aio.c 35 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416
  1. /*
  2. * An async IO implementation for Linux
  3. * Written by Benjamin LaHaise <bcrl@kvack.org>
  4. *
  5. * Implements an efficient asynchronous io interface.
  6. *
  7. * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
  8. *
  9. * See ../COPYING for licensing terms.
  10. */
  11. #define pr_fmt(fmt) "%s: " fmt, __func__
  12. #include <linux/kernel.h>
  13. #include <linux/init.h>
  14. #include <linux/errno.h>
  15. #include <linux/time.h>
  16. #include <linux/aio_abi.h>
  17. #include <linux/export.h>
  18. #include <linux/syscalls.h>
  19. #include <linux/backing-dev.h>
  20. #include <linux/uio.h>
  21. #include <linux/sched.h>
  22. #include <linux/fs.h>
  23. #include <linux/file.h>
  24. #include <linux/mm.h>
  25. #include <linux/mman.h>
  26. #include <linux/mmu_context.h>
  27. #include <linux/slab.h>
  28. #include <linux/timer.h>
  29. #include <linux/aio.h>
  30. #include <linux/highmem.h>
  31. #include <linux/workqueue.h>
  32. #include <linux/security.h>
  33. #include <linux/eventfd.h>
  34. #include <linux/blkdev.h>
  35. #include <linux/compat.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/migrate.h>
  38. #include <linux/ramfs.h>
  39. #include <asm/kmap_types.h>
  40. #include <asm/uaccess.h>
  41. #include "internal.h"
  42. #define AIO_RING_MAGIC 0xa10a10a1
  43. #define AIO_RING_COMPAT_FEATURES 1
  44. #define AIO_RING_INCOMPAT_FEATURES 0
  45. struct aio_ring {
  46. unsigned id; /* kernel internal index number */
  47. unsigned nr; /* number of io_events */
  48. unsigned head;
  49. unsigned tail;
  50. unsigned magic;
  51. unsigned compat_features;
  52. unsigned incompat_features;
  53. unsigned header_length; /* size of aio_ring */
  54. struct io_event io_events[0];
  55. }; /* 128 bytes + ring size */
  56. #define AIO_RING_PAGES 8
  57. struct kioctx {
  58. atomic_t users;
  59. atomic_t dead;
  60. /* This needs improving */
  61. unsigned long user_id;
  62. struct hlist_node list;
  63. /*
  64. * This is what userspace passed to io_setup(), it's not used for
  65. * anything but counting against the global max_reqs quota.
  66. *
  67. * The real limit is nr_events - 1, which will be larger (see
  68. * aio_setup_ring())
  69. */
  70. unsigned max_reqs;
  71. /* Size of ringbuffer, in units of struct io_event */
  72. unsigned nr_events;
  73. unsigned long mmap_base;
  74. unsigned long mmap_size;
  75. struct page **ring_pages;
  76. long nr_pages;
  77. struct rcu_head rcu_head;
  78. struct work_struct rcu_work;
  79. struct {
  80. atomic_t reqs_active;
  81. } ____cacheline_aligned_in_smp;
  82. struct {
  83. spinlock_t ctx_lock;
  84. struct list_head active_reqs; /* used for cancellation */
  85. } ____cacheline_aligned_in_smp;
  86. struct {
  87. struct mutex ring_lock;
  88. wait_queue_head_t wait;
  89. } ____cacheline_aligned_in_smp;
  90. struct {
  91. unsigned tail;
  92. spinlock_t completion_lock;
  93. } ____cacheline_aligned_in_smp;
  94. struct page *internal_pages[AIO_RING_PAGES];
  95. struct file *aio_ring_file;
  96. };
  97. /*------ sysctl variables----*/
  98. static DEFINE_SPINLOCK(aio_nr_lock);
  99. unsigned long aio_nr; /* current system wide number of aio requests */
  100. unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
  101. /*----end sysctl variables---*/
  102. static struct kmem_cache *kiocb_cachep;
  103. static struct kmem_cache *kioctx_cachep;
  104. /* aio_setup
  105. * Creates the slab caches used by the aio routines, panic on
  106. * failure as this is done early during the boot sequence.
  107. */
  108. static int __init aio_setup(void)
  109. {
  110. kiocb_cachep = KMEM_CACHE(kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
  111. kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
  112. pr_debug("sizeof(struct page) = %zu\n", sizeof(struct page));
  113. return 0;
  114. }
  115. __initcall(aio_setup);
  116. static void aio_free_ring(struct kioctx *ctx)
  117. {
  118. int i;
  119. struct file *aio_ring_file = ctx->aio_ring_file;
  120. for (i = 0; i < ctx->nr_pages; i++) {
  121. pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
  122. page_count(ctx->ring_pages[i]));
  123. put_page(ctx->ring_pages[i]);
  124. }
  125. if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages)
  126. kfree(ctx->ring_pages);
  127. if (aio_ring_file) {
  128. truncate_setsize(aio_ring_file->f_inode, 0);
  129. pr_debug("pid(%d) i_nlink=%u d_count=%d d_unhashed=%d i_count=%d\n",
  130. current->pid, aio_ring_file->f_inode->i_nlink,
  131. aio_ring_file->f_path.dentry->d_count,
  132. d_unhashed(aio_ring_file->f_path.dentry),
  133. atomic_read(&aio_ring_file->f_inode->i_count));
  134. fput(aio_ring_file);
  135. ctx->aio_ring_file = NULL;
  136. }
  137. }
  138. static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
  139. {
  140. vma->vm_ops = &generic_file_vm_ops;
  141. return 0;
  142. }
  143. static const struct file_operations aio_ring_fops = {
  144. .mmap = aio_ring_mmap,
  145. };
  146. static int aio_set_page_dirty(struct page *page)
  147. {
  148. return 0;
  149. }
  150. static int aio_migratepage(struct address_space *mapping, struct page *new,
  151. struct page *old, enum migrate_mode mode)
  152. {
  153. struct kioctx *ctx = mapping->private_data;
  154. unsigned long flags;
  155. unsigned idx = old->index;
  156. int rc;
  157. /* Writeback must be complete */
  158. BUG_ON(PageWriteback(old));
  159. put_page(old);
  160. rc = migrate_page_move_mapping(mapping, new, old, NULL, mode);
  161. if (rc != MIGRATEPAGE_SUCCESS) {
  162. get_page(old);
  163. return rc;
  164. }
  165. get_page(new);
  166. spin_lock_irqsave(&ctx->completion_lock, flags);
  167. migrate_page_copy(new, old);
  168. ctx->ring_pages[idx] = new;
  169. spin_unlock_irqrestore(&ctx->completion_lock, flags);
  170. return rc;
  171. }
  172. static const struct address_space_operations aio_ctx_aops = {
  173. .set_page_dirty = aio_set_page_dirty,
  174. .migratepage = aio_migratepage,
  175. };
  176. static int aio_setup_ring(struct kioctx *ctx)
  177. {
  178. struct aio_ring *ring;
  179. unsigned nr_events = ctx->max_reqs;
  180. struct mm_struct *mm = current->mm;
  181. unsigned long size, populate;
  182. int nr_pages;
  183. int i;
  184. struct file *file;
  185. /* Compensate for the ring buffer's head/tail overlap entry */
  186. nr_events += 2; /* 1 is required, 2 for good luck */
  187. size = sizeof(struct aio_ring);
  188. size += sizeof(struct io_event) * nr_events;
  189. nr_pages = PFN_UP(size);
  190. if (nr_pages < 0)
  191. return -EINVAL;
  192. file = anon_inode_getfile_private("[aio]", &aio_ring_fops, ctx, O_RDWR);
  193. if (IS_ERR(file)) {
  194. ctx->aio_ring_file = NULL;
  195. return -EAGAIN;
  196. }
  197. file->f_inode->i_mapping->a_ops = &aio_ctx_aops;
  198. file->f_inode->i_mapping->private_data = ctx;
  199. file->f_inode->i_size = PAGE_SIZE * (loff_t)nr_pages;
  200. for (i = 0; i < nr_pages; i++) {
  201. struct page *page;
  202. page = find_or_create_page(file->f_inode->i_mapping,
  203. i, GFP_HIGHUSER | __GFP_ZERO);
  204. if (!page)
  205. break;
  206. pr_debug("pid(%d) page[%d]->count=%d\n",
  207. current->pid, i, page_count(page));
  208. SetPageUptodate(page);
  209. SetPageDirty(page);
  210. unlock_page(page);
  211. }
  212. ctx->aio_ring_file = file;
  213. nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
  214. / sizeof(struct io_event);
  215. ctx->ring_pages = ctx->internal_pages;
  216. if (nr_pages > AIO_RING_PAGES) {
  217. ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
  218. GFP_KERNEL);
  219. if (!ctx->ring_pages)
  220. return -ENOMEM;
  221. }
  222. ctx->mmap_size = nr_pages * PAGE_SIZE;
  223. pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
  224. down_write(&mm->mmap_sem);
  225. ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
  226. PROT_READ | PROT_WRITE,
  227. MAP_SHARED | MAP_POPULATE, 0, &populate);
  228. if (IS_ERR((void *)ctx->mmap_base)) {
  229. up_write(&mm->mmap_sem);
  230. ctx->mmap_size = 0;
  231. aio_free_ring(ctx);
  232. return -EAGAIN;
  233. }
  234. up_write(&mm->mmap_sem);
  235. mm_populate(ctx->mmap_base, populate);
  236. pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
  237. ctx->nr_pages = get_user_pages(current, mm, ctx->mmap_base, nr_pages,
  238. 1, 0, ctx->ring_pages, NULL);
  239. for (i = 0; i < ctx->nr_pages; i++)
  240. put_page(ctx->ring_pages[i]);
  241. if (unlikely(ctx->nr_pages != nr_pages)) {
  242. aio_free_ring(ctx);
  243. return -EAGAIN;
  244. }
  245. ctx->user_id = ctx->mmap_base;
  246. ctx->nr_events = nr_events; /* trusted copy */
  247. ring = kmap_atomic(ctx->ring_pages[0]);
  248. ring->nr = nr_events; /* user copy */
  249. ring->id = ctx->user_id;
  250. ring->head = ring->tail = 0;
  251. ring->magic = AIO_RING_MAGIC;
  252. ring->compat_features = AIO_RING_COMPAT_FEATURES;
  253. ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
  254. ring->header_length = sizeof(struct aio_ring);
  255. kunmap_atomic(ring);
  256. flush_dcache_page(ctx->ring_pages[0]);
  257. return 0;
  258. }
  259. #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
  260. #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
  261. #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
  262. void kiocb_set_cancel_fn(struct kiocb *req, kiocb_cancel_fn *cancel)
  263. {
  264. struct kioctx *ctx = req->ki_ctx;
  265. unsigned long flags;
  266. spin_lock_irqsave(&ctx->ctx_lock, flags);
  267. if (!req->ki_list.next)
  268. list_add(&req->ki_list, &ctx->active_reqs);
  269. req->ki_cancel = cancel;
  270. spin_unlock_irqrestore(&ctx->ctx_lock, flags);
  271. }
  272. EXPORT_SYMBOL(kiocb_set_cancel_fn);
  273. static int kiocb_cancel(struct kioctx *ctx, struct kiocb *kiocb,
  274. struct io_event *res)
  275. {
  276. kiocb_cancel_fn *old, *cancel;
  277. int ret = -EINVAL;
  278. /*
  279. * Don't want to set kiocb->ki_cancel = KIOCB_CANCELLED unless it
  280. * actually has a cancel function, hence the cmpxchg()
  281. */
  282. cancel = ACCESS_ONCE(kiocb->ki_cancel);
  283. do {
  284. if (!cancel || cancel == KIOCB_CANCELLED)
  285. return ret;
  286. old = cancel;
  287. cancel = cmpxchg(&kiocb->ki_cancel, old, KIOCB_CANCELLED);
  288. } while (cancel != old);
  289. atomic_inc(&kiocb->ki_users);
  290. spin_unlock_irq(&ctx->ctx_lock);
  291. memset(res, 0, sizeof(*res));
  292. res->obj = (u64)(unsigned long)kiocb->ki_obj.user;
  293. res->data = kiocb->ki_user_data;
  294. ret = cancel(kiocb, res);
  295. spin_lock_irq(&ctx->ctx_lock);
  296. return ret;
  297. }
  298. static void free_ioctx_rcu(struct rcu_head *head)
  299. {
  300. struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
  301. kmem_cache_free(kioctx_cachep, ctx);
  302. }
  303. /*
  304. * When this function runs, the kioctx has been removed from the "hash table"
  305. * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
  306. * now it's safe to cancel any that need to be.
  307. */
  308. static void free_ioctx(struct kioctx *ctx)
  309. {
  310. struct aio_ring *ring;
  311. struct io_event res;
  312. struct kiocb *req;
  313. unsigned head, avail;
  314. spin_lock_irq(&ctx->ctx_lock);
  315. while (!list_empty(&ctx->active_reqs)) {
  316. req = list_first_entry(&ctx->active_reqs,
  317. struct kiocb, ki_list);
  318. list_del_init(&req->ki_list);
  319. kiocb_cancel(ctx, req, &res);
  320. }
  321. spin_unlock_irq(&ctx->ctx_lock);
  322. ring = kmap_atomic(ctx->ring_pages[0]);
  323. head = ring->head;
  324. kunmap_atomic(ring);
  325. while (atomic_read(&ctx->reqs_active) > 0) {
  326. wait_event(ctx->wait,
  327. head != ctx->tail ||
  328. atomic_read(&ctx->reqs_active) <= 0);
  329. avail = (head <= ctx->tail ? ctx->tail : ctx->nr_events) - head;
  330. atomic_sub(avail, &ctx->reqs_active);
  331. head += avail;
  332. head %= ctx->nr_events;
  333. }
  334. WARN_ON(atomic_read(&ctx->reqs_active) < 0);
  335. aio_free_ring(ctx);
  336. pr_debug("freeing %p\n", ctx);
  337. /*
  338. * Here the call_rcu() is between the wait_event() for reqs_active to
  339. * hit 0, and freeing the ioctx.
  340. *
  341. * aio_complete() decrements reqs_active, but it has to touch the ioctx
  342. * after to issue a wakeup so we use rcu.
  343. */
  344. call_rcu(&ctx->rcu_head, free_ioctx_rcu);
  345. }
  346. static void put_ioctx(struct kioctx *ctx)
  347. {
  348. if (unlikely(atomic_dec_and_test(&ctx->users)))
  349. free_ioctx(ctx);
  350. }
  351. /* ioctx_alloc
  352. * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
  353. */
  354. static struct kioctx *ioctx_alloc(unsigned nr_events)
  355. {
  356. struct mm_struct *mm = current->mm;
  357. struct kioctx *ctx;
  358. int err = -ENOMEM;
  359. /* Prevent overflows */
  360. if ((nr_events > (0x10000000U / sizeof(struct io_event))) ||
  361. (nr_events > (0x10000000U / sizeof(struct kiocb)))) {
  362. pr_debug("ENOMEM: nr_events too high\n");
  363. return ERR_PTR(-EINVAL);
  364. }
  365. if (!nr_events || (unsigned long)nr_events > aio_max_nr)
  366. return ERR_PTR(-EAGAIN);
  367. ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
  368. if (!ctx)
  369. return ERR_PTR(-ENOMEM);
  370. ctx->max_reqs = nr_events;
  371. atomic_set(&ctx->users, 2);
  372. atomic_set(&ctx->dead, 0);
  373. spin_lock_init(&ctx->ctx_lock);
  374. spin_lock_init(&ctx->completion_lock);
  375. mutex_init(&ctx->ring_lock);
  376. init_waitqueue_head(&ctx->wait);
  377. INIT_LIST_HEAD(&ctx->active_reqs);
  378. if (aio_setup_ring(ctx) < 0)
  379. goto out_freectx;
  380. /* limit the number of system wide aios */
  381. spin_lock(&aio_nr_lock);
  382. if (aio_nr + nr_events > aio_max_nr ||
  383. aio_nr + nr_events < aio_nr) {
  384. spin_unlock(&aio_nr_lock);
  385. goto out_cleanup;
  386. }
  387. aio_nr += ctx->max_reqs;
  388. spin_unlock(&aio_nr_lock);
  389. /* now link into global list. */
  390. spin_lock(&mm->ioctx_lock);
  391. hlist_add_head_rcu(&ctx->list, &mm->ioctx_list);
  392. spin_unlock(&mm->ioctx_lock);
  393. pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
  394. ctx, ctx->user_id, mm, ctx->nr_events);
  395. return ctx;
  396. out_cleanup:
  397. err = -EAGAIN;
  398. aio_free_ring(ctx);
  399. out_freectx:
  400. if (ctx->aio_ring_file)
  401. fput(ctx->aio_ring_file);
  402. kmem_cache_free(kioctx_cachep, ctx);
  403. pr_debug("error allocating ioctx %d\n", err);
  404. return ERR_PTR(err);
  405. }
  406. static void kill_ioctx_work(struct work_struct *work)
  407. {
  408. struct kioctx *ctx = container_of(work, struct kioctx, rcu_work);
  409. wake_up_all(&ctx->wait);
  410. put_ioctx(ctx);
  411. }
  412. static void kill_ioctx_rcu(struct rcu_head *head)
  413. {
  414. struct kioctx *ctx = container_of(head, struct kioctx, rcu_head);
  415. INIT_WORK(&ctx->rcu_work, kill_ioctx_work);
  416. schedule_work(&ctx->rcu_work);
  417. }
  418. /* kill_ioctx
  419. * Cancels all outstanding aio requests on an aio context. Used
  420. * when the processes owning a context have all exited to encourage
  421. * the rapid destruction of the kioctx.
  422. */
  423. static void kill_ioctx(struct kioctx *ctx)
  424. {
  425. if (!atomic_xchg(&ctx->dead, 1)) {
  426. hlist_del_rcu(&ctx->list);
  427. /*
  428. * It'd be more correct to do this in free_ioctx(), after all
  429. * the outstanding kiocbs have finished - but by then io_destroy
  430. * has already returned, so io_setup() could potentially return
  431. * -EAGAIN with no ioctxs actually in use (as far as userspace
  432. * could tell).
  433. */
  434. spin_lock(&aio_nr_lock);
  435. BUG_ON(aio_nr - ctx->max_reqs > aio_nr);
  436. aio_nr -= ctx->max_reqs;
  437. spin_unlock(&aio_nr_lock);
  438. if (ctx->mmap_size)
  439. vm_munmap(ctx->mmap_base, ctx->mmap_size);
  440. /* Between hlist_del_rcu() and dropping the initial ref */
  441. call_rcu(&ctx->rcu_head, kill_ioctx_rcu);
  442. }
  443. }
  444. /* wait_on_sync_kiocb:
  445. * Waits on the given sync kiocb to complete.
  446. */
  447. ssize_t wait_on_sync_kiocb(struct kiocb *iocb)
  448. {
  449. while (atomic_read(&iocb->ki_users)) {
  450. set_current_state(TASK_UNINTERRUPTIBLE);
  451. if (!atomic_read(&iocb->ki_users))
  452. break;
  453. io_schedule();
  454. }
  455. __set_current_state(TASK_RUNNING);
  456. return iocb->ki_user_data;
  457. }
  458. EXPORT_SYMBOL(wait_on_sync_kiocb);
  459. /*
  460. * exit_aio: called when the last user of mm goes away. At this point, there is
  461. * no way for any new requests to be submited or any of the io_* syscalls to be
  462. * called on the context.
  463. *
  464. * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
  465. * them.
  466. */
  467. void exit_aio(struct mm_struct *mm)
  468. {
  469. struct kioctx *ctx;
  470. struct hlist_node *n;
  471. hlist_for_each_entry_safe(ctx, n, &mm->ioctx_list, list) {
  472. if (1 != atomic_read(&ctx->users))
  473. printk(KERN_DEBUG
  474. "exit_aio:ioctx still alive: %d %d %d\n",
  475. atomic_read(&ctx->users),
  476. atomic_read(&ctx->dead),
  477. atomic_read(&ctx->reqs_active));
  478. /*
  479. * We don't need to bother with munmap() here -
  480. * exit_mmap(mm) is coming and it'll unmap everything.
  481. * Since aio_free_ring() uses non-zero ->mmap_size
  482. * as indicator that it needs to unmap the area,
  483. * just set it to 0; aio_free_ring() is the only
  484. * place that uses ->mmap_size, so it's safe.
  485. */
  486. ctx->mmap_size = 0;
  487. kill_ioctx(ctx);
  488. }
  489. }
  490. /* aio_get_req
  491. * Allocate a slot for an aio request. Increments the ki_users count
  492. * of the kioctx so that the kioctx stays around until all requests are
  493. * complete. Returns NULL if no requests are free.
  494. *
  495. * Returns with kiocb->ki_users set to 2. The io submit code path holds
  496. * an extra reference while submitting the i/o.
  497. * This prevents races between the aio code path referencing the
  498. * req (after submitting it) and aio_complete() freeing the req.
  499. */
  500. static inline struct kiocb *aio_get_req(struct kioctx *ctx)
  501. {
  502. struct kiocb *req;
  503. if (atomic_read(&ctx->reqs_active) >= ctx->nr_events)
  504. return NULL;
  505. if (atomic_inc_return(&ctx->reqs_active) > ctx->nr_events - 1)
  506. goto out_put;
  507. req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL|__GFP_ZERO);
  508. if (unlikely(!req))
  509. goto out_put;
  510. atomic_set(&req->ki_users, 2);
  511. req->ki_ctx = ctx;
  512. return req;
  513. out_put:
  514. atomic_dec(&ctx->reqs_active);
  515. return NULL;
  516. }
  517. static void kiocb_free(struct kiocb *req)
  518. {
  519. if (req->ki_filp)
  520. fput(req->ki_filp);
  521. if (req->ki_eventfd != NULL)
  522. eventfd_ctx_put(req->ki_eventfd);
  523. if (req->ki_dtor)
  524. req->ki_dtor(req);
  525. if (req->ki_iovec != &req->ki_inline_vec)
  526. kfree(req->ki_iovec);
  527. kmem_cache_free(kiocb_cachep, req);
  528. }
  529. void aio_put_req(struct kiocb *req)
  530. {
  531. if (atomic_dec_and_test(&req->ki_users))
  532. kiocb_free(req);
  533. }
  534. EXPORT_SYMBOL(aio_put_req);
  535. static struct kioctx *lookup_ioctx(unsigned long ctx_id)
  536. {
  537. struct mm_struct *mm = current->mm;
  538. struct kioctx *ctx, *ret = NULL;
  539. rcu_read_lock();
  540. hlist_for_each_entry_rcu(ctx, &mm->ioctx_list, list) {
  541. if (ctx->user_id == ctx_id) {
  542. atomic_inc(&ctx->users);
  543. ret = ctx;
  544. break;
  545. }
  546. }
  547. rcu_read_unlock();
  548. return ret;
  549. }
  550. /* aio_complete
  551. * Called when the io request on the given iocb is complete.
  552. */
  553. void aio_complete(struct kiocb *iocb, long res, long res2)
  554. {
  555. struct kioctx *ctx = iocb->ki_ctx;
  556. struct aio_ring *ring;
  557. struct io_event *ev_page, *event;
  558. unsigned long flags;
  559. unsigned tail, pos;
  560. /*
  561. * Special case handling for sync iocbs:
  562. * - events go directly into the iocb for fast handling
  563. * - the sync task with the iocb in its stack holds the single iocb
  564. * ref, no other paths have a way to get another ref
  565. * - the sync task helpfully left a reference to itself in the iocb
  566. */
  567. if (is_sync_kiocb(iocb)) {
  568. BUG_ON(atomic_read(&iocb->ki_users) != 1);
  569. iocb->ki_user_data = res;
  570. atomic_set(&iocb->ki_users, 0);
  571. wake_up_process(iocb->ki_obj.tsk);
  572. return;
  573. }
  574. /*
  575. * Take rcu_read_lock() in case the kioctx is being destroyed, as we
  576. * need to issue a wakeup after decrementing reqs_active.
  577. */
  578. rcu_read_lock();
  579. if (iocb->ki_list.next) {
  580. unsigned long flags;
  581. spin_lock_irqsave(&ctx->ctx_lock, flags);
  582. list_del(&iocb->ki_list);
  583. spin_unlock_irqrestore(&ctx->ctx_lock, flags);
  584. }
  585. /*
  586. * cancelled requests don't get events, userland was given one
  587. * when the event got cancelled.
  588. */
  589. if (unlikely(xchg(&iocb->ki_cancel,
  590. KIOCB_CANCELLED) == KIOCB_CANCELLED)) {
  591. atomic_dec(&ctx->reqs_active);
  592. /* Still need the wake_up in case free_ioctx is waiting */
  593. goto put_rq;
  594. }
  595. /*
  596. * Add a completion event to the ring buffer. Must be done holding
  597. * ctx->completion_lock to prevent other code from messing with the tail
  598. * pointer since we might be called from irq context.
  599. */
  600. spin_lock_irqsave(&ctx->completion_lock, flags);
  601. tail = ctx->tail;
  602. pos = tail + AIO_EVENTS_OFFSET;
  603. if (++tail >= ctx->nr_events)
  604. tail = 0;
  605. ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
  606. event = ev_page + pos % AIO_EVENTS_PER_PAGE;
  607. event->obj = (u64)(unsigned long)iocb->ki_obj.user;
  608. event->data = iocb->ki_user_data;
  609. event->res = res;
  610. event->res2 = res2;
  611. kunmap_atomic(ev_page);
  612. flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
  613. pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
  614. ctx, tail, iocb, iocb->ki_obj.user, iocb->ki_user_data,
  615. res, res2);
  616. /* after flagging the request as done, we
  617. * must never even look at it again
  618. */
  619. smp_wmb(); /* make event visible before updating tail */
  620. ctx->tail = tail;
  621. ring = kmap_atomic(ctx->ring_pages[0]);
  622. ring->tail = tail;
  623. kunmap_atomic(ring);
  624. flush_dcache_page(ctx->ring_pages[0]);
  625. spin_unlock_irqrestore(&ctx->completion_lock, flags);
  626. pr_debug("added to ring %p at [%u]\n", iocb, tail);
  627. /*
  628. * Check if the user asked us to deliver the result through an
  629. * eventfd. The eventfd_signal() function is safe to be called
  630. * from IRQ context.
  631. */
  632. if (iocb->ki_eventfd != NULL)
  633. eventfd_signal(iocb->ki_eventfd, 1);
  634. put_rq:
  635. /* everything turned out well, dispose of the aiocb. */
  636. aio_put_req(iocb);
  637. /*
  638. * We have to order our ring_info tail store above and test
  639. * of the wait list below outside the wait lock. This is
  640. * like in wake_up_bit() where clearing a bit has to be
  641. * ordered with the unlocked test.
  642. */
  643. smp_mb();
  644. if (waitqueue_active(&ctx->wait))
  645. wake_up(&ctx->wait);
  646. rcu_read_unlock();
  647. }
  648. EXPORT_SYMBOL(aio_complete);
  649. /* aio_read_events
  650. * Pull an event off of the ioctx's event ring. Returns the number of
  651. * events fetched
  652. */
  653. static long aio_read_events_ring(struct kioctx *ctx,
  654. struct io_event __user *event, long nr)
  655. {
  656. struct aio_ring *ring;
  657. unsigned head, pos;
  658. long ret = 0;
  659. int copy_ret;
  660. mutex_lock(&ctx->ring_lock);
  661. ring = kmap_atomic(ctx->ring_pages[0]);
  662. head = ring->head;
  663. kunmap_atomic(ring);
  664. pr_debug("h%u t%u m%u\n", head, ctx->tail, ctx->nr_events);
  665. if (head == ctx->tail)
  666. goto out;
  667. while (ret < nr) {
  668. long avail;
  669. struct io_event *ev;
  670. struct page *page;
  671. avail = (head <= ctx->tail ? ctx->tail : ctx->nr_events) - head;
  672. if (head == ctx->tail)
  673. break;
  674. avail = min(avail, nr - ret);
  675. avail = min_t(long, avail, AIO_EVENTS_PER_PAGE -
  676. ((head + AIO_EVENTS_OFFSET) % AIO_EVENTS_PER_PAGE));
  677. pos = head + AIO_EVENTS_OFFSET;
  678. page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
  679. pos %= AIO_EVENTS_PER_PAGE;
  680. ev = kmap(page);
  681. copy_ret = copy_to_user(event + ret, ev + pos,
  682. sizeof(*ev) * avail);
  683. kunmap(page);
  684. if (unlikely(copy_ret)) {
  685. ret = -EFAULT;
  686. goto out;
  687. }
  688. ret += avail;
  689. head += avail;
  690. head %= ctx->nr_events;
  691. }
  692. ring = kmap_atomic(ctx->ring_pages[0]);
  693. ring->head = head;
  694. kunmap_atomic(ring);
  695. flush_dcache_page(ctx->ring_pages[0]);
  696. pr_debug("%li h%u t%u\n", ret, head, ctx->tail);
  697. atomic_sub(ret, &ctx->reqs_active);
  698. out:
  699. mutex_unlock(&ctx->ring_lock);
  700. return ret;
  701. }
  702. static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
  703. struct io_event __user *event, long *i)
  704. {
  705. long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
  706. if (ret > 0)
  707. *i += ret;
  708. if (unlikely(atomic_read(&ctx->dead)))
  709. ret = -EINVAL;
  710. if (!*i)
  711. *i = ret;
  712. return ret < 0 || *i >= min_nr;
  713. }
  714. static long read_events(struct kioctx *ctx, long min_nr, long nr,
  715. struct io_event __user *event,
  716. struct timespec __user *timeout)
  717. {
  718. ktime_t until = { .tv64 = KTIME_MAX };
  719. long ret = 0;
  720. if (timeout) {
  721. struct timespec ts;
  722. if (unlikely(copy_from_user(&ts, timeout, sizeof(ts))))
  723. return -EFAULT;
  724. until = timespec_to_ktime(ts);
  725. }
  726. /*
  727. * Note that aio_read_events() is being called as the conditional - i.e.
  728. * we're calling it after prepare_to_wait() has set task state to
  729. * TASK_INTERRUPTIBLE.
  730. *
  731. * But aio_read_events() can block, and if it blocks it's going to flip
  732. * the task state back to TASK_RUNNING.
  733. *
  734. * This should be ok, provided it doesn't flip the state back to
  735. * TASK_RUNNING and return 0 too much - that causes us to spin. That
  736. * will only happen if the mutex_lock() call blocks, and we then find
  737. * the ringbuffer empty. So in practice we should be ok, but it's
  738. * something to be aware of when touching this code.
  739. */
  740. wait_event_interruptible_hrtimeout(ctx->wait,
  741. aio_read_events(ctx, min_nr, nr, event, &ret), until);
  742. if (!ret && signal_pending(current))
  743. ret = -EINTR;
  744. return ret;
  745. }
  746. /* sys_io_setup:
  747. * Create an aio_context capable of receiving at least nr_events.
  748. * ctxp must not point to an aio_context that already exists, and
  749. * must be initialized to 0 prior to the call. On successful
  750. * creation of the aio_context, *ctxp is filled in with the resulting
  751. * handle. May fail with -EINVAL if *ctxp is not initialized,
  752. * if the specified nr_events exceeds internal limits. May fail
  753. * with -EAGAIN if the specified nr_events exceeds the user's limit
  754. * of available events. May fail with -ENOMEM if insufficient kernel
  755. * resources are available. May fail with -EFAULT if an invalid
  756. * pointer is passed for ctxp. Will fail with -ENOSYS if not
  757. * implemented.
  758. */
  759. SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
  760. {
  761. struct kioctx *ioctx = NULL;
  762. unsigned long ctx;
  763. long ret;
  764. ret = get_user(ctx, ctxp);
  765. if (unlikely(ret))
  766. goto out;
  767. ret = -EINVAL;
  768. if (unlikely(ctx || nr_events == 0)) {
  769. pr_debug("EINVAL: io_setup: ctx %lu nr_events %u\n",
  770. ctx, nr_events);
  771. goto out;
  772. }
  773. ioctx = ioctx_alloc(nr_events);
  774. ret = PTR_ERR(ioctx);
  775. if (!IS_ERR(ioctx)) {
  776. ret = put_user(ioctx->user_id, ctxp);
  777. if (ret)
  778. kill_ioctx(ioctx);
  779. put_ioctx(ioctx);
  780. }
  781. out:
  782. return ret;
  783. }
  784. /* sys_io_destroy:
  785. * Destroy the aio_context specified. May cancel any outstanding
  786. * AIOs and block on completion. Will fail with -ENOSYS if not
  787. * implemented. May fail with -EINVAL if the context pointed to
  788. * is invalid.
  789. */
  790. SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
  791. {
  792. struct kioctx *ioctx = lookup_ioctx(ctx);
  793. if (likely(NULL != ioctx)) {
  794. kill_ioctx(ioctx);
  795. put_ioctx(ioctx);
  796. return 0;
  797. }
  798. pr_debug("EINVAL: io_destroy: invalid context id\n");
  799. return -EINVAL;
  800. }
  801. static void aio_advance_iovec(struct kiocb *iocb, ssize_t ret)
  802. {
  803. struct iovec *iov = &iocb->ki_iovec[iocb->ki_cur_seg];
  804. BUG_ON(ret <= 0);
  805. while (iocb->ki_cur_seg < iocb->ki_nr_segs && ret > 0) {
  806. ssize_t this = min((ssize_t)iov->iov_len, ret);
  807. iov->iov_base += this;
  808. iov->iov_len -= this;
  809. iocb->ki_left -= this;
  810. ret -= this;
  811. if (iov->iov_len == 0) {
  812. iocb->ki_cur_seg++;
  813. iov++;
  814. }
  815. }
  816. /* the caller should not have done more io than what fit in
  817. * the remaining iovecs */
  818. BUG_ON(ret > 0 && iocb->ki_left == 0);
  819. }
  820. typedef ssize_t (aio_rw_op)(struct kiocb *, const struct iovec *,
  821. unsigned long, loff_t);
  822. static ssize_t aio_rw_vect_retry(struct kiocb *iocb, int rw, aio_rw_op *rw_op)
  823. {
  824. struct file *file = iocb->ki_filp;
  825. struct address_space *mapping = file->f_mapping;
  826. struct inode *inode = mapping->host;
  827. ssize_t ret = 0;
  828. /* This matches the pread()/pwrite() logic */
  829. if (iocb->ki_pos < 0)
  830. return -EINVAL;
  831. if (rw == WRITE)
  832. file_start_write(file);
  833. do {
  834. ret = rw_op(iocb, &iocb->ki_iovec[iocb->ki_cur_seg],
  835. iocb->ki_nr_segs - iocb->ki_cur_seg,
  836. iocb->ki_pos);
  837. if (ret > 0)
  838. aio_advance_iovec(iocb, ret);
  839. /* retry all partial writes. retry partial reads as long as its a
  840. * regular file. */
  841. } while (ret > 0 && iocb->ki_left > 0 &&
  842. (rw == WRITE ||
  843. (!S_ISFIFO(inode->i_mode) && !S_ISSOCK(inode->i_mode))));
  844. if (rw == WRITE)
  845. file_end_write(file);
  846. /* This means we must have transferred all that we could */
  847. /* No need to retry anymore */
  848. if ((ret == 0) || (iocb->ki_left == 0))
  849. ret = iocb->ki_nbytes - iocb->ki_left;
  850. /* If we managed to write some out we return that, rather than
  851. * the eventual error. */
  852. if (rw == WRITE
  853. && ret < 0 && ret != -EIOCBQUEUED
  854. && iocb->ki_nbytes - iocb->ki_left)
  855. ret = iocb->ki_nbytes - iocb->ki_left;
  856. return ret;
  857. }
  858. static ssize_t aio_setup_vectored_rw(int rw, struct kiocb *kiocb, bool compat)
  859. {
  860. ssize_t ret;
  861. kiocb->ki_nr_segs = kiocb->ki_nbytes;
  862. #ifdef CONFIG_COMPAT
  863. if (compat)
  864. ret = compat_rw_copy_check_uvector(rw,
  865. (struct compat_iovec __user *)kiocb->ki_buf,
  866. kiocb->ki_nr_segs, 1, &kiocb->ki_inline_vec,
  867. &kiocb->ki_iovec);
  868. else
  869. #endif
  870. ret = rw_copy_check_uvector(rw,
  871. (struct iovec __user *)kiocb->ki_buf,
  872. kiocb->ki_nr_segs, 1, &kiocb->ki_inline_vec,
  873. &kiocb->ki_iovec);
  874. if (ret < 0)
  875. return ret;
  876. /* ki_nbytes now reflect bytes instead of segs */
  877. kiocb->ki_nbytes = ret;
  878. return 0;
  879. }
  880. static ssize_t aio_setup_single_vector(int rw, struct kiocb *kiocb)
  881. {
  882. if (unlikely(!access_ok(!rw, kiocb->ki_buf, kiocb->ki_nbytes)))
  883. return -EFAULT;
  884. kiocb->ki_iovec = &kiocb->ki_inline_vec;
  885. kiocb->ki_iovec->iov_base = kiocb->ki_buf;
  886. kiocb->ki_iovec->iov_len = kiocb->ki_nbytes;
  887. kiocb->ki_nr_segs = 1;
  888. return 0;
  889. }
  890. /*
  891. * aio_setup_iocb:
  892. * Performs the initial checks and aio retry method
  893. * setup for the kiocb at the time of io submission.
  894. */
  895. static ssize_t aio_run_iocb(struct kiocb *req, bool compat)
  896. {
  897. struct file *file = req->ki_filp;
  898. ssize_t ret;
  899. int rw;
  900. fmode_t mode;
  901. aio_rw_op *rw_op;
  902. switch (req->ki_opcode) {
  903. case IOCB_CMD_PREAD:
  904. case IOCB_CMD_PREADV:
  905. mode = FMODE_READ;
  906. rw = READ;
  907. rw_op = file->f_op->aio_read;
  908. goto rw_common;
  909. case IOCB_CMD_PWRITE:
  910. case IOCB_CMD_PWRITEV:
  911. mode = FMODE_WRITE;
  912. rw = WRITE;
  913. rw_op = file->f_op->aio_write;
  914. goto rw_common;
  915. rw_common:
  916. if (unlikely(!(file->f_mode & mode)))
  917. return -EBADF;
  918. if (!rw_op)
  919. return -EINVAL;
  920. ret = (req->ki_opcode == IOCB_CMD_PREADV ||
  921. req->ki_opcode == IOCB_CMD_PWRITEV)
  922. ? aio_setup_vectored_rw(rw, req, compat)
  923. : aio_setup_single_vector(rw, req);
  924. if (ret)
  925. return ret;
  926. ret = rw_verify_area(rw, file, &req->ki_pos, req->ki_nbytes);
  927. if (ret < 0)
  928. return ret;
  929. req->ki_nbytes = ret;
  930. req->ki_left = ret;
  931. ret = aio_rw_vect_retry(req, rw, rw_op);
  932. break;
  933. case IOCB_CMD_FDSYNC:
  934. if (!file->f_op->aio_fsync)
  935. return -EINVAL;
  936. ret = file->f_op->aio_fsync(req, 1);
  937. break;
  938. case IOCB_CMD_FSYNC:
  939. if (!file->f_op->aio_fsync)
  940. return -EINVAL;
  941. ret = file->f_op->aio_fsync(req, 0);
  942. break;
  943. default:
  944. pr_debug("EINVAL: no operation provided\n");
  945. return -EINVAL;
  946. }
  947. if (ret != -EIOCBQUEUED) {
  948. /*
  949. * There's no easy way to restart the syscall since other AIO's
  950. * may be already running. Just fail this IO with EINTR.
  951. */
  952. if (unlikely(ret == -ERESTARTSYS || ret == -ERESTARTNOINTR ||
  953. ret == -ERESTARTNOHAND ||
  954. ret == -ERESTART_RESTARTBLOCK))
  955. ret = -EINTR;
  956. aio_complete(req, ret, 0);
  957. }
  958. return 0;
  959. }
  960. static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
  961. struct iocb *iocb, bool compat)
  962. {
  963. struct kiocb *req;
  964. ssize_t ret;
  965. /* enforce forwards compatibility on users */
  966. if (unlikely(iocb->aio_reserved1 || iocb->aio_reserved2)) {
  967. pr_debug("EINVAL: reserve field set\n");
  968. return -EINVAL;
  969. }
  970. /* prevent overflows */
  971. if (unlikely(
  972. (iocb->aio_buf != (unsigned long)iocb->aio_buf) ||
  973. (iocb->aio_nbytes != (size_t)iocb->aio_nbytes) ||
  974. ((ssize_t)iocb->aio_nbytes < 0)
  975. )) {
  976. pr_debug("EINVAL: io_submit: overflow check\n");
  977. return -EINVAL;
  978. }
  979. req = aio_get_req(ctx);
  980. if (unlikely(!req))
  981. return -EAGAIN;
  982. req->ki_filp = fget(iocb->aio_fildes);
  983. if (unlikely(!req->ki_filp)) {
  984. ret = -EBADF;
  985. goto out_put_req;
  986. }
  987. if (iocb->aio_flags & IOCB_FLAG_RESFD) {
  988. /*
  989. * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
  990. * instance of the file* now. The file descriptor must be
  991. * an eventfd() fd, and will be signaled for each completed
  992. * event using the eventfd_signal() function.
  993. */
  994. req->ki_eventfd = eventfd_ctx_fdget((int) iocb->aio_resfd);
  995. if (IS_ERR(req->ki_eventfd)) {
  996. ret = PTR_ERR(req->ki_eventfd);
  997. req->ki_eventfd = NULL;
  998. goto out_put_req;
  999. }
  1000. }
  1001. ret = put_user(KIOCB_KEY, &user_iocb->aio_key);
  1002. if (unlikely(ret)) {
  1003. pr_debug("EFAULT: aio_key\n");
  1004. goto out_put_req;
  1005. }
  1006. req->ki_obj.user = user_iocb;
  1007. req->ki_user_data = iocb->aio_data;
  1008. req->ki_pos = iocb->aio_offset;
  1009. req->ki_buf = (char __user *)(unsigned long)iocb->aio_buf;
  1010. req->ki_left = req->ki_nbytes = iocb->aio_nbytes;
  1011. req->ki_opcode = iocb->aio_lio_opcode;
  1012. ret = aio_run_iocb(req, compat);
  1013. if (ret)
  1014. goto out_put_req;
  1015. aio_put_req(req); /* drop extra ref to req */
  1016. return 0;
  1017. out_put_req:
  1018. atomic_dec(&ctx->reqs_active);
  1019. aio_put_req(req); /* drop extra ref to req */
  1020. aio_put_req(req); /* drop i/o ref to req */
  1021. return ret;
  1022. }
  1023. long do_io_submit(aio_context_t ctx_id, long nr,
  1024. struct iocb __user *__user *iocbpp, bool compat)
  1025. {
  1026. struct kioctx *ctx;
  1027. long ret = 0;
  1028. int i = 0;
  1029. struct blk_plug plug;
  1030. if (unlikely(nr < 0))
  1031. return -EINVAL;
  1032. if (unlikely(nr > LONG_MAX/sizeof(*iocbpp)))
  1033. nr = LONG_MAX/sizeof(*iocbpp);
  1034. if (unlikely(!access_ok(VERIFY_READ, iocbpp, (nr*sizeof(*iocbpp)))))
  1035. return -EFAULT;
  1036. ctx = lookup_ioctx(ctx_id);
  1037. if (unlikely(!ctx)) {
  1038. pr_debug("EINVAL: invalid context id\n");
  1039. return -EINVAL;
  1040. }
  1041. blk_start_plug(&plug);
  1042. /*
  1043. * AKPM: should this return a partial result if some of the IOs were
  1044. * successfully submitted?
  1045. */
  1046. for (i=0; i<nr; i++) {
  1047. struct iocb __user *user_iocb;
  1048. struct iocb tmp;
  1049. if (unlikely(__get_user(user_iocb, iocbpp + i))) {
  1050. ret = -EFAULT;
  1051. break;
  1052. }
  1053. if (unlikely(copy_from_user(&tmp, user_iocb, sizeof(tmp)))) {
  1054. ret = -EFAULT;
  1055. break;
  1056. }
  1057. ret = io_submit_one(ctx, user_iocb, &tmp, compat);
  1058. if (ret)
  1059. break;
  1060. }
  1061. blk_finish_plug(&plug);
  1062. put_ioctx(ctx);
  1063. return i ? i : ret;
  1064. }
  1065. /* sys_io_submit:
  1066. * Queue the nr iocbs pointed to by iocbpp for processing. Returns
  1067. * the number of iocbs queued. May return -EINVAL if the aio_context
  1068. * specified by ctx_id is invalid, if nr is < 0, if the iocb at
  1069. * *iocbpp[0] is not properly initialized, if the operation specified
  1070. * is invalid for the file descriptor in the iocb. May fail with
  1071. * -EFAULT if any of the data structures point to invalid data. May
  1072. * fail with -EBADF if the file descriptor specified in the first
  1073. * iocb is invalid. May fail with -EAGAIN if insufficient resources
  1074. * are available to queue any iocbs. Will return 0 if nr is 0. Will
  1075. * fail with -ENOSYS if not implemented.
  1076. */
  1077. SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
  1078. struct iocb __user * __user *, iocbpp)
  1079. {
  1080. return do_io_submit(ctx_id, nr, iocbpp, 0);
  1081. }
  1082. /* lookup_kiocb
  1083. * Finds a given iocb for cancellation.
  1084. */
  1085. static struct kiocb *lookup_kiocb(struct kioctx *ctx, struct iocb __user *iocb,
  1086. u32 key)
  1087. {
  1088. struct list_head *pos;
  1089. assert_spin_locked(&ctx->ctx_lock);
  1090. if (key != KIOCB_KEY)
  1091. return NULL;
  1092. /* TODO: use a hash or array, this sucks. */
  1093. list_for_each(pos, &ctx->active_reqs) {
  1094. struct kiocb *kiocb = list_kiocb(pos);
  1095. if (kiocb->ki_obj.user == iocb)
  1096. return kiocb;
  1097. }
  1098. return NULL;
  1099. }
  1100. /* sys_io_cancel:
  1101. * Attempts to cancel an iocb previously passed to io_submit. If
  1102. * the operation is successfully cancelled, the resulting event is
  1103. * copied into the memory pointed to by result without being placed
  1104. * into the completion queue and 0 is returned. May fail with
  1105. * -EFAULT if any of the data structures pointed to are invalid.
  1106. * May fail with -EINVAL if aio_context specified by ctx_id is
  1107. * invalid. May fail with -EAGAIN if the iocb specified was not
  1108. * cancelled. Will fail with -ENOSYS if not implemented.
  1109. */
  1110. SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
  1111. struct io_event __user *, result)
  1112. {
  1113. struct io_event res;
  1114. struct kioctx *ctx;
  1115. struct kiocb *kiocb;
  1116. u32 key;
  1117. int ret;
  1118. ret = get_user(key, &iocb->aio_key);
  1119. if (unlikely(ret))
  1120. return -EFAULT;
  1121. ctx = lookup_ioctx(ctx_id);
  1122. if (unlikely(!ctx))
  1123. return -EINVAL;
  1124. spin_lock_irq(&ctx->ctx_lock);
  1125. kiocb = lookup_kiocb(ctx, iocb, key);
  1126. if (kiocb)
  1127. ret = kiocb_cancel(ctx, kiocb, &res);
  1128. else
  1129. ret = -EINVAL;
  1130. spin_unlock_irq(&ctx->ctx_lock);
  1131. if (!ret) {
  1132. /* Cancellation succeeded -- copy the result
  1133. * into the user's buffer.
  1134. */
  1135. if (copy_to_user(result, &res, sizeof(res)))
  1136. ret = -EFAULT;
  1137. }
  1138. put_ioctx(ctx);
  1139. return ret;
  1140. }
  1141. /* io_getevents:
  1142. * Attempts to read at least min_nr events and up to nr events from
  1143. * the completion queue for the aio_context specified by ctx_id. If
  1144. * it succeeds, the number of read events is returned. May fail with
  1145. * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
  1146. * out of range, if timeout is out of range. May fail with -EFAULT
  1147. * if any of the memory specified is invalid. May return 0 or
  1148. * < min_nr if the timeout specified by timeout has elapsed
  1149. * before sufficient events are available, where timeout == NULL
  1150. * specifies an infinite timeout. Note that the timeout pointed to by
  1151. * timeout is relative. Will fail with -ENOSYS if not implemented.
  1152. */
  1153. SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
  1154. long, min_nr,
  1155. long, nr,
  1156. struct io_event __user *, events,
  1157. struct timespec __user *, timeout)
  1158. {
  1159. struct kioctx *ioctx = lookup_ioctx(ctx_id);
  1160. long ret = -EINVAL;
  1161. if (likely(ioctx)) {
  1162. if (likely(min_nr <= nr && min_nr >= 0))
  1163. ret = read_events(ioctx, min_nr, nr, events, timeout);
  1164. put_ioctx(ioctx);
  1165. }
  1166. return ret;
  1167. }