn - 2, elems.rsn_len + 2);
  2314. bss->rsn_ie_len = elems.rsn_len + 2;
  2315. } else
  2316. bss->rsn_ie_len = 0;
  2317. } else if (!elems.rsn && bss->rsn_ie) {
  2318. kfree(bss->rsn_ie);
  2319. bss->rsn_ie = NULL;
  2320. bss->rsn_ie_len = 0;
  2321. }
  2322. /*
  2323. * Cf.
  2324. * http://www.wipo.int/pctdb/en/wo.jsp?wo=2007047181&IA=WO2007047181&DISPLAY=DESC
  2325. *
  2326. * quoting:
  2327. *
  2328. * In particular, "Wi-Fi CERTIFIED for WMM - Support for Multimedia
  2329. * Applications with Quality of Service in Wi-Fi Networks," Wi- Fi
  2330. * Alliance (September 1, 2004) is incorporated by reference herein.
  2331. * The inclusion of the WMM Parameters in probe responses and
  2332. * association responses is mandatory for WMM enabled networks. The
  2333. * inclusion of the WMM Parameters in beacons, however, is optional.
  2334. */
  2335. if (elems.wmm_param &&
  2336. (!bss->wmm_ie || bss->wmm_ie_len != elems.wmm_param_len ||
  2337. memcmp(bss->wmm_ie, elems.wmm_param, elems.wmm_param_len))) {
  2338. kfree(bss->wmm_ie);
  2339. bss->wmm_ie = kmalloc(elems.wmm_param_len + 2, GFP_ATOMIC);
  2340. if (bss->wmm_ie) {
  2341. memcpy(bss->wmm_ie, elems.wmm_param - 2,
  2342. elems.wmm_param_len + 2);
  2343. bss->wmm_ie_len = elems.wmm_param_len + 2;
  2344. } else
  2345. bss->wmm_ie_len = 0;
  2346. } else if (elems.wmm_info &&
  2347. (!bss->wmm_ie || bss->wmm_ie_len != elems.wmm_info_len ||
  2348. memcmp(bss->wmm_ie, elems.wmm_info, elems.wmm_info_len))) {
  2349. /* As for certain AP's Fifth bit is not set in WMM IE in
  2350. * beacon frames.So while parsing the beacon frame the
  2351. * wmm_info structure is used instead of wmm_param.
  2352. * wmm_info structure was never used to set bss->wmm_ie.
  2353. * This code fixes this problem by copying the WME
  2354. * information from wmm_info to bss->wmm_ie and enabling
  2355. * n-band association.
  2356. */
  2357. kfree(bss->wmm_ie);
  2358. bss->wmm_ie = kmalloc(elems.wmm_info_len + 2, GFP_ATOMIC);
  2359. if (bss->wmm_ie) {
  2360. memcpy(bss->wmm_ie, elems.wmm_info - 2,
  2361. elems.wmm_info_len + 2);
  2362. bss->wmm_ie_len = elems.wmm_info_len + 2;
  2363. } else
  2364. bss->wmm_ie_len = 0;
  2365. } else if (!elems.wmm_param && !elems.wmm_info && bss->wmm_ie) {
  2366. kfree(bss->wmm_ie);
  2367. bss->wmm_ie = NULL;
  2368. bss->wmm_ie_len = 0;
  2369. }
  2370. /* check if we need to merge IBSS */
  2371. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS && beacon &&
  2372. !local->sta_sw_scanning && !local->sta_hw_scanning &&
  2373. bss->capability & WLAN_CAPABILITY_IBSS &&
  2374. bss->freq == local->oper_channel->center_freq &&
  2375. elems.ssid_len == sdata->u.sta.ssid_len &&
  2376. memcmp(elems.ssid, sdata->u.sta.ssid, sdata->u.sta.ssid_len) == 0) {
  2377. if (rx_status->flag & RX_FLAG_TSFT) {
  2378. /* in order for correct IBSS merging we need mactime
  2379. *
  2380. * since mactime is defined as the time the first data
  2381. * symbol of the frame hits the PHY, and the timestamp
  2382. * of the beacon is defined as "the time that the data
  2383. * symbol containing the first bit of the timestamp is
  2384. * transmitted to the PHY plus the transmitting STA’s
  2385. * delays through its local PHY from the MAC-PHY
  2386. * interface to its interface with the WM"
  2387. * (802.11 11.1.2) - equals the time this bit arrives at
  2388. * the receiver - we have to take into account the
  2389. * offset between the two.
  2390. * e.g: at 1 MBit that means mactime is 192 usec earlier
  2391. * (=24 bytes * 8 usecs/byte) than the beacon timestamp.
  2392. */
  2393. int rate = local->hw.wiphy->bands[rx_status->band]->
  2394. bitrates[rx_status->rate_idx].bitrate;
  2395. rx_timestamp = rx_status->mactime + (24 * 8 * 10 / rate);
  2396. } else if (local && local->ops && local->ops->get_tsf)
  2397. /* second best option: get current TSF */
  2398. rx_timestamp = local->ops->get_tsf(local_to_hw(local));
  2399. else
  2400. /* can't merge without knowing the TSF */
  2401. rx_timestamp = -1LLU;
  2402. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2403. printk(KERN_DEBUG "RX beacon SA=%s BSSID="
  2404. "%s TSF=0x%llx BCN=0x%llx diff=%lld @%lu\n",
  2405. print_mac(mac, mgmt->sa),
  2406. print_mac(mac2, mgmt->bssid),
  2407. (unsigned long long)rx_timestamp,
  2408. (unsigned long long)beacon_timestamp,
  2409. (unsigned long long)(rx_timestamp - beacon_timestamp),
  2410. jiffies);
  2411. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2412. if (beacon_timestamp > rx_timestamp) {
  2413. #ifndef CONFIG_MAC80211_IBSS_DEBUG
  2414. if (net_ratelimit())
  2415. #endif
  2416. printk(KERN_DEBUG "%s: beacon TSF higher than "
  2417. "local TSF - IBSS merge with BSSID %s\n",
  2418. dev->name, print_mac(mac, mgmt->bssid));
  2419. ieee80211_sta_join_ibss(dev, &sdata->u.sta, bss);
  2420. ieee80211_ibss_add_sta(dev, NULL,
  2421. mgmt->bssid, mgmt->sa);
  2422. }
  2423. }
  2424. ieee80211_rx_bss_put(dev, bss);
  2425. }
  2426. static void ieee80211_rx_mgmt_probe_resp(struct net_device *dev,
  2427. struct ieee80211_mgmt *mgmt,
  2428. size_t len,
  2429. struct ieee80211_rx_status *rx_status)
  2430. {
  2431. ieee80211_rx_bss_info(dev, mgmt, len, rx_status, 0);
  2432. }
  2433. static void ieee80211_rx_mgmt_beacon(struct net_device *dev,
  2434. struct ieee80211_mgmt *mgmt,
  2435. size_t len,
  2436. struct ieee80211_rx_status *rx_status)
  2437. {
  2438. struct ieee80211_sub_if_data *sdata;
  2439. struct ieee80211_if_sta *ifsta;
  2440. size_t baselen;
  2441. struct ieee802_11_elems elems;
  2442. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2443. struct ieee80211_conf *conf = &local->hw.conf;
  2444. u32 changed = 0;
  2445. ieee80211_rx_bss_info(dev, mgmt, len, rx_status, 1);
  2446. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2447. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  2448. return;
  2449. ifsta = &sdata->u.sta;
  2450. if (!(ifsta->flags & IEEE80211_STA_ASSOCIATED) ||
  2451. memcmp(ifsta->bssid, mgmt->bssid, ETH_ALEN) != 0)
  2452. return;
  2453. /* Process beacon from the current BSS */
  2454. baselen = (u8 *) mgmt->u.beacon.variable - (u8 *) mgmt;
  2455. if (baselen > len)
  2456. return;
  2457. ieee802_11_parse_elems(mgmt->u.beacon.variable, len - baselen, &elems);
  2458. if (elems.wmm_param && (ifsta->flags & IEEE80211_STA_WMM_ENABLED)) {
  2459. ieee80211_sta_wmm_params(dev, ifsta, elems.wmm_param,
  2460. elems.wmm_param_len);
  2461. }
  2462. /* Do not send changes to driver if we are scanning. This removes
  2463. * requirement that driver's bss_info_changed function needs to be
  2464. * atomic. */
  2465. if (local->sta_sw_scanning || local->sta_hw_scanning)
  2466. return;
  2467. if (elems.erp_info && elems.erp_info_len >= 1)
  2468. changed |= ieee80211_handle_erp_ie(sdata, elems.erp_info[0]);
  2469. else {
  2470. u16 capab = le16_to_cpu(mgmt->u.beacon.capab_info);
  2471. changed |= ieee80211_handle_protect_preamb(sdata, false,
  2472. (capab & WLAN_CAPABILITY_SHORT_PREAMBLE) != 0);
  2473. }
  2474. if (elems.ht_cap_elem && elems.ht_info_elem &&
  2475. elems.wmm_param && conf->flags & IEEE80211_CONF_SUPPORT_HT_MODE) {
  2476. struct ieee80211_ht_bss_info bss_info;
  2477. ieee80211_ht_addt_info_ie_to_ht_bss_info(
  2478. (struct ieee80211_ht_addt_info *)
  2479. elems.ht_info_elem, &bss_info);
  2480. changed |= ieee80211_handle_ht(local, 1, &conf->ht_conf,
  2481. &bss_info);
  2482. }
  2483. ieee80211_bss_info_change_notify(sdata, changed);
  2484. }
  2485. static void ieee80211_rx_mgmt_probe_req(struct net_device *dev,
  2486. struct ieee80211_if_sta *ifsta,
  2487. struct ieee80211_mgmt *mgmt,
  2488. size_t len,
  2489. struct ieee80211_rx_status *rx_status)
  2490. {
  2491. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2492. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2493. int tx_last_beacon;
  2494. struct sk_buff *skb;
  2495. struct ieee80211_mgmt *resp;
  2496. u8 *pos, *end;
  2497. DECLARE_MAC_BUF(mac);
  2498. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2499. DECLARE_MAC_BUF(mac2);
  2500. DECLARE_MAC_BUF(mac3);
  2501. #endif
  2502. if (sdata->vif.type != IEEE80211_IF_TYPE_IBSS ||
  2503. ifsta->state != IEEE80211_IBSS_JOINED ||
  2504. len < 24 + 2 || !ifsta->probe_resp)
  2505. return;
  2506. if (local->ops->tx_last_beacon)
  2507. tx_last_beacon = local->ops->tx_last_beacon(local_to_hw(local));
  2508. else
  2509. tx_last_beacon = 1;
  2510. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2511. printk(KERN_DEBUG "%s: RX ProbeReq SA=%s DA=%s BSSID="
  2512. "%s (tx_last_beacon=%d)\n",
  2513. dev->name, print_mac(mac, mgmt->sa), print_mac(mac2, mgmt->da),
  2514. print_mac(mac3, mgmt->bssid), tx_last_beacon);
  2515. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2516. if (!tx_last_beacon)
  2517. return;
  2518. if (memcmp(mgmt->bssid, ifsta->bssid, ETH_ALEN) != 0 &&
  2519. memcmp(mgmt->bssid, "\xff\xff\xff\xff\xff\xff", ETH_ALEN) != 0)
  2520. return;
  2521. end = ((u8 *) mgmt) + len;
  2522. pos = mgmt->u.probe_req.variable;
  2523. if (pos[0] != WLAN_EID_SSID ||
  2524. pos + 2 + pos[1] > end) {
  2525. if (net_ratelimit()) {
  2526. printk(KERN_DEBUG "%s: Invalid SSID IE in ProbeReq "
  2527. "from %s\n",
  2528. dev->name, print_mac(mac, mgmt->sa));
  2529. }
  2530. return;
  2531. }
  2532. if (pos[1] != 0 &&
  2533. (pos[1] != ifsta->ssid_len ||
  2534. memcmp(pos + 2, ifsta->ssid, ifsta->ssid_len) != 0)) {
  2535. /* Ignore ProbeReq for foreign SSID */
  2536. return;
  2537. }
  2538. /* Reply with ProbeResp */
  2539. skb = skb_copy(ifsta->probe_resp, GFP_KERNEL);
  2540. if (!skb)
  2541. return;
  2542. resp = (struct ieee80211_mgmt *) skb->data;
  2543. memcpy(resp->da, mgmt->sa, ETH_ALEN);
  2544. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  2545. printk(KERN_DEBUG "%s: Sending ProbeResp to %s\n",
  2546. dev->name, print_mac(mac, resp->da));
  2547. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  2548. ieee80211_sta_tx(dev, skb, 0);
  2549. }
  2550. static void ieee80211_rx_mgmt_action(struct net_device *dev,
  2551. struct ieee80211_if_sta *ifsta,
  2552. struct ieee80211_mgmt *mgmt,
  2553. size_t len,
  2554. struct ieee80211_rx_status *rx_status)
  2555. {
  2556. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2557. if (len < IEEE80211_MIN_ACTION_SIZE)
  2558. return;
  2559. switch (mgmt->u.action.category) {
  2560. case WLAN_CATEGORY_BACK:
  2561. switch (mgmt->u.action.u.addba_req.action_code) {
  2562. case WLAN_ACTION_ADDBA_REQ:
  2563. if (len < (IEEE80211_MIN_ACTION_SIZE +
  2564. sizeof(mgmt->u.action.u.addba_req)))
  2565. break;
  2566. ieee80211_sta_process_addba_request(dev, mgmt, len);
  2567. break;
  2568. case WLAN_ACTION_ADDBA_RESP:
  2569. if (len < (IEEE80211_MIN_ACTION_SIZE +
  2570. sizeof(mgmt->u.action.u.addba_resp)))
  2571. break;
  2572. ieee80211_sta_process_addba_resp(dev, mgmt, len);
  2573. break;
  2574. case WLAN_ACTION_DELBA:
  2575. if (len < (IEEE80211_MIN_ACTION_SIZE +
  2576. sizeof(mgmt->u.action.u.delba)))
  2577. break;
  2578. ieee80211_sta_process_delba(dev, mgmt, len);
  2579. break;
  2580. default:
  2581. if (net_ratelimit())
  2582. printk(KERN_DEBUG "%s: Rx unknown A-MPDU action\n",
  2583. dev->name);
  2584. break;
  2585. }
  2586. break;
  2587. case PLINK_CATEGORY:
  2588. if (ieee80211_vif_is_mesh(&sdata->vif))
  2589. mesh_rx_plink_frame(dev, mgmt, len, rx_status);
  2590. break;
  2591. case MESH_PATH_SEL_CATEGORY:
  2592. if (ieee80211_vif_is_mesh(&sdata->vif))
  2593. mesh_rx_path_sel_frame(dev, mgmt, len);
  2594. break;
  2595. default:
  2596. if (net_ratelimit())
  2597. printk(KERN_DEBUG "%s: Rx unknown action frame - "
  2598. "category=%d\n", dev->name, mgmt->u.action.category);
  2599. break;
  2600. }
  2601. }
  2602. void ieee80211_sta_rx_mgmt(struct net_device *dev, struct sk_buff *skb,
  2603. struct ieee80211_rx_status *rx_status)
  2604. {
  2605. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2606. struct ieee80211_sub_if_data *sdata;
  2607. struct ieee80211_if_sta *ifsta;
  2608. struct ieee80211_mgmt *mgmt;
  2609. u16 fc;
  2610. if (skb->len < 24)
  2611. goto fail;
  2612. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2613. ifsta = &sdata->u.sta;
  2614. mgmt = (struct ieee80211_mgmt *) skb->data;
  2615. fc = le16_to_cpu(mgmt->frame_control);
  2616. switch (fc & IEEE80211_FCTL_STYPE) {
  2617. case IEEE80211_STYPE_PROBE_REQ:
  2618. case IEEE80211_STYPE_PROBE_RESP:
  2619. case IEEE80211_STYPE_BEACON:
  2620. case IEEE80211_STYPE_ACTION:
  2621. memcpy(skb->cb, rx_status, sizeof(*rx_status));
  2622. case IEEE80211_STYPE_AUTH:
  2623. case IEEE80211_STYPE_ASSOC_RESP:
  2624. case IEEE80211_STYPE_REASSOC_RESP:
  2625. case IEEE80211_STYPE_DEAUTH:
  2626. case IEEE80211_STYPE_DISASSOC:
  2627. skb_queue_tail(&ifsta->skb_queue, skb);
  2628. queue_work(local->hw.workqueue, &ifsta->work);
  2629. return;
  2630. default:
  2631. printk(KERN_DEBUG "%s: received unknown management frame - "
  2632. "stype=%d\n", dev->name,
  2633. (fc & IEEE80211_FCTL_STYPE) >> 4);
  2634. break;
  2635. }
  2636. fail:
  2637. kfree_skb(skb);
  2638. }
  2639. static void ieee80211_sta_rx_queued_mgmt(struct net_device *dev,
  2640. struct sk_buff *skb)
  2641. {
  2642. struct ieee80211_rx_status *rx_status;
  2643. struct ieee80211_sub_if_data *sdata;
  2644. struct ieee80211_if_sta *ifsta;
  2645. struct ieee80211_mgmt *mgmt;
  2646. u16 fc;
  2647. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2648. ifsta = &sdata->u.sta;
  2649. rx_status = (struct ieee80211_rx_status *) skb->cb;
  2650. mgmt = (struct ieee80211_mgmt *) skb->data;
  2651. fc = le16_to_cpu(mgmt->frame_control);
  2652. switch (fc & IEEE80211_FCTL_STYPE) {
  2653. case IEEE80211_STYPE_PROBE_REQ:
  2654. ieee80211_rx_mgmt_probe_req(dev, ifsta, mgmt, skb->len,
  2655. rx_status);
  2656. break;
  2657. case IEEE80211_STYPE_PROBE_RESP:
  2658. ieee80211_rx_mgmt_probe_resp(dev, mgmt, skb->len, rx_status);
  2659. break;
  2660. case IEEE80211_STYPE_BEACON:
  2661. ieee80211_rx_mgmt_beacon(dev, mgmt, skb->len, rx_status);
  2662. break;
  2663. case IEEE80211_STYPE_AUTH:
  2664. ieee80211_rx_mgmt_auth(dev, ifsta, mgmt, skb->len);
  2665. break;
  2666. case IEEE80211_STYPE_ASSOC_RESP:
  2667. ieee80211_rx_mgmt_assoc_resp(sdata, ifsta, mgmt, skb->len, 0);
  2668. break;
  2669. case IEEE80211_STYPE_REASSOC_RESP:
  2670. ieee80211_rx_mgmt_assoc_resp(sdata, ifsta, mgmt, skb->len, 1);
  2671. break;
  2672. case IEEE80211_STYPE_DEAUTH:
  2673. ieee80211_rx_mgmt_deauth(dev, ifsta, mgmt, skb->len);
  2674. break;
  2675. case IEEE80211_STYPE_DISASSOC:
  2676. ieee80211_rx_mgmt_disassoc(dev, ifsta, mgmt, skb->len);
  2677. break;
  2678. case IEEE80211_STYPE_ACTION:
  2679. ieee80211_rx_mgmt_action(dev, ifsta, mgmt, skb->len, rx_status);
  2680. break;
  2681. }
  2682. kfree_skb(skb);
  2683. }
  2684. ieee80211_rx_result
  2685. ieee80211_sta_rx_scan(struct net_device *dev, struct sk_buff *skb,
  2686. struct ieee80211_rx_status *rx_status)
  2687. {
  2688. struct ieee80211_mgmt *mgmt;
  2689. u16 fc;
  2690. if (skb->len < 2)
  2691. return RX_DROP_UNUSABLE;
  2692. mgmt = (struct ieee80211_mgmt *) skb->data;
  2693. fc = le16_to_cpu(mgmt->frame_control);
  2694. if ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_CTL)
  2695. return RX_CONTINUE;
  2696. if (skb->len < 24)
  2697. return RX_DROP_MONITOR;
  2698. if ((fc & IEEE80211_FCTL_FTYPE) == IEEE80211_FTYPE_MGMT) {
  2699. if ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_PROBE_RESP) {
  2700. ieee80211_rx_mgmt_probe_resp(dev, mgmt,
  2701. skb->len, rx_status);
  2702. dev_kfree_skb(skb);
  2703. return RX_QUEUED;
  2704. } else if ((fc & IEEE80211_FCTL_STYPE) == IEEE80211_STYPE_BEACON) {
  2705. ieee80211_rx_mgmt_beacon(dev, mgmt, skb->len,
  2706. rx_status);
  2707. dev_kfree_skb(skb);
  2708. return RX_QUEUED;
  2709. }
  2710. }
  2711. return RX_CONTINUE;
  2712. }
  2713. static int ieee80211_sta_active_ibss(struct net_device *dev)
  2714. {
  2715. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2716. int active = 0;
  2717. struct sta_info *sta;
  2718. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2719. rcu_read_lock();
  2720. list_for_each_entry_rcu(sta, &local->sta_list, list) {
  2721. if (sta->sdata == sdata &&
  2722. time_after(sta->last_rx + IEEE80211_IBSS_MERGE_INTERVAL,
  2723. jiffies)) {
  2724. active++;
  2725. break;
  2726. }
  2727. }
  2728. rcu_read_unlock();
  2729. return active;
  2730. }
  2731. static void ieee80211_sta_expire(struct net_device *dev, unsigned long exp_time)
  2732. {
  2733. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2734. struct sta_info *sta, *tmp;
  2735. LIST_HEAD(tmp_list);
  2736. DECLARE_MAC_BUF(mac);
  2737. unsigned long flags;
  2738. spin_lock_irqsave(&local->sta_lock, flags);
  2739. list_for_each_entry_safe(sta, tmp, &local->sta_list, list)
  2740. if (time_after(jiffies, sta->last_rx + exp_time)) {
  2741. printk(KERN_DEBUG "%s: expiring inactive STA %s\n",
  2742. dev->name, print_mac(mac, sta->addr));
  2743. __sta_info_unlink(&sta);
  2744. if (sta)
  2745. list_add(&sta->list, &tmp_list);
  2746. }
  2747. spin_unlock_irqrestore(&local->sta_lock, flags);
  2748. list_for_each_entry_safe(sta, tmp, &tmp_list, list)
  2749. sta_info_destroy(sta);
  2750. }
  2751. static void ieee80211_sta_merge_ibss(struct net_device *dev,
  2752. struct ieee80211_if_sta *ifsta)
  2753. {
  2754. mod_timer(&ifsta->timer, jiffies + IEEE80211_IBSS_MERGE_INTERVAL);
  2755. ieee80211_sta_expire(dev, IEEE80211_IBSS_INACTIVITY_LIMIT);
  2756. if (ieee80211_sta_active_ibss(dev))
  2757. return;
  2758. printk(KERN_DEBUG "%s: No active IBSS STAs - trying to scan for other "
  2759. "IBSS networks with same SSID (merge)\n", dev->name);
  2760. ieee80211_sta_req_scan(dev, ifsta->ssid, ifsta->ssid_len);
  2761. }
  2762. #ifdef CONFIG_MAC80211_MESH
  2763. static void ieee80211_mesh_housekeeping(struct net_device *dev,
  2764. struct ieee80211_if_sta *ifsta)
  2765. {
  2766. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2767. bool free_plinks;
  2768. ieee80211_sta_expire(dev, IEEE80211_MESH_PEER_INACTIVITY_LIMIT);
  2769. mesh_path_expire(dev);
  2770. free_plinks = mesh_plink_availables(sdata);
  2771. if (free_plinks != sdata->u.sta.accepting_plinks)
  2772. ieee80211_if_config_beacon(dev);
  2773. mod_timer(&ifsta->timer, jiffies +
  2774. IEEE80211_MESH_HOUSEKEEPING_INTERVAL);
  2775. }
  2776. void ieee80211_start_mesh(struct net_device *dev)
  2777. {
  2778. struct ieee80211_if_sta *ifsta;
  2779. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2780. ifsta = &sdata->u.sta;
  2781. ifsta->state = IEEE80211_MESH_UP;
  2782. ieee80211_sta_timer((unsigned long)sdata);
  2783. }
  2784. #endif
  2785. void ieee80211_sta_timer(unsigned long data)
  2786. {
  2787. struct ieee80211_sub_if_data *sdata =
  2788. (struct ieee80211_sub_if_data *) data;
  2789. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  2790. struct ieee80211_local *local = wdev_priv(&sdata->wdev);
  2791. set_bit(IEEE80211_STA_REQ_RUN, &ifsta->request);
  2792. queue_work(local->hw.workqueue, &ifsta->work);
  2793. }
  2794. void ieee80211_sta_work(struct work_struct *work)
  2795. {
  2796. struct ieee80211_sub_if_data *sdata =
  2797. container_of(work, struct ieee80211_sub_if_data, u.sta.work);
  2798. struct net_device *dev = sdata->dev;
  2799. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2800. struct ieee80211_if_sta *ifsta;
  2801. struct sk_buff *skb;
  2802. if (!netif_running(dev))
  2803. return;
  2804. if (local->sta_sw_scanning || local->sta_hw_scanning)
  2805. return;
  2806. if (sdata->vif.type != IEEE80211_IF_TYPE_STA &&
  2807. sdata->vif.type != IEEE80211_IF_TYPE_IBSS &&
  2808. sdata->vif.type != IEEE80211_IF_TYPE_MESH_POINT) {
  2809. printk(KERN_DEBUG "%s: ieee80211_sta_work: non-STA interface "
  2810. "(type=%d)\n", dev->name, sdata->vif.type);
  2811. return;
  2812. }
  2813. ifsta = &sdata->u.sta;
  2814. while ((skb = skb_dequeue(&ifsta->skb_queue)))
  2815. ieee80211_sta_rx_queued_mgmt(dev, skb);
  2816. #ifdef CONFIG_MAC80211_MESH
  2817. if (ifsta->preq_queue_len &&
  2818. time_after(jiffies,
  2819. ifsta->last_preq + msecs_to_jiffies(ifsta->mshcfg.dot11MeshHWMPpreqMinInterval)))
  2820. mesh_path_start_discovery(dev);
  2821. #endif
  2822. if (ifsta->state != IEEE80211_AUTHENTICATE &&
  2823. ifsta->state != IEEE80211_ASSOCIATE &&
  2824. test_and_clear_bit(IEEE80211_STA_REQ_SCAN, &ifsta->request)) {
  2825. if (ifsta->scan_ssid_len)
  2826. ieee80211_sta_start_scan(dev, ifsta->scan_ssid, ifsta->scan_ssid_len);
  2827. else
  2828. ieee80211_sta_start_scan(dev, NULL, 0);
  2829. return;
  2830. }
  2831. if (test_and_clear_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request)) {
  2832. if (ieee80211_sta_config_auth(dev, ifsta))
  2833. return;
  2834. clear_bit(IEEE80211_STA_REQ_RUN, &ifsta->request);
  2835. } else if (!test_and_clear_bit(IEEE80211_STA_REQ_RUN, &ifsta->request))
  2836. return;
  2837. switch (ifsta->state) {
  2838. case IEEE80211_DISABLED:
  2839. break;
  2840. case IEEE80211_AUTHENTICATE:
  2841. ieee80211_authenticate(dev, ifsta);
  2842. break;
  2843. case IEEE80211_ASSOCIATE:
  2844. ieee80211_associate(dev, ifsta);
  2845. break;
  2846. case IEEE80211_ASSOCIATED:
  2847. ieee80211_associated(dev, ifsta);
  2848. break;
  2849. case IEEE80211_IBSS_SEARCH:
  2850. ieee80211_sta_find_ibss(dev, ifsta);
  2851. break;
  2852. case IEEE80211_IBSS_JOINED:
  2853. ieee80211_sta_merge_ibss(dev, ifsta);
  2854. break;
  2855. #ifdef CONFIG_MAC80211_MESH
  2856. case IEEE80211_MESH_UP:
  2857. ieee80211_mesh_housekeeping(dev, ifsta);
  2858. break;
  2859. #endif
  2860. default:
  2861. printk(KERN_DEBUG "ieee80211_sta_work: Unknown state %d\n",
  2862. ifsta->state);
  2863. break;
  2864. }
  2865. if (ieee80211_privacy_mismatch(dev, ifsta)) {
  2866. printk(KERN_DEBUG "%s: privacy configuration mismatch and "
  2867. "mixed-cell disabled - disassociate\n", dev->name);
  2868. ieee80211_send_disassoc(dev, ifsta, WLAN_REASON_UNSPECIFIED);
  2869. ieee80211_set_disassoc(dev, ifsta, 0);
  2870. }
  2871. }
  2872. static void ieee80211_sta_reset_auth(struct net_device *dev,
  2873. struct ieee80211_if_sta *ifsta)
  2874. {
  2875. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2876. if (local->ops->reset_tsf) {
  2877. /* Reset own TSF to allow time synchronization work. */
  2878. local->ops->reset_tsf(local_to_hw(local));
  2879. }
  2880. ifsta->wmm_last_param_set = -1; /* allow any WMM update */
  2881. if (ifsta->auth_algs & IEEE80211_AUTH_ALG_OPEN)
  2882. ifsta->auth_alg = WLAN_AUTH_OPEN;
  2883. else if (ifsta->auth_algs & IEEE80211_AUTH_ALG_SHARED_KEY)
  2884. ifsta->auth_alg = WLAN_AUTH_SHARED_KEY;
  2885. else if (ifsta->auth_algs & IEEE80211_AUTH_ALG_LEAP)
  2886. ifsta->auth_alg = WLAN_AUTH_LEAP;
  2887. else
  2888. ifsta->auth_alg = WLAN_AUTH_OPEN;
  2889. printk(KERN_DEBUG "%s: Initial auth_alg=%d\n", dev->name,
  2890. ifsta->auth_alg);
  2891. ifsta->auth_transaction = -1;
  2892. ifsta->flags &= ~IEEE80211_STA_ASSOCIATED;
  2893. ifsta->auth_tries = ifsta->assoc_tries = 0;
  2894. netif_carrier_off(dev);
  2895. }
  2896. void ieee80211_sta_req_auth(struct net_device *dev,
  2897. struct ieee80211_if_sta *ifsta)
  2898. {
  2899. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2900. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2901. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  2902. return;
  2903. if ((ifsta->flags & (IEEE80211_STA_BSSID_SET |
  2904. IEEE80211_STA_AUTO_BSSID_SEL)) &&
  2905. (ifsta->flags & (IEEE80211_STA_SSID_SET |
  2906. IEEE80211_STA_AUTO_SSID_SEL))) {
  2907. set_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request);
  2908. queue_work(local->hw.workqueue, &ifsta->work);
  2909. }
  2910. }
  2911. static int ieee80211_sta_match_ssid(struct ieee80211_if_sta *ifsta,
  2912. const char *ssid, int ssid_len)
  2913. {
  2914. int tmp, hidden_ssid;
  2915. if (ssid_len == ifsta->ssid_len &&
  2916. !memcmp(ifsta->ssid, ssid, ssid_len))
  2917. return 1;
  2918. if (ifsta->flags & IEEE80211_STA_AUTO_BSSID_SEL)
  2919. return 0;
  2920. hidden_ssid = 1;
  2921. tmp = ssid_len;
  2922. while (tmp--) {
  2923. if (ssid[tmp] != '\0') {
  2924. hidden_ssid = 0;
  2925. break;
  2926. }
  2927. }
  2928. if (hidden_ssid && ifsta->ssid_len == ssid_len)
  2929. return 1;
  2930. if (ssid_len == 1 && ssid[0] == ' ')
  2931. return 1;
  2932. return 0;
  2933. }
  2934. static int ieee80211_sta_config_auth(struct net_device *dev,
  2935. struct ieee80211_if_sta *ifsta)
  2936. {
  2937. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  2938. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  2939. struct ieee80211_sta_bss *bss, *selected = NULL;
  2940. int top_rssi = 0, freq;
  2941. if (!(ifsta->flags & (IEEE80211_STA_AUTO_SSID_SEL |
  2942. IEEE80211_STA_AUTO_BSSID_SEL | IEEE80211_STA_AUTO_CHANNEL_SEL))) {
  2943. ifsta->state = IEEE80211_AUTHENTICATE;
  2944. ieee80211_sta_reset_auth(dev, ifsta);
  2945. return 0;
  2946. }
  2947. spin_lock_bh(&local->sta_bss_lock);
  2948. freq = local->oper_channel->center_freq;
  2949. list_for_each_entry(bss, &local->sta_bss_list, list) {
  2950. if (!(bss->capability & WLAN_CAPABILITY_ESS))
  2951. continue;
  2952. if (!!(bss->capability & WLAN_CAPABILITY_PRIVACY) ^
  2953. !!sdata->default_key)
  2954. continue;
  2955. if (!(ifsta->flags & IEEE80211_STA_AUTO_CHANNEL_SEL) &&
  2956. bss->freq != freq)
  2957. continue;
  2958. if (!(ifsta->flags & IEEE80211_STA_AUTO_BSSID_SEL) &&
  2959. memcmp(bss->bssid, ifsta->bssid, ETH_ALEN))
  2960. continue;
  2961. if (!(ifsta->flags & IEEE80211_STA_AUTO_SSID_SEL) &&
  2962. !ieee80211_sta_match_ssid(ifsta, bss->ssid, bss->ssid_len))
  2963. continue;
  2964. if (!selected || top_rssi < bss->rssi) {
  2965. selected = bss;
  2966. top_rssi = bss->rssi;
  2967. }
  2968. }
  2969. if (selected)
  2970. atomic_inc(&selected->users);
  2971. spin_unlock_bh(&local->sta_bss_lock);
  2972. if (selected) {
  2973. ieee80211_set_freq(local, selected->freq);
  2974. if (!(ifsta->flags & IEEE80211_STA_SSID_SET))
  2975. ieee80211_sta_set_ssid(dev, selected->ssid,
  2976. selected->ssid_len);
  2977. ieee80211_sta_set_bssid(dev, selected->bssid);
  2978. ieee80211_sta_def_wmm_params(dev, selected, 0);
  2979. ieee80211_rx_bss_put(dev, selected);
  2980. ifsta->state = IEEE80211_AUTHENTICATE;
  2981. ieee80211_sta_reset_auth(dev, ifsta);
  2982. return 0;
  2983. } else {
  2984. if (ifsta->state != IEEE80211_AUTHENTICATE) {
  2985. if (ifsta->flags & IEEE80211_STA_AUTO_SSID_SEL)
  2986. ieee80211_sta_start_scan(dev, NULL, 0);
  2987. else
  2988. ieee80211_sta_start_scan(dev, ifsta->ssid,
  2989. ifsta->ssid_len);
  2990. ifsta->state = IEEE80211_AUTHENTICATE;
  2991. set_bit(IEEE80211_STA_REQ_AUTH, &ifsta->request);
  2992. } else
  2993. ifsta->state = IEEE80211_DISABLED;
  2994. }
  2995. return -1;
  2996. }
  2997. static int ieee80211_sta_create_ibss(struct net_device *dev,
  2998. struct ieee80211_if_sta *ifsta)
  2999. {
  3000. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3001. struct ieee80211_sta_bss *bss;
  3002. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3003. struct ieee80211_supported_band *sband;
  3004. u8 bssid[ETH_ALEN], *pos;
  3005. int i;
  3006. DECLARE_MAC_BUF(mac);
  3007. #if 0
  3008. /* Easier testing, use fixed BSSID. */
  3009. memset(bssid, 0xfe, ETH_ALEN);
  3010. #else
  3011. /* Generate random, not broadcast, locally administered BSSID. Mix in
  3012. * own MAC address to make sure that devices that do not have proper
  3013. * random number generator get different BSSID. */
  3014. get_random_bytes(bssid, ETH_ALEN);
  3015. for (i = 0; i < ETH_ALEN; i++)
  3016. bssid[i] ^= dev->dev_addr[i];
  3017. bssid[0] &= ~0x01;
  3018. bssid[0] |= 0x02;
  3019. #endif
  3020. printk(KERN_DEBUG "%s: Creating new IBSS network, BSSID %s\n",
  3021. dev->name, print_mac(mac, bssid));
  3022. bss = ieee80211_rx_bss_add(dev, bssid,
  3023. local->hw.conf.channel->center_freq,
  3024. sdata->u.sta.ssid, sdata->u.sta.ssid_len);
  3025. if (!bss)
  3026. return -ENOMEM;
  3027. bss->band = local->hw.conf.channel->band;
  3028. sband = local->hw.wiphy->bands[bss->band];
  3029. if (local->hw.conf.beacon_int == 0)
  3030. local->hw.conf.beacon_int = 10000;
  3031. bss->beacon_int = local->hw.conf.beacon_int;
  3032. bss->last_update = jiffies;
  3033. bss->capability = WLAN_CAPABILITY_IBSS;
  3034. if (sdata->default_key) {
  3035. bss->capability |= WLAN_CAPABILITY_PRIVACY;
  3036. } else
  3037. sdata->drop_unencrypted = 0;
  3038. bss->supp_rates_len = sband->n_bitrates;
  3039. pos = bss->supp_rates;
  3040. for (i = 0; i < sband->n_bitrates; i++) {
  3041. int rate = sband->bitrates[i].bitrate;
  3042. *pos++ = (u8) (rate / 5);
  3043. }
  3044. return ieee80211_sta_join_ibss(dev, ifsta, bss);
  3045. }
  3046. static int ieee80211_sta_find_ibss(struct net_device *dev,
  3047. struct ieee80211_if_sta *ifsta)
  3048. {
  3049. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3050. struct ieee80211_sta_bss *bss;
  3051. int found = 0;
  3052. u8 bssid[ETH_ALEN];
  3053. int active_ibss;
  3054. DECLARE_MAC_BUF(mac);
  3055. DECLARE_MAC_BUF(mac2);
  3056. if (ifsta->ssid_len == 0)
  3057. return -EINVAL;
  3058. active_ibss = ieee80211_sta_active_ibss(dev);
  3059. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  3060. printk(KERN_DEBUG "%s: sta_find_ibss (active_ibss=%d)\n",
  3061. dev->name, active_ibss);
  3062. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  3063. spin_lock_bh(&local->sta_bss_lock);
  3064. list_for_each_entry(bss, &local->sta_bss_list, list) {
  3065. if (ifsta->ssid_len != bss->ssid_len ||
  3066. memcmp(ifsta->ssid, bss->ssid, bss->ssid_len) != 0
  3067. || !(bss->capability & WLAN_CAPABILITY_IBSS))
  3068. continue;
  3069. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  3070. printk(KERN_DEBUG " bssid=%s found\n",
  3071. print_mac(mac, bss->bssid));
  3072. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  3073. memcpy(bssid, bss->bssid, ETH_ALEN);
  3074. found = 1;
  3075. if (active_ibss || memcmp(bssid, ifsta->bssid, ETH_ALEN) != 0)
  3076. break;
  3077. }
  3078. spin_unlock_bh(&local->sta_bss_lock);
  3079. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  3080. printk(KERN_DEBUG " sta_find_ibss: selected %s current "
  3081. "%s\n", print_mac(mac, bssid), print_mac(mac2, ifsta->bssid));
  3082. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  3083. if (found && memcmp(ifsta->bssid, bssid, ETH_ALEN) != 0 &&
  3084. (bss = ieee80211_rx_bss_get(dev, bssid,
  3085. local->hw.conf.channel->center_freq,
  3086. ifsta->ssid, ifsta->ssid_len))) {
  3087. printk(KERN_DEBUG "%s: Selected IBSS BSSID %s"
  3088. " based on configured SSID\n",
  3089. dev->name, print_mac(mac, bssid));
  3090. return ieee80211_sta_join_ibss(dev, ifsta, bss);
  3091. }
  3092. #ifdef CONFIG_MAC80211_IBSS_DEBUG
  3093. printk(KERN_DEBUG " did not try to join ibss\n");
  3094. #endif /* CONFIG_MAC80211_IBSS_DEBUG */
  3095. /* Selected IBSS not found in current scan results - try to scan */
  3096. if (ifsta->state == IEEE80211_IBSS_JOINED &&
  3097. !ieee80211_sta_active_ibss(dev)) {
  3098. mod_timer(&ifsta->timer, jiffies +
  3099. IEEE80211_IBSS_MERGE_INTERVAL);
  3100. } else if (time_after(jiffies, local->last_scan_completed +
  3101. IEEE80211_SCAN_INTERVAL)) {
  3102. printk(KERN_DEBUG "%s: Trigger new scan to find an IBSS to "
  3103. "join\n", dev->name);
  3104. return ieee80211_sta_req_scan(dev, ifsta->ssid,
  3105. ifsta->ssid_len);
  3106. } else if (ifsta->state != IEEE80211_IBSS_JOINED) {
  3107. int interval = IEEE80211_SCAN_INTERVAL;
  3108. if (time_after(jiffies, ifsta->ibss_join_req +
  3109. IEEE80211_IBSS_JOIN_TIMEOUT)) {
  3110. if ((ifsta->flags & IEEE80211_STA_CREATE_IBSS) &&
  3111. (!(local->oper_channel->flags &
  3112. IEEE80211_CHAN_NO_IBSS)))
  3113. return ieee80211_sta_create_ibss(dev, ifsta);
  3114. if (ifsta->flags & IEEE80211_STA_CREATE_IBSS) {
  3115. printk(KERN_DEBUG "%s: IBSS not allowed on"
  3116. " %d MHz\n", dev->name,
  3117. local->hw.conf.channel->center_freq);
  3118. }
  3119. /* No IBSS found - decrease scan interval and continue
  3120. * scanning. */
  3121. interval = IEEE80211_SCAN_INTERVAL_SLOW;
  3122. }
  3123. ifsta->state = IEEE80211_IBSS_SEARCH;
  3124. mod_timer(&ifsta->timer, jiffies + interval);
  3125. return 0;
  3126. }
  3127. return 0;
  3128. }
  3129. int ieee80211_sta_set_ssid(struct net_device *dev, char *ssid, size_t len)
  3130. {
  3131. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3132. struct ieee80211_if_sta *ifsta;
  3133. if (len > IEEE80211_MAX_SSID_LEN)
  3134. return -EINVAL;
  3135. ifsta = &sdata->u.sta;
  3136. if (ifsta->ssid_len != len || memcmp(ifsta->ssid, ssid, len) != 0)
  3137. ifsta->flags &= ~IEEE80211_STA_PREV_BSSID_SET;
  3138. memcpy(ifsta->ssid, ssid, len);
  3139. memset(ifsta->ssid + len, 0, IEEE80211_MAX_SSID_LEN - len);
  3140. ifsta->ssid_len = len;
  3141. if (len)
  3142. ifsta->flags |= IEEE80211_STA_SSID_SET;
  3143. else
  3144. ifsta->flags &= ~IEEE80211_STA_SSID_SET;
  3145. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS &&
  3146. !(ifsta->flags & IEEE80211_STA_BSSID_SET)) {
  3147. ifsta->ibss_join_req = jiffies;
  3148. ifsta->state = IEEE80211_IBSS_SEARCH;
  3149. return ieee80211_sta_find_ibss(dev, ifsta);
  3150. }
  3151. return 0;
  3152. }
  3153. int ieee80211_sta_get_ssid(struct net_device *dev, char *ssid, size_t *len)
  3154. {
  3155. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3156. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3157. memcpy(ssid, ifsta->ssid, ifsta->ssid_len);
  3158. *len = ifsta->ssid_len;
  3159. return 0;
  3160. }
  3161. int ieee80211_sta_set_bssid(struct net_device *dev, u8 *bssid)
  3162. {
  3163. struct ieee80211_sub_if_data *sdata;
  3164. struct ieee80211_if_sta *ifsta;
  3165. int res;
  3166. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3167. ifsta = &sdata->u.sta;
  3168. if (memcmp(ifsta->bssid, bssid, ETH_ALEN) != 0) {
  3169. memcpy(ifsta->bssid, bssid, ETH_ALEN);
  3170. res = ieee80211_if_config(dev);
  3171. if (res) {
  3172. printk(KERN_DEBUG "%s: Failed to config new BSSID to "
  3173. "the low-level driver\n", dev->name);
  3174. return res;
  3175. }
  3176. }
  3177. if (is_valid_ether_addr(bssid))
  3178. ifsta->flags |= IEEE80211_STA_BSSID_SET;
  3179. else
  3180. ifsta->flags &= ~IEEE80211_STA_BSSID_SET;
  3181. return 0;
  3182. }
  3183. static void ieee80211_send_nullfunc(struct ieee80211_local *local,
  3184. struct ieee80211_sub_if_data *sdata,
  3185. int powersave)
  3186. {
  3187. struct sk_buff *skb;
  3188. struct ieee80211_hdr *nullfunc;
  3189. u16 fc;
  3190. skb = dev_alloc_skb(local->hw.extra_tx_headroom + 24);
  3191. if (!skb) {
  3192. printk(KERN_DEBUG "%s: failed to allocate buffer for nullfunc "
  3193. "frame\n", sdata->dev->name);
  3194. return;
  3195. }
  3196. skb_reserve(skb, local->hw.extra_tx_headroom);
  3197. nullfunc = (struct ieee80211_hdr *) skb_put(skb, 24);
  3198. memset(nullfunc, 0, 24);
  3199. fc = IEEE80211_FTYPE_DATA | IEEE80211_STYPE_NULLFUNC |
  3200. IEEE80211_FCTL_TODS;
  3201. if (powersave)
  3202. fc |= IEEE80211_FCTL_PM;
  3203. nullfunc->frame_control = cpu_to_le16(fc);
  3204. memcpy(nullfunc->addr1, sdata->u.sta.bssid, ETH_ALEN);
  3205. memcpy(nullfunc->addr2, sdata->dev->dev_addr, ETH_ALEN);
  3206. memcpy(nullfunc->addr3, sdata->u.sta.bssid, ETH_ALEN);
  3207. ieee80211_sta_tx(sdata->dev, skb, 0);
  3208. }
  3209. static void ieee80211_restart_sta_timer(struct ieee80211_sub_if_data *sdata)
  3210. {
  3211. if (sdata->vif.type == IEEE80211_IF_TYPE_STA ||
  3212. ieee80211_vif_is_mesh(&sdata->vif))
  3213. ieee80211_sta_timer((unsigned long)sdata);
  3214. }
  3215. void ieee80211_scan_completed(struct ieee80211_hw *hw)
  3216. {
  3217. struct ieee80211_local *local = hw_to_local(hw);
  3218. struct net_device *dev = local->scan_dev;
  3219. struct ieee80211_sub_if_data *sdata;
  3220. union iwreq_data wrqu;
  3221. local->last_scan_completed = jiffies;
  3222. memset(&wrqu, 0, sizeof(wrqu));
  3223. wireless_send_event(dev, SIOCGIWSCAN, &wrqu, NULL);
  3224. if (local->sta_hw_scanning) {
  3225. local->sta_hw_scanning = 0;
  3226. if (ieee80211_hw_config(local))
  3227. printk(KERN_DEBUG "%s: failed to restore operational "
  3228. "channel after scan\n", dev->name);
  3229. /* Restart STA timer for HW scan case */
  3230. rcu_read_lock();
  3231. list_for_each_entry_rcu(sdata, &local->interfaces, list)
  3232. ieee80211_restart_sta_timer(sdata);
  3233. rcu_read_unlock();
  3234. goto done;
  3235. }
  3236. local->sta_sw_scanning = 0;
  3237. if (ieee80211_hw_config(local))
  3238. printk(KERN_DEBUG "%s: failed to restore operational "
  3239. "channel after scan\n", dev->name);
  3240. netif_tx_lock_bh(local->mdev);
  3241. local->filter_flags &= ~FIF_BCN_PRBRESP_PROMISC;
  3242. local->ops->configure_filter(local_to_hw(local),
  3243. FIF_BCN_PRBRESP_PROMISC,
  3244. &local->filter_flags,
  3245. local->mdev->mc_count,
  3246. local->mdev->mc_list);
  3247. netif_tx_unlock_bh(local->mdev);
  3248. rcu_read_lock();
  3249. list_for_each_entry_rcu(sdata, &local->interfaces, list) {
  3250. /* No need to wake the master device. */
  3251. if (sdata->dev == local->mdev)
  3252. continue;
  3253. /* Tell AP we're back */
  3254. if (sdata->vif.type == IEEE80211_IF_TYPE_STA &&
  3255. sdata->u.sta.flags & IEEE80211_STA_ASSOCIATED)
  3256. ieee80211_send_nullfunc(local, sdata, 0);
  3257. ieee80211_restart_sta_timer(sdata);
  3258. netif_wake_queue(sdata->dev);
  3259. }
  3260. rcu_read_unlock();
  3261. done:
  3262. sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3263. if (sdata->vif.type == IEEE80211_IF_TYPE_IBSS) {
  3264. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3265. if (!(ifsta->flags & IEEE80211_STA_BSSID_SET) ||
  3266. (!ifsta->state == IEEE80211_IBSS_JOINED &&
  3267. !ieee80211_sta_active_ibss(dev)))
  3268. ieee80211_sta_find_ibss(dev, ifsta);
  3269. }
  3270. }
  3271. EXPORT_SYMBOL(ieee80211_scan_completed);
  3272. void ieee80211_sta_scan_work(struct work_struct *work)
  3273. {
  3274. struct ieee80211_local *local =
  3275. container_of(work, struct ieee80211_local, scan_work.work);
  3276. struct net_device *dev = local->scan_dev;
  3277. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3278. struct ieee80211_supported_band *sband;
  3279. struct ieee80211_channel *chan;
  3280. int skip;
  3281. unsigned long next_delay = 0;
  3282. if (!local->sta_sw_scanning)
  3283. return;
  3284. switch (local->scan_state) {
  3285. case SCAN_SET_CHANNEL:
  3286. /*
  3287. * Get current scan band. scan_band may be IEEE80211_NUM_BANDS
  3288. * after we successfully scanned the last channel of the last
  3289. * band (and the last band is supported by the hw)
  3290. */
  3291. if (local->scan_band < IEEE80211_NUM_BANDS)
  3292. sband = local->hw.wiphy->bands[local->scan_band];
  3293. else
  3294. sband = NULL;
  3295. /*
  3296. * If we are at an unsupported band and have more bands
  3297. * left to scan, advance to the next supported one.
  3298. */
  3299. while (!sband && local->scan_band < IEEE80211_NUM_BANDS - 1) {
  3300. local->scan_band++;
  3301. sband = local->hw.wiphy->bands[local->scan_band];
  3302. local->scan_channel_idx = 0;
  3303. }
  3304. /* if no more bands/channels left, complete scan */
  3305. if (!sband || local->scan_channel_idx >= sband->n_channels) {
  3306. ieee80211_scan_completed(local_to_hw(local));
  3307. return;
  3308. }
  3309. skip = 0;
  3310. chan = &sband->channels[local->scan_channel_idx];
  3311. if (chan->flags & IEEE80211_CHAN_DISABLED ||
  3312. (sdata->vif.type == IEEE80211_IF_TYPE_IBSS &&
  3313. chan->flags & IEEE80211_CHAN_NO_IBSS))
  3314. skip = 1;
  3315. if (!skip) {
  3316. local->scan_channel = chan;
  3317. if (ieee80211_hw_config(local)) {
  3318. printk(KERN_DEBUG "%s: failed to set freq to "
  3319. "%d MHz for scan\n", dev->name,
  3320. chan->center_freq);
  3321. skip = 1;
  3322. }
  3323. }
  3324. /* advance state machine to next channel/band */
  3325. local->scan_channel_idx++;
  3326. if (local->scan_channel_idx >= sband->n_channels) {
  3327. /*
  3328. * scan_band may end up == IEEE80211_NUM_BANDS, but
  3329. * we'll catch that case above and complete the scan
  3330. * if that is the case.
  3331. */
  3332. local->scan_band++;
  3333. local->scan_channel_idx = 0;
  3334. }
  3335. if (skip)
  3336. break;
  3337. next_delay = IEEE80211_PROBE_DELAY +
  3338. usecs_to_jiffies(local->hw.channel_change_time);
  3339. local->scan_state = SCAN_SEND_PROBE;
  3340. break;
  3341. case SCAN_SEND_PROBE:
  3342. next_delay = IEEE80211_PASSIVE_CHANNEL_TIME;
  3343. local->scan_state = SCAN_SET_CHANNEL;
  3344. if (local->scan_channel->flags & IEEE80211_CHAN_PASSIVE_SCAN)
  3345. break;
  3346. ieee80211_send_probe_req(dev, NULL, local->scan_ssid,
  3347. local->scan_ssid_len);
  3348. next_delay = IEEE80211_CHANNEL_TIME;
  3349. break;
  3350. }
  3351. if (local->sta_sw_scanning)
  3352. queue_delayed_work(local->hw.workqueue, &local->scan_work,
  3353. next_delay);
  3354. }
  3355. static int ieee80211_sta_start_scan(struct net_device *dev,
  3356. u8 *ssid, size_t ssid_len)
  3357. {
  3358. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3359. struct ieee80211_sub_if_data *sdata;
  3360. if (ssid_len > IEEE80211_MAX_SSID_LEN)
  3361. return -EINVAL;
  3362. /* MLME-SCAN.request (page 118) page 144 (11.1.3.1)
  3363. * BSSType: INFRASTRUCTURE, INDEPENDENT, ANY_BSS
  3364. * BSSID: MACAddress
  3365. * SSID
  3366. * ScanType: ACTIVE, PASSIVE
  3367. * ProbeDelay: delay (in microseconds) to be used prior to transmitting
  3368. * a Probe frame during active scanning
  3369. * ChannelList
  3370. * MinChannelTime (>= ProbeDelay), in TU
  3371. * MaxChannelTime: (>= MinChannelTime), in TU
  3372. */
  3373. /* MLME-SCAN.confirm
  3374. * BSSDescriptionSet
  3375. * ResultCode: SUCCESS, INVALID_PARAMETERS
  3376. */
  3377. if (local->sta_sw_scanning || local->sta_hw_scanning) {
  3378. if (local->scan_dev == dev)
  3379. return 0;
  3380. return -EBUSY;
  3381. }
  3382. if (local->ops->hw_scan) {
  3383. int rc = local->ops->hw_scan(local_to_hw(local),
  3384. ssid, ssid_len);
  3385. if (!rc) {
  3386. local->sta_hw_scanning = 1;
  3387. local->scan_dev = dev;
  3388. }
  3389. return rc;
  3390. }
  3391. local->sta_sw_scanning = 1;
  3392. rcu_read_lock();
  3393. list_for_each_entry_rcu(sdata, &local->interfaces, list) {
  3394. /* Don't stop the master interface, otherwise we can't transmit
  3395. * probes! */
  3396. if (sdata->dev == local->mdev)
  3397. continue;
  3398. netif_stop_queue(sdata->dev);
  3399. if (sdata->vif.type == IEEE80211_IF_TYPE_STA &&
  3400. (sdata->u.sta.flags & IEEE80211_STA_ASSOCIATED))
  3401. ieee80211_send_nullfunc(local, sdata, 1);
  3402. }
  3403. rcu_read_unlock();
  3404. if (ssid) {
  3405. local->scan_ssid_len = ssid_len;
  3406. memcpy(local->scan_ssid, ssid, ssid_len);
  3407. } else
  3408. local->scan_ssid_len = 0;
  3409. local->scan_state = SCAN_SET_CHANNEL;
  3410. local->scan_channel_idx = 0;
  3411. local->scan_band = IEEE80211_BAND_2GHZ;
  3412. local->scan_dev = dev;
  3413. netif_tx_lock_bh(local->mdev);
  3414. local->filter_flags |= FIF_BCN_PRBRESP_PROMISC;
  3415. local->ops->configure_filter(local_to_hw(local),
  3416. FIF_BCN_PRBRESP_PROMISC,
  3417. &local->filter_flags,
  3418. local->mdev->mc_count,
  3419. local->mdev->mc_list);
  3420. netif_tx_unlock_bh(local->mdev);
  3421. /* TODO: start scan as soon as all nullfunc frames are ACKed */
  3422. queue_delayed_work(local->hw.workqueue, &local->scan_work,
  3423. IEEE80211_CHANNEL_TIME);
  3424. return 0;
  3425. }
  3426. int ieee80211_sta_req_scan(struct net_device *dev, u8 *ssid, size_t ssid_len)
  3427. {
  3428. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3429. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3430. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3431. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  3432. return ieee80211_sta_start_scan(dev, ssid, ssid_len);
  3433. if (local->sta_sw_scanning || local->sta_hw_scanning) {
  3434. if (local->scan_dev == dev)
  3435. return 0;
  3436. return -EBUSY;
  3437. }
  3438. ifsta->scan_ssid_len = ssid_len;
  3439. if (ssid_len)
  3440. memcpy(ifsta->scan_ssid, ssid, ssid_len);
  3441. set_bit(IEEE80211_STA_REQ_SCAN, &ifsta->request);
  3442. queue_work(local->hw.workqueue, &ifsta->work);
  3443. return 0;
  3444. }
  3445. static char *
  3446. ieee80211_sta_scan_result(struct net_device *dev,
  3447. struct ieee80211_sta_bss *bss,
  3448. char *current_ev, char *end_buf)
  3449. {
  3450. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3451. struct iw_event iwe;
  3452. if (time_after(jiffies,
  3453. bss->last_update + IEEE80211_SCAN_RESULT_EXPIRE))
  3454. return current_ev;
  3455. memset(&iwe, 0, sizeof(iwe));
  3456. iwe.cmd = SIOCGIWAP;
  3457. iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
  3458. memcpy(iwe.u.ap_addr.sa_data, bss->bssid, ETH_ALEN);
  3459. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3460. IW_EV_ADDR_LEN);
  3461. memset(&iwe, 0, sizeof(iwe));
  3462. iwe.cmd = SIOCGIWESSID;
  3463. if (bss_mesh_cfg(bss)) {
  3464. iwe.u.data.length = bss_mesh_id_len(bss);
  3465. iwe.u.data.flags = 1;
  3466. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  3467. bss_mesh_id(bss));
  3468. } else {
  3469. iwe.u.data.length = bss->ssid_len;
  3470. iwe.u.data.flags = 1;
  3471. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  3472. bss->ssid);
  3473. }
  3474. if (bss->capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS)
  3475. || bss_mesh_cfg(bss)) {
  3476. memset(&iwe, 0, sizeof(iwe));
  3477. iwe.cmd = SIOCGIWMODE;
  3478. if (bss_mesh_cfg(bss))
  3479. iwe.u.mode = IW_MODE_MESH;
  3480. else if (bss->capability & WLAN_CAPABILITY_ESS)
  3481. iwe.u.mode = IW_MODE_MASTER;
  3482. else
  3483. iwe.u.mode = IW_MODE_ADHOC;
  3484. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3485. IW_EV_UINT_LEN);
  3486. }
  3487. memset(&iwe, 0, sizeof(iwe));
  3488. iwe.cmd = SIOCGIWFREQ;
  3489. iwe.u.freq.m = bss->freq;
  3490. iwe.u.freq.e = 6;
  3491. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3492. IW_EV_FREQ_LEN);
  3493. memset(&iwe, 0, sizeof(iwe));
  3494. iwe.cmd = SIOCGIWFREQ;
  3495. iwe.u.freq.m = ieee80211_frequency_to_channel(bss->freq);
  3496. iwe.u.freq.e = 0;
  3497. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3498. IW_EV_FREQ_LEN);
  3499. memset(&iwe, 0, sizeof(iwe));
  3500. iwe.cmd = IWEVQUAL;
  3501. iwe.u.qual.qual = bss->signal;
  3502. iwe.u.qual.level = bss->rssi;
  3503. iwe.u.qual.noise = bss->noise;
  3504. iwe.u.qual.updated = local->wstats_flags;
  3505. current_ev = iwe_stream_add_event(current_ev, end_buf, &iwe,
  3506. IW_EV_QUAL_LEN);
  3507. memset(&iwe, 0, sizeof(iwe));
  3508. iwe.cmd = SIOCGIWENCODE;
  3509. if (bss->capability & WLAN_CAPABILITY_PRIVACY)
  3510. iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
  3511. else
  3512. iwe.u.data.flags = IW_ENCODE_DISABLED;
  3513. iwe.u.data.length = 0;
  3514. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe, "");
  3515. if (bss && bss->wpa_ie) {
  3516. memset(&iwe, 0, sizeof(iwe));
  3517. iwe.cmd = IWEVGENIE;
  3518. iwe.u.data.length = bss->wpa_ie_len;
  3519. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  3520. bss->wpa_ie);
  3521. }
  3522. if (bss && bss->rsn_ie) {
  3523. memset(&iwe, 0, sizeof(iwe));
  3524. iwe.cmd = IWEVGENIE;
  3525. iwe.u.data.length = bss->rsn_ie_len;
  3526. current_ev = iwe_stream_add_point(current_ev, end_buf, &iwe,
  3527. bss->rsn_ie);
  3528. }
  3529. if (bss && bss->supp_rates_len > 0) {
  3530. /* display all supported rates in readable format */
  3531. char *p = current_ev + IW_EV_LCP_LEN;
  3532. int i;
  3533. memset(&iwe, 0, sizeof(iwe));
  3534. iwe.cmd = SIOCGIWRATE;
  3535. /* Those two flags are ignored... */
  3536. iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
  3537. for (i = 0; i < bss->supp_rates_len; i++) {
  3538. iwe.u.bitrate.value = ((bss->supp_rates[i] &
  3539. 0x7f) * 500000);
  3540. p = iwe_stream_add_value(current_ev, p,
  3541. end_buf, &iwe, IW_EV_PARAM_LEN);
  3542. }
  3543. current_ev = p;
  3544. }
  3545. if (bss) {
  3546. char *buf;
  3547. buf = kmalloc(30, GFP_ATOMIC);
  3548. if (buf) {
  3549. memset(&iwe, 0, sizeof(iwe));
  3550. iwe.cmd = IWEVCUSTOM;
  3551. sprintf(buf, "tsf=%016llx", (unsigned long long)(bss->timestamp));
  3552. iwe.u.data.length = strlen(buf);
  3553. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3554. &iwe, buf);
  3555. kfree(buf);
  3556. }
  3557. }
  3558. if (bss_mesh_cfg(bss)) {
  3559. char *buf;
  3560. u8 *cfg = bss_mesh_cfg(bss);
  3561. buf = kmalloc(50, GFP_ATOMIC);
  3562. if (buf) {
  3563. memset(&iwe, 0, sizeof(iwe));
  3564. iwe.cmd = IWEVCUSTOM;
  3565. sprintf(buf, "Mesh network (version %d)", cfg[0]);
  3566. iwe.u.data.length = strlen(buf);
  3567. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3568. &iwe, buf);
  3569. sprintf(buf, "Path Selection Protocol ID: "
  3570. "0x%02X%02X%02X%02X", cfg[1], cfg[2], cfg[3],
  3571. cfg[4]);
  3572. iwe.u.data.length = strlen(buf);
  3573. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3574. &iwe, buf);
  3575. sprintf(buf, "Path Selection Metric ID: "
  3576. "0x%02X%02X%02X%02X", cfg[5], cfg[6], cfg[7],
  3577. cfg[8]);
  3578. iwe.u.data.length = strlen(buf);
  3579. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3580. &iwe, buf);
  3581. sprintf(buf, "Congestion Control Mode ID: "
  3582. "0x%02X%02X%02X%02X", cfg[9], cfg[10],
  3583. cfg[11], cfg[12]);
  3584. iwe.u.data.length = strlen(buf);
  3585. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3586. &iwe, buf);
  3587. sprintf(buf, "Channel Precedence: "
  3588. "0x%02X%02X%02X%02X", cfg[13], cfg[14],
  3589. cfg[15], cfg[16]);
  3590. iwe.u.data.length = strlen(buf);
  3591. current_ev = iwe_stream_add_point(current_ev, end_buf,
  3592. &iwe, buf);
  3593. kfree(buf);
  3594. }
  3595. }
  3596. return current_ev;
  3597. }
  3598. int ieee80211_sta_scan_results(struct net_device *dev, char *buf, size_t len)
  3599. {
  3600. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3601. char *current_ev = buf;
  3602. char *end_buf = buf + len;
  3603. struct ieee80211_sta_bss *bss;
  3604. spin_lock_bh(&local->sta_bss_lock);
  3605. list_for_each_entry(bss, &local->sta_bss_list, list) {
  3606. if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
  3607. spin_unlock_bh(&local->sta_bss_lock);
  3608. return -E2BIG;
  3609. }
  3610. current_ev = ieee80211_sta_scan_result(dev, bss, current_ev,
  3611. end_buf);
  3612. }
  3613. spin_unlock_bh(&local->sta_bss_lock);
  3614. return current_ev - buf;
  3615. }
  3616. int ieee80211_sta_set_extra_ie(struct net_device *dev, char *ie, size_t len)
  3617. {
  3618. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3619. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3620. kfree(ifsta->extra_ie);
  3621. if (len == 0) {
  3622. ifsta->extra_ie = NULL;
  3623. ifsta->extra_ie_len = 0;
  3624. return 0;
  3625. }
  3626. ifsta->extra_ie = kmalloc(len, GFP_KERNEL);
  3627. if (!ifsta->extra_ie) {
  3628. ifsta->extra_ie_len = 0;
  3629. return -ENOMEM;
  3630. }
  3631. memcpy(ifsta->extra_ie, ie, len);
  3632. ifsta->extra_ie_len = len;
  3633. return 0;
  3634. }
  3635. struct sta_info * ieee80211_ibss_add_sta(struct net_device *dev,
  3636. struct sk_buff *skb, u8 *bssid,
  3637. u8 *addr)
  3638. {
  3639. struct ieee80211_local *local = wdev_priv(dev->ieee80211_ptr);
  3640. struct sta_info *sta;
  3641. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3642. DECLARE_MAC_BUF(mac);
  3643. /* TODO: Could consider removing the least recently used entry and
  3644. * allow new one to be added. */
  3645. if (local->num_sta >= IEEE80211_IBSS_MAX_STA_ENTRIES) {
  3646. if (net_ratelimit()) {
  3647. printk(KERN_DEBUG "%s: No room for a new IBSS STA "
  3648. "entry %s\n", dev->name, print_mac(mac, addr));
  3649. }
  3650. return NULL;
  3651. }
  3652. printk(KERN_DEBUG "%s: Adding new IBSS station %s (dev=%s)\n",
  3653. wiphy_name(local->hw.wiphy), print_mac(mac, addr), dev->name);
  3654. sta = sta_info_alloc(sdata, addr, GFP_ATOMIC);
  3655. if (!sta)
  3656. return NULL;
  3657. sta->flags |= WLAN_STA_AUTHORIZED;
  3658. sta->supp_rates[local->hw.conf.channel->band] =
  3659. sdata->u.sta.supp_rates_bits[local->hw.conf.channel->band];
  3660. rate_control_rate_init(sta, local);
  3661. if (sta_info_insert(sta))
  3662. return NULL;
  3663. return sta;
  3664. }
  3665. int ieee80211_sta_deauthenticate(struct net_device *dev, u16 reason)
  3666. {
  3667. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3668. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3669. printk(KERN_DEBUG "%s: deauthenticate(reason=%d)\n",
  3670. dev->name, reason);
  3671. if (sdata->vif.type != IEEE80211_IF_TYPE_STA &&
  3672. sdata->vif.type != IEEE80211_IF_TYPE_IBSS)
  3673. return -EINVAL;
  3674. ieee80211_send_deauth(dev, ifsta, reason);
  3675. ieee80211_set_disassoc(dev, ifsta, 1);
  3676. return 0;
  3677. }
  3678. int ieee80211_sta_disassociate(struct net_device *dev, u16 reason)
  3679. {
  3680. struct ieee80211_sub_if_data *sdata = IEEE80211_DEV_TO_SUB_IF(dev);
  3681. struct ieee80211_if_sta *ifsta = &sdata->u.sta;
  3682. printk(KERN_DEBUG "%s: disassociate(reason=%d)\n",
  3683. dev->name, reason);
  3684. if (sdata->vif.type != IEEE80211_IF_TYPE_STA)
  3685. return -EINVAL;
  3686. if (!(ifsta->flags & IEEE80211_STA_ASSOCIATED))
  3687. return -1;
  3688. ieee80211_send_disassoc(dev, ifsta, reason);
  3689. ieee80211_set_disassoc(dev, ifsta, 0);
  3690. return 0;
  3691. }
  3692. void ieee80211_notify_mac(struct ieee80211_hw *hw,
  3693. enum ieee80211_notification_types notif_type)
  3694. {
  3695. struct ieee80211_local *local = hw_to_local(hw);
  3696. struct ieee80211_sub_if_data *sdata;
  3697. switch (notif_type) {
  3698. case IEEE80211_NOTIFY_RE_ASSOC:
  3699. rcu_read_lock();
  3700. list_for_each_entry_rcu(sdata, &local->interfaces, list) {
  3701. if (sdata->vif.type == IEEE80211_IF_TYPE_STA) {
  3702. ieee80211_sta_req_auth(sdata->dev,
  3703. &sdata->u.sta);
  3704. }
  3705. }
  3706. rcu_read_unlock();
  3707. break;
  3708. }
  3709. }
  3710. EXPORT_SYMBOL(ieee80211_notify_mac);