md.c 212 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279
  1. /*
  2. md.c : Multiple Devices driver for Linux
  3. Copyright (C) 1998, 1999, 2000 Ingo Molnar
  4. completely rewritten, based on the MD driver code from Marc Zyngier
  5. Changes:
  6. - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
  7. - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
  8. - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
  9. - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
  10. - kmod support by: Cyrus Durgin
  11. - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
  12. - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
  13. - lots of fixes and improvements to the RAID1/RAID5 and generic
  14. RAID code (such as request based resynchronization):
  15. Neil Brown <neilb@cse.unsw.edu.au>.
  16. - persistent bitmap code
  17. Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
  18. This program is free software; you can redistribute it and/or modify
  19. it under the terms of the GNU General Public License as published by
  20. the Free Software Foundation; either version 2, or (at your option)
  21. any later version.
  22. You should have received a copy of the GNU General Public License
  23. (for example /usr/src/linux/COPYING); if not, write to the Free
  24. Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/kthread.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/sysctl.h>
  29. #include <linux/seq_file.h>
  30. #include <linux/mutex.h>
  31. #include <linux/buffer_head.h> /* for invalidate_bdev */
  32. #include <linux/poll.h>
  33. #include <linux/ctype.h>
  34. #include <linux/string.h>
  35. #include <linux/hdreg.h>
  36. #include <linux/proc_fs.h>
  37. #include <linux/random.h>
  38. #include <linux/reboot.h>
  39. #include <linux/file.h>
  40. #include <linux/compat.h>
  41. #include <linux/delay.h>
  42. #include <linux/raid/md_p.h>
  43. #include <linux/raid/md_u.h>
  44. #include <linux/slab.h>
  45. #include "md.h"
  46. #include "bitmap.h"
  47. #ifndef MODULE
  48. static void autostart_arrays(int part);
  49. #endif
  50. /* pers_list is a list of registered personalities protected
  51. * by pers_lock.
  52. * pers_lock does extra service to protect accesses to
  53. * mddev->thread when the mutex cannot be held.
  54. */
  55. static LIST_HEAD(pers_list);
  56. static DEFINE_SPINLOCK(pers_lock);
  57. static void md_print_devices(void);
  58. static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
  59. static struct workqueue_struct *md_wq;
  60. static struct workqueue_struct *md_misc_wq;
  61. #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
  62. /*
  63. * Default number of read corrections we'll attempt on an rdev
  64. * before ejecting it from the array. We divide the read error
  65. * count by 2 for every hour elapsed between read errors.
  66. */
  67. #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
  68. /*
  69. * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
  70. * is 1000 KB/sec, so the extra system load does not show up that much.
  71. * Increase it if you want to have more _guaranteed_ speed. Note that
  72. * the RAID driver will use the maximum available bandwidth if the IO
  73. * subsystem is idle. There is also an 'absolute maximum' reconstruction
  74. * speed limit - in case reconstruction slows down your system despite
  75. * idle IO detection.
  76. *
  77. * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
  78. * or /sys/block/mdX/md/sync_speed_{min,max}
  79. */
  80. static int sysctl_speed_limit_min = 1000;
  81. static int sysctl_speed_limit_max = 200000;
  82. static inline int speed_min(mddev_t *mddev)
  83. {
  84. return mddev->sync_speed_min ?
  85. mddev->sync_speed_min : sysctl_speed_limit_min;
  86. }
  87. static inline int speed_max(mddev_t *mddev)
  88. {
  89. return mddev->sync_speed_max ?
  90. mddev->sync_speed_max : sysctl_speed_limit_max;
  91. }
  92. static struct ctl_table_header *raid_table_header;
  93. static ctl_table raid_table[] = {
  94. {
  95. .procname = "speed_limit_min",
  96. .data = &sysctl_speed_limit_min,
  97. .maxlen = sizeof(int),
  98. .mode = S_IRUGO|S_IWUSR,
  99. .proc_handler = proc_dointvec,
  100. },
  101. {
  102. .procname = "speed_limit_max",
  103. .data = &sysctl_speed_limit_max,
  104. .maxlen = sizeof(int),
  105. .mode = S_IRUGO|S_IWUSR,
  106. .proc_handler = proc_dointvec,
  107. },
  108. { }
  109. };
  110. static ctl_table raid_dir_table[] = {
  111. {
  112. .procname = "raid",
  113. .maxlen = 0,
  114. .mode = S_IRUGO|S_IXUGO,
  115. .child = raid_table,
  116. },
  117. { }
  118. };
  119. static ctl_table raid_root_table[] = {
  120. {
  121. .procname = "dev",
  122. .maxlen = 0,
  123. .mode = 0555,
  124. .child = raid_dir_table,
  125. },
  126. { }
  127. };
  128. static const struct block_device_operations md_fops;
  129. static int start_readonly;
  130. /* bio_clone_mddev
  131. * like bio_clone, but with a local bio set
  132. */
  133. static void mddev_bio_destructor(struct bio *bio)
  134. {
  135. mddev_t *mddev, **mddevp;
  136. mddevp = (void*)bio;
  137. mddev = mddevp[-1];
  138. bio_free(bio, mddev->bio_set);
  139. }
  140. struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
  141. mddev_t *mddev)
  142. {
  143. struct bio *b;
  144. mddev_t **mddevp;
  145. if (!mddev || !mddev->bio_set)
  146. return bio_alloc(gfp_mask, nr_iovecs);
  147. b = bio_alloc_bioset(gfp_mask, nr_iovecs,
  148. mddev->bio_set);
  149. if (!b)
  150. return NULL;
  151. mddevp = (void*)b;
  152. mddevp[-1] = mddev;
  153. b->bi_destructor = mddev_bio_destructor;
  154. return b;
  155. }
  156. EXPORT_SYMBOL_GPL(bio_alloc_mddev);
  157. struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
  158. mddev_t *mddev)
  159. {
  160. struct bio *b;
  161. mddev_t **mddevp;
  162. if (!mddev || !mddev->bio_set)
  163. return bio_clone(bio, gfp_mask);
  164. b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
  165. mddev->bio_set);
  166. if (!b)
  167. return NULL;
  168. mddevp = (void*)b;
  169. mddevp[-1] = mddev;
  170. b->bi_destructor = mddev_bio_destructor;
  171. __bio_clone(b, bio);
  172. if (bio_integrity(bio)) {
  173. int ret;
  174. ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
  175. if (ret < 0) {
  176. bio_put(b);
  177. return NULL;
  178. }
  179. }
  180. return b;
  181. }
  182. EXPORT_SYMBOL_GPL(bio_clone_mddev);
  183. void md_trim_bio(struct bio *bio, int offset, int size)
  184. {
  185. /* 'bio' is a cloned bio which we need to trim to match
  186. * the given offset and size.
  187. * This requires adjusting bi_sector, bi_size, and bi_io_vec
  188. */
  189. int i;
  190. struct bio_vec *bvec;
  191. int sofar = 0;
  192. size <<= 9;
  193. if (offset == 0 && size == bio->bi_size)
  194. return;
  195. bio->bi_sector += offset;
  196. bio->bi_size = size;
  197. offset <<= 9;
  198. clear_bit(BIO_SEG_VALID, &bio->bi_flags);
  199. while (bio->bi_idx < bio->bi_vcnt &&
  200. bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
  201. /* remove this whole bio_vec */
  202. offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
  203. bio->bi_idx++;
  204. }
  205. if (bio->bi_idx < bio->bi_vcnt) {
  206. bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
  207. bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
  208. }
  209. /* avoid any complications with bi_idx being non-zero*/
  210. if (bio->bi_idx) {
  211. memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
  212. (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
  213. bio->bi_vcnt -= bio->bi_idx;
  214. bio->bi_idx = 0;
  215. }
  216. /* Make sure vcnt and last bv are not too big */
  217. bio_for_each_segment(bvec, bio, i) {
  218. if (sofar + bvec->bv_len > size)
  219. bvec->bv_len = size - sofar;
  220. if (bvec->bv_len == 0) {
  221. bio->bi_vcnt = i;
  222. break;
  223. }
  224. sofar += bvec->bv_len;
  225. }
  226. }
  227. EXPORT_SYMBOL_GPL(md_trim_bio);
  228. /*
  229. * We have a system wide 'event count' that is incremented
  230. * on any 'interesting' event, and readers of /proc/mdstat
  231. * can use 'poll' or 'select' to find out when the event
  232. * count increases.
  233. *
  234. * Events are:
  235. * start array, stop array, error, add device, remove device,
  236. * start build, activate spare
  237. */
  238. static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
  239. static atomic_t md_event_count;
  240. void md_new_event(mddev_t *mddev)
  241. {
  242. atomic_inc(&md_event_count);
  243. wake_up(&md_event_waiters);
  244. }
  245. EXPORT_SYMBOL_GPL(md_new_event);
  246. /* Alternate version that can be called from interrupts
  247. * when calling sysfs_notify isn't needed.
  248. */
  249. static void md_new_event_inintr(mddev_t *mddev)
  250. {
  251. atomic_inc(&md_event_count);
  252. wake_up(&md_event_waiters);
  253. }
  254. /*
  255. * Enables to iterate over all existing md arrays
  256. * all_mddevs_lock protects this list.
  257. */
  258. static LIST_HEAD(all_mddevs);
  259. static DEFINE_SPINLOCK(all_mddevs_lock);
  260. /*
  261. * iterates through all used mddevs in the system.
  262. * We take care to grab the all_mddevs_lock whenever navigating
  263. * the list, and to always hold a refcount when unlocked.
  264. * Any code which breaks out of this loop while own
  265. * a reference to the current mddev and must mddev_put it.
  266. */
  267. #define for_each_mddev(mddev,tmp) \
  268. \
  269. for (({ spin_lock(&all_mddevs_lock); \
  270. tmp = all_mddevs.next; \
  271. mddev = NULL;}); \
  272. ({ if (tmp != &all_mddevs) \
  273. mddev_get(list_entry(tmp, mddev_t, all_mddevs));\
  274. spin_unlock(&all_mddevs_lock); \
  275. if (mddev) mddev_put(mddev); \
  276. mddev = list_entry(tmp, mddev_t, all_mddevs); \
  277. tmp != &all_mddevs;}); \
  278. ({ spin_lock(&all_mddevs_lock); \
  279. tmp = tmp->next;}) \
  280. )
  281. /* Rather than calling directly into the personality make_request function,
  282. * IO requests come here first so that we can check if the device is
  283. * being suspended pending a reconfiguration.
  284. * We hold a refcount over the call to ->make_request. By the time that
  285. * call has finished, the bio has been linked into some internal structure
  286. * and so is visible to ->quiesce(), so we don't need the refcount any more.
  287. */
  288. static int md_make_request(struct request_queue *q, struct bio *bio)
  289. {
  290. const int rw = bio_data_dir(bio);
  291. mddev_t *mddev = q->queuedata;
  292. int rv;
  293. int cpu;
  294. unsigned int sectors;
  295. if (mddev == NULL || mddev->pers == NULL
  296. || !mddev->ready) {
  297. bio_io_error(bio);
  298. return 0;
  299. }
  300. smp_rmb(); /* Ensure implications of 'active' are visible */
  301. rcu_read_lock();
  302. if (mddev->suspended) {
  303. DEFINE_WAIT(__wait);
  304. for (;;) {
  305. prepare_to_wait(&mddev->sb_wait, &__wait,
  306. TASK_UNINTERRUPTIBLE);
  307. if (!mddev->suspended)
  308. break;
  309. rcu_read_unlock();
  310. schedule();
  311. rcu_read_lock();
  312. }
  313. finish_wait(&mddev->sb_wait, &__wait);
  314. }
  315. atomic_inc(&mddev->active_io);
  316. rcu_read_unlock();
  317. /*
  318. * save the sectors now since our bio can
  319. * go away inside make_request
  320. */
  321. sectors = bio_sectors(bio);
  322. rv = mddev->pers->make_request(mddev, bio);
  323. cpu = part_stat_lock();
  324. part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
  325. part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
  326. part_stat_unlock();
  327. if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
  328. wake_up(&mddev->sb_wait);
  329. return rv;
  330. }
  331. /* mddev_suspend makes sure no new requests are submitted
  332. * to the device, and that any requests that have been submitted
  333. * are completely handled.
  334. * Once ->stop is called and completes, the module will be completely
  335. * unused.
  336. */
  337. void mddev_suspend(mddev_t *mddev)
  338. {
  339. BUG_ON(mddev->suspended);
  340. mddev->suspended = 1;
  341. synchronize_rcu();
  342. wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
  343. mddev->pers->quiesce(mddev, 1);
  344. }
  345. EXPORT_SYMBOL_GPL(mddev_suspend);
  346. void mddev_resume(mddev_t *mddev)
  347. {
  348. mddev->suspended = 0;
  349. wake_up(&mddev->sb_wait);
  350. mddev->pers->quiesce(mddev, 0);
  351. md_wakeup_thread(mddev->thread);
  352. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  353. }
  354. EXPORT_SYMBOL_GPL(mddev_resume);
  355. int mddev_congested(mddev_t *mddev, int bits)
  356. {
  357. return mddev->suspended;
  358. }
  359. EXPORT_SYMBOL(mddev_congested);
  360. /*
  361. * Generic flush handling for md
  362. */
  363. static void md_end_flush(struct bio *bio, int err)
  364. {
  365. mdk_rdev_t *rdev = bio->bi_private;
  366. mddev_t *mddev = rdev->mddev;
  367. rdev_dec_pending(rdev, mddev);
  368. if (atomic_dec_and_test(&mddev->flush_pending)) {
  369. /* The pre-request flush has finished */
  370. queue_work(md_wq, &mddev->flush_work);
  371. }
  372. bio_put(bio);
  373. }
  374. static void md_submit_flush_data(struct work_struct *ws);
  375. static void submit_flushes(struct work_struct *ws)
  376. {
  377. mddev_t *mddev = container_of(ws, mddev_t, flush_work);
  378. mdk_rdev_t *rdev;
  379. INIT_WORK(&mddev->flush_work, md_submit_flush_data);
  380. atomic_set(&mddev->flush_pending, 1);
  381. rcu_read_lock();
  382. list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
  383. if (rdev->raid_disk >= 0 &&
  384. !test_bit(Faulty, &rdev->flags)) {
  385. /* Take two references, one is dropped
  386. * when request finishes, one after
  387. * we reclaim rcu_read_lock
  388. */
  389. struct bio *bi;
  390. atomic_inc(&rdev->nr_pending);
  391. atomic_inc(&rdev->nr_pending);
  392. rcu_read_unlock();
  393. bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
  394. bi->bi_end_io = md_end_flush;
  395. bi->bi_private = rdev;
  396. bi->bi_bdev = rdev->bdev;
  397. atomic_inc(&mddev->flush_pending);
  398. submit_bio(WRITE_FLUSH, bi);
  399. rcu_read_lock();
  400. rdev_dec_pending(rdev, mddev);
  401. }
  402. rcu_read_unlock();
  403. if (atomic_dec_and_test(&mddev->flush_pending))
  404. queue_work(md_wq, &mddev->flush_work);
  405. }
  406. static void md_submit_flush_data(struct work_struct *ws)
  407. {
  408. mddev_t *mddev = container_of(ws, mddev_t, flush_work);
  409. struct bio *bio = mddev->flush_bio;
  410. if (bio->bi_size == 0)
  411. /* an empty barrier - all done */
  412. bio_endio(bio, 0);
  413. else {
  414. bio->bi_rw &= ~REQ_FLUSH;
  415. if (mddev->pers->make_request(mddev, bio))
  416. generic_make_request(bio);
  417. }
  418. mddev->flush_bio = NULL;
  419. wake_up(&mddev->sb_wait);
  420. }
  421. void md_flush_request(mddev_t *mddev, struct bio *bio)
  422. {
  423. spin_lock_irq(&mddev->write_lock);
  424. wait_event_lock_irq(mddev->sb_wait,
  425. !mddev->flush_bio,
  426. mddev->write_lock, /*nothing*/);
  427. mddev->flush_bio = bio;
  428. spin_unlock_irq(&mddev->write_lock);
  429. INIT_WORK(&mddev->flush_work, submit_flushes);
  430. queue_work(md_wq, &mddev->flush_work);
  431. }
  432. EXPORT_SYMBOL(md_flush_request);
  433. /* Support for plugging.
  434. * This mirrors the plugging support in request_queue, but does not
  435. * require having a whole queue or request structures.
  436. * We allocate an md_plug_cb for each md device and each thread it gets
  437. * plugged on. This links tot the private plug_handle structure in the
  438. * personality data where we keep a count of the number of outstanding
  439. * plugs so other code can see if a plug is active.
  440. */
  441. struct md_plug_cb {
  442. struct blk_plug_cb cb;
  443. mddev_t *mddev;
  444. };
  445. static void plugger_unplug(struct blk_plug_cb *cb)
  446. {
  447. struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
  448. if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
  449. md_wakeup_thread(mdcb->mddev->thread);
  450. kfree(mdcb);
  451. }
  452. /* Check that an unplug wakeup will come shortly.
  453. * If not, wakeup the md thread immediately
  454. */
  455. int mddev_check_plugged(mddev_t *mddev)
  456. {
  457. struct blk_plug *plug = current->plug;
  458. struct md_plug_cb *mdcb;
  459. if (!plug)
  460. return 0;
  461. list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
  462. if (mdcb->cb.callback == plugger_unplug &&
  463. mdcb->mddev == mddev) {
  464. /* Already on the list, move to top */
  465. if (mdcb != list_first_entry(&plug->cb_list,
  466. struct md_plug_cb,
  467. cb.list))
  468. list_move(&mdcb->cb.list, &plug->cb_list);
  469. return 1;
  470. }
  471. }
  472. /* Not currently on the callback list */
  473. mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
  474. if (!mdcb)
  475. return 0;
  476. mdcb->mddev = mddev;
  477. mdcb->cb.callback = plugger_unplug;
  478. atomic_inc(&mddev->plug_cnt);
  479. list_add(&mdcb->cb.list, &plug->cb_list);
  480. return 1;
  481. }
  482. EXPORT_SYMBOL_GPL(mddev_check_plugged);
  483. static inline mddev_t *mddev_get(mddev_t *mddev)
  484. {
  485. atomic_inc(&mddev->active);
  486. return mddev;
  487. }
  488. static void mddev_delayed_delete(struct work_struct *ws);
  489. static void mddev_put(mddev_t *mddev)
  490. {
  491. struct bio_set *bs = NULL;
  492. if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
  493. return;
  494. if (!mddev->raid_disks && list_empty(&mddev->disks) &&
  495. mddev->ctime == 0 && !mddev->hold_active) {
  496. /* Array is not configured at all, and not held active,
  497. * so destroy it */
  498. list_del(&mddev->all_mddevs);
  499. bs = mddev->bio_set;
  500. mddev->bio_set = NULL;
  501. if (mddev->gendisk) {
  502. /* We did a probe so need to clean up. Call
  503. * queue_work inside the spinlock so that
  504. * flush_workqueue() after mddev_find will
  505. * succeed in waiting for the work to be done.
  506. */
  507. INIT_WORK(&mddev->del_work, mddev_delayed_delete);
  508. queue_work(md_misc_wq, &mddev->del_work);
  509. } else
  510. kfree(mddev);
  511. }
  512. spin_unlock(&all_mddevs_lock);
  513. if (bs)
  514. bioset_free(bs);
  515. }
  516. void mddev_init(mddev_t *mddev)
  517. {
  518. mutex_init(&mddev->open_mutex);
  519. mutex_init(&mddev->reconfig_mutex);
  520. mutex_init(&mddev->bitmap_info.mutex);
  521. INIT_LIST_HEAD(&mddev->disks);
  522. INIT_LIST_HEAD(&mddev->all_mddevs);
  523. init_timer(&mddev->safemode_timer);
  524. atomic_set(&mddev->active, 1);
  525. atomic_set(&mddev->openers, 0);
  526. atomic_set(&mddev->active_io, 0);
  527. atomic_set(&mddev->plug_cnt, 0);
  528. spin_lock_init(&mddev->write_lock);
  529. atomic_set(&mddev->flush_pending, 0);
  530. init_waitqueue_head(&mddev->sb_wait);
  531. init_waitqueue_head(&mddev->recovery_wait);
  532. mddev->reshape_position = MaxSector;
  533. mddev->resync_min = 0;
  534. mddev->resync_max = MaxSector;
  535. mddev->level = LEVEL_NONE;
  536. }
  537. EXPORT_SYMBOL_GPL(mddev_init);
  538. static mddev_t * mddev_find(dev_t unit)
  539. {
  540. mddev_t *mddev, *new = NULL;
  541. if (unit && MAJOR(unit) != MD_MAJOR)
  542. unit &= ~((1<<MdpMinorShift)-1);
  543. retry:
  544. spin_lock(&all_mddevs_lock);
  545. if (unit) {
  546. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  547. if (mddev->unit == unit) {
  548. mddev_get(mddev);
  549. spin_unlock(&all_mddevs_lock);
  550. kfree(new);
  551. return mddev;
  552. }
  553. if (new) {
  554. list_add(&new->all_mddevs, &all_mddevs);
  555. spin_unlock(&all_mddevs_lock);
  556. new->hold_active = UNTIL_IOCTL;
  557. return new;
  558. }
  559. } else if (new) {
  560. /* find an unused unit number */
  561. static int next_minor = 512;
  562. int start = next_minor;
  563. int is_free = 0;
  564. int dev = 0;
  565. while (!is_free) {
  566. dev = MKDEV(MD_MAJOR, next_minor);
  567. next_minor++;
  568. if (next_minor > MINORMASK)
  569. next_minor = 0;
  570. if (next_minor == start) {
  571. /* Oh dear, all in use. */
  572. spin_unlock(&all_mddevs_lock);
  573. kfree(new);
  574. return NULL;
  575. }
  576. is_free = 1;
  577. list_for_each_entry(mddev, &all_mddevs, all_mddevs)
  578. if (mddev->unit == dev) {
  579. is_free = 0;
  580. break;
  581. }
  582. }
  583. new->unit = dev;
  584. new->md_minor = MINOR(dev);
  585. new->hold_active = UNTIL_STOP;
  586. list_add(&new->all_mddevs, &all_mddevs);
  587. spin_unlock(&all_mddevs_lock);
  588. return new;
  589. }
  590. spin_unlock(&all_mddevs_lock);
  591. new = kzalloc(sizeof(*new), GFP_KERNEL);
  592. if (!new)
  593. return NULL;
  594. new->unit = unit;
  595. if (MAJOR(unit) == MD_MAJOR)
  596. new->md_minor = MINOR(unit);
  597. else
  598. new->md_minor = MINOR(unit) >> MdpMinorShift;
  599. mddev_init(new);
  600. goto retry;
  601. }
  602. static inline int mddev_lock(mddev_t * mddev)
  603. {
  604. return mutex_lock_interruptible(&mddev->reconfig_mutex);
  605. }
  606. static inline int mddev_is_locked(mddev_t *mddev)
  607. {
  608. return mutex_is_locked(&mddev->reconfig_mutex);
  609. }
  610. static inline int mddev_trylock(mddev_t * mddev)
  611. {
  612. return mutex_trylock(&mddev->reconfig_mutex);
  613. }
  614. static struct attribute_group md_redundancy_group;
  615. static void mddev_unlock(mddev_t * mddev)
  616. {
  617. if (mddev->to_remove) {
  618. /* These cannot be removed under reconfig_mutex as
  619. * an access to the files will try to take reconfig_mutex
  620. * while holding the file unremovable, which leads to
  621. * a deadlock.
  622. * So hold set sysfs_active while the remove in happeing,
  623. * and anything else which might set ->to_remove or my
  624. * otherwise change the sysfs namespace will fail with
  625. * -EBUSY if sysfs_active is still set.
  626. * We set sysfs_active under reconfig_mutex and elsewhere
  627. * test it under the same mutex to ensure its correct value
  628. * is seen.
  629. */
  630. struct attribute_group *to_remove = mddev->to_remove;
  631. mddev->to_remove = NULL;
  632. mddev->sysfs_active = 1;
  633. mutex_unlock(&mddev->reconfig_mutex);
  634. if (mddev->kobj.sd) {
  635. if (to_remove != &md_redundancy_group)
  636. sysfs_remove_group(&mddev->kobj, to_remove);
  637. if (mddev->pers == NULL ||
  638. mddev->pers->sync_request == NULL) {
  639. sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
  640. if (mddev->sysfs_action)
  641. sysfs_put(mddev->sysfs_action);
  642. mddev->sysfs_action = NULL;
  643. }
  644. }
  645. mddev->sysfs_active = 0;
  646. } else
  647. mutex_unlock(&mddev->reconfig_mutex);
  648. /* was we've dropped the mutex we need a spinlock to
  649. * make sur the thread doesn't disappear
  650. */
  651. spin_lock(&pers_lock);
  652. md_wakeup_thread(mddev->thread);
  653. spin_unlock(&pers_lock);
  654. }
  655. static mdk_rdev_t * find_rdev_nr(mddev_t *mddev, int nr)
  656. {
  657. mdk_rdev_t *rdev;
  658. list_for_each_entry(rdev, &mddev->disks, same_set)
  659. if (rdev->desc_nr == nr)
  660. return rdev;
  661. return NULL;
  662. }
  663. static mdk_rdev_t * find_rdev(mddev_t * mddev, dev_t dev)
  664. {
  665. mdk_rdev_t *rdev;
  666. list_for_each_entry(rdev, &mddev->disks, same_set)
  667. if (rdev->bdev->bd_dev == dev)
  668. return rdev;
  669. return NULL;
  670. }
  671. static struct mdk_personality *find_pers(int level, char *clevel)
  672. {
  673. struct mdk_personality *pers;
  674. list_for_each_entry(pers, &pers_list, list) {
  675. if (level != LEVEL_NONE && pers->level == level)
  676. return pers;
  677. if (strcmp(pers->name, clevel)==0)
  678. return pers;
  679. }
  680. return NULL;
  681. }
  682. /* return the offset of the super block in 512byte sectors */
  683. static inline sector_t calc_dev_sboffset(mdk_rdev_t *rdev)
  684. {
  685. sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
  686. return MD_NEW_SIZE_SECTORS(num_sectors);
  687. }
  688. static int alloc_disk_sb(mdk_rdev_t * rdev)
  689. {
  690. if (rdev->sb_page)
  691. MD_BUG();
  692. rdev->sb_page = alloc_page(GFP_KERNEL);
  693. if (!rdev->sb_page) {
  694. printk(KERN_ALERT "md: out of memory.\n");
  695. return -ENOMEM;
  696. }
  697. return 0;
  698. }
  699. static void free_disk_sb(mdk_rdev_t * rdev)
  700. {
  701. if (rdev->sb_page) {
  702. put_page(rdev->sb_page);
  703. rdev->sb_loaded = 0;
  704. rdev->sb_page = NULL;
  705. rdev->sb_start = 0;
  706. rdev->sectors = 0;
  707. }
  708. if (rdev->bb_page) {
  709. put_page(rdev->bb_page);
  710. rdev->bb_page = NULL;
  711. }
  712. }
  713. static void super_written(struct bio *bio, int error)
  714. {
  715. mdk_rdev_t *rdev = bio->bi_private;
  716. mddev_t *mddev = rdev->mddev;
  717. if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
  718. printk("md: super_written gets error=%d, uptodate=%d\n",
  719. error, test_bit(BIO_UPTODATE, &bio->bi_flags));
  720. WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
  721. md_error(mddev, rdev);
  722. }
  723. if (atomic_dec_and_test(&mddev->pending_writes))
  724. wake_up(&mddev->sb_wait);
  725. bio_put(bio);
  726. }
  727. void md_super_write(mddev_t *mddev, mdk_rdev_t *rdev,
  728. sector_t sector, int size, struct page *page)
  729. {
  730. /* write first size bytes of page to sector of rdev
  731. * Increment mddev->pending_writes before returning
  732. * and decrement it on completion, waking up sb_wait
  733. * if zero is reached.
  734. * If an error occurred, call md_error
  735. */
  736. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
  737. bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
  738. bio->bi_sector = sector;
  739. bio_add_page(bio, page, size, 0);
  740. bio->bi_private = rdev;
  741. bio->bi_end_io = super_written;
  742. atomic_inc(&mddev->pending_writes);
  743. submit_bio(WRITE_FLUSH_FUA, bio);
  744. }
  745. void md_super_wait(mddev_t *mddev)
  746. {
  747. /* wait for all superblock writes that were scheduled to complete */
  748. DEFINE_WAIT(wq);
  749. for(;;) {
  750. prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
  751. if (atomic_read(&mddev->pending_writes)==0)
  752. break;
  753. schedule();
  754. }
  755. finish_wait(&mddev->sb_wait, &wq);
  756. }
  757. static void bi_complete(struct bio *bio, int error)
  758. {
  759. complete((struct completion*)bio->bi_private);
  760. }
  761. int sync_page_io(mdk_rdev_t *rdev, sector_t sector, int size,
  762. struct page *page, int rw, bool metadata_op)
  763. {
  764. struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
  765. struct completion event;
  766. int ret;
  767. rw |= REQ_SYNC;
  768. bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
  769. rdev->meta_bdev : rdev->bdev;
  770. if (metadata_op)
  771. bio->bi_sector = sector + rdev->sb_start;
  772. else
  773. bio->bi_sector = sector + rdev->data_offset;
  774. bio_add_page(bio, page, size, 0);
  775. init_completion(&event);
  776. bio->bi_private = &event;
  777. bio->bi_end_io = bi_complete;
  778. submit_bio(rw, bio);
  779. wait_for_completion(&event);
  780. ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
  781. bio_put(bio);
  782. return ret;
  783. }
  784. EXPORT_SYMBOL_GPL(sync_page_io);
  785. static int read_disk_sb(mdk_rdev_t * rdev, int size)
  786. {
  787. char b[BDEVNAME_SIZE];
  788. if (!rdev->sb_page) {
  789. MD_BUG();
  790. return -EINVAL;
  791. }
  792. if (rdev->sb_loaded)
  793. return 0;
  794. if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
  795. goto fail;
  796. rdev->sb_loaded = 1;
  797. return 0;
  798. fail:
  799. printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
  800. bdevname(rdev->bdev,b));
  801. return -EINVAL;
  802. }
  803. static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  804. {
  805. return sb1->set_uuid0 == sb2->set_uuid0 &&
  806. sb1->set_uuid1 == sb2->set_uuid1 &&
  807. sb1->set_uuid2 == sb2->set_uuid2 &&
  808. sb1->set_uuid3 == sb2->set_uuid3;
  809. }
  810. static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
  811. {
  812. int ret;
  813. mdp_super_t *tmp1, *tmp2;
  814. tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
  815. tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
  816. if (!tmp1 || !tmp2) {
  817. ret = 0;
  818. printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
  819. goto abort;
  820. }
  821. *tmp1 = *sb1;
  822. *tmp2 = *sb2;
  823. /*
  824. * nr_disks is not constant
  825. */
  826. tmp1->nr_disks = 0;
  827. tmp2->nr_disks = 0;
  828. ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
  829. abort:
  830. kfree(tmp1);
  831. kfree(tmp2);
  832. return ret;
  833. }
  834. static u32 md_csum_fold(u32 csum)
  835. {
  836. csum = (csum & 0xffff) + (csum >> 16);
  837. return (csum & 0xffff) + (csum >> 16);
  838. }
  839. static unsigned int calc_sb_csum(mdp_super_t * sb)
  840. {
  841. u64 newcsum = 0;
  842. u32 *sb32 = (u32*)sb;
  843. int i;
  844. unsigned int disk_csum, csum;
  845. disk_csum = sb->sb_csum;
  846. sb->sb_csum = 0;
  847. for (i = 0; i < MD_SB_BYTES/4 ; i++)
  848. newcsum += sb32[i];
  849. csum = (newcsum & 0xffffffff) + (newcsum>>32);
  850. #ifdef CONFIG_ALPHA
  851. /* This used to use csum_partial, which was wrong for several
  852. * reasons including that different results are returned on
  853. * different architectures. It isn't critical that we get exactly
  854. * the same return value as before (we always csum_fold before
  855. * testing, and that removes any differences). However as we
  856. * know that csum_partial always returned a 16bit value on
  857. * alphas, do a fold to maximise conformity to previous behaviour.
  858. */
  859. sb->sb_csum = md_csum_fold(disk_csum);
  860. #else
  861. sb->sb_csum = disk_csum;
  862. #endif
  863. return csum;
  864. }
  865. /*
  866. * Handle superblock details.
  867. * We want to be able to handle multiple superblock formats
  868. * so we have a common interface to them all, and an array of
  869. * different handlers.
  870. * We rely on user-space to write the initial superblock, and support
  871. * reading and updating of superblocks.
  872. * Interface methods are:
  873. * int load_super(mdk_rdev_t *dev, mdk_rdev_t *refdev, int minor_version)
  874. * loads and validates a superblock on dev.
  875. * if refdev != NULL, compare superblocks on both devices
  876. * Return:
  877. * 0 - dev has a superblock that is compatible with refdev
  878. * 1 - dev has a superblock that is compatible and newer than refdev
  879. * so dev should be used as the refdev in future
  880. * -EINVAL superblock incompatible or invalid
  881. * -othererror e.g. -EIO
  882. *
  883. * int validate_super(mddev_t *mddev, mdk_rdev_t *dev)
  884. * Verify that dev is acceptable into mddev.
  885. * The first time, mddev->raid_disks will be 0, and data from
  886. * dev should be merged in. Subsequent calls check that dev
  887. * is new enough. Return 0 or -EINVAL
  888. *
  889. * void sync_super(mddev_t *mddev, mdk_rdev_t *dev)
  890. * Update the superblock for rdev with data in mddev
  891. * This does not write to disc.
  892. *
  893. */
  894. struct super_type {
  895. char *name;
  896. struct module *owner;
  897. int (*load_super)(mdk_rdev_t *rdev, mdk_rdev_t *refdev,
  898. int minor_version);
  899. int (*validate_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  900. void (*sync_super)(mddev_t *mddev, mdk_rdev_t *rdev);
  901. unsigned long long (*rdev_size_change)(mdk_rdev_t *rdev,
  902. sector_t num_sectors);
  903. };
  904. /*
  905. * Check that the given mddev has no bitmap.
  906. *
  907. * This function is called from the run method of all personalities that do not
  908. * support bitmaps. It prints an error message and returns non-zero if mddev
  909. * has a bitmap. Otherwise, it returns 0.
  910. *
  911. */
  912. int md_check_no_bitmap(mddev_t *mddev)
  913. {
  914. if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
  915. return 0;
  916. printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
  917. mdname(mddev), mddev->pers->name);
  918. return 1;
  919. }
  920. EXPORT_SYMBOL(md_check_no_bitmap);
  921. /*
  922. * load_super for 0.90.0
  923. */
  924. static int super_90_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  925. {
  926. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  927. mdp_super_t *sb;
  928. int ret;
  929. /*
  930. * Calculate the position of the superblock (512byte sectors),
  931. * it's at the end of the disk.
  932. *
  933. * It also happens to be a multiple of 4Kb.
  934. */
  935. rdev->sb_start = calc_dev_sboffset(rdev);
  936. ret = read_disk_sb(rdev, MD_SB_BYTES);
  937. if (ret) return ret;
  938. ret = -EINVAL;
  939. bdevname(rdev->bdev, b);
  940. sb = page_address(rdev->sb_page);
  941. if (sb->md_magic != MD_SB_MAGIC) {
  942. printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
  943. b);
  944. goto abort;
  945. }
  946. if (sb->major_version != 0 ||
  947. sb->minor_version < 90 ||
  948. sb->minor_version > 91) {
  949. printk(KERN_WARNING "Bad version number %d.%d on %s\n",
  950. sb->major_version, sb->minor_version,
  951. b);
  952. goto abort;
  953. }
  954. if (sb->raid_disks <= 0)
  955. goto abort;
  956. if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
  957. printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
  958. b);
  959. goto abort;
  960. }
  961. rdev->preferred_minor = sb->md_minor;
  962. rdev->data_offset = 0;
  963. rdev->sb_size = MD_SB_BYTES;
  964. rdev->badblocks.shift = -1;
  965. if (sb->level == LEVEL_MULTIPATH)
  966. rdev->desc_nr = -1;
  967. else
  968. rdev->desc_nr = sb->this_disk.number;
  969. if (!refdev) {
  970. ret = 1;
  971. } else {
  972. __u64 ev1, ev2;
  973. mdp_super_t *refsb = page_address(refdev->sb_page);
  974. if (!uuid_equal(refsb, sb)) {
  975. printk(KERN_WARNING "md: %s has different UUID to %s\n",
  976. b, bdevname(refdev->bdev,b2));
  977. goto abort;
  978. }
  979. if (!sb_equal(refsb, sb)) {
  980. printk(KERN_WARNING "md: %s has same UUID"
  981. " but different superblock to %s\n",
  982. b, bdevname(refdev->bdev, b2));
  983. goto abort;
  984. }
  985. ev1 = md_event(sb);
  986. ev2 = md_event(refsb);
  987. if (ev1 > ev2)
  988. ret = 1;
  989. else
  990. ret = 0;
  991. }
  992. rdev->sectors = rdev->sb_start;
  993. /* Limit to 4TB as metadata cannot record more than that */
  994. if (rdev->sectors >= (2ULL << 32))
  995. rdev->sectors = (2ULL << 32) - 2;
  996. if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
  997. /* "this cannot possibly happen" ... */
  998. ret = -EINVAL;
  999. abort:
  1000. return ret;
  1001. }
  1002. /*
  1003. * validate_super for 0.90.0
  1004. */
  1005. static int super_90_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  1006. {
  1007. mdp_disk_t *desc;
  1008. mdp_super_t *sb = page_address(rdev->sb_page);
  1009. __u64 ev1 = md_event(sb);
  1010. rdev->raid_disk = -1;
  1011. clear_bit(Faulty, &rdev->flags);
  1012. clear_bit(In_sync, &rdev->flags);
  1013. clear_bit(WriteMostly, &rdev->flags);
  1014. if (mddev->raid_disks == 0) {
  1015. mddev->major_version = 0;
  1016. mddev->minor_version = sb->minor_version;
  1017. mddev->patch_version = sb->patch_version;
  1018. mddev->external = 0;
  1019. mddev->chunk_sectors = sb->chunk_size >> 9;
  1020. mddev->ctime = sb->ctime;
  1021. mddev->utime = sb->utime;
  1022. mddev->level = sb->level;
  1023. mddev->clevel[0] = 0;
  1024. mddev->layout = sb->layout;
  1025. mddev->raid_disks = sb->raid_disks;
  1026. mddev->dev_sectors = ((sector_t)sb->size) * 2;
  1027. mddev->events = ev1;
  1028. mddev->bitmap_info.offset = 0;
  1029. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  1030. if (mddev->minor_version >= 91) {
  1031. mddev->reshape_position = sb->reshape_position;
  1032. mddev->delta_disks = sb->delta_disks;
  1033. mddev->new_level = sb->new_level;
  1034. mddev->new_layout = sb->new_layout;
  1035. mddev->new_chunk_sectors = sb->new_chunk >> 9;
  1036. } else {
  1037. mddev->reshape_position = MaxSector;
  1038. mddev->delta_disks = 0;
  1039. mddev->new_level = mddev->level;
  1040. mddev->new_layout = mddev->layout;
  1041. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1042. }
  1043. if (sb->state & (1<<MD_SB_CLEAN))
  1044. mddev->recovery_cp = MaxSector;
  1045. else {
  1046. if (sb->events_hi == sb->cp_events_hi &&
  1047. sb->events_lo == sb->cp_events_lo) {
  1048. mddev->recovery_cp = sb->recovery_cp;
  1049. } else
  1050. mddev->recovery_cp = 0;
  1051. }
  1052. memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
  1053. memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
  1054. memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
  1055. memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
  1056. mddev->max_disks = MD_SB_DISKS;
  1057. if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
  1058. mddev->bitmap_info.file == NULL)
  1059. mddev->bitmap_info.offset =
  1060. mddev->bitmap_info.default_offset;
  1061. } else if (mddev->pers == NULL) {
  1062. /* Insist on good event counter while assembling, except
  1063. * for spares (which don't need an event count) */
  1064. ++ev1;
  1065. if (sb->disks[rdev->desc_nr].state & (
  1066. (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
  1067. if (ev1 < mddev->events)
  1068. return -EINVAL;
  1069. } else if (mddev->bitmap) {
  1070. /* if adding to array with a bitmap, then we can accept an
  1071. * older device ... but not too old.
  1072. */
  1073. if (ev1 < mddev->bitmap->events_cleared)
  1074. return 0;
  1075. } else {
  1076. if (ev1 < mddev->events)
  1077. /* just a hot-add of a new device, leave raid_disk at -1 */
  1078. return 0;
  1079. }
  1080. if (mddev->level != LEVEL_MULTIPATH) {
  1081. desc = sb->disks + rdev->desc_nr;
  1082. if (desc->state & (1<<MD_DISK_FAULTY))
  1083. set_bit(Faulty, &rdev->flags);
  1084. else if (desc->state & (1<<MD_DISK_SYNC) /* &&
  1085. desc->raid_disk < mddev->raid_disks */) {
  1086. set_bit(In_sync, &rdev->flags);
  1087. rdev->raid_disk = desc->raid_disk;
  1088. } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
  1089. /* active but not in sync implies recovery up to
  1090. * reshape position. We don't know exactly where
  1091. * that is, so set to zero for now */
  1092. if (mddev->minor_version >= 91) {
  1093. rdev->recovery_offset = 0;
  1094. rdev->raid_disk = desc->raid_disk;
  1095. }
  1096. }
  1097. if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
  1098. set_bit(WriteMostly, &rdev->flags);
  1099. } else /* MULTIPATH are always insync */
  1100. set_bit(In_sync, &rdev->flags);
  1101. return 0;
  1102. }
  1103. /*
  1104. * sync_super for 0.90.0
  1105. */
  1106. static void super_90_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  1107. {
  1108. mdp_super_t *sb;
  1109. mdk_rdev_t *rdev2;
  1110. int next_spare = mddev->raid_disks;
  1111. /* make rdev->sb match mddev data..
  1112. *
  1113. * 1/ zero out disks
  1114. * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
  1115. * 3/ any empty disks < next_spare become removed
  1116. *
  1117. * disks[0] gets initialised to REMOVED because
  1118. * we cannot be sure from other fields if it has
  1119. * been initialised or not.
  1120. */
  1121. int i;
  1122. int active=0, working=0,failed=0,spare=0,nr_disks=0;
  1123. rdev->sb_size = MD_SB_BYTES;
  1124. sb = page_address(rdev->sb_page);
  1125. memset(sb, 0, sizeof(*sb));
  1126. sb->md_magic = MD_SB_MAGIC;
  1127. sb->major_version = mddev->major_version;
  1128. sb->patch_version = mddev->patch_version;
  1129. sb->gvalid_words = 0; /* ignored */
  1130. memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
  1131. memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
  1132. memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
  1133. memcpy(&sb->set_uuid3, mddev->uuid+12,4);
  1134. sb->ctime = mddev->ctime;
  1135. sb->level = mddev->level;
  1136. sb->size = mddev->dev_sectors / 2;
  1137. sb->raid_disks = mddev->raid_disks;
  1138. sb->md_minor = mddev->md_minor;
  1139. sb->not_persistent = 0;
  1140. sb->utime = mddev->utime;
  1141. sb->state = 0;
  1142. sb->events_hi = (mddev->events>>32);
  1143. sb->events_lo = (u32)mddev->events;
  1144. if (mddev->reshape_position == MaxSector)
  1145. sb->minor_version = 90;
  1146. else {
  1147. sb->minor_version = 91;
  1148. sb->reshape_position = mddev->reshape_position;
  1149. sb->new_level = mddev->new_level;
  1150. sb->delta_disks = mddev->delta_disks;
  1151. sb->new_layout = mddev->new_layout;
  1152. sb->new_chunk = mddev->new_chunk_sectors << 9;
  1153. }
  1154. mddev->minor_version = sb->minor_version;
  1155. if (mddev->in_sync)
  1156. {
  1157. sb->recovery_cp = mddev->recovery_cp;
  1158. sb->cp_events_hi = (mddev->events>>32);
  1159. sb->cp_events_lo = (u32)mddev->events;
  1160. if (mddev->recovery_cp == MaxSector)
  1161. sb->state = (1<< MD_SB_CLEAN);
  1162. } else
  1163. sb->recovery_cp = 0;
  1164. sb->layout = mddev->layout;
  1165. sb->chunk_size = mddev->chunk_sectors << 9;
  1166. if (mddev->bitmap && mddev->bitmap_info.file == NULL)
  1167. sb->state |= (1<<MD_SB_BITMAP_PRESENT);
  1168. sb->disks[0].state = (1<<MD_DISK_REMOVED);
  1169. list_for_each_entry(rdev2, &mddev->disks, same_set) {
  1170. mdp_disk_t *d;
  1171. int desc_nr;
  1172. int is_active = test_bit(In_sync, &rdev2->flags);
  1173. if (rdev2->raid_disk >= 0 &&
  1174. sb->minor_version >= 91)
  1175. /* we have nowhere to store the recovery_offset,
  1176. * but if it is not below the reshape_position,
  1177. * we can piggy-back on that.
  1178. */
  1179. is_active = 1;
  1180. if (rdev2->raid_disk < 0 ||
  1181. test_bit(Faulty, &rdev2->flags))
  1182. is_active = 0;
  1183. if (is_active)
  1184. desc_nr = rdev2->raid_disk;
  1185. else
  1186. desc_nr = next_spare++;
  1187. rdev2->desc_nr = desc_nr;
  1188. d = &sb->disks[rdev2->desc_nr];
  1189. nr_disks++;
  1190. d->number = rdev2->desc_nr;
  1191. d->major = MAJOR(rdev2->bdev->bd_dev);
  1192. d->minor = MINOR(rdev2->bdev->bd_dev);
  1193. if (is_active)
  1194. d->raid_disk = rdev2->raid_disk;
  1195. else
  1196. d->raid_disk = rdev2->desc_nr; /* compatibility */
  1197. if (test_bit(Faulty, &rdev2->flags))
  1198. d->state = (1<<MD_DISK_FAULTY);
  1199. else if (is_active) {
  1200. d->state = (1<<MD_DISK_ACTIVE);
  1201. if (test_bit(In_sync, &rdev2->flags))
  1202. d->state |= (1<<MD_DISK_SYNC);
  1203. active++;
  1204. working++;
  1205. } else {
  1206. d->state = 0;
  1207. spare++;
  1208. working++;
  1209. }
  1210. if (test_bit(WriteMostly, &rdev2->flags))
  1211. d->state |= (1<<MD_DISK_WRITEMOSTLY);
  1212. }
  1213. /* now set the "removed" and "faulty" bits on any missing devices */
  1214. for (i=0 ; i < mddev->raid_disks ; i++) {
  1215. mdp_disk_t *d = &sb->disks[i];
  1216. if (d->state == 0 && d->number == 0) {
  1217. d->number = i;
  1218. d->raid_disk = i;
  1219. d->state = (1<<MD_DISK_REMOVED);
  1220. d->state |= (1<<MD_DISK_FAULTY);
  1221. failed++;
  1222. }
  1223. }
  1224. sb->nr_disks = nr_disks;
  1225. sb->active_disks = active;
  1226. sb->working_disks = working;
  1227. sb->failed_disks = failed;
  1228. sb->spare_disks = spare;
  1229. sb->this_disk = sb->disks[rdev->desc_nr];
  1230. sb->sb_csum = calc_sb_csum(sb);
  1231. }
  1232. /*
  1233. * rdev_size_change for 0.90.0
  1234. */
  1235. static unsigned long long
  1236. super_90_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
  1237. {
  1238. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1239. return 0; /* component must fit device */
  1240. if (rdev->mddev->bitmap_info.offset)
  1241. return 0; /* can't move bitmap */
  1242. rdev->sb_start = calc_dev_sboffset(rdev);
  1243. if (!num_sectors || num_sectors > rdev->sb_start)
  1244. num_sectors = rdev->sb_start;
  1245. /* Limit to 4TB as metadata cannot record more than that.
  1246. * 4TB == 2^32 KB, or 2*2^32 sectors.
  1247. */
  1248. if (num_sectors >= (2ULL << 32))
  1249. num_sectors = (2ULL << 32) - 2;
  1250. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1251. rdev->sb_page);
  1252. md_super_wait(rdev->mddev);
  1253. return num_sectors;
  1254. }
  1255. /*
  1256. * version 1 superblock
  1257. */
  1258. static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
  1259. {
  1260. __le32 disk_csum;
  1261. u32 csum;
  1262. unsigned long long newcsum;
  1263. int size = 256 + le32_to_cpu(sb->max_dev)*2;
  1264. __le32 *isuper = (__le32*)sb;
  1265. int i;
  1266. disk_csum = sb->sb_csum;
  1267. sb->sb_csum = 0;
  1268. newcsum = 0;
  1269. for (i=0; size>=4; size -= 4 )
  1270. newcsum += le32_to_cpu(*isuper++);
  1271. if (size == 2)
  1272. newcsum += le16_to_cpu(*(__le16*) isuper);
  1273. csum = (newcsum & 0xffffffff) + (newcsum >> 32);
  1274. sb->sb_csum = disk_csum;
  1275. return cpu_to_le32(csum);
  1276. }
  1277. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  1278. int acknowledged);
  1279. static int super_1_load(mdk_rdev_t *rdev, mdk_rdev_t *refdev, int minor_version)
  1280. {
  1281. struct mdp_superblock_1 *sb;
  1282. int ret;
  1283. sector_t sb_start;
  1284. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  1285. int bmask;
  1286. /*
  1287. * Calculate the position of the superblock in 512byte sectors.
  1288. * It is always aligned to a 4K boundary and
  1289. * depeding on minor_version, it can be:
  1290. * 0: At least 8K, but less than 12K, from end of device
  1291. * 1: At start of device
  1292. * 2: 4K from start of device.
  1293. */
  1294. switch(minor_version) {
  1295. case 0:
  1296. sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
  1297. sb_start -= 8*2;
  1298. sb_start &= ~(sector_t)(4*2-1);
  1299. break;
  1300. case 1:
  1301. sb_start = 0;
  1302. break;
  1303. case 2:
  1304. sb_start = 8;
  1305. break;
  1306. default:
  1307. return -EINVAL;
  1308. }
  1309. rdev->sb_start = sb_start;
  1310. /* superblock is rarely larger than 1K, but it can be larger,
  1311. * and it is safe to read 4k, so we do that
  1312. */
  1313. ret = read_disk_sb(rdev, 4096);
  1314. if (ret) return ret;
  1315. sb = page_address(rdev->sb_page);
  1316. if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
  1317. sb->major_version != cpu_to_le32(1) ||
  1318. le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
  1319. le64_to_cpu(sb->super_offset) != rdev->sb_start ||
  1320. (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
  1321. return -EINVAL;
  1322. if (calc_sb_1_csum(sb) != sb->sb_csum) {
  1323. printk("md: invalid superblock checksum on %s\n",
  1324. bdevname(rdev->bdev,b));
  1325. return -EINVAL;
  1326. }
  1327. if (le64_to_cpu(sb->data_size) < 10) {
  1328. printk("md: data_size too small on %s\n",
  1329. bdevname(rdev->bdev,b));
  1330. return -EINVAL;
  1331. }
  1332. rdev->preferred_minor = 0xffff;
  1333. rdev->data_offset = le64_to_cpu(sb->data_offset);
  1334. atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
  1335. rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
  1336. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1337. if (rdev->sb_size & bmask)
  1338. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1339. if (minor_version
  1340. && rdev->data_offset < sb_start + (rdev->sb_size/512))
  1341. return -EINVAL;
  1342. if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
  1343. rdev->desc_nr = -1;
  1344. else
  1345. rdev->desc_nr = le32_to_cpu(sb->dev_number);
  1346. if (!rdev->bb_page) {
  1347. rdev->bb_page = alloc_page(GFP_KERNEL);
  1348. if (!rdev->bb_page)
  1349. return -ENOMEM;
  1350. }
  1351. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
  1352. rdev->badblocks.count == 0) {
  1353. /* need to load the bad block list.
  1354. * Currently we limit it to one page.
  1355. */
  1356. s32 offset;
  1357. sector_t bb_sector;
  1358. u64 *bbp;
  1359. int i;
  1360. int sectors = le16_to_cpu(sb->bblog_size);
  1361. if (sectors > (PAGE_SIZE / 512))
  1362. return -EINVAL;
  1363. offset = le32_to_cpu(sb->bblog_offset);
  1364. if (offset == 0)
  1365. return -EINVAL;
  1366. bb_sector = (long long)offset;
  1367. if (!sync_page_io(rdev, bb_sector, sectors << 9,
  1368. rdev->bb_page, READ, true))
  1369. return -EIO;
  1370. bbp = (u64 *)page_address(rdev->bb_page);
  1371. rdev->badblocks.shift = sb->bblog_shift;
  1372. for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
  1373. u64 bb = le64_to_cpu(*bbp);
  1374. int count = bb & (0x3ff);
  1375. u64 sector = bb >> 10;
  1376. sector <<= sb->bblog_shift;
  1377. count <<= sb->bblog_shift;
  1378. if (bb + 1 == 0)
  1379. break;
  1380. if (md_set_badblocks(&rdev->badblocks,
  1381. sector, count, 1) == 0)
  1382. return -EINVAL;
  1383. }
  1384. } else if (sb->bblog_offset == 0)
  1385. rdev->badblocks.shift = -1;
  1386. if (!refdev) {
  1387. ret = 1;
  1388. } else {
  1389. __u64 ev1, ev2;
  1390. struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
  1391. if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
  1392. sb->level != refsb->level ||
  1393. sb->layout != refsb->layout ||
  1394. sb->chunksize != refsb->chunksize) {
  1395. printk(KERN_WARNING "md: %s has strangely different"
  1396. " superblock to %s\n",
  1397. bdevname(rdev->bdev,b),
  1398. bdevname(refdev->bdev,b2));
  1399. return -EINVAL;
  1400. }
  1401. ev1 = le64_to_cpu(sb->events);
  1402. ev2 = le64_to_cpu(refsb->events);
  1403. if (ev1 > ev2)
  1404. ret = 1;
  1405. else
  1406. ret = 0;
  1407. }
  1408. if (minor_version)
  1409. rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
  1410. le64_to_cpu(sb->data_offset);
  1411. else
  1412. rdev->sectors = rdev->sb_start;
  1413. if (rdev->sectors < le64_to_cpu(sb->data_size))
  1414. return -EINVAL;
  1415. rdev->sectors = le64_to_cpu(sb->data_size);
  1416. if (le64_to_cpu(sb->size) > rdev->sectors)
  1417. return -EINVAL;
  1418. return ret;
  1419. }
  1420. static int super_1_validate(mddev_t *mddev, mdk_rdev_t *rdev)
  1421. {
  1422. struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
  1423. __u64 ev1 = le64_to_cpu(sb->events);
  1424. rdev->raid_disk = -1;
  1425. clear_bit(Faulty, &rdev->flags);
  1426. clear_bit(In_sync, &rdev->flags);
  1427. clear_bit(WriteMostly, &rdev->flags);
  1428. if (mddev->raid_disks == 0) {
  1429. mddev->major_version = 1;
  1430. mddev->patch_version = 0;
  1431. mddev->external = 0;
  1432. mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
  1433. mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
  1434. mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
  1435. mddev->level = le32_to_cpu(sb->level);
  1436. mddev->clevel[0] = 0;
  1437. mddev->layout = le32_to_cpu(sb->layout);
  1438. mddev->raid_disks = le32_to_cpu(sb->raid_disks);
  1439. mddev->dev_sectors = le64_to_cpu(sb->size);
  1440. mddev->events = ev1;
  1441. mddev->bitmap_info.offset = 0;
  1442. mddev->bitmap_info.default_offset = 1024 >> 9;
  1443. mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
  1444. memcpy(mddev->uuid, sb->set_uuid, 16);
  1445. mddev->max_disks = (4096-256)/2;
  1446. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
  1447. mddev->bitmap_info.file == NULL )
  1448. mddev->bitmap_info.offset =
  1449. (__s32)le32_to_cpu(sb->bitmap_offset);
  1450. if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
  1451. mddev->reshape_position = le64_to_cpu(sb->reshape_position);
  1452. mddev->delta_disks = le32_to_cpu(sb->delta_disks);
  1453. mddev->new_level = le32_to_cpu(sb->new_level);
  1454. mddev->new_layout = le32_to_cpu(sb->new_layout);
  1455. mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
  1456. } else {
  1457. mddev->reshape_position = MaxSector;
  1458. mddev->delta_disks = 0;
  1459. mddev->new_level = mddev->level;
  1460. mddev->new_layout = mddev->layout;
  1461. mddev->new_chunk_sectors = mddev->chunk_sectors;
  1462. }
  1463. } else if (mddev->pers == NULL) {
  1464. /* Insist of good event counter while assembling, except for
  1465. * spares (which don't need an event count) */
  1466. ++ev1;
  1467. if (rdev->desc_nr >= 0 &&
  1468. rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
  1469. le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
  1470. if (ev1 < mddev->events)
  1471. return -EINVAL;
  1472. } else if (mddev->bitmap) {
  1473. /* If adding to array with a bitmap, then we can accept an
  1474. * older device, but not too old.
  1475. */
  1476. if (ev1 < mddev->bitmap->events_cleared)
  1477. return 0;
  1478. } else {
  1479. if (ev1 < mddev->events)
  1480. /* just a hot-add of a new device, leave raid_disk at -1 */
  1481. return 0;
  1482. }
  1483. if (mddev->level != LEVEL_MULTIPATH) {
  1484. int role;
  1485. if (rdev->desc_nr < 0 ||
  1486. rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
  1487. role = 0xffff;
  1488. rdev->desc_nr = -1;
  1489. } else
  1490. role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
  1491. switch(role) {
  1492. case 0xffff: /* spare */
  1493. break;
  1494. case 0xfffe: /* faulty */
  1495. set_bit(Faulty, &rdev->flags);
  1496. break;
  1497. default:
  1498. if ((le32_to_cpu(sb->feature_map) &
  1499. MD_FEATURE_RECOVERY_OFFSET))
  1500. rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
  1501. else
  1502. set_bit(In_sync, &rdev->flags);
  1503. rdev->raid_disk = role;
  1504. break;
  1505. }
  1506. if (sb->devflags & WriteMostly1)
  1507. set_bit(WriteMostly, &rdev->flags);
  1508. } else /* MULTIPATH are always insync */
  1509. set_bit(In_sync, &rdev->flags);
  1510. return 0;
  1511. }
  1512. static void super_1_sync(mddev_t *mddev, mdk_rdev_t *rdev)
  1513. {
  1514. struct mdp_superblock_1 *sb;
  1515. mdk_rdev_t *rdev2;
  1516. int max_dev, i;
  1517. /* make rdev->sb match mddev and rdev data. */
  1518. sb = page_address(rdev->sb_page);
  1519. sb->feature_map = 0;
  1520. sb->pad0 = 0;
  1521. sb->recovery_offset = cpu_to_le64(0);
  1522. memset(sb->pad1, 0, sizeof(sb->pad1));
  1523. memset(sb->pad3, 0, sizeof(sb->pad3));
  1524. sb->utime = cpu_to_le64((__u64)mddev->utime);
  1525. sb->events = cpu_to_le64(mddev->events);
  1526. if (mddev->in_sync)
  1527. sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
  1528. else
  1529. sb->resync_offset = cpu_to_le64(0);
  1530. sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
  1531. sb->raid_disks = cpu_to_le32(mddev->raid_disks);
  1532. sb->size = cpu_to_le64(mddev->dev_sectors);
  1533. sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
  1534. sb->level = cpu_to_le32(mddev->level);
  1535. sb->layout = cpu_to_le32(mddev->layout);
  1536. if (test_bit(WriteMostly, &rdev->flags))
  1537. sb->devflags |= WriteMostly1;
  1538. else
  1539. sb->devflags &= ~WriteMostly1;
  1540. if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
  1541. sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
  1542. sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
  1543. }
  1544. if (rdev->raid_disk >= 0 &&
  1545. !test_bit(In_sync, &rdev->flags)) {
  1546. sb->feature_map |=
  1547. cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
  1548. sb->recovery_offset =
  1549. cpu_to_le64(rdev->recovery_offset);
  1550. }
  1551. if (mddev->reshape_position != MaxSector) {
  1552. sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
  1553. sb->reshape_position = cpu_to_le64(mddev->reshape_position);
  1554. sb->new_layout = cpu_to_le32(mddev->new_layout);
  1555. sb->delta_disks = cpu_to_le32(mddev->delta_disks);
  1556. sb->new_level = cpu_to_le32(mddev->new_level);
  1557. sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
  1558. }
  1559. if (rdev->badblocks.count == 0)
  1560. /* Nothing to do for bad blocks*/ ;
  1561. else if (sb->bblog_offset == 0)
  1562. /* Cannot record bad blocks on this device */
  1563. md_error(mddev, rdev);
  1564. else {
  1565. struct badblocks *bb = &rdev->badblocks;
  1566. u64 *bbp = (u64 *)page_address(rdev->bb_page);
  1567. u64 *p = bb->page;
  1568. sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
  1569. if (bb->changed) {
  1570. unsigned seq;
  1571. retry:
  1572. seq = read_seqbegin(&bb->lock);
  1573. memset(bbp, 0xff, PAGE_SIZE);
  1574. for (i = 0 ; i < bb->count ; i++) {
  1575. u64 internal_bb = *p++;
  1576. u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
  1577. | BB_LEN(internal_bb));
  1578. *bbp++ = cpu_to_le64(store_bb);
  1579. }
  1580. if (read_seqretry(&bb->lock, seq))
  1581. goto retry;
  1582. bb->sector = (rdev->sb_start +
  1583. (int)le32_to_cpu(sb->bblog_offset));
  1584. bb->size = le16_to_cpu(sb->bblog_size);
  1585. bb->changed = 0;
  1586. }
  1587. }
  1588. max_dev = 0;
  1589. list_for_each_entry(rdev2, &mddev->disks, same_set)
  1590. if (rdev2->desc_nr+1 > max_dev)
  1591. max_dev = rdev2->desc_nr+1;
  1592. if (max_dev > le32_to_cpu(sb->max_dev)) {
  1593. int bmask;
  1594. sb->max_dev = cpu_to_le32(max_dev);
  1595. rdev->sb_size = max_dev * 2 + 256;
  1596. bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
  1597. if (rdev->sb_size & bmask)
  1598. rdev->sb_size = (rdev->sb_size | bmask) + 1;
  1599. } else
  1600. max_dev = le32_to_cpu(sb->max_dev);
  1601. for (i=0; i<max_dev;i++)
  1602. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1603. list_for_each_entry(rdev2, &mddev->disks, same_set) {
  1604. i = rdev2->desc_nr;
  1605. if (test_bit(Faulty, &rdev2->flags))
  1606. sb->dev_roles[i] = cpu_to_le16(0xfffe);
  1607. else if (test_bit(In_sync, &rdev2->flags))
  1608. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1609. else if (rdev2->raid_disk >= 0)
  1610. sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
  1611. else
  1612. sb->dev_roles[i] = cpu_to_le16(0xffff);
  1613. }
  1614. sb->sb_csum = calc_sb_1_csum(sb);
  1615. }
  1616. static unsigned long long
  1617. super_1_rdev_size_change(mdk_rdev_t *rdev, sector_t num_sectors)
  1618. {
  1619. struct mdp_superblock_1 *sb;
  1620. sector_t max_sectors;
  1621. if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
  1622. return 0; /* component must fit device */
  1623. if (rdev->sb_start < rdev->data_offset) {
  1624. /* minor versions 1 and 2; superblock before data */
  1625. max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
  1626. max_sectors -= rdev->data_offset;
  1627. if (!num_sectors || num_sectors > max_sectors)
  1628. num_sectors = max_sectors;
  1629. } else if (rdev->mddev->bitmap_info.offset) {
  1630. /* minor version 0 with bitmap we can't move */
  1631. return 0;
  1632. } else {
  1633. /* minor version 0; superblock after data */
  1634. sector_t sb_start;
  1635. sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
  1636. sb_start &= ~(sector_t)(4*2 - 1);
  1637. max_sectors = rdev->sectors + sb_start - rdev->sb_start;
  1638. if (!num_sectors || num_sectors > max_sectors)
  1639. num_sectors = max_sectors;
  1640. rdev->sb_start = sb_start;
  1641. }
  1642. sb = page_address(rdev->sb_page);
  1643. sb->data_size = cpu_to_le64(num_sectors);
  1644. sb->super_offset = rdev->sb_start;
  1645. sb->sb_csum = calc_sb_1_csum(sb);
  1646. md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
  1647. rdev->sb_page);
  1648. md_super_wait(rdev->mddev);
  1649. return num_sectors;
  1650. }
  1651. static struct super_type super_types[] = {
  1652. [0] = {
  1653. .name = "0.90.0",
  1654. .owner = THIS_MODULE,
  1655. .load_super = super_90_load,
  1656. .validate_super = super_90_validate,
  1657. .sync_super = super_90_sync,
  1658. .rdev_size_change = super_90_rdev_size_change,
  1659. },
  1660. [1] = {
  1661. .name = "md-1",
  1662. .owner = THIS_MODULE,
  1663. .load_super = super_1_load,
  1664. .validate_super = super_1_validate,
  1665. .sync_super = super_1_sync,
  1666. .rdev_size_change = super_1_rdev_size_change,
  1667. },
  1668. };
  1669. static void sync_super(mddev_t *mddev, mdk_rdev_t *rdev)
  1670. {
  1671. if (mddev->sync_super) {
  1672. mddev->sync_super(mddev, rdev);
  1673. return;
  1674. }
  1675. BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
  1676. super_types[mddev->major_version].sync_super(mddev, rdev);
  1677. }
  1678. static int match_mddev_units(mddev_t *mddev1, mddev_t *mddev2)
  1679. {
  1680. mdk_rdev_t *rdev, *rdev2;
  1681. rcu_read_lock();
  1682. rdev_for_each_rcu(rdev, mddev1)
  1683. rdev_for_each_rcu(rdev2, mddev2)
  1684. if (rdev->bdev->bd_contains ==
  1685. rdev2->bdev->bd_contains) {
  1686. rcu_read_unlock();
  1687. return 1;
  1688. }
  1689. rcu_read_unlock();
  1690. return 0;
  1691. }
  1692. static LIST_HEAD(pending_raid_disks);
  1693. /*
  1694. * Try to register data integrity profile for an mddev
  1695. *
  1696. * This is called when an array is started and after a disk has been kicked
  1697. * from the array. It only succeeds if all working and active component devices
  1698. * are integrity capable with matching profiles.
  1699. */
  1700. int md_integrity_register(mddev_t *mddev)
  1701. {
  1702. mdk_rdev_t *rdev, *reference = NULL;
  1703. if (list_empty(&mddev->disks))
  1704. return 0; /* nothing to do */
  1705. if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
  1706. return 0; /* shouldn't register, or already is */
  1707. list_for_each_entry(rdev, &mddev->disks, same_set) {
  1708. /* skip spares and non-functional disks */
  1709. if (test_bit(Faulty, &rdev->flags))
  1710. continue;
  1711. if (rdev->raid_disk < 0)
  1712. continue;
  1713. if (!reference) {
  1714. /* Use the first rdev as the reference */
  1715. reference = rdev;
  1716. continue;
  1717. }
  1718. /* does this rdev's profile match the reference profile? */
  1719. if (blk_integrity_compare(reference->bdev->bd_disk,
  1720. rdev->bdev->bd_disk) < 0)
  1721. return -EINVAL;
  1722. }
  1723. if (!reference || !bdev_get_integrity(reference->bdev))
  1724. return 0;
  1725. /*
  1726. * All component devices are integrity capable and have matching
  1727. * profiles, register the common profile for the md device.
  1728. */
  1729. if (blk_integrity_register(mddev->gendisk,
  1730. bdev_get_integrity(reference->bdev)) != 0) {
  1731. printk(KERN_ERR "md: failed to register integrity for %s\n",
  1732. mdname(mddev));
  1733. return -EINVAL;
  1734. }
  1735. printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
  1736. if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
  1737. printk(KERN_ERR "md: failed to create integrity pool for %s\n",
  1738. mdname(mddev));
  1739. return -EINVAL;
  1740. }
  1741. return 0;
  1742. }
  1743. EXPORT_SYMBOL(md_integrity_register);
  1744. /* Disable data integrity if non-capable/non-matching disk is being added */
  1745. void md_integrity_add_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
  1746. {
  1747. struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
  1748. struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
  1749. if (!bi_mddev) /* nothing to do */
  1750. return;
  1751. if (rdev->raid_disk < 0) /* skip spares */
  1752. return;
  1753. if (bi_rdev && blk_integrity_compare(mddev->gendisk,
  1754. rdev->bdev->bd_disk) >= 0)
  1755. return;
  1756. printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
  1757. blk_integrity_unregister(mddev->gendisk);
  1758. }
  1759. EXPORT_SYMBOL(md_integrity_add_rdev);
  1760. static int bind_rdev_to_array(mdk_rdev_t * rdev, mddev_t * mddev)
  1761. {
  1762. char b[BDEVNAME_SIZE];
  1763. struct kobject *ko;
  1764. char *s;
  1765. int err;
  1766. if (rdev->mddev) {
  1767. MD_BUG();
  1768. return -EINVAL;
  1769. }
  1770. /* prevent duplicates */
  1771. if (find_rdev(mddev, rdev->bdev->bd_dev))
  1772. return -EEXIST;
  1773. /* make sure rdev->sectors exceeds mddev->dev_sectors */
  1774. if (rdev->sectors && (mddev->dev_sectors == 0 ||
  1775. rdev->sectors < mddev->dev_sectors)) {
  1776. if (mddev->pers) {
  1777. /* Cannot change size, so fail
  1778. * If mddev->level <= 0, then we don't care
  1779. * about aligning sizes (e.g. linear)
  1780. */
  1781. if (mddev->level > 0)
  1782. return -ENOSPC;
  1783. } else
  1784. mddev->dev_sectors = rdev->sectors;
  1785. }
  1786. /* Verify rdev->desc_nr is unique.
  1787. * If it is -1, assign a free number, else
  1788. * check number is not in use
  1789. */
  1790. if (rdev->desc_nr < 0) {
  1791. int choice = 0;
  1792. if (mddev->pers) choice = mddev->raid_disks;
  1793. while (find_rdev_nr(mddev, choice))
  1794. choice++;
  1795. rdev->desc_nr = choice;
  1796. } else {
  1797. if (find_rdev_nr(mddev, rdev->desc_nr))
  1798. return -EBUSY;
  1799. }
  1800. if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
  1801. printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
  1802. mdname(mddev), mddev->max_disks);
  1803. return -EBUSY;
  1804. }
  1805. bdevname(rdev->bdev,b);
  1806. while ( (s=strchr(b, '/')) != NULL)
  1807. *s = '!';
  1808. rdev->mddev = mddev;
  1809. printk(KERN_INFO "md: bind<%s>\n", b);
  1810. if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
  1811. goto fail;
  1812. ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
  1813. if (sysfs_create_link(&rdev->kobj, ko, "block"))
  1814. /* failure here is OK */;
  1815. rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
  1816. list_add_rcu(&rdev->same_set, &mddev->disks);
  1817. bd_link_disk_holder(rdev->bdev, mddev->gendisk);
  1818. /* May as well allow recovery to be retried once */
  1819. mddev->recovery_disabled++;
  1820. return 0;
  1821. fail:
  1822. printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
  1823. b, mdname(mddev));
  1824. return err;
  1825. }
  1826. static void md_delayed_delete(struct work_struct *ws)
  1827. {
  1828. mdk_rdev_t *rdev = container_of(ws, mdk_rdev_t, del_work);
  1829. kobject_del(&rdev->kobj);
  1830. kobject_put(&rdev->kobj);
  1831. }
  1832. static void unbind_rdev_from_array(mdk_rdev_t * rdev)
  1833. {
  1834. char b[BDEVNAME_SIZE];
  1835. if (!rdev->mddev) {
  1836. MD_BUG();
  1837. return;
  1838. }
  1839. bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
  1840. list_del_rcu(&rdev->same_set);
  1841. printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
  1842. rdev->mddev = NULL;
  1843. sysfs_remove_link(&rdev->kobj, "block");
  1844. sysfs_put(rdev->sysfs_state);
  1845. rdev->sysfs_state = NULL;
  1846. kfree(rdev->badblocks.page);
  1847. rdev->badblocks.count = 0;
  1848. rdev->badblocks.page = NULL;
  1849. /* We need to delay this, otherwise we can deadlock when
  1850. * writing to 'remove' to "dev/state". We also need
  1851. * to delay it due to rcu usage.
  1852. */
  1853. synchronize_rcu();
  1854. INIT_WORK(&rdev->del_work, md_delayed_delete);
  1855. kobject_get(&rdev->kobj);
  1856. queue_work(md_misc_wq, &rdev->del_work);
  1857. }
  1858. /*
  1859. * prevent the device from being mounted, repartitioned or
  1860. * otherwise reused by a RAID array (or any other kernel
  1861. * subsystem), by bd_claiming the device.
  1862. */
  1863. static int lock_rdev(mdk_rdev_t *rdev, dev_t dev, int shared)
  1864. {
  1865. int err = 0;
  1866. struct block_device *bdev;
  1867. char b[BDEVNAME_SIZE];
  1868. bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
  1869. shared ? (mdk_rdev_t *)lock_rdev : rdev);
  1870. if (IS_ERR(bdev)) {
  1871. printk(KERN_ERR "md: could not open %s.\n",
  1872. __bdevname(dev, b));
  1873. return PTR_ERR(bdev);
  1874. }
  1875. rdev->bdev = bdev;
  1876. return err;
  1877. }
  1878. static void unlock_rdev(mdk_rdev_t *rdev)
  1879. {
  1880. struct block_device *bdev = rdev->bdev;
  1881. rdev->bdev = NULL;
  1882. if (!bdev)
  1883. MD_BUG();
  1884. blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
  1885. }
  1886. void md_autodetect_dev(dev_t dev);
  1887. static void export_rdev(mdk_rdev_t * rdev)
  1888. {
  1889. char b[BDEVNAME_SIZE];
  1890. printk(KERN_INFO "md: export_rdev(%s)\n",
  1891. bdevname(rdev->bdev,b));
  1892. if (rdev->mddev)
  1893. MD_BUG();
  1894. free_disk_sb(rdev);
  1895. #ifndef MODULE
  1896. if (test_bit(AutoDetected, &rdev->flags))
  1897. md_autodetect_dev(rdev->bdev->bd_dev);
  1898. #endif
  1899. unlock_rdev(rdev);
  1900. kobject_put(&rdev->kobj);
  1901. }
  1902. static void kick_rdev_from_array(mdk_rdev_t * rdev)
  1903. {
  1904. unbind_rdev_from_array(rdev);
  1905. export_rdev(rdev);
  1906. }
  1907. static void export_array(mddev_t *mddev)
  1908. {
  1909. mdk_rdev_t *rdev, *tmp;
  1910. rdev_for_each(rdev, tmp, mddev) {
  1911. if (!rdev->mddev) {
  1912. MD_BUG();
  1913. continue;
  1914. }
  1915. kick_rdev_from_array(rdev);
  1916. }
  1917. if (!list_empty(&mddev->disks))
  1918. MD_BUG();
  1919. mddev->raid_disks = 0;
  1920. mddev->major_version = 0;
  1921. }
  1922. static void print_desc(mdp_disk_t *desc)
  1923. {
  1924. printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
  1925. desc->major,desc->minor,desc->raid_disk,desc->state);
  1926. }
  1927. static void print_sb_90(mdp_super_t *sb)
  1928. {
  1929. int i;
  1930. printk(KERN_INFO
  1931. "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
  1932. sb->major_version, sb->minor_version, sb->patch_version,
  1933. sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
  1934. sb->ctime);
  1935. printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
  1936. sb->level, sb->size, sb->nr_disks, sb->raid_disks,
  1937. sb->md_minor, sb->layout, sb->chunk_size);
  1938. printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
  1939. " FD:%d SD:%d CSUM:%08x E:%08lx\n",
  1940. sb->utime, sb->state, sb->active_disks, sb->working_disks,
  1941. sb->failed_disks, sb->spare_disks,
  1942. sb->sb_csum, (unsigned long)sb->events_lo);
  1943. printk(KERN_INFO);
  1944. for (i = 0; i < MD_SB_DISKS; i++) {
  1945. mdp_disk_t *desc;
  1946. desc = sb->disks + i;
  1947. if (desc->number || desc->major || desc->minor ||
  1948. desc->raid_disk || (desc->state && (desc->state != 4))) {
  1949. printk(" D %2d: ", i);
  1950. print_desc(desc);
  1951. }
  1952. }
  1953. printk(KERN_INFO "md: THIS: ");
  1954. print_desc(&sb->this_disk);
  1955. }
  1956. static void print_sb_1(struct mdp_superblock_1 *sb)
  1957. {
  1958. __u8 *uuid;
  1959. uuid = sb->set_uuid;
  1960. printk(KERN_INFO
  1961. "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
  1962. "md: Name: \"%s\" CT:%llu\n",
  1963. le32_to_cpu(sb->major_version),
  1964. le32_to_cpu(sb->feature_map),
  1965. uuid,
  1966. sb->set_name,
  1967. (unsigned long long)le64_to_cpu(sb->ctime)
  1968. & MD_SUPERBLOCK_1_TIME_SEC_MASK);
  1969. uuid = sb->device_uuid;
  1970. printk(KERN_INFO
  1971. "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
  1972. " RO:%llu\n"
  1973. "md: Dev:%08x UUID: %pU\n"
  1974. "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
  1975. "md: (MaxDev:%u) \n",
  1976. le32_to_cpu(sb->level),
  1977. (unsigned long long)le64_to_cpu(sb->size),
  1978. le32_to_cpu(sb->raid_disks),
  1979. le32_to_cpu(sb->layout),
  1980. le32_to_cpu(sb->chunksize),
  1981. (unsigned long long)le64_to_cpu(sb->data_offset),
  1982. (unsigned long long)le64_to_cpu(sb->data_size),
  1983. (unsigned long long)le64_to_cpu(sb->super_offset),
  1984. (unsigned long long)le64_to_cpu(sb->recovery_offset),
  1985. le32_to_cpu(sb->dev_number),
  1986. uuid,
  1987. sb->devflags,
  1988. (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
  1989. (unsigned long long)le64_to_cpu(sb->events),
  1990. (unsigned long long)le64_to_cpu(sb->resync_offset),
  1991. le32_to_cpu(sb->sb_csum),
  1992. le32_to_cpu(sb->max_dev)
  1993. );
  1994. }
  1995. static void print_rdev(mdk_rdev_t *rdev, int major_version)
  1996. {
  1997. char b[BDEVNAME_SIZE];
  1998. printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
  1999. bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
  2000. test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
  2001. rdev->desc_nr);
  2002. if (rdev->sb_loaded) {
  2003. printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
  2004. switch (major_version) {
  2005. case 0:
  2006. print_sb_90(page_address(rdev->sb_page));
  2007. break;
  2008. case 1:
  2009. print_sb_1(page_address(rdev->sb_page));
  2010. break;
  2011. }
  2012. } else
  2013. printk(KERN_INFO "md: no rdev superblock!\n");
  2014. }
  2015. static void md_print_devices(void)
  2016. {
  2017. struct list_head *tmp;
  2018. mdk_rdev_t *rdev;
  2019. mddev_t *mddev;
  2020. char b[BDEVNAME_SIZE];
  2021. printk("\n");
  2022. printk("md: **********************************\n");
  2023. printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
  2024. printk("md: **********************************\n");
  2025. for_each_mddev(mddev, tmp) {
  2026. if (mddev->bitmap)
  2027. bitmap_print_sb(mddev->bitmap);
  2028. else
  2029. printk("%s: ", mdname(mddev));
  2030. list_for_each_entry(rdev, &mddev->disks, same_set)
  2031. printk("<%s>", bdevname(rdev->bdev,b));
  2032. printk("\n");
  2033. list_for_each_entry(rdev, &mddev->disks, same_set)
  2034. print_rdev(rdev, mddev->major_version);
  2035. }
  2036. printk("md: **********************************\n");
  2037. printk("\n");
  2038. }
  2039. static void sync_sbs(mddev_t * mddev, int nospares)
  2040. {
  2041. /* Update each superblock (in-memory image), but
  2042. * if we are allowed to, skip spares which already
  2043. * have the right event counter, or have one earlier
  2044. * (which would mean they aren't being marked as dirty
  2045. * with the rest of the array)
  2046. */
  2047. mdk_rdev_t *rdev;
  2048. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2049. if (rdev->sb_events == mddev->events ||
  2050. (nospares &&
  2051. rdev->raid_disk < 0 &&
  2052. rdev->sb_events+1 == mddev->events)) {
  2053. /* Don't update this superblock */
  2054. rdev->sb_loaded = 2;
  2055. } else {
  2056. sync_super(mddev, rdev);
  2057. rdev->sb_loaded = 1;
  2058. }
  2059. }
  2060. }
  2061. static void md_update_sb(mddev_t * mddev, int force_change)
  2062. {
  2063. mdk_rdev_t *rdev;
  2064. int sync_req;
  2065. int nospares = 0;
  2066. int any_badblocks_changed = 0;
  2067. repeat:
  2068. /* First make sure individual recovery_offsets are correct */
  2069. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2070. if (rdev->raid_disk >= 0 &&
  2071. mddev->delta_disks >= 0 &&
  2072. !test_bit(In_sync, &rdev->flags) &&
  2073. mddev->curr_resync_completed > rdev->recovery_offset)
  2074. rdev->recovery_offset = mddev->curr_resync_completed;
  2075. }
  2076. if (!mddev->persistent) {
  2077. clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
  2078. clear_bit(MD_CHANGE_DEVS, &mddev->flags);
  2079. if (!mddev->external) {
  2080. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2081. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2082. if (rdev->badblocks.changed) {
  2083. md_ack_all_badblocks(&rdev->badblocks);
  2084. md_error(mddev, rdev);
  2085. }
  2086. clear_bit(Blocked, &rdev->flags);
  2087. clear_bit(BlockedBadBlocks, &rdev->flags);
  2088. wake_up(&rdev->blocked_wait);
  2089. }
  2090. }
  2091. wake_up(&mddev->sb_wait);
  2092. return;
  2093. }
  2094. spin_lock_irq(&mddev->write_lock);
  2095. mddev->utime = get_seconds();
  2096. if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
  2097. force_change = 1;
  2098. if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
  2099. /* just a clean<-> dirty transition, possibly leave spares alone,
  2100. * though if events isn't the right even/odd, we will have to do
  2101. * spares after all
  2102. */
  2103. nospares = 1;
  2104. if (force_change)
  2105. nospares = 0;
  2106. if (mddev->degraded)
  2107. /* If the array is degraded, then skipping spares is both
  2108. * dangerous and fairly pointless.
  2109. * Dangerous because a device that was removed from the array
  2110. * might have a event_count that still looks up-to-date,
  2111. * so it can be re-added without a resync.
  2112. * Pointless because if there are any spares to skip,
  2113. * then a recovery will happen and soon that array won't
  2114. * be degraded any more and the spare can go back to sleep then.
  2115. */
  2116. nospares = 0;
  2117. sync_req = mddev->in_sync;
  2118. /* If this is just a dirty<->clean transition, and the array is clean
  2119. * and 'events' is odd, we can roll back to the previous clean state */
  2120. if (nospares
  2121. && (mddev->in_sync && mddev->recovery_cp == MaxSector)
  2122. && mddev->can_decrease_events
  2123. && mddev->events != 1) {
  2124. mddev->events--;
  2125. mddev->can_decrease_events = 0;
  2126. } else {
  2127. /* otherwise we have to go forward and ... */
  2128. mddev->events ++;
  2129. mddev->can_decrease_events = nospares;
  2130. }
  2131. if (!mddev->events) {
  2132. /*
  2133. * oops, this 64-bit counter should never wrap.
  2134. * Either we are in around ~1 trillion A.C., assuming
  2135. * 1 reboot per second, or we have a bug:
  2136. */
  2137. MD_BUG();
  2138. mddev->events --;
  2139. }
  2140. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2141. if (rdev->badblocks.changed)
  2142. any_badblocks_changed++;
  2143. if (test_bit(Faulty, &rdev->flags))
  2144. set_bit(FaultRecorded, &rdev->flags);
  2145. }
  2146. sync_sbs(mddev, nospares);
  2147. spin_unlock_irq(&mddev->write_lock);
  2148. pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
  2149. mdname(mddev), mddev->in_sync);
  2150. bitmap_update_sb(mddev->bitmap);
  2151. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2152. char b[BDEVNAME_SIZE];
  2153. if (rdev->sb_loaded != 1)
  2154. continue; /* no noise on spare devices */
  2155. if (!test_bit(Faulty, &rdev->flags)) {
  2156. md_super_write(mddev,rdev,
  2157. rdev->sb_start, rdev->sb_size,
  2158. rdev->sb_page);
  2159. pr_debug("md: (write) %s's sb offset: %llu\n",
  2160. bdevname(rdev->bdev, b),
  2161. (unsigned long long)rdev->sb_start);
  2162. rdev->sb_events = mddev->events;
  2163. if (rdev->badblocks.size) {
  2164. md_super_write(mddev, rdev,
  2165. rdev->badblocks.sector,
  2166. rdev->badblocks.size << 9,
  2167. rdev->bb_page);
  2168. rdev->badblocks.size = 0;
  2169. }
  2170. } else
  2171. pr_debug("md: %s (skipping faulty)\n",
  2172. bdevname(rdev->bdev, b));
  2173. if (mddev->level == LEVEL_MULTIPATH)
  2174. /* only need to write one superblock... */
  2175. break;
  2176. }
  2177. md_super_wait(mddev);
  2178. /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
  2179. spin_lock_irq(&mddev->write_lock);
  2180. if (mddev->in_sync != sync_req ||
  2181. test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
  2182. /* have to write it out again */
  2183. spin_unlock_irq(&mddev->write_lock);
  2184. goto repeat;
  2185. }
  2186. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  2187. spin_unlock_irq(&mddev->write_lock);
  2188. wake_up(&mddev->sb_wait);
  2189. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  2190. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  2191. list_for_each_entry(rdev, &mddev->disks, same_set) {
  2192. if (test_and_clear_bit(FaultRecorded, &rdev->flags))
  2193. clear_bit(Blocked, &rdev->flags);
  2194. if (any_badblocks_changed)
  2195. md_ack_all_badblocks(&rdev->badblocks);
  2196. clear_bit(BlockedBadBlocks, &rdev->flags);
  2197. wake_up(&rdev->blocked_wait);
  2198. }
  2199. }
  2200. /* words written to sysfs files may, or may not, be \n terminated.
  2201. * We want to accept with case. For this we use cmd_match.
  2202. */
  2203. static int cmd_match(const char *cmd, const char *str)
  2204. {
  2205. /* See if cmd, written into a sysfs file, matches
  2206. * str. They must either be the same, or cmd can
  2207. * have a trailing newline
  2208. */
  2209. while (*cmd && *str && *cmd == *str) {
  2210. cmd++;
  2211. str++;
  2212. }
  2213. if (*cmd == '\n')
  2214. cmd++;
  2215. if (*str || *cmd)
  2216. return 0;
  2217. return 1;
  2218. }
  2219. struct rdev_sysfs_entry {
  2220. struct attribute attr;
  2221. ssize_t (*show)(mdk_rdev_t *, char *);
  2222. ssize_t (*store)(mdk_rdev_t *, const char *, size_t);
  2223. };
  2224. static ssize_t
  2225. state_show(mdk_rdev_t *rdev, char *page)
  2226. {
  2227. char *sep = "";
  2228. size_t len = 0;
  2229. if (test_bit(Faulty, &rdev->flags) ||
  2230. rdev->badblocks.unacked_exist) {
  2231. len+= sprintf(page+len, "%sfaulty",sep);
  2232. sep = ",";
  2233. }
  2234. if (test_bit(In_sync, &rdev->flags)) {
  2235. len += sprintf(page+len, "%sin_sync",sep);
  2236. sep = ",";
  2237. }
  2238. if (test_bit(WriteMostly, &rdev->flags)) {
  2239. len += sprintf(page+len, "%swrite_mostly",sep);
  2240. sep = ",";
  2241. }
  2242. if (test_bit(Blocked, &rdev->flags) ||
  2243. rdev->badblocks.unacked_exist) {
  2244. len += sprintf(page+len, "%sblocked", sep);
  2245. sep = ",";
  2246. }
  2247. if (!test_bit(Faulty, &rdev->flags) &&
  2248. !test_bit(In_sync, &rdev->flags)) {
  2249. len += sprintf(page+len, "%sspare", sep);
  2250. sep = ",";
  2251. }
  2252. if (test_bit(WriteErrorSeen, &rdev->flags)) {
  2253. len += sprintf(page+len, "%swrite_error", sep);
  2254. sep = ",";
  2255. }
  2256. return len+sprintf(page+len, "\n");
  2257. }
  2258. static ssize_t
  2259. state_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  2260. {
  2261. /* can write
  2262. * faulty - simulates an error
  2263. * remove - disconnects the device
  2264. * writemostly - sets write_mostly
  2265. * -writemostly - clears write_mostly
  2266. * blocked - sets the Blocked flags
  2267. * -blocked - clears the Blocked and possibly simulates an error
  2268. * insync - sets Insync providing device isn't active
  2269. * write_error - sets WriteErrorSeen
  2270. * -write_error - clears WriteErrorSeen
  2271. */
  2272. int err = -EINVAL;
  2273. if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
  2274. md_error(rdev->mddev, rdev);
  2275. if (test_bit(Faulty, &rdev->flags))
  2276. err = 0;
  2277. else
  2278. err = -EBUSY;
  2279. } else if (cmd_match(buf, "remove")) {
  2280. if (rdev->raid_disk >= 0)
  2281. err = -EBUSY;
  2282. else {
  2283. mddev_t *mddev = rdev->mddev;
  2284. kick_rdev_from_array(rdev);
  2285. if (mddev->pers)
  2286. md_update_sb(mddev, 1);
  2287. md_new_event(mddev);
  2288. err = 0;
  2289. }
  2290. } else if (cmd_match(buf, "writemostly")) {
  2291. set_bit(WriteMostly, &rdev->flags);
  2292. err = 0;
  2293. } else if (cmd_match(buf, "-writemostly")) {
  2294. clear_bit(WriteMostly, &rdev->flags);
  2295. err = 0;
  2296. } else if (cmd_match(buf, "blocked")) {
  2297. set_bit(Blocked, &rdev->flags);
  2298. err = 0;
  2299. } else if (cmd_match(buf, "-blocked")) {
  2300. if (!test_bit(Faulty, &rdev->flags) &&
  2301. rdev->badblocks.unacked_exist) {
  2302. /* metadata handler doesn't understand badblocks,
  2303. * so we need to fail the device
  2304. */
  2305. md_error(rdev->mddev, rdev);
  2306. }
  2307. clear_bit(Blocked, &rdev->flags);
  2308. clear_bit(BlockedBadBlocks, &rdev->flags);
  2309. wake_up(&rdev->blocked_wait);
  2310. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2311. md_wakeup_thread(rdev->mddev->thread);
  2312. err = 0;
  2313. } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
  2314. set_bit(In_sync, &rdev->flags);
  2315. err = 0;
  2316. } else if (cmd_match(buf, "write_error")) {
  2317. set_bit(WriteErrorSeen, &rdev->flags);
  2318. err = 0;
  2319. } else if (cmd_match(buf, "-write_error")) {
  2320. clear_bit(WriteErrorSeen, &rdev->flags);
  2321. err = 0;
  2322. }
  2323. if (!err)
  2324. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2325. return err ? err : len;
  2326. }
  2327. static struct rdev_sysfs_entry rdev_state =
  2328. __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
  2329. static ssize_t
  2330. errors_show(mdk_rdev_t *rdev, char *page)
  2331. {
  2332. return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
  2333. }
  2334. static ssize_t
  2335. errors_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  2336. {
  2337. char *e;
  2338. unsigned long n = simple_strtoul(buf, &e, 10);
  2339. if (*buf && (*e == 0 || *e == '\n')) {
  2340. atomic_set(&rdev->corrected_errors, n);
  2341. return len;
  2342. }
  2343. return -EINVAL;
  2344. }
  2345. static struct rdev_sysfs_entry rdev_errors =
  2346. __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
  2347. static ssize_t
  2348. slot_show(mdk_rdev_t *rdev, char *page)
  2349. {
  2350. if (rdev->raid_disk < 0)
  2351. return sprintf(page, "none\n");
  2352. else
  2353. return sprintf(page, "%d\n", rdev->raid_disk);
  2354. }
  2355. static ssize_t
  2356. slot_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  2357. {
  2358. char *e;
  2359. int err;
  2360. int slot = simple_strtoul(buf, &e, 10);
  2361. if (strncmp(buf, "none", 4)==0)
  2362. slot = -1;
  2363. else if (e==buf || (*e && *e!= '\n'))
  2364. return -EINVAL;
  2365. if (rdev->mddev->pers && slot == -1) {
  2366. /* Setting 'slot' on an active array requires also
  2367. * updating the 'rd%d' link, and communicating
  2368. * with the personality with ->hot_*_disk.
  2369. * For now we only support removing
  2370. * failed/spare devices. This normally happens automatically,
  2371. * but not when the metadata is externally managed.
  2372. */
  2373. if (rdev->raid_disk == -1)
  2374. return -EEXIST;
  2375. /* personality does all needed checks */
  2376. if (rdev->mddev->pers->hot_remove_disk == NULL)
  2377. return -EINVAL;
  2378. err = rdev->mddev->pers->
  2379. hot_remove_disk(rdev->mddev, rdev->raid_disk);
  2380. if (err)
  2381. return err;
  2382. sysfs_unlink_rdev(rdev->mddev, rdev);
  2383. rdev->raid_disk = -1;
  2384. set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
  2385. md_wakeup_thread(rdev->mddev->thread);
  2386. } else if (rdev->mddev->pers) {
  2387. mdk_rdev_t *rdev2;
  2388. /* Activating a spare .. or possibly reactivating
  2389. * if we ever get bitmaps working here.
  2390. */
  2391. if (rdev->raid_disk != -1)
  2392. return -EBUSY;
  2393. if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
  2394. return -EBUSY;
  2395. if (rdev->mddev->pers->hot_add_disk == NULL)
  2396. return -EINVAL;
  2397. list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
  2398. if (rdev2->raid_disk == slot)
  2399. return -EEXIST;
  2400. if (slot >= rdev->mddev->raid_disks &&
  2401. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2402. return -ENOSPC;
  2403. rdev->raid_disk = slot;
  2404. if (test_bit(In_sync, &rdev->flags))
  2405. rdev->saved_raid_disk = slot;
  2406. else
  2407. rdev->saved_raid_disk = -1;
  2408. err = rdev->mddev->pers->
  2409. hot_add_disk(rdev->mddev, rdev);
  2410. if (err) {
  2411. rdev->raid_disk = -1;
  2412. return err;
  2413. } else
  2414. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2415. if (sysfs_link_rdev(rdev->mddev, rdev))
  2416. /* failure here is OK */;
  2417. /* don't wakeup anyone, leave that to userspace. */
  2418. } else {
  2419. if (slot >= rdev->mddev->raid_disks &&
  2420. slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
  2421. return -ENOSPC;
  2422. rdev->raid_disk = slot;
  2423. /* assume it is working */
  2424. clear_bit(Faulty, &rdev->flags);
  2425. clear_bit(WriteMostly, &rdev->flags);
  2426. set_bit(In_sync, &rdev->flags);
  2427. sysfs_notify_dirent_safe(rdev->sysfs_state);
  2428. }
  2429. return len;
  2430. }
  2431. static struct rdev_sysfs_entry rdev_slot =
  2432. __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
  2433. static ssize_t
  2434. offset_show(mdk_rdev_t *rdev, char *page)
  2435. {
  2436. return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
  2437. }
  2438. static ssize_t
  2439. offset_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  2440. {
  2441. char *e;
  2442. unsigned long long offset = simple_strtoull(buf, &e, 10);
  2443. if (e==buf || (*e && *e != '\n'))
  2444. return -EINVAL;
  2445. if (rdev->mddev->pers && rdev->raid_disk >= 0)
  2446. return -EBUSY;
  2447. if (rdev->sectors && rdev->mddev->external)
  2448. /* Must set offset before size, so overlap checks
  2449. * can be sane */
  2450. return -EBUSY;
  2451. rdev->data_offset = offset;
  2452. return len;
  2453. }
  2454. static struct rdev_sysfs_entry rdev_offset =
  2455. __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
  2456. static ssize_t
  2457. rdev_size_show(mdk_rdev_t *rdev, char *page)
  2458. {
  2459. return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
  2460. }
  2461. static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
  2462. {
  2463. /* check if two start/length pairs overlap */
  2464. if (s1+l1 <= s2)
  2465. return 0;
  2466. if (s2+l2 <= s1)
  2467. return 0;
  2468. return 1;
  2469. }
  2470. static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
  2471. {
  2472. unsigned long long blocks;
  2473. sector_t new;
  2474. if (strict_strtoull(buf, 10, &blocks) < 0)
  2475. return -EINVAL;
  2476. if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
  2477. return -EINVAL; /* sector conversion overflow */
  2478. new = blocks * 2;
  2479. if (new != blocks * 2)
  2480. return -EINVAL; /* unsigned long long to sector_t overflow */
  2481. *sectors = new;
  2482. return 0;
  2483. }
  2484. static ssize_t
  2485. rdev_size_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  2486. {
  2487. mddev_t *my_mddev = rdev->mddev;
  2488. sector_t oldsectors = rdev->sectors;
  2489. sector_t sectors;
  2490. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  2491. return -EINVAL;
  2492. if (my_mddev->pers && rdev->raid_disk >= 0) {
  2493. if (my_mddev->persistent) {
  2494. sectors = super_types[my_mddev->major_version].
  2495. rdev_size_change(rdev, sectors);
  2496. if (!sectors)
  2497. return -EBUSY;
  2498. } else if (!sectors)
  2499. sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
  2500. rdev->data_offset;
  2501. }
  2502. if (sectors < my_mddev->dev_sectors)
  2503. return -EINVAL; /* component must fit device */
  2504. rdev->sectors = sectors;
  2505. if (sectors > oldsectors && my_mddev->external) {
  2506. /* need to check that all other rdevs with the same ->bdev
  2507. * do not overlap. We need to unlock the mddev to avoid
  2508. * a deadlock. We have already changed rdev->sectors, and if
  2509. * we have to change it back, we will have the lock again.
  2510. */
  2511. mddev_t *mddev;
  2512. int overlap = 0;
  2513. struct list_head *tmp;
  2514. mddev_unlock(my_mddev);
  2515. for_each_mddev(mddev, tmp) {
  2516. mdk_rdev_t *rdev2;
  2517. mddev_lock(mddev);
  2518. list_for_each_entry(rdev2, &mddev->disks, same_set)
  2519. if (rdev->bdev == rdev2->bdev &&
  2520. rdev != rdev2 &&
  2521. overlaps(rdev->data_offset, rdev->sectors,
  2522. rdev2->data_offset,
  2523. rdev2->sectors)) {
  2524. overlap = 1;
  2525. break;
  2526. }
  2527. mddev_unlock(mddev);
  2528. if (overlap) {
  2529. mddev_put(mddev);
  2530. break;
  2531. }
  2532. }
  2533. mddev_lock(my_mddev);
  2534. if (overlap) {
  2535. /* Someone else could have slipped in a size
  2536. * change here, but doing so is just silly.
  2537. * We put oldsectors back because we *know* it is
  2538. * safe, and trust userspace not to race with
  2539. * itself
  2540. */
  2541. rdev->sectors = oldsectors;
  2542. return -EBUSY;
  2543. }
  2544. }
  2545. return len;
  2546. }
  2547. static struct rdev_sysfs_entry rdev_size =
  2548. __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
  2549. static ssize_t recovery_start_show(mdk_rdev_t *rdev, char *page)
  2550. {
  2551. unsigned long long recovery_start = rdev->recovery_offset;
  2552. if (test_bit(In_sync, &rdev->flags) ||
  2553. recovery_start == MaxSector)
  2554. return sprintf(page, "none\n");
  2555. return sprintf(page, "%llu\n", recovery_start);
  2556. }
  2557. static ssize_t recovery_start_store(mdk_rdev_t *rdev, const char *buf, size_t len)
  2558. {
  2559. unsigned long long recovery_start;
  2560. if (cmd_match(buf, "none"))
  2561. recovery_start = MaxSector;
  2562. else if (strict_strtoull(buf, 10, &recovery_start))
  2563. return -EINVAL;
  2564. if (rdev->mddev->pers &&
  2565. rdev->raid_disk >= 0)
  2566. return -EBUSY;
  2567. rdev->recovery_offset = recovery_start;
  2568. if (recovery_start == MaxSector)
  2569. set_bit(In_sync, &rdev->flags);
  2570. else
  2571. clear_bit(In_sync, &rdev->flags);
  2572. return len;
  2573. }
  2574. static struct rdev_sysfs_entry rdev_recovery_start =
  2575. __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
  2576. static ssize_t
  2577. badblocks_show(struct badblocks *bb, char *page, int unack);
  2578. static ssize_t
  2579. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
  2580. static ssize_t bb_show(mdk_rdev_t *rdev, char *page)
  2581. {
  2582. return badblocks_show(&rdev->badblocks, page, 0);
  2583. }
  2584. static ssize_t bb_store(mdk_rdev_t *rdev, const char *page, size_t len)
  2585. {
  2586. int rv = badblocks_store(&rdev->badblocks, page, len, 0);
  2587. /* Maybe that ack was all we needed */
  2588. if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
  2589. wake_up(&rdev->blocked_wait);
  2590. return rv;
  2591. }
  2592. static struct rdev_sysfs_entry rdev_bad_blocks =
  2593. __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
  2594. static ssize_t ubb_show(mdk_rdev_t *rdev, char *page)
  2595. {
  2596. return badblocks_show(&rdev->badblocks, page, 1);
  2597. }
  2598. static ssize_t ubb_store(mdk_rdev_t *rdev, const char *page, size_t len)
  2599. {
  2600. return badblocks_store(&rdev->badblocks, page, len, 1);
  2601. }
  2602. static struct rdev_sysfs_entry rdev_unack_bad_blocks =
  2603. __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
  2604. static struct attribute *rdev_default_attrs[] = {
  2605. &rdev_state.attr,
  2606. &rdev_errors.attr,
  2607. &rdev_slot.attr,
  2608. &rdev_offset.attr,
  2609. &rdev_size.attr,
  2610. &rdev_recovery_start.attr,
  2611. &rdev_bad_blocks.attr,
  2612. &rdev_unack_bad_blocks.attr,
  2613. NULL,
  2614. };
  2615. static ssize_t
  2616. rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  2617. {
  2618. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2619. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  2620. mddev_t *mddev = rdev->mddev;
  2621. ssize_t rv;
  2622. if (!entry->show)
  2623. return -EIO;
  2624. rv = mddev ? mddev_lock(mddev) : -EBUSY;
  2625. if (!rv) {
  2626. if (rdev->mddev == NULL)
  2627. rv = -EBUSY;
  2628. else
  2629. rv = entry->show(rdev, page);
  2630. mddev_unlock(mddev);
  2631. }
  2632. return rv;
  2633. }
  2634. static ssize_t
  2635. rdev_attr_store(struct kobject *kobj, struct attribute *attr,
  2636. const char *page, size_t length)
  2637. {
  2638. struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
  2639. mdk_rdev_t *rdev = container_of(kobj, mdk_rdev_t, kobj);
  2640. ssize_t rv;
  2641. mddev_t *mddev = rdev->mddev;
  2642. if (!entry->store)
  2643. return -EIO;
  2644. if (!capable(CAP_SYS_ADMIN))
  2645. return -EACCES;
  2646. rv = mddev ? mddev_lock(mddev): -EBUSY;
  2647. if (!rv) {
  2648. if (rdev->mddev == NULL)
  2649. rv = -EBUSY;
  2650. else
  2651. rv = entry->store(rdev, page, length);
  2652. mddev_unlock(mddev);
  2653. }
  2654. return rv;
  2655. }
  2656. static void rdev_free(struct kobject *ko)
  2657. {
  2658. mdk_rdev_t *rdev = container_of(ko, mdk_rdev_t, kobj);
  2659. kfree(rdev);
  2660. }
  2661. static const struct sysfs_ops rdev_sysfs_ops = {
  2662. .show = rdev_attr_show,
  2663. .store = rdev_attr_store,
  2664. };
  2665. static struct kobj_type rdev_ktype = {
  2666. .release = rdev_free,
  2667. .sysfs_ops = &rdev_sysfs_ops,
  2668. .default_attrs = rdev_default_attrs,
  2669. };
  2670. int md_rdev_init(mdk_rdev_t *rdev)
  2671. {
  2672. rdev->desc_nr = -1;
  2673. rdev->saved_raid_disk = -1;
  2674. rdev->raid_disk = -1;
  2675. rdev->flags = 0;
  2676. rdev->data_offset = 0;
  2677. rdev->sb_events = 0;
  2678. rdev->last_read_error.tv_sec = 0;
  2679. rdev->last_read_error.tv_nsec = 0;
  2680. rdev->sb_loaded = 0;
  2681. rdev->bb_page = NULL;
  2682. atomic_set(&rdev->nr_pending, 0);
  2683. atomic_set(&rdev->read_errors, 0);
  2684. atomic_set(&rdev->corrected_errors, 0);
  2685. INIT_LIST_HEAD(&rdev->same_set);
  2686. init_waitqueue_head(&rdev->blocked_wait);
  2687. /* Add space to store bad block list.
  2688. * This reserves the space even on arrays where it cannot
  2689. * be used - I wonder if that matters
  2690. */
  2691. rdev->badblocks.count = 0;
  2692. rdev->badblocks.shift = 0;
  2693. rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2694. seqlock_init(&rdev->badblocks.lock);
  2695. if (rdev->badblocks.page == NULL)
  2696. return -ENOMEM;
  2697. return 0;
  2698. }
  2699. EXPORT_SYMBOL_GPL(md_rdev_init);
  2700. /*
  2701. * Import a device. If 'super_format' >= 0, then sanity check the superblock
  2702. *
  2703. * mark the device faulty if:
  2704. *
  2705. * - the device is nonexistent (zero size)
  2706. * - the device has no valid superblock
  2707. *
  2708. * a faulty rdev _never_ has rdev->sb set.
  2709. */
  2710. static mdk_rdev_t *md_import_device(dev_t newdev, int super_format, int super_minor)
  2711. {
  2712. char b[BDEVNAME_SIZE];
  2713. int err;
  2714. mdk_rdev_t *rdev;
  2715. sector_t size;
  2716. rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
  2717. if (!rdev) {
  2718. printk(KERN_ERR "md: could not alloc mem for new device!\n");
  2719. return ERR_PTR(-ENOMEM);
  2720. }
  2721. err = md_rdev_init(rdev);
  2722. if (err)
  2723. goto abort_free;
  2724. err = alloc_disk_sb(rdev);
  2725. if (err)
  2726. goto abort_free;
  2727. err = lock_rdev(rdev, newdev, super_format == -2);
  2728. if (err)
  2729. goto abort_free;
  2730. kobject_init(&rdev->kobj, &rdev_ktype);
  2731. size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
  2732. if (!size) {
  2733. printk(KERN_WARNING
  2734. "md: %s has zero or unknown size, marking faulty!\n",
  2735. bdevname(rdev->bdev,b));
  2736. err = -EINVAL;
  2737. goto abort_free;
  2738. }
  2739. if (super_format >= 0) {
  2740. err = super_types[super_format].
  2741. load_super(rdev, NULL, super_minor);
  2742. if (err == -EINVAL) {
  2743. printk(KERN_WARNING
  2744. "md: %s does not have a valid v%d.%d "
  2745. "superblock, not importing!\n",
  2746. bdevname(rdev->bdev,b),
  2747. super_format, super_minor);
  2748. goto abort_free;
  2749. }
  2750. if (err < 0) {
  2751. printk(KERN_WARNING
  2752. "md: could not read %s's sb, not importing!\n",
  2753. bdevname(rdev->bdev,b));
  2754. goto abort_free;
  2755. }
  2756. }
  2757. if (super_format == -1)
  2758. /* hot-add for 0.90, or non-persistent: so no badblocks */
  2759. rdev->badblocks.shift = -1;
  2760. return rdev;
  2761. abort_free:
  2762. if (rdev->bdev)
  2763. unlock_rdev(rdev);
  2764. free_disk_sb(rdev);
  2765. kfree(rdev->badblocks.page);
  2766. kfree(rdev);
  2767. return ERR_PTR(err);
  2768. }
  2769. /*
  2770. * Check a full RAID array for plausibility
  2771. */
  2772. static void analyze_sbs(mddev_t * mddev)
  2773. {
  2774. int i;
  2775. mdk_rdev_t *rdev, *freshest, *tmp;
  2776. char b[BDEVNAME_SIZE];
  2777. freshest = NULL;
  2778. rdev_for_each(rdev, tmp, mddev)
  2779. switch (super_types[mddev->major_version].
  2780. load_super(rdev, freshest, mddev->minor_version)) {
  2781. case 1:
  2782. freshest = rdev;
  2783. break;
  2784. case 0:
  2785. break;
  2786. default:
  2787. printk( KERN_ERR \
  2788. "md: fatal superblock inconsistency in %s"
  2789. " -- removing from array\n",
  2790. bdevname(rdev->bdev,b));
  2791. kick_rdev_from_array(rdev);
  2792. }
  2793. super_types[mddev->major_version].
  2794. validate_super(mddev, freshest);
  2795. i = 0;
  2796. rdev_for_each(rdev, tmp, mddev) {
  2797. if (mddev->max_disks &&
  2798. (rdev->desc_nr >= mddev->max_disks ||
  2799. i > mddev->max_disks)) {
  2800. printk(KERN_WARNING
  2801. "md: %s: %s: only %d devices permitted\n",
  2802. mdname(mddev), bdevname(rdev->bdev, b),
  2803. mddev->max_disks);
  2804. kick_rdev_from_array(rdev);
  2805. continue;
  2806. }
  2807. if (rdev != freshest)
  2808. if (super_types[mddev->major_version].
  2809. validate_super(mddev, rdev)) {
  2810. printk(KERN_WARNING "md: kicking non-fresh %s"
  2811. " from array!\n",
  2812. bdevname(rdev->bdev,b));
  2813. kick_rdev_from_array(rdev);
  2814. continue;
  2815. }
  2816. if (mddev->level == LEVEL_MULTIPATH) {
  2817. rdev->desc_nr = i++;
  2818. rdev->raid_disk = rdev->desc_nr;
  2819. set_bit(In_sync, &rdev->flags);
  2820. } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
  2821. rdev->raid_disk = -1;
  2822. clear_bit(In_sync, &rdev->flags);
  2823. }
  2824. }
  2825. }
  2826. /* Read a fixed-point number.
  2827. * Numbers in sysfs attributes should be in "standard" units where
  2828. * possible, so time should be in seconds.
  2829. * However we internally use a a much smaller unit such as
  2830. * milliseconds or jiffies.
  2831. * This function takes a decimal number with a possible fractional
  2832. * component, and produces an integer which is the result of
  2833. * multiplying that number by 10^'scale'.
  2834. * all without any floating-point arithmetic.
  2835. */
  2836. int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
  2837. {
  2838. unsigned long result = 0;
  2839. long decimals = -1;
  2840. while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
  2841. if (*cp == '.')
  2842. decimals = 0;
  2843. else if (decimals < scale) {
  2844. unsigned int value;
  2845. value = *cp - '0';
  2846. result = result * 10 + value;
  2847. if (decimals >= 0)
  2848. decimals++;
  2849. }
  2850. cp++;
  2851. }
  2852. if (*cp == '\n')
  2853. cp++;
  2854. if (*cp)
  2855. return -EINVAL;
  2856. if (decimals < 0)
  2857. decimals = 0;
  2858. while (decimals < scale) {
  2859. result *= 10;
  2860. decimals ++;
  2861. }
  2862. *res = result;
  2863. return 0;
  2864. }
  2865. static void md_safemode_timeout(unsigned long data);
  2866. static ssize_t
  2867. safe_delay_show(mddev_t *mddev, char *page)
  2868. {
  2869. int msec = (mddev->safemode_delay*1000)/HZ;
  2870. return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
  2871. }
  2872. static ssize_t
  2873. safe_delay_store(mddev_t *mddev, const char *cbuf, size_t len)
  2874. {
  2875. unsigned long msec;
  2876. if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
  2877. return -EINVAL;
  2878. if (msec == 0)
  2879. mddev->safemode_delay = 0;
  2880. else {
  2881. unsigned long old_delay = mddev->safemode_delay;
  2882. mddev->safemode_delay = (msec*HZ)/1000;
  2883. if (mddev->safemode_delay == 0)
  2884. mddev->safemode_delay = 1;
  2885. if (mddev->safemode_delay < old_delay)
  2886. md_safemode_timeout((unsigned long)mddev);
  2887. }
  2888. return len;
  2889. }
  2890. static struct md_sysfs_entry md_safe_delay =
  2891. __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
  2892. static ssize_t
  2893. level_show(mddev_t *mddev, char *page)
  2894. {
  2895. struct mdk_personality *p = mddev->pers;
  2896. if (p)
  2897. return sprintf(page, "%s\n", p->name);
  2898. else if (mddev->clevel[0])
  2899. return sprintf(page, "%s\n", mddev->clevel);
  2900. else if (mddev->level != LEVEL_NONE)
  2901. return sprintf(page, "%d\n", mddev->level);
  2902. else
  2903. return 0;
  2904. }
  2905. static ssize_t
  2906. level_store(mddev_t *mddev, const char *buf, size_t len)
  2907. {
  2908. char clevel[16];
  2909. ssize_t rv = len;
  2910. struct mdk_personality *pers;
  2911. long level;
  2912. void *priv;
  2913. mdk_rdev_t *rdev;
  2914. if (mddev->pers == NULL) {
  2915. if (len == 0)
  2916. return 0;
  2917. if (len >= sizeof(mddev->clevel))
  2918. return -ENOSPC;
  2919. strncpy(mddev->clevel, buf, len);
  2920. if (mddev->clevel[len-1] == '\n')
  2921. len--;
  2922. mddev->clevel[len] = 0;
  2923. mddev->level = LEVEL_NONE;
  2924. return rv;
  2925. }
  2926. /* request to change the personality. Need to ensure:
  2927. * - array is not engaged in resync/recovery/reshape
  2928. * - old personality can be suspended
  2929. * - new personality will access other array.
  2930. */
  2931. if (mddev->sync_thread ||
  2932. mddev->reshape_position != MaxSector ||
  2933. mddev->sysfs_active)
  2934. return -EBUSY;
  2935. if (!mddev->pers->quiesce) {
  2936. printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
  2937. mdname(mddev), mddev->pers->name);
  2938. return -EINVAL;
  2939. }
  2940. /* Now find the new personality */
  2941. if (len == 0 || len >= sizeof(clevel))
  2942. return -EINVAL;
  2943. strncpy(clevel, buf, len);
  2944. if (clevel[len-1] == '\n')
  2945. len--;
  2946. clevel[len] = 0;
  2947. if (strict_strtol(clevel, 10, &level))
  2948. level = LEVEL_NONE;
  2949. if (request_module("md-%s", clevel) != 0)
  2950. request_module("md-level-%s", clevel);
  2951. spin_lock(&pers_lock);
  2952. pers = find_pers(level, clevel);
  2953. if (!pers || !try_module_get(pers->owner)) {
  2954. spin_unlock(&pers_lock);
  2955. printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
  2956. return -EINVAL;
  2957. }
  2958. spin_unlock(&pers_lock);
  2959. if (pers == mddev->pers) {
  2960. /* Nothing to do! */
  2961. module_put(pers->owner);
  2962. return rv;
  2963. }
  2964. if (!pers->takeover) {
  2965. module_put(pers->owner);
  2966. printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
  2967. mdname(mddev), clevel);
  2968. return -EINVAL;
  2969. }
  2970. list_for_each_entry(rdev, &mddev->disks, same_set)
  2971. rdev->new_raid_disk = rdev->raid_disk;
  2972. /* ->takeover must set new_* and/or delta_disks
  2973. * if it succeeds, and may set them when it fails.
  2974. */
  2975. priv = pers->takeover(mddev);
  2976. if (IS_ERR(priv)) {
  2977. mddev->new_level = mddev->level;
  2978. mddev->new_layout = mddev->layout;
  2979. mddev->new_chunk_sectors = mddev->chunk_sectors;
  2980. mddev->raid_disks -= mddev->delta_disks;
  2981. mddev->delta_disks = 0;
  2982. module_put(pers->owner);
  2983. printk(KERN_WARNING "md: %s: %s would not accept array\n",
  2984. mdname(mddev), clevel);
  2985. return PTR_ERR(priv);
  2986. }
  2987. /* Looks like we have a winner */
  2988. mddev_suspend(mddev);
  2989. mddev->pers->stop(mddev);
  2990. if (mddev->pers->sync_request == NULL &&
  2991. pers->sync_request != NULL) {
  2992. /* need to add the md_redundancy_group */
  2993. if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  2994. printk(KERN_WARNING
  2995. "md: cannot register extra attributes for %s\n",
  2996. mdname(mddev));
  2997. mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
  2998. }
  2999. if (mddev->pers->sync_request != NULL &&
  3000. pers->sync_request == NULL) {
  3001. /* need to remove the md_redundancy_group */
  3002. if (mddev->to_remove == NULL)
  3003. mddev->to_remove = &md_redundancy_group;
  3004. }
  3005. if (mddev->pers->sync_request == NULL &&
  3006. mddev->external) {
  3007. /* We are converting from a no-redundancy array
  3008. * to a redundancy array and metadata is managed
  3009. * externally so we need to be sure that writes
  3010. * won't block due to a need to transition
  3011. * clean->dirty
  3012. * until external management is started.
  3013. */
  3014. mddev->in_sync = 0;
  3015. mddev->safemode_delay = 0;
  3016. mddev->safemode = 0;
  3017. }
  3018. list_for_each_entry(rdev, &mddev->disks, same_set) {
  3019. if (rdev->raid_disk < 0)
  3020. continue;
  3021. if (rdev->new_raid_disk >= mddev->raid_disks)
  3022. rdev->new_raid_disk = -1;
  3023. if (rdev->new_raid_disk == rdev->raid_disk)
  3024. continue;
  3025. sysfs_unlink_rdev(mddev, rdev);
  3026. }
  3027. list_for_each_entry(rdev, &mddev->disks, same_set) {
  3028. if (rdev->raid_disk < 0)
  3029. continue;
  3030. if (rdev->new_raid_disk == rdev->raid_disk)
  3031. continue;
  3032. rdev->raid_disk = rdev->new_raid_disk;
  3033. if (rdev->raid_disk < 0)
  3034. clear_bit(In_sync, &rdev->flags);
  3035. else {
  3036. if (sysfs_link_rdev(mddev, rdev))
  3037. printk(KERN_WARNING "md: cannot register rd%d"
  3038. " for %s after level change\n",
  3039. rdev->raid_disk, mdname(mddev));
  3040. }
  3041. }
  3042. module_put(mddev->pers->owner);
  3043. mddev->pers = pers;
  3044. mddev->private = priv;
  3045. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  3046. mddev->level = mddev->new_level;
  3047. mddev->layout = mddev->new_layout;
  3048. mddev->chunk_sectors = mddev->new_chunk_sectors;
  3049. mddev->delta_disks = 0;
  3050. mddev->degraded = 0;
  3051. if (mddev->pers->sync_request == NULL) {
  3052. /* this is now an array without redundancy, so
  3053. * it must always be in_sync
  3054. */
  3055. mddev->in_sync = 1;
  3056. del_timer_sync(&mddev->safemode_timer);
  3057. }
  3058. pers->run(mddev);
  3059. mddev_resume(mddev);
  3060. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  3061. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3062. md_wakeup_thread(mddev->thread);
  3063. sysfs_notify(&mddev->kobj, NULL, "level");
  3064. md_new_event(mddev);
  3065. return rv;
  3066. }
  3067. static struct md_sysfs_entry md_level =
  3068. __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
  3069. static ssize_t
  3070. layout_show(mddev_t *mddev, char *page)
  3071. {
  3072. /* just a number, not meaningful for all levels */
  3073. if (mddev->reshape_position != MaxSector &&
  3074. mddev->layout != mddev->new_layout)
  3075. return sprintf(page, "%d (%d)\n",
  3076. mddev->new_layout, mddev->layout);
  3077. return sprintf(page, "%d\n", mddev->layout);
  3078. }
  3079. static ssize_t
  3080. layout_store(mddev_t *mddev, const char *buf, size_t len)
  3081. {
  3082. char *e;
  3083. unsigned long n = simple_strtoul(buf, &e, 10);
  3084. if (!*buf || (*e && *e != '\n'))
  3085. return -EINVAL;
  3086. if (mddev->pers) {
  3087. int err;
  3088. if (mddev->pers->check_reshape == NULL)
  3089. return -EBUSY;
  3090. mddev->new_layout = n;
  3091. err = mddev->pers->check_reshape(mddev);
  3092. if (err) {
  3093. mddev->new_layout = mddev->layout;
  3094. return err;
  3095. }
  3096. } else {
  3097. mddev->new_layout = n;
  3098. if (mddev->reshape_position == MaxSector)
  3099. mddev->layout = n;
  3100. }
  3101. return len;
  3102. }
  3103. static struct md_sysfs_entry md_layout =
  3104. __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
  3105. static ssize_t
  3106. raid_disks_show(mddev_t *mddev, char *page)
  3107. {
  3108. if (mddev->raid_disks == 0)
  3109. return 0;
  3110. if (mddev->reshape_position != MaxSector &&
  3111. mddev->delta_disks != 0)
  3112. return sprintf(page, "%d (%d)\n", mddev->raid_disks,
  3113. mddev->raid_disks - mddev->delta_disks);
  3114. return sprintf(page, "%d\n", mddev->raid_disks);
  3115. }
  3116. static int update_raid_disks(mddev_t *mddev, int raid_disks);
  3117. static ssize_t
  3118. raid_disks_store(mddev_t *mddev, const char *buf, size_t len)
  3119. {
  3120. char *e;
  3121. int rv = 0;
  3122. unsigned long n = simple_strtoul(buf, &e, 10);
  3123. if (!*buf || (*e && *e != '\n'))
  3124. return -EINVAL;
  3125. if (mddev->pers)
  3126. rv = update_raid_disks(mddev, n);
  3127. else if (mddev->reshape_position != MaxSector) {
  3128. int olddisks = mddev->raid_disks - mddev->delta_disks;
  3129. mddev->delta_disks = n - olddisks;
  3130. mddev->raid_disks = n;
  3131. } else
  3132. mddev->raid_disks = n;
  3133. return rv ? rv : len;
  3134. }
  3135. static struct md_sysfs_entry md_raid_disks =
  3136. __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
  3137. static ssize_t
  3138. chunk_size_show(mddev_t *mddev, char *page)
  3139. {
  3140. if (mddev->reshape_position != MaxSector &&
  3141. mddev->chunk_sectors != mddev->new_chunk_sectors)
  3142. return sprintf(page, "%d (%d)\n",
  3143. mddev->new_chunk_sectors << 9,
  3144. mddev->chunk_sectors << 9);
  3145. return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
  3146. }
  3147. static ssize_t
  3148. chunk_size_store(mddev_t *mddev, const char *buf, size_t len)
  3149. {
  3150. char *e;
  3151. unsigned long n = simple_strtoul(buf, &e, 10);
  3152. if (!*buf || (*e && *e != '\n'))
  3153. return -EINVAL;
  3154. if (mddev->pers) {
  3155. int err;
  3156. if (mddev->pers->check_reshape == NULL)
  3157. return -EBUSY;
  3158. mddev->new_chunk_sectors = n >> 9;
  3159. err = mddev->pers->check_reshape(mddev);
  3160. if (err) {
  3161. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3162. return err;
  3163. }
  3164. } else {
  3165. mddev->new_chunk_sectors = n >> 9;
  3166. if (mddev->reshape_position == MaxSector)
  3167. mddev->chunk_sectors = n >> 9;
  3168. }
  3169. return len;
  3170. }
  3171. static struct md_sysfs_entry md_chunk_size =
  3172. __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
  3173. static ssize_t
  3174. resync_start_show(mddev_t *mddev, char *page)
  3175. {
  3176. if (mddev->recovery_cp == MaxSector)
  3177. return sprintf(page, "none\n");
  3178. return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
  3179. }
  3180. static ssize_t
  3181. resync_start_store(mddev_t *mddev, const char *buf, size_t len)
  3182. {
  3183. char *e;
  3184. unsigned long long n = simple_strtoull(buf, &e, 10);
  3185. if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3186. return -EBUSY;
  3187. if (cmd_match(buf, "none"))
  3188. n = MaxSector;
  3189. else if (!*buf || (*e && *e != '\n'))
  3190. return -EINVAL;
  3191. mddev->recovery_cp = n;
  3192. return len;
  3193. }
  3194. static struct md_sysfs_entry md_resync_start =
  3195. __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
  3196. /*
  3197. * The array state can be:
  3198. *
  3199. * clear
  3200. * No devices, no size, no level
  3201. * Equivalent to STOP_ARRAY ioctl
  3202. * inactive
  3203. * May have some settings, but array is not active
  3204. * all IO results in error
  3205. * When written, doesn't tear down array, but just stops it
  3206. * suspended (not supported yet)
  3207. * All IO requests will block. The array can be reconfigured.
  3208. * Writing this, if accepted, will block until array is quiescent
  3209. * readonly
  3210. * no resync can happen. no superblocks get written.
  3211. * write requests fail
  3212. * read-auto
  3213. * like readonly, but behaves like 'clean' on a write request.
  3214. *
  3215. * clean - no pending writes, but otherwise active.
  3216. * When written to inactive array, starts without resync
  3217. * If a write request arrives then
  3218. * if metadata is known, mark 'dirty' and switch to 'active'.
  3219. * if not known, block and switch to write-pending
  3220. * If written to an active array that has pending writes, then fails.
  3221. * active
  3222. * fully active: IO and resync can be happening.
  3223. * When written to inactive array, starts with resync
  3224. *
  3225. * write-pending
  3226. * clean, but writes are blocked waiting for 'active' to be written.
  3227. *
  3228. * active-idle
  3229. * like active, but no writes have been seen for a while (100msec).
  3230. *
  3231. */
  3232. enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
  3233. write_pending, active_idle, bad_word};
  3234. static char *array_states[] = {
  3235. "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
  3236. "write-pending", "active-idle", NULL };
  3237. static int match_word(const char *word, char **list)
  3238. {
  3239. int n;
  3240. for (n=0; list[n]; n++)
  3241. if (cmd_match(word, list[n]))
  3242. break;
  3243. return n;
  3244. }
  3245. static ssize_t
  3246. array_state_show(mddev_t *mddev, char *page)
  3247. {
  3248. enum array_state st = inactive;
  3249. if (mddev->pers)
  3250. switch(mddev->ro) {
  3251. case 1:
  3252. st = readonly;
  3253. break;
  3254. case 2:
  3255. st = read_auto;
  3256. break;
  3257. case 0:
  3258. if (mddev->in_sync)
  3259. st = clean;
  3260. else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  3261. st = write_pending;
  3262. else if (mddev->safemode)
  3263. st = active_idle;
  3264. else
  3265. st = active;
  3266. }
  3267. else {
  3268. if (list_empty(&mddev->disks) &&
  3269. mddev->raid_disks == 0 &&
  3270. mddev->dev_sectors == 0)
  3271. st = clear;
  3272. else
  3273. st = inactive;
  3274. }
  3275. return sprintf(page, "%s\n", array_states[st]);
  3276. }
  3277. static int do_md_stop(mddev_t * mddev, int ro, int is_open);
  3278. static int md_set_readonly(mddev_t * mddev, int is_open);
  3279. static int do_md_run(mddev_t * mddev);
  3280. static int restart_array(mddev_t *mddev);
  3281. static ssize_t
  3282. array_state_store(mddev_t *mddev, const char *buf, size_t len)
  3283. {
  3284. int err = -EINVAL;
  3285. enum array_state st = match_word(buf, array_states);
  3286. switch(st) {
  3287. case bad_word:
  3288. break;
  3289. case clear:
  3290. /* stopping an active array */
  3291. if (atomic_read(&mddev->openers) > 0)
  3292. return -EBUSY;
  3293. err = do_md_stop(mddev, 0, 0);
  3294. break;
  3295. case inactive:
  3296. /* stopping an active array */
  3297. if (mddev->pers) {
  3298. if (atomic_read(&mddev->openers) > 0)
  3299. return -EBUSY;
  3300. err = do_md_stop(mddev, 2, 0);
  3301. } else
  3302. err = 0; /* already inactive */
  3303. break;
  3304. case suspended:
  3305. break; /* not supported yet */
  3306. case readonly:
  3307. if (mddev->pers)
  3308. err = md_set_readonly(mddev, 0);
  3309. else {
  3310. mddev->ro = 1;
  3311. set_disk_ro(mddev->gendisk, 1);
  3312. err = do_md_run(mddev);
  3313. }
  3314. break;
  3315. case read_auto:
  3316. if (mddev->pers) {
  3317. if (mddev->ro == 0)
  3318. err = md_set_readonly(mddev, 0);
  3319. else if (mddev->ro == 1)
  3320. err = restart_array(mddev);
  3321. if (err == 0) {
  3322. mddev->ro = 2;
  3323. set_disk_ro(mddev->gendisk, 0);
  3324. }
  3325. } else {
  3326. mddev->ro = 2;
  3327. err = do_md_run(mddev);
  3328. }
  3329. break;
  3330. case clean:
  3331. if (mddev->pers) {
  3332. restart_array(mddev);
  3333. spin_lock_irq(&mddev->write_lock);
  3334. if (atomic_read(&mddev->writes_pending) == 0) {
  3335. if (mddev->in_sync == 0) {
  3336. mddev->in_sync = 1;
  3337. if (mddev->safemode == 1)
  3338. mddev->safemode = 0;
  3339. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  3340. }
  3341. err = 0;
  3342. } else
  3343. err = -EBUSY;
  3344. spin_unlock_irq(&mddev->write_lock);
  3345. } else
  3346. err = -EINVAL;
  3347. break;
  3348. case active:
  3349. if (mddev->pers) {
  3350. restart_array(mddev);
  3351. clear_bit(MD_CHANGE_PENDING, &mddev->flags);
  3352. wake_up(&mddev->sb_wait);
  3353. err = 0;
  3354. } else {
  3355. mddev->ro = 0;
  3356. set_disk_ro(mddev->gendisk, 0);
  3357. err = do_md_run(mddev);
  3358. }
  3359. break;
  3360. case write_pending:
  3361. case active_idle:
  3362. /* these cannot be set */
  3363. break;
  3364. }
  3365. if (err)
  3366. return err;
  3367. else {
  3368. sysfs_notify_dirent_safe(mddev->sysfs_state);
  3369. return len;
  3370. }
  3371. }
  3372. static struct md_sysfs_entry md_array_state =
  3373. __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
  3374. static ssize_t
  3375. max_corrected_read_errors_show(mddev_t *mddev, char *page) {
  3376. return sprintf(page, "%d\n",
  3377. atomic_read(&mddev->max_corr_read_errors));
  3378. }
  3379. static ssize_t
  3380. max_corrected_read_errors_store(mddev_t *mddev, const char *buf, size_t len)
  3381. {
  3382. char *e;
  3383. unsigned long n = simple_strtoul(buf, &e, 10);
  3384. if (*buf && (*e == 0 || *e == '\n')) {
  3385. atomic_set(&mddev->max_corr_read_errors, n);
  3386. return len;
  3387. }
  3388. return -EINVAL;
  3389. }
  3390. static struct md_sysfs_entry max_corr_read_errors =
  3391. __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
  3392. max_corrected_read_errors_store);
  3393. static ssize_t
  3394. null_show(mddev_t *mddev, char *page)
  3395. {
  3396. return -EINVAL;
  3397. }
  3398. static ssize_t
  3399. new_dev_store(mddev_t *mddev, const char *buf, size_t len)
  3400. {
  3401. /* buf must be %d:%d\n? giving major and minor numbers */
  3402. /* The new device is added to the array.
  3403. * If the array has a persistent superblock, we read the
  3404. * superblock to initialise info and check validity.
  3405. * Otherwise, only checking done is that in bind_rdev_to_array,
  3406. * which mainly checks size.
  3407. */
  3408. char *e;
  3409. int major = simple_strtoul(buf, &e, 10);
  3410. int minor;
  3411. dev_t dev;
  3412. mdk_rdev_t *rdev;
  3413. int err;
  3414. if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
  3415. return -EINVAL;
  3416. minor = simple_strtoul(e+1, &e, 10);
  3417. if (*e && *e != '\n')
  3418. return -EINVAL;
  3419. dev = MKDEV(major, minor);
  3420. if (major != MAJOR(dev) ||
  3421. minor != MINOR(dev))
  3422. return -EOVERFLOW;
  3423. if (mddev->persistent) {
  3424. rdev = md_import_device(dev, mddev->major_version,
  3425. mddev->minor_version);
  3426. if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
  3427. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  3428. mdk_rdev_t, same_set);
  3429. err = super_types[mddev->major_version]
  3430. .load_super(rdev, rdev0, mddev->minor_version);
  3431. if (err < 0)
  3432. goto out;
  3433. }
  3434. } else if (mddev->external)
  3435. rdev = md_import_device(dev, -2, -1);
  3436. else
  3437. rdev = md_import_device(dev, -1, -1);
  3438. if (IS_ERR(rdev))
  3439. return PTR_ERR(rdev);
  3440. err = bind_rdev_to_array(rdev, mddev);
  3441. out:
  3442. if (err)
  3443. export_rdev(rdev);
  3444. return err ? err : len;
  3445. }
  3446. static struct md_sysfs_entry md_new_device =
  3447. __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
  3448. static ssize_t
  3449. bitmap_store(mddev_t *mddev, const char *buf, size_t len)
  3450. {
  3451. char *end;
  3452. unsigned long chunk, end_chunk;
  3453. if (!mddev->bitmap)
  3454. goto out;
  3455. /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
  3456. while (*buf) {
  3457. chunk = end_chunk = simple_strtoul(buf, &end, 0);
  3458. if (buf == end) break;
  3459. if (*end == '-') { /* range */
  3460. buf = end + 1;
  3461. end_chunk = simple_strtoul(buf, &end, 0);
  3462. if (buf == end) break;
  3463. }
  3464. if (*end && !isspace(*end)) break;
  3465. bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
  3466. buf = skip_spaces(end);
  3467. }
  3468. bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
  3469. out:
  3470. return len;
  3471. }
  3472. static struct md_sysfs_entry md_bitmap =
  3473. __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
  3474. static ssize_t
  3475. size_show(mddev_t *mddev, char *page)
  3476. {
  3477. return sprintf(page, "%llu\n",
  3478. (unsigned long long)mddev->dev_sectors / 2);
  3479. }
  3480. static int update_size(mddev_t *mddev, sector_t num_sectors);
  3481. static ssize_t
  3482. size_store(mddev_t *mddev, const char *buf, size_t len)
  3483. {
  3484. /* If array is inactive, we can reduce the component size, but
  3485. * not increase it (except from 0).
  3486. * If array is active, we can try an on-line resize
  3487. */
  3488. sector_t sectors;
  3489. int err = strict_blocks_to_sectors(buf, &sectors);
  3490. if (err < 0)
  3491. return err;
  3492. if (mddev->pers) {
  3493. err = update_size(mddev, sectors);
  3494. md_update_sb(mddev, 1);
  3495. } else {
  3496. if (mddev->dev_sectors == 0 ||
  3497. mddev->dev_sectors > sectors)
  3498. mddev->dev_sectors = sectors;
  3499. else
  3500. err = -ENOSPC;
  3501. }
  3502. return err ? err : len;
  3503. }
  3504. static struct md_sysfs_entry md_size =
  3505. __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
  3506. /* Metdata version.
  3507. * This is one of
  3508. * 'none' for arrays with no metadata (good luck...)
  3509. * 'external' for arrays with externally managed metadata,
  3510. * or N.M for internally known formats
  3511. */
  3512. static ssize_t
  3513. metadata_show(mddev_t *mddev, char *page)
  3514. {
  3515. if (mddev->persistent)
  3516. return sprintf(page, "%d.%d\n",
  3517. mddev->major_version, mddev->minor_version);
  3518. else if (mddev->external)
  3519. return sprintf(page, "external:%s\n", mddev->metadata_type);
  3520. else
  3521. return sprintf(page, "none\n");
  3522. }
  3523. static ssize_t
  3524. metadata_store(mddev_t *mddev, const char *buf, size_t len)
  3525. {
  3526. int major, minor;
  3527. char *e;
  3528. /* Changing the details of 'external' metadata is
  3529. * always permitted. Otherwise there must be
  3530. * no devices attached to the array.
  3531. */
  3532. if (mddev->external && strncmp(buf, "external:", 9) == 0)
  3533. ;
  3534. else if (!list_empty(&mddev->disks))
  3535. return -EBUSY;
  3536. if (cmd_match(buf, "none")) {
  3537. mddev->persistent = 0;
  3538. mddev->external = 0;
  3539. mddev->major_version = 0;
  3540. mddev->minor_version = 90;
  3541. return len;
  3542. }
  3543. if (strncmp(buf, "external:", 9) == 0) {
  3544. size_t namelen = len-9;
  3545. if (namelen >= sizeof(mddev->metadata_type))
  3546. namelen = sizeof(mddev->metadata_type)-1;
  3547. strncpy(mddev->metadata_type, buf+9, namelen);
  3548. mddev->metadata_type[namelen] = 0;
  3549. if (namelen && mddev->metadata_type[namelen-1] == '\n')
  3550. mddev->metadata_type[--namelen] = 0;
  3551. mddev->persistent = 0;
  3552. mddev->external = 1;
  3553. mddev->major_version = 0;
  3554. mddev->minor_version = 90;
  3555. return len;
  3556. }
  3557. major = simple_strtoul(buf, &e, 10);
  3558. if (e==buf || *e != '.')
  3559. return -EINVAL;
  3560. buf = e+1;
  3561. minor = simple_strtoul(buf, &e, 10);
  3562. if (e==buf || (*e && *e != '\n') )
  3563. return -EINVAL;
  3564. if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
  3565. return -ENOENT;
  3566. mddev->major_version = major;
  3567. mddev->minor_version = minor;
  3568. mddev->persistent = 1;
  3569. mddev->external = 0;
  3570. return len;
  3571. }
  3572. static struct md_sysfs_entry md_metadata =
  3573. __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
  3574. static ssize_t
  3575. action_show(mddev_t *mddev, char *page)
  3576. {
  3577. char *type = "idle";
  3578. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  3579. type = "frozen";
  3580. else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3581. (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
  3582. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  3583. type = "reshape";
  3584. else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  3585. if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  3586. type = "resync";
  3587. else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  3588. type = "check";
  3589. else
  3590. type = "repair";
  3591. } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
  3592. type = "recover";
  3593. }
  3594. return sprintf(page, "%s\n", type);
  3595. }
  3596. static void reap_sync_thread(mddev_t *mddev);
  3597. static ssize_t
  3598. action_store(mddev_t *mddev, const char *page, size_t len)
  3599. {
  3600. if (!mddev->pers || !mddev->pers->sync_request)
  3601. return -EINVAL;
  3602. if (cmd_match(page, "frozen"))
  3603. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3604. else
  3605. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  3606. if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
  3607. if (mddev->sync_thread) {
  3608. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  3609. reap_sync_thread(mddev);
  3610. }
  3611. } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
  3612. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  3613. return -EBUSY;
  3614. else if (cmd_match(page, "resync"))
  3615. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3616. else if (cmd_match(page, "recover")) {
  3617. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  3618. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3619. } else if (cmd_match(page, "reshape")) {
  3620. int err;
  3621. if (mddev->pers->start_reshape == NULL)
  3622. return -EINVAL;
  3623. err = mddev->pers->start_reshape(mddev);
  3624. if (err)
  3625. return err;
  3626. sysfs_notify(&mddev->kobj, NULL, "degraded");
  3627. } else {
  3628. if (cmd_match(page, "check"))
  3629. set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  3630. else if (!cmd_match(page, "repair"))
  3631. return -EINVAL;
  3632. set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  3633. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  3634. }
  3635. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  3636. md_wakeup_thread(mddev->thread);
  3637. sysfs_notify_dirent_safe(mddev->sysfs_action);
  3638. return len;
  3639. }
  3640. static ssize_t
  3641. mismatch_cnt_show(mddev_t *mddev, char *page)
  3642. {
  3643. return sprintf(page, "%llu\n",
  3644. (unsigned long long) mddev->resync_mismatches);
  3645. }
  3646. static struct md_sysfs_entry md_scan_mode =
  3647. __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
  3648. static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
  3649. static ssize_t
  3650. sync_min_show(mddev_t *mddev, char *page)
  3651. {
  3652. return sprintf(page, "%d (%s)\n", speed_min(mddev),
  3653. mddev->sync_speed_min ? "local": "system");
  3654. }
  3655. static ssize_t
  3656. sync_min_store(mddev_t *mddev, const char *buf, size_t len)
  3657. {
  3658. int min;
  3659. char *e;
  3660. if (strncmp(buf, "system", 6)==0) {
  3661. mddev->sync_speed_min = 0;
  3662. return len;
  3663. }
  3664. min = simple_strtoul(buf, &e, 10);
  3665. if (buf == e || (*e && *e != '\n') || min <= 0)
  3666. return -EINVAL;
  3667. mddev->sync_speed_min = min;
  3668. return len;
  3669. }
  3670. static struct md_sysfs_entry md_sync_min =
  3671. __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
  3672. static ssize_t
  3673. sync_max_show(mddev_t *mddev, char *page)
  3674. {
  3675. return sprintf(page, "%d (%s)\n", speed_max(mddev),
  3676. mddev->sync_speed_max ? "local": "system");
  3677. }
  3678. static ssize_t
  3679. sync_max_store(mddev_t *mddev, const char *buf, size_t len)
  3680. {
  3681. int max;
  3682. char *e;
  3683. if (strncmp(buf, "system", 6)==0) {
  3684. mddev->sync_speed_max = 0;
  3685. return len;
  3686. }
  3687. max = simple_strtoul(buf, &e, 10);
  3688. if (buf == e || (*e && *e != '\n') || max <= 0)
  3689. return -EINVAL;
  3690. mddev->sync_speed_max = max;
  3691. return len;
  3692. }
  3693. static struct md_sysfs_entry md_sync_max =
  3694. __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
  3695. static ssize_t
  3696. degraded_show(mddev_t *mddev, char *page)
  3697. {
  3698. return sprintf(page, "%d\n", mddev->degraded);
  3699. }
  3700. static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
  3701. static ssize_t
  3702. sync_force_parallel_show(mddev_t *mddev, char *page)
  3703. {
  3704. return sprintf(page, "%d\n", mddev->parallel_resync);
  3705. }
  3706. static ssize_t
  3707. sync_force_parallel_store(mddev_t *mddev, const char *buf, size_t len)
  3708. {
  3709. long n;
  3710. if (strict_strtol(buf, 10, &n))
  3711. return -EINVAL;
  3712. if (n != 0 && n != 1)
  3713. return -EINVAL;
  3714. mddev->parallel_resync = n;
  3715. if (mddev->sync_thread)
  3716. wake_up(&resync_wait);
  3717. return len;
  3718. }
  3719. /* force parallel resync, even with shared block devices */
  3720. static struct md_sysfs_entry md_sync_force_parallel =
  3721. __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
  3722. sync_force_parallel_show, sync_force_parallel_store);
  3723. static ssize_t
  3724. sync_speed_show(mddev_t *mddev, char *page)
  3725. {
  3726. unsigned long resync, dt, db;
  3727. if (mddev->curr_resync == 0)
  3728. return sprintf(page, "none\n");
  3729. resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
  3730. dt = (jiffies - mddev->resync_mark) / HZ;
  3731. if (!dt) dt++;
  3732. db = resync - mddev->resync_mark_cnt;
  3733. return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
  3734. }
  3735. static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
  3736. static ssize_t
  3737. sync_completed_show(mddev_t *mddev, char *page)
  3738. {
  3739. unsigned long long max_sectors, resync;
  3740. if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3741. return sprintf(page, "none\n");
  3742. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  3743. max_sectors = mddev->resync_max_sectors;
  3744. else
  3745. max_sectors = mddev->dev_sectors;
  3746. resync = mddev->curr_resync_completed;
  3747. return sprintf(page, "%llu / %llu\n", resync, max_sectors);
  3748. }
  3749. static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
  3750. static ssize_t
  3751. min_sync_show(mddev_t *mddev, char *page)
  3752. {
  3753. return sprintf(page, "%llu\n",
  3754. (unsigned long long)mddev->resync_min);
  3755. }
  3756. static ssize_t
  3757. min_sync_store(mddev_t *mddev, const char *buf, size_t len)
  3758. {
  3759. unsigned long long min;
  3760. if (strict_strtoull(buf, 10, &min))
  3761. return -EINVAL;
  3762. if (min > mddev->resync_max)
  3763. return -EINVAL;
  3764. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3765. return -EBUSY;
  3766. /* Must be a multiple of chunk_size */
  3767. if (mddev->chunk_sectors) {
  3768. sector_t temp = min;
  3769. if (sector_div(temp, mddev->chunk_sectors))
  3770. return -EINVAL;
  3771. }
  3772. mddev->resync_min = min;
  3773. return len;
  3774. }
  3775. static struct md_sysfs_entry md_min_sync =
  3776. __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
  3777. static ssize_t
  3778. max_sync_show(mddev_t *mddev, char *page)
  3779. {
  3780. if (mddev->resync_max == MaxSector)
  3781. return sprintf(page, "max\n");
  3782. else
  3783. return sprintf(page, "%llu\n",
  3784. (unsigned long long)mddev->resync_max);
  3785. }
  3786. static ssize_t
  3787. max_sync_store(mddev_t *mddev, const char *buf, size_t len)
  3788. {
  3789. if (strncmp(buf, "max", 3) == 0)
  3790. mddev->resync_max = MaxSector;
  3791. else {
  3792. unsigned long long max;
  3793. if (strict_strtoull(buf, 10, &max))
  3794. return -EINVAL;
  3795. if (max < mddev->resync_min)
  3796. return -EINVAL;
  3797. if (max < mddev->resync_max &&
  3798. mddev->ro == 0 &&
  3799. test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
  3800. return -EBUSY;
  3801. /* Must be a multiple of chunk_size */
  3802. if (mddev->chunk_sectors) {
  3803. sector_t temp = max;
  3804. if (sector_div(temp, mddev->chunk_sectors))
  3805. return -EINVAL;
  3806. }
  3807. mddev->resync_max = max;
  3808. }
  3809. wake_up(&mddev->recovery_wait);
  3810. return len;
  3811. }
  3812. static struct md_sysfs_entry md_max_sync =
  3813. __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
  3814. static ssize_t
  3815. suspend_lo_show(mddev_t *mddev, char *page)
  3816. {
  3817. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
  3818. }
  3819. static ssize_t
  3820. suspend_lo_store(mddev_t *mddev, const char *buf, size_t len)
  3821. {
  3822. char *e;
  3823. unsigned long long new = simple_strtoull(buf, &e, 10);
  3824. unsigned long long old = mddev->suspend_lo;
  3825. if (mddev->pers == NULL ||
  3826. mddev->pers->quiesce == NULL)
  3827. return -EINVAL;
  3828. if (buf == e || (*e && *e != '\n'))
  3829. return -EINVAL;
  3830. mddev->suspend_lo = new;
  3831. if (new >= old)
  3832. /* Shrinking suspended region */
  3833. mddev->pers->quiesce(mddev, 2);
  3834. else {
  3835. /* Expanding suspended region - need to wait */
  3836. mddev->pers->quiesce(mddev, 1);
  3837. mddev->pers->quiesce(mddev, 0);
  3838. }
  3839. return len;
  3840. }
  3841. static struct md_sysfs_entry md_suspend_lo =
  3842. __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
  3843. static ssize_t
  3844. suspend_hi_show(mddev_t *mddev, char *page)
  3845. {
  3846. return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
  3847. }
  3848. static ssize_t
  3849. suspend_hi_store(mddev_t *mddev, const char *buf, size_t len)
  3850. {
  3851. char *e;
  3852. unsigned long long new = simple_strtoull(buf, &e, 10);
  3853. unsigned long long old = mddev->suspend_hi;
  3854. if (mddev->pers == NULL ||
  3855. mddev->pers->quiesce == NULL)
  3856. return -EINVAL;
  3857. if (buf == e || (*e && *e != '\n'))
  3858. return -EINVAL;
  3859. mddev->suspend_hi = new;
  3860. if (new <= old)
  3861. /* Shrinking suspended region */
  3862. mddev->pers->quiesce(mddev, 2);
  3863. else {
  3864. /* Expanding suspended region - need to wait */
  3865. mddev->pers->quiesce(mddev, 1);
  3866. mddev->pers->quiesce(mddev, 0);
  3867. }
  3868. return len;
  3869. }
  3870. static struct md_sysfs_entry md_suspend_hi =
  3871. __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
  3872. static ssize_t
  3873. reshape_position_show(mddev_t *mddev, char *page)
  3874. {
  3875. if (mddev->reshape_position != MaxSector)
  3876. return sprintf(page, "%llu\n",
  3877. (unsigned long long)mddev->reshape_position);
  3878. strcpy(page, "none\n");
  3879. return 5;
  3880. }
  3881. static ssize_t
  3882. reshape_position_store(mddev_t *mddev, const char *buf, size_t len)
  3883. {
  3884. char *e;
  3885. unsigned long long new = simple_strtoull(buf, &e, 10);
  3886. if (mddev->pers)
  3887. return -EBUSY;
  3888. if (buf == e || (*e && *e != '\n'))
  3889. return -EINVAL;
  3890. mddev->reshape_position = new;
  3891. mddev->delta_disks = 0;
  3892. mddev->new_level = mddev->level;
  3893. mddev->new_layout = mddev->layout;
  3894. mddev->new_chunk_sectors = mddev->chunk_sectors;
  3895. return len;
  3896. }
  3897. static struct md_sysfs_entry md_reshape_position =
  3898. __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
  3899. reshape_position_store);
  3900. static ssize_t
  3901. array_size_show(mddev_t *mddev, char *page)
  3902. {
  3903. if (mddev->external_size)
  3904. return sprintf(page, "%llu\n",
  3905. (unsigned long long)mddev->array_sectors/2);
  3906. else
  3907. return sprintf(page, "default\n");
  3908. }
  3909. static ssize_t
  3910. array_size_store(mddev_t *mddev, const char *buf, size_t len)
  3911. {
  3912. sector_t sectors;
  3913. if (strncmp(buf, "default", 7) == 0) {
  3914. if (mddev->pers)
  3915. sectors = mddev->pers->size(mddev, 0, 0);
  3916. else
  3917. sectors = mddev->array_sectors;
  3918. mddev->external_size = 0;
  3919. } else {
  3920. if (strict_blocks_to_sectors(buf, &sectors) < 0)
  3921. return -EINVAL;
  3922. if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
  3923. return -E2BIG;
  3924. mddev->external_size = 1;
  3925. }
  3926. mddev->array_sectors = sectors;
  3927. if (mddev->pers) {
  3928. set_capacity(mddev->gendisk, mddev->array_sectors);
  3929. revalidate_disk(mddev->gendisk);
  3930. }
  3931. return len;
  3932. }
  3933. static struct md_sysfs_entry md_array_size =
  3934. __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
  3935. array_size_store);
  3936. static struct attribute *md_default_attrs[] = {
  3937. &md_level.attr,
  3938. &md_layout.attr,
  3939. &md_raid_disks.attr,
  3940. &md_chunk_size.attr,
  3941. &md_size.attr,
  3942. &md_resync_start.attr,
  3943. &md_metadata.attr,
  3944. &md_new_device.attr,
  3945. &md_safe_delay.attr,
  3946. &md_array_state.attr,
  3947. &md_reshape_position.attr,
  3948. &md_array_size.attr,
  3949. &max_corr_read_errors.attr,
  3950. NULL,
  3951. };
  3952. static struct attribute *md_redundancy_attrs[] = {
  3953. &md_scan_mode.attr,
  3954. &md_mismatches.attr,
  3955. &md_sync_min.attr,
  3956. &md_sync_max.attr,
  3957. &md_sync_speed.attr,
  3958. &md_sync_force_parallel.attr,
  3959. &md_sync_completed.attr,
  3960. &md_min_sync.attr,
  3961. &md_max_sync.attr,
  3962. &md_suspend_lo.attr,
  3963. &md_suspend_hi.attr,
  3964. &md_bitmap.attr,
  3965. &md_degraded.attr,
  3966. NULL,
  3967. };
  3968. static struct attribute_group md_redundancy_group = {
  3969. .name = NULL,
  3970. .attrs = md_redundancy_attrs,
  3971. };
  3972. static ssize_t
  3973. md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  3974. {
  3975. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  3976. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  3977. ssize_t rv;
  3978. if (!entry->show)
  3979. return -EIO;
  3980. rv = mddev_lock(mddev);
  3981. if (!rv) {
  3982. rv = entry->show(mddev, page);
  3983. mddev_unlock(mddev);
  3984. }
  3985. return rv;
  3986. }
  3987. static ssize_t
  3988. md_attr_store(struct kobject *kobj, struct attribute *attr,
  3989. const char *page, size_t length)
  3990. {
  3991. struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
  3992. mddev_t *mddev = container_of(kobj, struct mddev_s, kobj);
  3993. ssize_t rv;
  3994. if (!entry->store)
  3995. return -EIO;
  3996. if (!capable(CAP_SYS_ADMIN))
  3997. return -EACCES;
  3998. rv = mddev_lock(mddev);
  3999. if (mddev->hold_active == UNTIL_IOCTL)
  4000. mddev->hold_active = 0;
  4001. if (!rv) {
  4002. rv = entry->store(mddev, page, length);
  4003. mddev_unlock(mddev);
  4004. }
  4005. return rv;
  4006. }
  4007. static void md_free(struct kobject *ko)
  4008. {
  4009. mddev_t *mddev = container_of(ko, mddev_t, kobj);
  4010. if (mddev->sysfs_state)
  4011. sysfs_put(mddev->sysfs_state);
  4012. if (mddev->gendisk) {
  4013. del_gendisk(mddev->gendisk);
  4014. put_disk(mddev->gendisk);
  4015. }
  4016. if (mddev->queue)
  4017. blk_cleanup_queue(mddev->queue);
  4018. kfree(mddev);
  4019. }
  4020. static const struct sysfs_ops md_sysfs_ops = {
  4021. .show = md_attr_show,
  4022. .store = md_attr_store,
  4023. };
  4024. static struct kobj_type md_ktype = {
  4025. .release = md_free,
  4026. .sysfs_ops = &md_sysfs_ops,
  4027. .default_attrs = md_default_attrs,
  4028. };
  4029. int mdp_major = 0;
  4030. static void mddev_delayed_delete(struct work_struct *ws)
  4031. {
  4032. mddev_t *mddev = container_of(ws, mddev_t, del_work);
  4033. sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
  4034. kobject_del(&mddev->kobj);
  4035. kobject_put(&mddev->kobj);
  4036. }
  4037. static int md_alloc(dev_t dev, char *name)
  4038. {
  4039. static DEFINE_MUTEX(disks_mutex);
  4040. mddev_t *mddev = mddev_find(dev);
  4041. struct gendisk *disk;
  4042. int partitioned;
  4043. int shift;
  4044. int unit;
  4045. int error;
  4046. if (!mddev)
  4047. return -ENODEV;
  4048. partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
  4049. shift = partitioned ? MdpMinorShift : 0;
  4050. unit = MINOR(mddev->unit) >> shift;
  4051. /* wait for any previous instance of this device to be
  4052. * completely removed (mddev_delayed_delete).
  4053. */
  4054. flush_workqueue(md_misc_wq);
  4055. mutex_lock(&disks_mutex);
  4056. error = -EEXIST;
  4057. if (mddev->gendisk)
  4058. goto abort;
  4059. if (name) {
  4060. /* Need to ensure that 'name' is not a duplicate.
  4061. */
  4062. mddev_t *mddev2;
  4063. spin_lock(&all_mddevs_lock);
  4064. list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
  4065. if (mddev2->gendisk &&
  4066. strcmp(mddev2->gendisk->disk_name, name) == 0) {
  4067. spin_unlock(&all_mddevs_lock);
  4068. goto abort;
  4069. }
  4070. spin_unlock(&all_mddevs_lock);
  4071. }
  4072. error = -ENOMEM;
  4073. mddev->queue = blk_alloc_queue(GFP_KERNEL);
  4074. if (!mddev->queue)
  4075. goto abort;
  4076. mddev->queue->queuedata = mddev;
  4077. blk_queue_make_request(mddev->queue, md_make_request);
  4078. disk = alloc_disk(1 << shift);
  4079. if (!disk) {
  4080. blk_cleanup_queue(mddev->queue);
  4081. mddev->queue = NULL;
  4082. goto abort;
  4083. }
  4084. disk->major = MAJOR(mddev->unit);
  4085. disk->first_minor = unit << shift;
  4086. if (name)
  4087. strcpy(disk->disk_name, name);
  4088. else if (partitioned)
  4089. sprintf(disk->disk_name, "md_d%d", unit);
  4090. else
  4091. sprintf(disk->disk_name, "md%d", unit);
  4092. disk->fops = &md_fops;
  4093. disk->private_data = mddev;
  4094. disk->queue = mddev->queue;
  4095. blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
  4096. /* Allow extended partitions. This makes the
  4097. * 'mdp' device redundant, but we can't really
  4098. * remove it now.
  4099. */
  4100. disk->flags |= GENHD_FL_EXT_DEVT;
  4101. mddev->gendisk = disk;
  4102. /* As soon as we call add_disk(), another thread could get
  4103. * through to md_open, so make sure it doesn't get too far
  4104. */
  4105. mutex_lock(&mddev->open_mutex);
  4106. add_disk(disk);
  4107. error = kobject_init_and_add(&mddev->kobj, &md_ktype,
  4108. &disk_to_dev(disk)->kobj, "%s", "md");
  4109. if (error) {
  4110. /* This isn't possible, but as kobject_init_and_add is marked
  4111. * __must_check, we must do something with the result
  4112. */
  4113. printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
  4114. disk->disk_name);
  4115. error = 0;
  4116. }
  4117. if (mddev->kobj.sd &&
  4118. sysfs_create_group(&mddev->kobj, &md_bitmap_group))
  4119. printk(KERN_DEBUG "pointless warning\n");
  4120. mutex_unlock(&mddev->open_mutex);
  4121. abort:
  4122. mutex_unlock(&disks_mutex);
  4123. if (!error && mddev->kobj.sd) {
  4124. kobject_uevent(&mddev->kobj, KOBJ_ADD);
  4125. mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
  4126. }
  4127. mddev_put(mddev);
  4128. return error;
  4129. }
  4130. static struct kobject *md_probe(dev_t dev, int *part, void *data)
  4131. {
  4132. md_alloc(dev, NULL);
  4133. return NULL;
  4134. }
  4135. static int add_named_array(const char *val, struct kernel_param *kp)
  4136. {
  4137. /* val must be "md_*" where * is not all digits.
  4138. * We allocate an array with a large free minor number, and
  4139. * set the name to val. val must not already be an active name.
  4140. */
  4141. int len = strlen(val);
  4142. char buf[DISK_NAME_LEN];
  4143. while (len && val[len-1] == '\n')
  4144. len--;
  4145. if (len >= DISK_NAME_LEN)
  4146. return -E2BIG;
  4147. strlcpy(buf, val, len+1);
  4148. if (strncmp(buf, "md_", 3) != 0)
  4149. return -EINVAL;
  4150. return md_alloc(0, buf);
  4151. }
  4152. static void md_safemode_timeout(unsigned long data)
  4153. {
  4154. mddev_t *mddev = (mddev_t *) data;
  4155. if (!atomic_read(&mddev->writes_pending)) {
  4156. mddev->safemode = 1;
  4157. if (mddev->external)
  4158. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4159. }
  4160. md_wakeup_thread(mddev->thread);
  4161. }
  4162. static int start_dirty_degraded;
  4163. int md_run(mddev_t *mddev)
  4164. {
  4165. int err;
  4166. mdk_rdev_t *rdev;
  4167. struct mdk_personality *pers;
  4168. if (list_empty(&mddev->disks))
  4169. /* cannot run an array with no devices.. */
  4170. return -EINVAL;
  4171. if (mddev->pers)
  4172. return -EBUSY;
  4173. /* Cannot run until previous stop completes properly */
  4174. if (mddev->sysfs_active)
  4175. return -EBUSY;
  4176. /*
  4177. * Analyze all RAID superblock(s)
  4178. */
  4179. if (!mddev->raid_disks) {
  4180. if (!mddev->persistent)
  4181. return -EINVAL;
  4182. analyze_sbs(mddev);
  4183. }
  4184. if (mddev->level != LEVEL_NONE)
  4185. request_module("md-level-%d", mddev->level);
  4186. else if (mddev->clevel[0])
  4187. request_module("md-%s", mddev->clevel);
  4188. /*
  4189. * Drop all container device buffers, from now on
  4190. * the only valid external interface is through the md
  4191. * device.
  4192. */
  4193. list_for_each_entry(rdev, &mddev->disks, same_set) {
  4194. if (test_bit(Faulty, &rdev->flags))
  4195. continue;
  4196. sync_blockdev(rdev->bdev);
  4197. invalidate_bdev(rdev->bdev);
  4198. /* perform some consistency tests on the device.
  4199. * We don't want the data to overlap the metadata,
  4200. * Internal Bitmap issues have been handled elsewhere.
  4201. */
  4202. if (rdev->meta_bdev) {
  4203. /* Nothing to check */;
  4204. } else if (rdev->data_offset < rdev->sb_start) {
  4205. if (mddev->dev_sectors &&
  4206. rdev->data_offset + mddev->dev_sectors
  4207. > rdev->sb_start) {
  4208. printk("md: %s: data overlaps metadata\n",
  4209. mdname(mddev));
  4210. return -EINVAL;
  4211. }
  4212. } else {
  4213. if (rdev->sb_start + rdev->sb_size/512
  4214. > rdev->data_offset) {
  4215. printk("md: %s: metadata overlaps data\n",
  4216. mdname(mddev));
  4217. return -EINVAL;
  4218. }
  4219. }
  4220. sysfs_notify_dirent_safe(rdev->sysfs_state);
  4221. }
  4222. if (mddev->bio_set == NULL)
  4223. mddev->bio_set = bioset_create(BIO_POOL_SIZE,
  4224. sizeof(mddev_t *));
  4225. spin_lock(&pers_lock);
  4226. pers = find_pers(mddev->level, mddev->clevel);
  4227. if (!pers || !try_module_get(pers->owner)) {
  4228. spin_unlock(&pers_lock);
  4229. if (mddev->level != LEVEL_NONE)
  4230. printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
  4231. mddev->level);
  4232. else
  4233. printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
  4234. mddev->clevel);
  4235. return -EINVAL;
  4236. }
  4237. mddev->pers = pers;
  4238. spin_unlock(&pers_lock);
  4239. if (mddev->level != pers->level) {
  4240. mddev->level = pers->level;
  4241. mddev->new_level = pers->level;
  4242. }
  4243. strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
  4244. if (mddev->reshape_position != MaxSector &&
  4245. pers->start_reshape == NULL) {
  4246. /* This personality cannot handle reshaping... */
  4247. mddev->pers = NULL;
  4248. module_put(pers->owner);
  4249. return -EINVAL;
  4250. }
  4251. if (pers->sync_request) {
  4252. /* Warn if this is a potentially silly
  4253. * configuration.
  4254. */
  4255. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  4256. mdk_rdev_t *rdev2;
  4257. int warned = 0;
  4258. list_for_each_entry(rdev, &mddev->disks, same_set)
  4259. list_for_each_entry(rdev2, &mddev->disks, same_set) {
  4260. if (rdev < rdev2 &&
  4261. rdev->bdev->bd_contains ==
  4262. rdev2->bdev->bd_contains) {
  4263. printk(KERN_WARNING
  4264. "%s: WARNING: %s appears to be"
  4265. " on the same physical disk as"
  4266. " %s.\n",
  4267. mdname(mddev),
  4268. bdevname(rdev->bdev,b),
  4269. bdevname(rdev2->bdev,b2));
  4270. warned = 1;
  4271. }
  4272. }
  4273. if (warned)
  4274. printk(KERN_WARNING
  4275. "True protection against single-disk"
  4276. " failure might be compromised.\n");
  4277. }
  4278. mddev->recovery = 0;
  4279. /* may be over-ridden by personality */
  4280. mddev->resync_max_sectors = mddev->dev_sectors;
  4281. mddev->ok_start_degraded = start_dirty_degraded;
  4282. if (start_readonly && mddev->ro == 0)
  4283. mddev->ro = 2; /* read-only, but switch on first write */
  4284. err = mddev->pers->run(mddev);
  4285. if (err)
  4286. printk(KERN_ERR "md: pers->run() failed ...\n");
  4287. else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
  4288. WARN_ONCE(!mddev->external_size, "%s: default size too small,"
  4289. " but 'external_size' not in effect?\n", __func__);
  4290. printk(KERN_ERR
  4291. "md: invalid array_size %llu > default size %llu\n",
  4292. (unsigned long long)mddev->array_sectors / 2,
  4293. (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
  4294. err = -EINVAL;
  4295. mddev->pers->stop(mddev);
  4296. }
  4297. if (err == 0 && mddev->pers->sync_request) {
  4298. err = bitmap_create(mddev);
  4299. if (err) {
  4300. printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
  4301. mdname(mddev), err);
  4302. mddev->pers->stop(mddev);
  4303. }
  4304. }
  4305. if (err) {
  4306. module_put(mddev->pers->owner);
  4307. mddev->pers = NULL;
  4308. bitmap_destroy(mddev);
  4309. return err;
  4310. }
  4311. if (mddev->pers->sync_request) {
  4312. if (mddev->kobj.sd &&
  4313. sysfs_create_group(&mddev->kobj, &md_redundancy_group))
  4314. printk(KERN_WARNING
  4315. "md: cannot register extra attributes for %s\n",
  4316. mdname(mddev));
  4317. mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
  4318. } else if (mddev->ro == 2) /* auto-readonly not meaningful */
  4319. mddev->ro = 0;
  4320. atomic_set(&mddev->writes_pending,0);
  4321. atomic_set(&mddev->max_corr_read_errors,
  4322. MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
  4323. mddev->safemode = 0;
  4324. mddev->safemode_timer.function = md_safemode_timeout;
  4325. mddev->safemode_timer.data = (unsigned long) mddev;
  4326. mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
  4327. mddev->in_sync = 1;
  4328. smp_wmb();
  4329. mddev->ready = 1;
  4330. list_for_each_entry(rdev, &mddev->disks, same_set)
  4331. if (rdev->raid_disk >= 0)
  4332. if (sysfs_link_rdev(mddev, rdev))
  4333. /* failure here is OK */;
  4334. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4335. if (mddev->flags)
  4336. md_update_sb(mddev, 0);
  4337. md_new_event(mddev);
  4338. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4339. sysfs_notify_dirent_safe(mddev->sysfs_action);
  4340. sysfs_notify(&mddev->kobj, NULL, "degraded");
  4341. return 0;
  4342. }
  4343. EXPORT_SYMBOL_GPL(md_run);
  4344. static int do_md_run(mddev_t *mddev)
  4345. {
  4346. int err;
  4347. err = md_run(mddev);
  4348. if (err)
  4349. goto out;
  4350. err = bitmap_load(mddev);
  4351. if (err) {
  4352. bitmap_destroy(mddev);
  4353. goto out;
  4354. }
  4355. md_wakeup_thread(mddev->thread);
  4356. md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
  4357. set_capacity(mddev->gendisk, mddev->array_sectors);
  4358. revalidate_disk(mddev->gendisk);
  4359. mddev->changed = 1;
  4360. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4361. out:
  4362. return err;
  4363. }
  4364. static int restart_array(mddev_t *mddev)
  4365. {
  4366. struct gendisk *disk = mddev->gendisk;
  4367. /* Complain if it has no devices */
  4368. if (list_empty(&mddev->disks))
  4369. return -ENXIO;
  4370. if (!mddev->pers)
  4371. return -EINVAL;
  4372. if (!mddev->ro)
  4373. return -EBUSY;
  4374. mddev->safemode = 0;
  4375. mddev->ro = 0;
  4376. set_disk_ro(disk, 0);
  4377. printk(KERN_INFO "md: %s switched to read-write mode.\n",
  4378. mdname(mddev));
  4379. /* Kick recovery or resync if necessary */
  4380. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4381. md_wakeup_thread(mddev->thread);
  4382. md_wakeup_thread(mddev->sync_thread);
  4383. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4384. return 0;
  4385. }
  4386. /* similar to deny_write_access, but accounts for our holding a reference
  4387. * to the file ourselves */
  4388. static int deny_bitmap_write_access(struct file * file)
  4389. {
  4390. struct inode *inode = file->f_mapping->host;
  4391. spin_lock(&inode->i_lock);
  4392. if (atomic_read(&inode->i_writecount) > 1) {
  4393. spin_unlock(&inode->i_lock);
  4394. return -ETXTBSY;
  4395. }
  4396. atomic_set(&inode->i_writecount, -1);
  4397. spin_unlock(&inode->i_lock);
  4398. return 0;
  4399. }
  4400. void restore_bitmap_write_access(struct file *file)
  4401. {
  4402. struct inode *inode = file->f_mapping->host;
  4403. spin_lock(&inode->i_lock);
  4404. atomic_set(&inode->i_writecount, 1);
  4405. spin_unlock(&inode->i_lock);
  4406. }
  4407. static void md_clean(mddev_t *mddev)
  4408. {
  4409. mddev->array_sectors = 0;
  4410. mddev->external_size = 0;
  4411. mddev->dev_sectors = 0;
  4412. mddev->raid_disks = 0;
  4413. mddev->recovery_cp = 0;
  4414. mddev->resync_min = 0;
  4415. mddev->resync_max = MaxSector;
  4416. mddev->reshape_position = MaxSector;
  4417. mddev->external = 0;
  4418. mddev->persistent = 0;
  4419. mddev->level = LEVEL_NONE;
  4420. mddev->clevel[0] = 0;
  4421. mddev->flags = 0;
  4422. mddev->ro = 0;
  4423. mddev->metadata_type[0] = 0;
  4424. mddev->chunk_sectors = 0;
  4425. mddev->ctime = mddev->utime = 0;
  4426. mddev->layout = 0;
  4427. mddev->max_disks = 0;
  4428. mddev->events = 0;
  4429. mddev->can_decrease_events = 0;
  4430. mddev->delta_disks = 0;
  4431. mddev->new_level = LEVEL_NONE;
  4432. mddev->new_layout = 0;
  4433. mddev->new_chunk_sectors = 0;
  4434. mddev->curr_resync = 0;
  4435. mddev->resync_mismatches = 0;
  4436. mddev->suspend_lo = mddev->suspend_hi = 0;
  4437. mddev->sync_speed_min = mddev->sync_speed_max = 0;
  4438. mddev->recovery = 0;
  4439. mddev->in_sync = 0;
  4440. mddev->changed = 0;
  4441. mddev->degraded = 0;
  4442. mddev->safemode = 0;
  4443. mddev->bitmap_info.offset = 0;
  4444. mddev->bitmap_info.default_offset = 0;
  4445. mddev->bitmap_info.chunksize = 0;
  4446. mddev->bitmap_info.daemon_sleep = 0;
  4447. mddev->bitmap_info.max_write_behind = 0;
  4448. }
  4449. static void __md_stop_writes(mddev_t *mddev)
  4450. {
  4451. if (mddev->sync_thread) {
  4452. set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4453. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  4454. reap_sync_thread(mddev);
  4455. }
  4456. del_timer_sync(&mddev->safemode_timer);
  4457. bitmap_flush(mddev);
  4458. md_super_wait(mddev);
  4459. if (!mddev->in_sync || mddev->flags) {
  4460. /* mark array as shutdown cleanly */
  4461. mddev->in_sync = 1;
  4462. md_update_sb(mddev, 1);
  4463. }
  4464. }
  4465. void md_stop_writes(mddev_t *mddev)
  4466. {
  4467. mddev_lock(mddev);
  4468. __md_stop_writes(mddev);
  4469. mddev_unlock(mddev);
  4470. }
  4471. EXPORT_SYMBOL_GPL(md_stop_writes);
  4472. void md_stop(mddev_t *mddev)
  4473. {
  4474. mddev->ready = 0;
  4475. mddev->pers->stop(mddev);
  4476. if (mddev->pers->sync_request && mddev->to_remove == NULL)
  4477. mddev->to_remove = &md_redundancy_group;
  4478. module_put(mddev->pers->owner);
  4479. mddev->pers = NULL;
  4480. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4481. }
  4482. EXPORT_SYMBOL_GPL(md_stop);
  4483. static int md_set_readonly(mddev_t *mddev, int is_open)
  4484. {
  4485. int err = 0;
  4486. mutex_lock(&mddev->open_mutex);
  4487. if (atomic_read(&mddev->openers) > is_open) {
  4488. printk("md: %s still in use.\n",mdname(mddev));
  4489. err = -EBUSY;
  4490. goto out;
  4491. }
  4492. if (mddev->pers) {
  4493. __md_stop_writes(mddev);
  4494. err = -ENXIO;
  4495. if (mddev->ro==1)
  4496. goto out;
  4497. mddev->ro = 1;
  4498. set_disk_ro(mddev->gendisk, 1);
  4499. clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
  4500. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4501. err = 0;
  4502. }
  4503. out:
  4504. mutex_unlock(&mddev->open_mutex);
  4505. return err;
  4506. }
  4507. /* mode:
  4508. * 0 - completely stop and dis-assemble array
  4509. * 2 - stop but do not disassemble array
  4510. */
  4511. static int do_md_stop(mddev_t * mddev, int mode, int is_open)
  4512. {
  4513. struct gendisk *disk = mddev->gendisk;
  4514. mdk_rdev_t *rdev;
  4515. mutex_lock(&mddev->open_mutex);
  4516. if (atomic_read(&mddev->openers) > is_open ||
  4517. mddev->sysfs_active) {
  4518. printk("md: %s still in use.\n",mdname(mddev));
  4519. mutex_unlock(&mddev->open_mutex);
  4520. return -EBUSY;
  4521. }
  4522. if (mddev->pers) {
  4523. if (mddev->ro)
  4524. set_disk_ro(disk, 0);
  4525. __md_stop_writes(mddev);
  4526. md_stop(mddev);
  4527. mddev->queue->merge_bvec_fn = NULL;
  4528. mddev->queue->backing_dev_info.congested_fn = NULL;
  4529. /* tell userspace to handle 'inactive' */
  4530. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4531. list_for_each_entry(rdev, &mddev->disks, same_set)
  4532. if (rdev->raid_disk >= 0)
  4533. sysfs_unlink_rdev(mddev, rdev);
  4534. set_capacity(disk, 0);
  4535. mutex_unlock(&mddev->open_mutex);
  4536. mddev->changed = 1;
  4537. revalidate_disk(disk);
  4538. if (mddev->ro)
  4539. mddev->ro = 0;
  4540. } else
  4541. mutex_unlock(&mddev->open_mutex);
  4542. /*
  4543. * Free resources if final stop
  4544. */
  4545. if (mode == 0) {
  4546. printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
  4547. bitmap_destroy(mddev);
  4548. if (mddev->bitmap_info.file) {
  4549. restore_bitmap_write_access(mddev->bitmap_info.file);
  4550. fput(mddev->bitmap_info.file);
  4551. mddev->bitmap_info.file = NULL;
  4552. }
  4553. mddev->bitmap_info.offset = 0;
  4554. export_array(mddev);
  4555. md_clean(mddev);
  4556. kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
  4557. if (mddev->hold_active == UNTIL_STOP)
  4558. mddev->hold_active = 0;
  4559. }
  4560. blk_integrity_unregister(disk);
  4561. md_new_event(mddev);
  4562. sysfs_notify_dirent_safe(mddev->sysfs_state);
  4563. return 0;
  4564. }
  4565. #ifndef MODULE
  4566. static void autorun_array(mddev_t *mddev)
  4567. {
  4568. mdk_rdev_t *rdev;
  4569. int err;
  4570. if (list_empty(&mddev->disks))
  4571. return;
  4572. printk(KERN_INFO "md: running: ");
  4573. list_for_each_entry(rdev, &mddev->disks, same_set) {
  4574. char b[BDEVNAME_SIZE];
  4575. printk("<%s>", bdevname(rdev->bdev,b));
  4576. }
  4577. printk("\n");
  4578. err = do_md_run(mddev);
  4579. if (err) {
  4580. printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
  4581. do_md_stop(mddev, 0, 0);
  4582. }
  4583. }
  4584. /*
  4585. * lets try to run arrays based on all disks that have arrived
  4586. * until now. (those are in pending_raid_disks)
  4587. *
  4588. * the method: pick the first pending disk, collect all disks with
  4589. * the same UUID, remove all from the pending list and put them into
  4590. * the 'same_array' list. Then order this list based on superblock
  4591. * update time (freshest comes first), kick out 'old' disks and
  4592. * compare superblocks. If everything's fine then run it.
  4593. *
  4594. * If "unit" is allocated, then bump its reference count
  4595. */
  4596. static void autorun_devices(int part)
  4597. {
  4598. mdk_rdev_t *rdev0, *rdev, *tmp;
  4599. mddev_t *mddev;
  4600. char b[BDEVNAME_SIZE];
  4601. printk(KERN_INFO "md: autorun ...\n");
  4602. while (!list_empty(&pending_raid_disks)) {
  4603. int unit;
  4604. dev_t dev;
  4605. LIST_HEAD(candidates);
  4606. rdev0 = list_entry(pending_raid_disks.next,
  4607. mdk_rdev_t, same_set);
  4608. printk(KERN_INFO "md: considering %s ...\n",
  4609. bdevname(rdev0->bdev,b));
  4610. INIT_LIST_HEAD(&candidates);
  4611. rdev_for_each_list(rdev, tmp, &pending_raid_disks)
  4612. if (super_90_load(rdev, rdev0, 0) >= 0) {
  4613. printk(KERN_INFO "md: adding %s ...\n",
  4614. bdevname(rdev->bdev,b));
  4615. list_move(&rdev->same_set, &candidates);
  4616. }
  4617. /*
  4618. * now we have a set of devices, with all of them having
  4619. * mostly sane superblocks. It's time to allocate the
  4620. * mddev.
  4621. */
  4622. if (part) {
  4623. dev = MKDEV(mdp_major,
  4624. rdev0->preferred_minor << MdpMinorShift);
  4625. unit = MINOR(dev) >> MdpMinorShift;
  4626. } else {
  4627. dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
  4628. unit = MINOR(dev);
  4629. }
  4630. if (rdev0->preferred_minor != unit) {
  4631. printk(KERN_INFO "md: unit number in %s is bad: %d\n",
  4632. bdevname(rdev0->bdev, b), rdev0->preferred_minor);
  4633. break;
  4634. }
  4635. md_probe(dev, NULL, NULL);
  4636. mddev = mddev_find(dev);
  4637. if (!mddev || !mddev->gendisk) {
  4638. if (mddev)
  4639. mddev_put(mddev);
  4640. printk(KERN_ERR
  4641. "md: cannot allocate memory for md drive.\n");
  4642. break;
  4643. }
  4644. if (mddev_lock(mddev))
  4645. printk(KERN_WARNING "md: %s locked, cannot run\n",
  4646. mdname(mddev));
  4647. else if (mddev->raid_disks || mddev->major_version
  4648. || !list_empty(&mddev->disks)) {
  4649. printk(KERN_WARNING
  4650. "md: %s already running, cannot run %s\n",
  4651. mdname(mddev), bdevname(rdev0->bdev,b));
  4652. mddev_unlock(mddev);
  4653. } else {
  4654. printk(KERN_INFO "md: created %s\n", mdname(mddev));
  4655. mddev->persistent = 1;
  4656. rdev_for_each_list(rdev, tmp, &candidates) {
  4657. list_del_init(&rdev->same_set);
  4658. if (bind_rdev_to_array(rdev, mddev))
  4659. export_rdev(rdev);
  4660. }
  4661. autorun_array(mddev);
  4662. mddev_unlock(mddev);
  4663. }
  4664. /* on success, candidates will be empty, on error
  4665. * it won't...
  4666. */
  4667. rdev_for_each_list(rdev, tmp, &candidates) {
  4668. list_del_init(&rdev->same_set);
  4669. export_rdev(rdev);
  4670. }
  4671. mddev_put(mddev);
  4672. }
  4673. printk(KERN_INFO "md: ... autorun DONE.\n");
  4674. }
  4675. #endif /* !MODULE */
  4676. static int get_version(void __user * arg)
  4677. {
  4678. mdu_version_t ver;
  4679. ver.major = MD_MAJOR_VERSION;
  4680. ver.minor = MD_MINOR_VERSION;
  4681. ver.patchlevel = MD_PATCHLEVEL_VERSION;
  4682. if (copy_to_user(arg, &ver, sizeof(ver)))
  4683. return -EFAULT;
  4684. return 0;
  4685. }
  4686. static int get_array_info(mddev_t * mddev, void __user * arg)
  4687. {
  4688. mdu_array_info_t info;
  4689. int nr,working,insync,failed,spare;
  4690. mdk_rdev_t *rdev;
  4691. nr=working=insync=failed=spare=0;
  4692. list_for_each_entry(rdev, &mddev->disks, same_set) {
  4693. nr++;
  4694. if (test_bit(Faulty, &rdev->flags))
  4695. failed++;
  4696. else {
  4697. working++;
  4698. if (test_bit(In_sync, &rdev->flags))
  4699. insync++;
  4700. else
  4701. spare++;
  4702. }
  4703. }
  4704. info.major_version = mddev->major_version;
  4705. info.minor_version = mddev->minor_version;
  4706. info.patch_version = MD_PATCHLEVEL_VERSION;
  4707. info.ctime = mddev->ctime;
  4708. info.level = mddev->level;
  4709. info.size = mddev->dev_sectors / 2;
  4710. if (info.size != mddev->dev_sectors / 2) /* overflow */
  4711. info.size = -1;
  4712. info.nr_disks = nr;
  4713. info.raid_disks = mddev->raid_disks;
  4714. info.md_minor = mddev->md_minor;
  4715. info.not_persistent= !mddev->persistent;
  4716. info.utime = mddev->utime;
  4717. info.state = 0;
  4718. if (mddev->in_sync)
  4719. info.state = (1<<MD_SB_CLEAN);
  4720. if (mddev->bitmap && mddev->bitmap_info.offset)
  4721. info.state = (1<<MD_SB_BITMAP_PRESENT);
  4722. info.active_disks = insync;
  4723. info.working_disks = working;
  4724. info.failed_disks = failed;
  4725. info.spare_disks = spare;
  4726. info.layout = mddev->layout;
  4727. info.chunk_size = mddev->chunk_sectors << 9;
  4728. if (copy_to_user(arg, &info, sizeof(info)))
  4729. return -EFAULT;
  4730. return 0;
  4731. }
  4732. static int get_bitmap_file(mddev_t * mddev, void __user * arg)
  4733. {
  4734. mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
  4735. char *ptr, *buf = NULL;
  4736. int err = -ENOMEM;
  4737. if (md_allow_write(mddev))
  4738. file = kmalloc(sizeof(*file), GFP_NOIO);
  4739. else
  4740. file = kmalloc(sizeof(*file), GFP_KERNEL);
  4741. if (!file)
  4742. goto out;
  4743. /* bitmap disabled, zero the first byte and copy out */
  4744. if (!mddev->bitmap || !mddev->bitmap->file) {
  4745. file->pathname[0] = '\0';
  4746. goto copy_out;
  4747. }
  4748. buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
  4749. if (!buf)
  4750. goto out;
  4751. ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
  4752. if (IS_ERR(ptr))
  4753. goto out;
  4754. strcpy(file->pathname, ptr);
  4755. copy_out:
  4756. err = 0;
  4757. if (copy_to_user(arg, file, sizeof(*file)))
  4758. err = -EFAULT;
  4759. out:
  4760. kfree(buf);
  4761. kfree(file);
  4762. return err;
  4763. }
  4764. static int get_disk_info(mddev_t * mddev, void __user * arg)
  4765. {
  4766. mdu_disk_info_t info;
  4767. mdk_rdev_t *rdev;
  4768. if (copy_from_user(&info, arg, sizeof(info)))
  4769. return -EFAULT;
  4770. rdev = find_rdev_nr(mddev, info.number);
  4771. if (rdev) {
  4772. info.major = MAJOR(rdev->bdev->bd_dev);
  4773. info.minor = MINOR(rdev->bdev->bd_dev);
  4774. info.raid_disk = rdev->raid_disk;
  4775. info.state = 0;
  4776. if (test_bit(Faulty, &rdev->flags))
  4777. info.state |= (1<<MD_DISK_FAULTY);
  4778. else if (test_bit(In_sync, &rdev->flags)) {
  4779. info.state |= (1<<MD_DISK_ACTIVE);
  4780. info.state |= (1<<MD_DISK_SYNC);
  4781. }
  4782. if (test_bit(WriteMostly, &rdev->flags))
  4783. info.state |= (1<<MD_DISK_WRITEMOSTLY);
  4784. } else {
  4785. info.major = info.minor = 0;
  4786. info.raid_disk = -1;
  4787. info.state = (1<<MD_DISK_REMOVED);
  4788. }
  4789. if (copy_to_user(arg, &info, sizeof(info)))
  4790. return -EFAULT;
  4791. return 0;
  4792. }
  4793. static int add_new_disk(mddev_t * mddev, mdu_disk_info_t *info)
  4794. {
  4795. char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
  4796. mdk_rdev_t *rdev;
  4797. dev_t dev = MKDEV(info->major,info->minor);
  4798. if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
  4799. return -EOVERFLOW;
  4800. if (!mddev->raid_disks) {
  4801. int err;
  4802. /* expecting a device which has a superblock */
  4803. rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
  4804. if (IS_ERR(rdev)) {
  4805. printk(KERN_WARNING
  4806. "md: md_import_device returned %ld\n",
  4807. PTR_ERR(rdev));
  4808. return PTR_ERR(rdev);
  4809. }
  4810. if (!list_empty(&mddev->disks)) {
  4811. mdk_rdev_t *rdev0 = list_entry(mddev->disks.next,
  4812. mdk_rdev_t, same_set);
  4813. err = super_types[mddev->major_version]
  4814. .load_super(rdev, rdev0, mddev->minor_version);
  4815. if (err < 0) {
  4816. printk(KERN_WARNING
  4817. "md: %s has different UUID to %s\n",
  4818. bdevname(rdev->bdev,b),
  4819. bdevname(rdev0->bdev,b2));
  4820. export_rdev(rdev);
  4821. return -EINVAL;
  4822. }
  4823. }
  4824. err = bind_rdev_to_array(rdev, mddev);
  4825. if (err)
  4826. export_rdev(rdev);
  4827. return err;
  4828. }
  4829. /*
  4830. * add_new_disk can be used once the array is assembled
  4831. * to add "hot spares". They must already have a superblock
  4832. * written
  4833. */
  4834. if (mddev->pers) {
  4835. int err;
  4836. if (!mddev->pers->hot_add_disk) {
  4837. printk(KERN_WARNING
  4838. "%s: personality does not support diskops!\n",
  4839. mdname(mddev));
  4840. return -EINVAL;
  4841. }
  4842. if (mddev->persistent)
  4843. rdev = md_import_device(dev, mddev->major_version,
  4844. mddev->minor_version);
  4845. else
  4846. rdev = md_import_device(dev, -1, -1);
  4847. if (IS_ERR(rdev)) {
  4848. printk(KERN_WARNING
  4849. "md: md_import_device returned %ld\n",
  4850. PTR_ERR(rdev));
  4851. return PTR_ERR(rdev);
  4852. }
  4853. /* set saved_raid_disk if appropriate */
  4854. if (!mddev->persistent) {
  4855. if (info->state & (1<<MD_DISK_SYNC) &&
  4856. info->raid_disk < mddev->raid_disks) {
  4857. rdev->raid_disk = info->raid_disk;
  4858. set_bit(In_sync, &rdev->flags);
  4859. } else
  4860. rdev->raid_disk = -1;
  4861. } else
  4862. super_types[mddev->major_version].
  4863. validate_super(mddev, rdev);
  4864. if ((info->state & (1<<MD_DISK_SYNC)) &&
  4865. (!test_bit(In_sync, &rdev->flags) ||
  4866. rdev->raid_disk != info->raid_disk)) {
  4867. /* This was a hot-add request, but events doesn't
  4868. * match, so reject it.
  4869. */
  4870. export_rdev(rdev);
  4871. return -EINVAL;
  4872. }
  4873. if (test_bit(In_sync, &rdev->flags))
  4874. rdev->saved_raid_disk = rdev->raid_disk;
  4875. else
  4876. rdev->saved_raid_disk = -1;
  4877. clear_bit(In_sync, &rdev->flags); /* just to be sure */
  4878. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  4879. set_bit(WriteMostly, &rdev->flags);
  4880. else
  4881. clear_bit(WriteMostly, &rdev->flags);
  4882. rdev->raid_disk = -1;
  4883. err = bind_rdev_to_array(rdev, mddev);
  4884. if (!err && !mddev->pers->hot_remove_disk) {
  4885. /* If there is hot_add_disk but no hot_remove_disk
  4886. * then added disks for geometry changes,
  4887. * and should be added immediately.
  4888. */
  4889. super_types[mddev->major_version].
  4890. validate_super(mddev, rdev);
  4891. err = mddev->pers->hot_add_disk(mddev, rdev);
  4892. if (err)
  4893. unbind_rdev_from_array(rdev);
  4894. }
  4895. if (err)
  4896. export_rdev(rdev);
  4897. else
  4898. sysfs_notify_dirent_safe(rdev->sysfs_state);
  4899. md_update_sb(mddev, 1);
  4900. if (mddev->degraded)
  4901. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  4902. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  4903. if (!err)
  4904. md_new_event(mddev);
  4905. md_wakeup_thread(mddev->thread);
  4906. return err;
  4907. }
  4908. /* otherwise, add_new_disk is only allowed
  4909. * for major_version==0 superblocks
  4910. */
  4911. if (mddev->major_version != 0) {
  4912. printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
  4913. mdname(mddev));
  4914. return -EINVAL;
  4915. }
  4916. if (!(info->state & (1<<MD_DISK_FAULTY))) {
  4917. int err;
  4918. rdev = md_import_device(dev, -1, 0);
  4919. if (IS_ERR(rdev)) {
  4920. printk(KERN_WARNING
  4921. "md: error, md_import_device() returned %ld\n",
  4922. PTR_ERR(rdev));
  4923. return PTR_ERR(rdev);
  4924. }
  4925. rdev->desc_nr = info->number;
  4926. if (info->raid_disk < mddev->raid_disks)
  4927. rdev->raid_disk = info->raid_disk;
  4928. else
  4929. rdev->raid_disk = -1;
  4930. if (rdev->raid_disk < mddev->raid_disks)
  4931. if (info->state & (1<<MD_DISK_SYNC))
  4932. set_bit(In_sync, &rdev->flags);
  4933. if (info->state & (1<<MD_DISK_WRITEMOSTLY))
  4934. set_bit(WriteMostly, &rdev->flags);
  4935. if (!mddev->persistent) {
  4936. printk(KERN_INFO "md: nonpersistent superblock ...\n");
  4937. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  4938. } else
  4939. rdev->sb_start = calc_dev_sboffset(rdev);
  4940. rdev->sectors = rdev->sb_start;
  4941. err = bind_rdev_to_array(rdev, mddev);
  4942. if (err) {
  4943. export_rdev(rdev);
  4944. return err;
  4945. }
  4946. }
  4947. return 0;
  4948. }
  4949. static int hot_remove_disk(mddev_t * mddev, dev_t dev)
  4950. {
  4951. char b[BDEVNAME_SIZE];
  4952. mdk_rdev_t *rdev;
  4953. rdev = find_rdev(mddev, dev);
  4954. if (!rdev)
  4955. return -ENXIO;
  4956. if (rdev->raid_disk >= 0)
  4957. goto busy;
  4958. kick_rdev_from_array(rdev);
  4959. md_update_sb(mddev, 1);
  4960. md_new_event(mddev);
  4961. return 0;
  4962. busy:
  4963. printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
  4964. bdevname(rdev->bdev,b), mdname(mddev));
  4965. return -EBUSY;
  4966. }
  4967. static int hot_add_disk(mddev_t * mddev, dev_t dev)
  4968. {
  4969. char b[BDEVNAME_SIZE];
  4970. int err;
  4971. mdk_rdev_t *rdev;
  4972. if (!mddev->pers)
  4973. return -ENODEV;
  4974. if (mddev->major_version != 0) {
  4975. printk(KERN_WARNING "%s: HOT_ADD may only be used with"
  4976. " version-0 superblocks.\n",
  4977. mdname(mddev));
  4978. return -EINVAL;
  4979. }
  4980. if (!mddev->pers->hot_add_disk) {
  4981. printk(KERN_WARNING
  4982. "%s: personality does not support diskops!\n",
  4983. mdname(mddev));
  4984. return -EINVAL;
  4985. }
  4986. rdev = md_import_device(dev, -1, 0);
  4987. if (IS_ERR(rdev)) {
  4988. printk(KERN_WARNING
  4989. "md: error, md_import_device() returned %ld\n",
  4990. PTR_ERR(rdev));
  4991. return -EINVAL;
  4992. }
  4993. if (mddev->persistent)
  4994. rdev->sb_start = calc_dev_sboffset(rdev);
  4995. else
  4996. rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
  4997. rdev->sectors = rdev->sb_start;
  4998. if (test_bit(Faulty, &rdev->flags)) {
  4999. printk(KERN_WARNING
  5000. "md: can not hot-add faulty %s disk to %s!\n",
  5001. bdevname(rdev->bdev,b), mdname(mddev));
  5002. err = -EINVAL;
  5003. goto abort_export;
  5004. }
  5005. clear_bit(In_sync, &rdev->flags);
  5006. rdev->desc_nr = -1;
  5007. rdev->saved_raid_disk = -1;
  5008. err = bind_rdev_to_array(rdev, mddev);
  5009. if (err)
  5010. goto abort_export;
  5011. /*
  5012. * The rest should better be atomic, we can have disk failures
  5013. * noticed in interrupt contexts ...
  5014. */
  5015. rdev->raid_disk = -1;
  5016. md_update_sb(mddev, 1);
  5017. /*
  5018. * Kick recovery, maybe this spare has to be added to the
  5019. * array immediately.
  5020. */
  5021. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5022. md_wakeup_thread(mddev->thread);
  5023. md_new_event(mddev);
  5024. return 0;
  5025. abort_export:
  5026. export_rdev(rdev);
  5027. return err;
  5028. }
  5029. static int set_bitmap_file(mddev_t *mddev, int fd)
  5030. {
  5031. int err;
  5032. if (mddev->pers) {
  5033. if (!mddev->pers->quiesce)
  5034. return -EBUSY;
  5035. if (mddev->recovery || mddev->sync_thread)
  5036. return -EBUSY;
  5037. /* we should be able to change the bitmap.. */
  5038. }
  5039. if (fd >= 0) {
  5040. if (mddev->bitmap)
  5041. return -EEXIST; /* cannot add when bitmap is present */
  5042. mddev->bitmap_info.file = fget(fd);
  5043. if (mddev->bitmap_info.file == NULL) {
  5044. printk(KERN_ERR "%s: error: failed to get bitmap file\n",
  5045. mdname(mddev));
  5046. return -EBADF;
  5047. }
  5048. err = deny_bitmap_write_access(mddev->bitmap_info.file);
  5049. if (err) {
  5050. printk(KERN_ERR "%s: error: bitmap file is already in use\n",
  5051. mdname(mddev));
  5052. fput(mddev->bitmap_info.file);
  5053. mddev->bitmap_info.file = NULL;
  5054. return err;
  5055. }
  5056. mddev->bitmap_info.offset = 0; /* file overrides offset */
  5057. } else if (mddev->bitmap == NULL)
  5058. return -ENOENT; /* cannot remove what isn't there */
  5059. err = 0;
  5060. if (mddev->pers) {
  5061. mddev->pers->quiesce(mddev, 1);
  5062. if (fd >= 0) {
  5063. err = bitmap_create(mddev);
  5064. if (!err)
  5065. err = bitmap_load(mddev);
  5066. }
  5067. if (fd < 0 || err) {
  5068. bitmap_destroy(mddev);
  5069. fd = -1; /* make sure to put the file */
  5070. }
  5071. mddev->pers->quiesce(mddev, 0);
  5072. }
  5073. if (fd < 0) {
  5074. if (mddev->bitmap_info.file) {
  5075. restore_bitmap_write_access(mddev->bitmap_info.file);
  5076. fput(mddev->bitmap_info.file);
  5077. }
  5078. mddev->bitmap_info.file = NULL;
  5079. }
  5080. return err;
  5081. }
  5082. /*
  5083. * set_array_info is used two different ways
  5084. * The original usage is when creating a new array.
  5085. * In this usage, raid_disks is > 0 and it together with
  5086. * level, size, not_persistent,layout,chunksize determine the
  5087. * shape of the array.
  5088. * This will always create an array with a type-0.90.0 superblock.
  5089. * The newer usage is when assembling an array.
  5090. * In this case raid_disks will be 0, and the major_version field is
  5091. * use to determine which style super-blocks are to be found on the devices.
  5092. * The minor and patch _version numbers are also kept incase the
  5093. * super_block handler wishes to interpret them.
  5094. */
  5095. static int set_array_info(mddev_t * mddev, mdu_array_info_t *info)
  5096. {
  5097. if (info->raid_disks == 0) {
  5098. /* just setting version number for superblock loading */
  5099. if (info->major_version < 0 ||
  5100. info->major_version >= ARRAY_SIZE(super_types) ||
  5101. super_types[info->major_version].name == NULL) {
  5102. /* maybe try to auto-load a module? */
  5103. printk(KERN_INFO
  5104. "md: superblock version %d not known\n",
  5105. info->major_version);
  5106. return -EINVAL;
  5107. }
  5108. mddev->major_version = info->major_version;
  5109. mddev->minor_version = info->minor_version;
  5110. mddev->patch_version = info->patch_version;
  5111. mddev->persistent = !info->not_persistent;
  5112. /* ensure mddev_put doesn't delete this now that there
  5113. * is some minimal configuration.
  5114. */
  5115. mddev->ctime = get_seconds();
  5116. return 0;
  5117. }
  5118. mddev->major_version = MD_MAJOR_VERSION;
  5119. mddev->minor_version = MD_MINOR_VERSION;
  5120. mddev->patch_version = MD_PATCHLEVEL_VERSION;
  5121. mddev->ctime = get_seconds();
  5122. mddev->level = info->level;
  5123. mddev->clevel[0] = 0;
  5124. mddev->dev_sectors = 2 * (sector_t)info->size;
  5125. mddev->raid_disks = info->raid_disks;
  5126. /* don't set md_minor, it is determined by which /dev/md* was
  5127. * openned
  5128. */
  5129. if (info->state & (1<<MD_SB_CLEAN))
  5130. mddev->recovery_cp = MaxSector;
  5131. else
  5132. mddev->recovery_cp = 0;
  5133. mddev->persistent = ! info->not_persistent;
  5134. mddev->external = 0;
  5135. mddev->layout = info->layout;
  5136. mddev->chunk_sectors = info->chunk_size >> 9;
  5137. mddev->max_disks = MD_SB_DISKS;
  5138. if (mddev->persistent)
  5139. mddev->flags = 0;
  5140. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  5141. mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
  5142. mddev->bitmap_info.offset = 0;
  5143. mddev->reshape_position = MaxSector;
  5144. /*
  5145. * Generate a 128 bit UUID
  5146. */
  5147. get_random_bytes(mddev->uuid, 16);
  5148. mddev->new_level = mddev->level;
  5149. mddev->new_chunk_sectors = mddev->chunk_sectors;
  5150. mddev->new_layout = mddev->layout;
  5151. mddev->delta_disks = 0;
  5152. return 0;
  5153. }
  5154. void md_set_array_sectors(mddev_t *mddev, sector_t array_sectors)
  5155. {
  5156. WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
  5157. if (mddev->external_size)
  5158. return;
  5159. mddev->array_sectors = array_sectors;
  5160. }
  5161. EXPORT_SYMBOL(md_set_array_sectors);
  5162. static int update_size(mddev_t *mddev, sector_t num_sectors)
  5163. {
  5164. mdk_rdev_t *rdev;
  5165. int rv;
  5166. int fit = (num_sectors == 0);
  5167. if (mddev->pers->resize == NULL)
  5168. return -EINVAL;
  5169. /* The "num_sectors" is the number of sectors of each device that
  5170. * is used. This can only make sense for arrays with redundancy.
  5171. * linear and raid0 always use whatever space is available. We can only
  5172. * consider changing this number if no resync or reconstruction is
  5173. * happening, and if the new size is acceptable. It must fit before the
  5174. * sb_start or, if that is <data_offset, it must fit before the size
  5175. * of each device. If num_sectors is zero, we find the largest size
  5176. * that fits.
  5177. */
  5178. if (mddev->sync_thread)
  5179. return -EBUSY;
  5180. if (mddev->bitmap)
  5181. /* Sorry, cannot grow a bitmap yet, just remove it,
  5182. * grow, and re-add.
  5183. */
  5184. return -EBUSY;
  5185. list_for_each_entry(rdev, &mddev->disks, same_set) {
  5186. sector_t avail = rdev->sectors;
  5187. if (fit && (num_sectors == 0 || num_sectors > avail))
  5188. num_sectors = avail;
  5189. if (avail < num_sectors)
  5190. return -ENOSPC;
  5191. }
  5192. rv = mddev->pers->resize(mddev, num_sectors);
  5193. if (!rv)
  5194. revalidate_disk(mddev->gendisk);
  5195. return rv;
  5196. }
  5197. static int update_raid_disks(mddev_t *mddev, int raid_disks)
  5198. {
  5199. int rv;
  5200. /* change the number of raid disks */
  5201. if (mddev->pers->check_reshape == NULL)
  5202. return -EINVAL;
  5203. if (raid_disks <= 0 ||
  5204. (mddev->max_disks && raid_disks >= mddev->max_disks))
  5205. return -EINVAL;
  5206. if (mddev->sync_thread || mddev->reshape_position != MaxSector)
  5207. return -EBUSY;
  5208. mddev->delta_disks = raid_disks - mddev->raid_disks;
  5209. rv = mddev->pers->check_reshape(mddev);
  5210. if (rv < 0)
  5211. mddev->delta_disks = 0;
  5212. return rv;
  5213. }
  5214. /*
  5215. * update_array_info is used to change the configuration of an
  5216. * on-line array.
  5217. * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
  5218. * fields in the info are checked against the array.
  5219. * Any differences that cannot be handled will cause an error.
  5220. * Normally, only one change can be managed at a time.
  5221. */
  5222. static int update_array_info(mddev_t *mddev, mdu_array_info_t *info)
  5223. {
  5224. int rv = 0;
  5225. int cnt = 0;
  5226. int state = 0;
  5227. /* calculate expected state,ignoring low bits */
  5228. if (mddev->bitmap && mddev->bitmap_info.offset)
  5229. state |= (1 << MD_SB_BITMAP_PRESENT);
  5230. if (mddev->major_version != info->major_version ||
  5231. mddev->minor_version != info->minor_version ||
  5232. /* mddev->patch_version != info->patch_version || */
  5233. mddev->ctime != info->ctime ||
  5234. mddev->level != info->level ||
  5235. /* mddev->layout != info->layout || */
  5236. !mddev->persistent != info->not_persistent||
  5237. mddev->chunk_sectors != info->chunk_size >> 9 ||
  5238. /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
  5239. ((state^info->state) & 0xfffffe00)
  5240. )
  5241. return -EINVAL;
  5242. /* Check there is only one change */
  5243. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5244. cnt++;
  5245. if (mddev->raid_disks != info->raid_disks)
  5246. cnt++;
  5247. if (mddev->layout != info->layout)
  5248. cnt++;
  5249. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
  5250. cnt++;
  5251. if (cnt == 0)
  5252. return 0;
  5253. if (cnt > 1)
  5254. return -EINVAL;
  5255. if (mddev->layout != info->layout) {
  5256. /* Change layout
  5257. * we don't need to do anything at the md level, the
  5258. * personality will take care of it all.
  5259. */
  5260. if (mddev->pers->check_reshape == NULL)
  5261. return -EINVAL;
  5262. else {
  5263. mddev->new_layout = info->layout;
  5264. rv = mddev->pers->check_reshape(mddev);
  5265. if (rv)
  5266. mddev->new_layout = mddev->layout;
  5267. return rv;
  5268. }
  5269. }
  5270. if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
  5271. rv = update_size(mddev, (sector_t)info->size * 2);
  5272. if (mddev->raid_disks != info->raid_disks)
  5273. rv = update_raid_disks(mddev, info->raid_disks);
  5274. if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
  5275. if (mddev->pers->quiesce == NULL)
  5276. return -EINVAL;
  5277. if (mddev->recovery || mddev->sync_thread)
  5278. return -EBUSY;
  5279. if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
  5280. /* add the bitmap */
  5281. if (mddev->bitmap)
  5282. return -EEXIST;
  5283. if (mddev->bitmap_info.default_offset == 0)
  5284. return -EINVAL;
  5285. mddev->bitmap_info.offset =
  5286. mddev->bitmap_info.default_offset;
  5287. mddev->pers->quiesce(mddev, 1);
  5288. rv = bitmap_create(mddev);
  5289. if (!rv)
  5290. rv = bitmap_load(mddev);
  5291. if (rv)
  5292. bitmap_destroy(mddev);
  5293. mddev->pers->quiesce(mddev, 0);
  5294. } else {
  5295. /* remove the bitmap */
  5296. if (!mddev->bitmap)
  5297. return -ENOENT;
  5298. if (mddev->bitmap->file)
  5299. return -EINVAL;
  5300. mddev->pers->quiesce(mddev, 1);
  5301. bitmap_destroy(mddev);
  5302. mddev->pers->quiesce(mddev, 0);
  5303. mddev->bitmap_info.offset = 0;
  5304. }
  5305. }
  5306. md_update_sb(mddev, 1);
  5307. return rv;
  5308. }
  5309. static int set_disk_faulty(mddev_t *mddev, dev_t dev)
  5310. {
  5311. mdk_rdev_t *rdev;
  5312. if (mddev->pers == NULL)
  5313. return -ENODEV;
  5314. rdev = find_rdev(mddev, dev);
  5315. if (!rdev)
  5316. return -ENODEV;
  5317. md_error(mddev, rdev);
  5318. if (!test_bit(Faulty, &rdev->flags))
  5319. return -EBUSY;
  5320. return 0;
  5321. }
  5322. /*
  5323. * We have a problem here : there is no easy way to give a CHS
  5324. * virtual geometry. We currently pretend that we have a 2 heads
  5325. * 4 sectors (with a BIG number of cylinders...). This drives
  5326. * dosfs just mad... ;-)
  5327. */
  5328. static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
  5329. {
  5330. mddev_t *mddev = bdev->bd_disk->private_data;
  5331. geo->heads = 2;
  5332. geo->sectors = 4;
  5333. geo->cylinders = mddev->array_sectors / 8;
  5334. return 0;
  5335. }
  5336. static int md_ioctl(struct block_device *bdev, fmode_t mode,
  5337. unsigned int cmd, unsigned long arg)
  5338. {
  5339. int err = 0;
  5340. void __user *argp = (void __user *)arg;
  5341. mddev_t *mddev = NULL;
  5342. int ro;
  5343. if (!capable(CAP_SYS_ADMIN))
  5344. return -EACCES;
  5345. /*
  5346. * Commands dealing with the RAID driver but not any
  5347. * particular array:
  5348. */
  5349. switch (cmd)
  5350. {
  5351. case RAID_VERSION:
  5352. err = get_version(argp);
  5353. goto done;
  5354. case PRINT_RAID_DEBUG:
  5355. err = 0;
  5356. md_print_devices();
  5357. goto done;
  5358. #ifndef MODULE
  5359. case RAID_AUTORUN:
  5360. err = 0;
  5361. autostart_arrays(arg);
  5362. goto done;
  5363. #endif
  5364. default:;
  5365. }
  5366. /*
  5367. * Commands creating/starting a new array:
  5368. */
  5369. mddev = bdev->bd_disk->private_data;
  5370. if (!mddev) {
  5371. BUG();
  5372. goto abort;
  5373. }
  5374. err = mddev_lock(mddev);
  5375. if (err) {
  5376. printk(KERN_INFO
  5377. "md: ioctl lock interrupted, reason %d, cmd %d\n",
  5378. err, cmd);
  5379. goto abort;
  5380. }
  5381. switch (cmd)
  5382. {
  5383. case SET_ARRAY_INFO:
  5384. {
  5385. mdu_array_info_t info;
  5386. if (!arg)
  5387. memset(&info, 0, sizeof(info));
  5388. else if (copy_from_user(&info, argp, sizeof(info))) {
  5389. err = -EFAULT;
  5390. goto abort_unlock;
  5391. }
  5392. if (mddev->pers) {
  5393. err = update_array_info(mddev, &info);
  5394. if (err) {
  5395. printk(KERN_WARNING "md: couldn't update"
  5396. " array info. %d\n", err);
  5397. goto abort_unlock;
  5398. }
  5399. goto done_unlock;
  5400. }
  5401. if (!list_empty(&mddev->disks)) {
  5402. printk(KERN_WARNING
  5403. "md: array %s already has disks!\n",
  5404. mdname(mddev));
  5405. err = -EBUSY;
  5406. goto abort_unlock;
  5407. }
  5408. if (mddev->raid_disks) {
  5409. printk(KERN_WARNING
  5410. "md: array %s already initialised!\n",
  5411. mdname(mddev));
  5412. err = -EBUSY;
  5413. goto abort_unlock;
  5414. }
  5415. err = set_array_info(mddev, &info);
  5416. if (err) {
  5417. printk(KERN_WARNING "md: couldn't set"
  5418. " array info. %d\n", err);
  5419. goto abort_unlock;
  5420. }
  5421. }
  5422. goto done_unlock;
  5423. default:;
  5424. }
  5425. /*
  5426. * Commands querying/configuring an existing array:
  5427. */
  5428. /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
  5429. * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
  5430. if ((!mddev->raid_disks && !mddev->external)
  5431. && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
  5432. && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
  5433. && cmd != GET_BITMAP_FILE) {
  5434. err = -ENODEV;
  5435. goto abort_unlock;
  5436. }
  5437. /*
  5438. * Commands even a read-only array can execute:
  5439. */
  5440. switch (cmd)
  5441. {
  5442. case GET_ARRAY_INFO:
  5443. err = get_array_info(mddev, argp);
  5444. goto done_unlock;
  5445. case GET_BITMAP_FILE:
  5446. err = get_bitmap_file(mddev, argp);
  5447. goto done_unlock;
  5448. case GET_DISK_INFO:
  5449. err = get_disk_info(mddev, argp);
  5450. goto done_unlock;
  5451. case RESTART_ARRAY_RW:
  5452. err = restart_array(mddev);
  5453. goto done_unlock;
  5454. case STOP_ARRAY:
  5455. err = do_md_stop(mddev, 0, 1);
  5456. goto done_unlock;
  5457. case STOP_ARRAY_RO:
  5458. err = md_set_readonly(mddev, 1);
  5459. goto done_unlock;
  5460. case BLKROSET:
  5461. if (get_user(ro, (int __user *)(arg))) {
  5462. err = -EFAULT;
  5463. goto done_unlock;
  5464. }
  5465. err = -EINVAL;
  5466. /* if the bdev is going readonly the value of mddev->ro
  5467. * does not matter, no writes are coming
  5468. */
  5469. if (ro)
  5470. goto done_unlock;
  5471. /* are we are already prepared for writes? */
  5472. if (mddev->ro != 1)
  5473. goto done_unlock;
  5474. /* transitioning to readauto need only happen for
  5475. * arrays that call md_write_start
  5476. */
  5477. if (mddev->pers) {
  5478. err = restart_array(mddev);
  5479. if (err == 0) {
  5480. mddev->ro = 2;
  5481. set_disk_ro(mddev->gendisk, 0);
  5482. }
  5483. }
  5484. goto done_unlock;
  5485. }
  5486. /*
  5487. * The remaining ioctls are changing the state of the
  5488. * superblock, so we do not allow them on read-only arrays.
  5489. * However non-MD ioctls (e.g. get-size) will still come through
  5490. * here and hit the 'default' below, so only disallow
  5491. * 'md' ioctls, and switch to rw mode if started auto-readonly.
  5492. */
  5493. if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
  5494. if (mddev->ro == 2) {
  5495. mddev->ro = 0;
  5496. sysfs_notify_dirent_safe(mddev->sysfs_state);
  5497. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5498. md_wakeup_thread(mddev->thread);
  5499. } else {
  5500. err = -EROFS;
  5501. goto abort_unlock;
  5502. }
  5503. }
  5504. switch (cmd)
  5505. {
  5506. case ADD_NEW_DISK:
  5507. {
  5508. mdu_disk_info_t info;
  5509. if (copy_from_user(&info, argp, sizeof(info)))
  5510. err = -EFAULT;
  5511. else
  5512. err = add_new_disk(mddev, &info);
  5513. goto done_unlock;
  5514. }
  5515. case HOT_REMOVE_DISK:
  5516. err = hot_remove_disk(mddev, new_decode_dev(arg));
  5517. goto done_unlock;
  5518. case HOT_ADD_DISK:
  5519. err = hot_add_disk(mddev, new_decode_dev(arg));
  5520. goto done_unlock;
  5521. case SET_DISK_FAULTY:
  5522. err = set_disk_faulty(mddev, new_decode_dev(arg));
  5523. goto done_unlock;
  5524. case RUN_ARRAY:
  5525. err = do_md_run(mddev);
  5526. goto done_unlock;
  5527. case SET_BITMAP_FILE:
  5528. err = set_bitmap_file(mddev, (int)arg);
  5529. goto done_unlock;
  5530. default:
  5531. err = -EINVAL;
  5532. goto abort_unlock;
  5533. }
  5534. done_unlock:
  5535. abort_unlock:
  5536. if (mddev->hold_active == UNTIL_IOCTL &&
  5537. err != -EINVAL)
  5538. mddev->hold_active = 0;
  5539. mddev_unlock(mddev);
  5540. return err;
  5541. done:
  5542. if (err)
  5543. MD_BUG();
  5544. abort:
  5545. return err;
  5546. }
  5547. #ifdef CONFIG_COMPAT
  5548. static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
  5549. unsigned int cmd, unsigned long arg)
  5550. {
  5551. switch (cmd) {
  5552. case HOT_REMOVE_DISK:
  5553. case HOT_ADD_DISK:
  5554. case SET_DISK_FAULTY:
  5555. case SET_BITMAP_FILE:
  5556. /* These take in integer arg, do not convert */
  5557. break;
  5558. default:
  5559. arg = (unsigned long)compat_ptr(arg);
  5560. break;
  5561. }
  5562. return md_ioctl(bdev, mode, cmd, arg);
  5563. }
  5564. #endif /* CONFIG_COMPAT */
  5565. static int md_open(struct block_device *bdev, fmode_t mode)
  5566. {
  5567. /*
  5568. * Succeed if we can lock the mddev, which confirms that
  5569. * it isn't being stopped right now.
  5570. */
  5571. mddev_t *mddev = mddev_find(bdev->bd_dev);
  5572. int err;
  5573. if (mddev->gendisk != bdev->bd_disk) {
  5574. /* we are racing with mddev_put which is discarding this
  5575. * bd_disk.
  5576. */
  5577. mddev_put(mddev);
  5578. /* Wait until bdev->bd_disk is definitely gone */
  5579. flush_workqueue(md_misc_wq);
  5580. /* Then retry the open from the top */
  5581. return -ERESTARTSYS;
  5582. }
  5583. BUG_ON(mddev != bdev->bd_disk->private_data);
  5584. if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
  5585. goto out;
  5586. err = 0;
  5587. atomic_inc(&mddev->openers);
  5588. mutex_unlock(&mddev->open_mutex);
  5589. check_disk_change(bdev);
  5590. out:
  5591. return err;
  5592. }
  5593. static int md_release(struct gendisk *disk, fmode_t mode)
  5594. {
  5595. mddev_t *mddev = disk->private_data;
  5596. BUG_ON(!mddev);
  5597. atomic_dec(&mddev->openers);
  5598. mddev_put(mddev);
  5599. return 0;
  5600. }
  5601. static int md_media_changed(struct gendisk *disk)
  5602. {
  5603. mddev_t *mddev = disk->private_data;
  5604. return mddev->changed;
  5605. }
  5606. static int md_revalidate(struct gendisk *disk)
  5607. {
  5608. mddev_t *mddev = disk->private_data;
  5609. mddev->changed = 0;
  5610. return 0;
  5611. }
  5612. static const struct block_device_operations md_fops =
  5613. {
  5614. .owner = THIS_MODULE,
  5615. .open = md_open,
  5616. .release = md_release,
  5617. .ioctl = md_ioctl,
  5618. #ifdef CONFIG_COMPAT
  5619. .compat_ioctl = md_compat_ioctl,
  5620. #endif
  5621. .getgeo = md_getgeo,
  5622. .media_changed = md_media_changed,
  5623. .revalidate_disk= md_revalidate,
  5624. };
  5625. static int md_thread(void * arg)
  5626. {
  5627. mdk_thread_t *thread = arg;
  5628. /*
  5629. * md_thread is a 'system-thread', it's priority should be very
  5630. * high. We avoid resource deadlocks individually in each
  5631. * raid personality. (RAID5 does preallocation) We also use RR and
  5632. * the very same RT priority as kswapd, thus we will never get
  5633. * into a priority inversion deadlock.
  5634. *
  5635. * we definitely have to have equal or higher priority than
  5636. * bdflush, otherwise bdflush will deadlock if there are too
  5637. * many dirty RAID5 blocks.
  5638. */
  5639. allow_signal(SIGKILL);
  5640. while (!kthread_should_stop()) {
  5641. /* We need to wait INTERRUPTIBLE so that
  5642. * we don't add to the load-average.
  5643. * That means we need to be sure no signals are
  5644. * pending
  5645. */
  5646. if (signal_pending(current))
  5647. flush_signals(current);
  5648. wait_event_interruptible_timeout
  5649. (thread->wqueue,
  5650. test_bit(THREAD_WAKEUP, &thread->flags)
  5651. || kthread_should_stop(),
  5652. thread->timeout);
  5653. clear_bit(THREAD_WAKEUP, &thread->flags);
  5654. if (!kthread_should_stop())
  5655. thread->run(thread->mddev);
  5656. }
  5657. return 0;
  5658. }
  5659. void md_wakeup_thread(mdk_thread_t *thread)
  5660. {
  5661. if (thread) {
  5662. pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
  5663. set_bit(THREAD_WAKEUP, &thread->flags);
  5664. wake_up(&thread->wqueue);
  5665. }
  5666. }
  5667. mdk_thread_t *md_register_thread(void (*run) (mddev_t *), mddev_t *mddev,
  5668. const char *name)
  5669. {
  5670. mdk_thread_t *thread;
  5671. thread = kzalloc(sizeof(mdk_thread_t), GFP_KERNEL);
  5672. if (!thread)
  5673. return NULL;
  5674. init_waitqueue_head(&thread->wqueue);
  5675. thread->run = run;
  5676. thread->mddev = mddev;
  5677. thread->timeout = MAX_SCHEDULE_TIMEOUT;
  5678. thread->tsk = kthread_run(md_thread, thread,
  5679. "%s_%s",
  5680. mdname(thread->mddev),
  5681. name ?: mddev->pers->name);
  5682. if (IS_ERR(thread->tsk)) {
  5683. kfree(thread);
  5684. return NULL;
  5685. }
  5686. return thread;
  5687. }
  5688. void md_unregister_thread(mdk_thread_t **threadp)
  5689. {
  5690. mdk_thread_t *thread = *threadp;
  5691. if (!thread)
  5692. return;
  5693. pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
  5694. /* Locking ensures that mddev_unlock does not wake_up a
  5695. * non-existent thread
  5696. */
  5697. spin_lock(&pers_lock);
  5698. *threadp = NULL;
  5699. spin_unlock(&pers_lock);
  5700. kthread_stop(thread->tsk);
  5701. kfree(thread);
  5702. }
  5703. void md_error(mddev_t *mddev, mdk_rdev_t *rdev)
  5704. {
  5705. if (!mddev) {
  5706. MD_BUG();
  5707. return;
  5708. }
  5709. if (!rdev || test_bit(Faulty, &rdev->flags))
  5710. return;
  5711. if (!mddev->pers || !mddev->pers->error_handler)
  5712. return;
  5713. mddev->pers->error_handler(mddev,rdev);
  5714. if (mddev->degraded)
  5715. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  5716. sysfs_notify_dirent_safe(rdev->sysfs_state);
  5717. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  5718. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  5719. md_wakeup_thread(mddev->thread);
  5720. if (mddev->event_work.func)
  5721. queue_work(md_misc_wq, &mddev->event_work);
  5722. md_new_event_inintr(mddev);
  5723. }
  5724. /* seq_file implementation /proc/mdstat */
  5725. static void status_unused(struct seq_file *seq)
  5726. {
  5727. int i = 0;
  5728. mdk_rdev_t *rdev;
  5729. seq_printf(seq, "unused devices: ");
  5730. list_for_each_entry(rdev, &pending_raid_disks, same_set) {
  5731. char b[BDEVNAME_SIZE];
  5732. i++;
  5733. seq_printf(seq, "%s ",
  5734. bdevname(rdev->bdev,b));
  5735. }
  5736. if (!i)
  5737. seq_printf(seq, "<none>");
  5738. seq_printf(seq, "\n");
  5739. }
  5740. static void status_resync(struct seq_file *seq, mddev_t * mddev)
  5741. {
  5742. sector_t max_sectors, resync, res;
  5743. unsigned long dt, db;
  5744. sector_t rt;
  5745. int scale;
  5746. unsigned int per_milli;
  5747. resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
  5748. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  5749. max_sectors = mddev->resync_max_sectors;
  5750. else
  5751. max_sectors = mddev->dev_sectors;
  5752. /*
  5753. * Should not happen.
  5754. */
  5755. if (!max_sectors) {
  5756. MD_BUG();
  5757. return;
  5758. }
  5759. /* Pick 'scale' such that (resync>>scale)*1000 will fit
  5760. * in a sector_t, and (max_sectors>>scale) will fit in a
  5761. * u32, as those are the requirements for sector_div.
  5762. * Thus 'scale' must be at least 10
  5763. */
  5764. scale = 10;
  5765. if (sizeof(sector_t) > sizeof(unsigned long)) {
  5766. while ( max_sectors/2 > (1ULL<<(scale+32)))
  5767. scale++;
  5768. }
  5769. res = (resync>>scale)*1000;
  5770. sector_div(res, (u32)((max_sectors>>scale)+1));
  5771. per_milli = res;
  5772. {
  5773. int i, x = per_milli/50, y = 20-x;
  5774. seq_printf(seq, "[");
  5775. for (i = 0; i < x; i++)
  5776. seq_printf(seq, "=");
  5777. seq_printf(seq, ">");
  5778. for (i = 0; i < y; i++)
  5779. seq_printf(seq, ".");
  5780. seq_printf(seq, "] ");
  5781. }
  5782. seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
  5783. (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
  5784. "reshape" :
  5785. (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
  5786. "check" :
  5787. (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
  5788. "resync" : "recovery"))),
  5789. per_milli/10, per_milli % 10,
  5790. (unsigned long long) resync/2,
  5791. (unsigned long long) max_sectors/2);
  5792. /*
  5793. * dt: time from mark until now
  5794. * db: blocks written from mark until now
  5795. * rt: remaining time
  5796. *
  5797. * rt is a sector_t, so could be 32bit or 64bit.
  5798. * So we divide before multiply in case it is 32bit and close
  5799. * to the limit.
  5800. * We scale the divisor (db) by 32 to avoid losing precision
  5801. * near the end of resync when the number of remaining sectors
  5802. * is close to 'db'.
  5803. * We then divide rt by 32 after multiplying by db to compensate.
  5804. * The '+1' avoids division by zero if db is very small.
  5805. */
  5806. dt = ((jiffies - mddev->resync_mark) / HZ);
  5807. if (!dt) dt++;
  5808. db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
  5809. - mddev->resync_mark_cnt;
  5810. rt = max_sectors - resync; /* number of remaining sectors */
  5811. sector_div(rt, db/32+1);
  5812. rt *= dt;
  5813. rt >>= 5;
  5814. seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
  5815. ((unsigned long)rt % 60)/6);
  5816. seq_printf(seq, " speed=%ldK/sec", db/2/dt);
  5817. }
  5818. static void *md_seq_start(struct seq_file *seq, loff_t *pos)
  5819. {
  5820. struct list_head *tmp;
  5821. loff_t l = *pos;
  5822. mddev_t *mddev;
  5823. if (l >= 0x10000)
  5824. return NULL;
  5825. if (!l--)
  5826. /* header */
  5827. return (void*)1;
  5828. spin_lock(&all_mddevs_lock);
  5829. list_for_each(tmp,&all_mddevs)
  5830. if (!l--) {
  5831. mddev = list_entry(tmp, mddev_t, all_mddevs);
  5832. mddev_get(mddev);
  5833. spin_unlock(&all_mddevs_lock);
  5834. return mddev;
  5835. }
  5836. spin_unlock(&all_mddevs_lock);
  5837. if (!l--)
  5838. return (void*)2;/* tail */
  5839. return NULL;
  5840. }
  5841. static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  5842. {
  5843. struct list_head *tmp;
  5844. mddev_t *next_mddev, *mddev = v;
  5845. ++*pos;
  5846. if (v == (void*)2)
  5847. return NULL;
  5848. spin_lock(&all_mddevs_lock);
  5849. if (v == (void*)1)
  5850. tmp = all_mddevs.next;
  5851. else
  5852. tmp = mddev->all_mddevs.next;
  5853. if (tmp != &all_mddevs)
  5854. next_mddev = mddev_get(list_entry(tmp,mddev_t,all_mddevs));
  5855. else {
  5856. next_mddev = (void*)2;
  5857. *pos = 0x10000;
  5858. }
  5859. spin_unlock(&all_mddevs_lock);
  5860. if (v != (void*)1)
  5861. mddev_put(mddev);
  5862. return next_mddev;
  5863. }
  5864. static void md_seq_stop(struct seq_file *seq, void *v)
  5865. {
  5866. mddev_t *mddev = v;
  5867. if (mddev && v != (void*)1 && v != (void*)2)
  5868. mddev_put(mddev);
  5869. }
  5870. static int md_seq_show(struct seq_file *seq, void *v)
  5871. {
  5872. mddev_t *mddev = v;
  5873. sector_t sectors;
  5874. mdk_rdev_t *rdev;
  5875. struct bitmap *bitmap;
  5876. if (v == (void*)1) {
  5877. struct mdk_personality *pers;
  5878. seq_printf(seq, "Personalities : ");
  5879. spin_lock(&pers_lock);
  5880. list_for_each_entry(pers, &pers_list, list)
  5881. seq_printf(seq, "[%s] ", pers->name);
  5882. spin_unlock(&pers_lock);
  5883. seq_printf(seq, "\n");
  5884. seq->poll_event = atomic_read(&md_event_count);
  5885. return 0;
  5886. }
  5887. if (v == (void*)2) {
  5888. status_unused(seq);
  5889. return 0;
  5890. }
  5891. if (mddev_lock(mddev) < 0)
  5892. return -EINTR;
  5893. if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
  5894. seq_printf(seq, "%s : %sactive", mdname(mddev),
  5895. mddev->pers ? "" : "in");
  5896. if (mddev->pers) {
  5897. if (mddev->ro==1)
  5898. seq_printf(seq, " (read-only)");
  5899. if (mddev->ro==2)
  5900. seq_printf(seq, " (auto-read-only)");
  5901. seq_printf(seq, " %s", mddev->pers->name);
  5902. }
  5903. sectors = 0;
  5904. list_for_each_entry(rdev, &mddev->disks, same_set) {
  5905. char b[BDEVNAME_SIZE];
  5906. seq_printf(seq, " %s[%d]",
  5907. bdevname(rdev->bdev,b), rdev->desc_nr);
  5908. if (test_bit(WriteMostly, &rdev->flags))
  5909. seq_printf(seq, "(W)");
  5910. if (test_bit(Faulty, &rdev->flags)) {
  5911. seq_printf(seq, "(F)");
  5912. continue;
  5913. } else if (rdev->raid_disk < 0)
  5914. seq_printf(seq, "(S)"); /* spare */
  5915. sectors += rdev->sectors;
  5916. }
  5917. if (!list_empty(&mddev->disks)) {
  5918. if (mddev->pers)
  5919. seq_printf(seq, "\n %llu blocks",
  5920. (unsigned long long)
  5921. mddev->array_sectors / 2);
  5922. else
  5923. seq_printf(seq, "\n %llu blocks",
  5924. (unsigned long long)sectors / 2);
  5925. }
  5926. if (mddev->persistent) {
  5927. if (mddev->major_version != 0 ||
  5928. mddev->minor_version != 90) {
  5929. seq_printf(seq," super %d.%d",
  5930. mddev->major_version,
  5931. mddev->minor_version);
  5932. }
  5933. } else if (mddev->external)
  5934. seq_printf(seq, " super external:%s",
  5935. mddev->metadata_type);
  5936. else
  5937. seq_printf(seq, " super non-persistent");
  5938. if (mddev->pers) {
  5939. mddev->pers->status(seq, mddev);
  5940. seq_printf(seq, "\n ");
  5941. if (mddev->pers->sync_request) {
  5942. if (mddev->curr_resync > 2) {
  5943. status_resync(seq, mddev);
  5944. seq_printf(seq, "\n ");
  5945. } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
  5946. seq_printf(seq, "\tresync=DELAYED\n ");
  5947. else if (mddev->recovery_cp < MaxSector)
  5948. seq_printf(seq, "\tresync=PENDING\n ");
  5949. }
  5950. } else
  5951. seq_printf(seq, "\n ");
  5952. if ((bitmap = mddev->bitmap)) {
  5953. unsigned long chunk_kb;
  5954. unsigned long flags;
  5955. spin_lock_irqsave(&bitmap->lock, flags);
  5956. chunk_kb = mddev->bitmap_info.chunksize >> 10;
  5957. seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
  5958. "%lu%s chunk",
  5959. bitmap->pages - bitmap->missing_pages,
  5960. bitmap->pages,
  5961. (bitmap->pages - bitmap->missing_pages)
  5962. << (PAGE_SHIFT - 10),
  5963. chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
  5964. chunk_kb ? "KB" : "B");
  5965. if (bitmap->file) {
  5966. seq_printf(seq, ", file: ");
  5967. seq_path(seq, &bitmap->file->f_path, " \t\n");
  5968. }
  5969. seq_printf(seq, "\n");
  5970. spin_unlock_irqrestore(&bitmap->lock, flags);
  5971. }
  5972. seq_printf(seq, "\n");
  5973. }
  5974. mddev_unlock(mddev);
  5975. return 0;
  5976. }
  5977. static const struct seq_operations md_seq_ops = {
  5978. .start = md_seq_start,
  5979. .next = md_seq_next,
  5980. .stop = md_seq_stop,
  5981. .show = md_seq_show,
  5982. };
  5983. static int md_seq_open(struct inode *inode, struct file *file)
  5984. {
  5985. struct seq_file *seq;
  5986. int error;
  5987. error = seq_open(file, &md_seq_ops);
  5988. if (error)
  5989. return error;
  5990. seq = file->private_data;
  5991. seq->poll_event = atomic_read(&md_event_count);
  5992. return error;
  5993. }
  5994. static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
  5995. {
  5996. struct seq_file *seq = filp->private_data;
  5997. int mask;
  5998. poll_wait(filp, &md_event_waiters, wait);
  5999. /* always allow read */
  6000. mask = POLLIN | POLLRDNORM;
  6001. if (seq->poll_event != atomic_read(&md_event_count))
  6002. mask |= POLLERR | POLLPRI;
  6003. return mask;
  6004. }
  6005. static const struct file_operations md_seq_fops = {
  6006. .owner = THIS_MODULE,
  6007. .open = md_seq_open,
  6008. .read = seq_read,
  6009. .llseek = seq_lseek,
  6010. .release = seq_release_private,
  6011. .poll = mdstat_poll,
  6012. };
  6013. int register_md_personality(struct mdk_personality *p)
  6014. {
  6015. spin_lock(&pers_lock);
  6016. list_add_tail(&p->list, &pers_list);
  6017. printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
  6018. spin_unlock(&pers_lock);
  6019. return 0;
  6020. }
  6021. int unregister_md_personality(struct mdk_personality *p)
  6022. {
  6023. printk(KERN_INFO "md: %s personality unregistered\n", p->name);
  6024. spin_lock(&pers_lock);
  6025. list_del_init(&p->list);
  6026. spin_unlock(&pers_lock);
  6027. return 0;
  6028. }
  6029. static int is_mddev_idle(mddev_t *mddev, int init)
  6030. {
  6031. mdk_rdev_t * rdev;
  6032. int idle;
  6033. int curr_events;
  6034. idle = 1;
  6035. rcu_read_lock();
  6036. rdev_for_each_rcu(rdev, mddev) {
  6037. struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
  6038. curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
  6039. (int)part_stat_read(&disk->part0, sectors[1]) -
  6040. atomic_read(&disk->sync_io);
  6041. /* sync IO will cause sync_io to increase before the disk_stats
  6042. * as sync_io is counted when a request starts, and
  6043. * disk_stats is counted when it completes.
  6044. * So resync activity will cause curr_events to be smaller than
  6045. * when there was no such activity.
  6046. * non-sync IO will cause disk_stat to increase without
  6047. * increasing sync_io so curr_events will (eventually)
  6048. * be larger than it was before. Once it becomes
  6049. * substantially larger, the test below will cause
  6050. * the array to appear non-idle, and resync will slow
  6051. * down.
  6052. * If there is a lot of outstanding resync activity when
  6053. * we set last_event to curr_events, then all that activity
  6054. * completing might cause the array to appear non-idle
  6055. * and resync will be slowed down even though there might
  6056. * not have been non-resync activity. This will only
  6057. * happen once though. 'last_events' will soon reflect
  6058. * the state where there is little or no outstanding
  6059. * resync requests, and further resync activity will
  6060. * always make curr_events less than last_events.
  6061. *
  6062. */
  6063. if (init || curr_events - rdev->last_events > 64) {
  6064. rdev->last_events = curr_events;
  6065. idle = 0;
  6066. }
  6067. }
  6068. rcu_read_unlock();
  6069. return idle;
  6070. }
  6071. void md_done_sync(mddev_t *mddev, int blocks, int ok)
  6072. {
  6073. /* another "blocks" (512byte) blocks have been synced */
  6074. atomic_sub(blocks, &mddev->recovery_active);
  6075. wake_up(&mddev->recovery_wait);
  6076. if (!ok) {
  6077. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6078. md_wakeup_thread(mddev->thread);
  6079. // stop recovery, signal do_sync ....
  6080. }
  6081. }
  6082. /* md_write_start(mddev, bi)
  6083. * If we need to update some array metadata (e.g. 'active' flag
  6084. * in superblock) before writing, schedule a superblock update
  6085. * and wait for it to complete.
  6086. */
  6087. void md_write_start(mddev_t *mddev, struct bio *bi)
  6088. {
  6089. int did_change = 0;
  6090. if (bio_data_dir(bi) != WRITE)
  6091. return;
  6092. BUG_ON(mddev->ro == 1);
  6093. if (mddev->ro == 2) {
  6094. /* need to switch to read/write */
  6095. mddev->ro = 0;
  6096. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6097. md_wakeup_thread(mddev->thread);
  6098. md_wakeup_thread(mddev->sync_thread);
  6099. did_change = 1;
  6100. }
  6101. atomic_inc(&mddev->writes_pending);
  6102. if (mddev->safemode == 1)
  6103. mddev->safemode = 0;
  6104. if (mddev->in_sync) {
  6105. spin_lock_irq(&mddev->write_lock);
  6106. if (mddev->in_sync) {
  6107. mddev->in_sync = 0;
  6108. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6109. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6110. md_wakeup_thread(mddev->thread);
  6111. did_change = 1;
  6112. }
  6113. spin_unlock_irq(&mddev->write_lock);
  6114. }
  6115. if (did_change)
  6116. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6117. wait_event(mddev->sb_wait,
  6118. !test_bit(MD_CHANGE_PENDING, &mddev->flags));
  6119. }
  6120. void md_write_end(mddev_t *mddev)
  6121. {
  6122. if (atomic_dec_and_test(&mddev->writes_pending)) {
  6123. if (mddev->safemode == 2)
  6124. md_wakeup_thread(mddev->thread);
  6125. else if (mddev->safemode_delay)
  6126. mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
  6127. }
  6128. }
  6129. /* md_allow_write(mddev)
  6130. * Calling this ensures that the array is marked 'active' so that writes
  6131. * may proceed without blocking. It is important to call this before
  6132. * attempting a GFP_KERNEL allocation while holding the mddev lock.
  6133. * Must be called with mddev_lock held.
  6134. *
  6135. * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
  6136. * is dropped, so return -EAGAIN after notifying userspace.
  6137. */
  6138. int md_allow_write(mddev_t *mddev)
  6139. {
  6140. if (!mddev->pers)
  6141. return 0;
  6142. if (mddev->ro)
  6143. return 0;
  6144. if (!mddev->pers->sync_request)
  6145. return 0;
  6146. spin_lock_irq(&mddev->write_lock);
  6147. if (mddev->in_sync) {
  6148. mddev->in_sync = 0;
  6149. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6150. set_bit(MD_CHANGE_PENDING, &mddev->flags);
  6151. if (mddev->safemode_delay &&
  6152. mddev->safemode == 0)
  6153. mddev->safemode = 1;
  6154. spin_unlock_irq(&mddev->write_lock);
  6155. md_update_sb(mddev, 0);
  6156. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6157. } else
  6158. spin_unlock_irq(&mddev->write_lock);
  6159. if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
  6160. return -EAGAIN;
  6161. else
  6162. return 0;
  6163. }
  6164. EXPORT_SYMBOL_GPL(md_allow_write);
  6165. #define SYNC_MARKS 10
  6166. #define SYNC_MARK_STEP (3*HZ)
  6167. void md_do_sync(mddev_t *mddev)
  6168. {
  6169. mddev_t *mddev2;
  6170. unsigned int currspeed = 0,
  6171. window;
  6172. sector_t max_sectors,j, io_sectors;
  6173. unsigned long mark[SYNC_MARKS];
  6174. sector_t mark_cnt[SYNC_MARKS];
  6175. int last_mark,m;
  6176. struct list_head *tmp;
  6177. sector_t last_check;
  6178. int skipped = 0;
  6179. mdk_rdev_t *rdev;
  6180. char *desc;
  6181. /* just incase thread restarts... */
  6182. if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
  6183. return;
  6184. if (mddev->ro) /* never try to sync a read-only array */
  6185. return;
  6186. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6187. if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
  6188. desc = "data-check";
  6189. else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6190. desc = "requested-resync";
  6191. else
  6192. desc = "resync";
  6193. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6194. desc = "reshape";
  6195. else
  6196. desc = "recovery";
  6197. /* we overload curr_resync somewhat here.
  6198. * 0 == not engaged in resync at all
  6199. * 2 == checking that there is no conflict with another sync
  6200. * 1 == like 2, but have yielded to allow conflicting resync to
  6201. * commense
  6202. * other == active in resync - this many blocks
  6203. *
  6204. * Before starting a resync we must have set curr_resync to
  6205. * 2, and then checked that every "conflicting" array has curr_resync
  6206. * less than ours. When we find one that is the same or higher
  6207. * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
  6208. * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
  6209. * This will mean we have to start checking from the beginning again.
  6210. *
  6211. */
  6212. do {
  6213. mddev->curr_resync = 2;
  6214. try_again:
  6215. if (kthread_should_stop())
  6216. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6217. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6218. goto skip;
  6219. for_each_mddev(mddev2, tmp) {
  6220. if (mddev2 == mddev)
  6221. continue;
  6222. if (!mddev->parallel_resync
  6223. && mddev2->curr_resync
  6224. && match_mddev_units(mddev, mddev2)) {
  6225. DEFINE_WAIT(wq);
  6226. if (mddev < mddev2 && mddev->curr_resync == 2) {
  6227. /* arbitrarily yield */
  6228. mddev->curr_resync = 1;
  6229. wake_up(&resync_wait);
  6230. }
  6231. if (mddev > mddev2 && mddev->curr_resync == 1)
  6232. /* no need to wait here, we can wait the next
  6233. * time 'round when curr_resync == 2
  6234. */
  6235. continue;
  6236. /* We need to wait 'interruptible' so as not to
  6237. * contribute to the load average, and not to
  6238. * be caught by 'softlockup'
  6239. */
  6240. prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
  6241. if (!kthread_should_stop() &&
  6242. mddev2->curr_resync >= mddev->curr_resync) {
  6243. printk(KERN_INFO "md: delaying %s of %s"
  6244. " until %s has finished (they"
  6245. " share one or more physical units)\n",
  6246. desc, mdname(mddev), mdname(mddev2));
  6247. mddev_put(mddev2);
  6248. if (signal_pending(current))
  6249. flush_signals(current);
  6250. schedule();
  6251. finish_wait(&resync_wait, &wq);
  6252. goto try_again;
  6253. }
  6254. finish_wait(&resync_wait, &wq);
  6255. }
  6256. }
  6257. } while (mddev->curr_resync < 2);
  6258. j = 0;
  6259. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6260. /* resync follows the size requested by the personality,
  6261. * which defaults to physical size, but can be virtual size
  6262. */
  6263. max_sectors = mddev->resync_max_sectors;
  6264. mddev->resync_mismatches = 0;
  6265. /* we don't use the checkpoint if there's a bitmap */
  6266. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6267. j = mddev->resync_min;
  6268. else if (!mddev->bitmap)
  6269. j = mddev->recovery_cp;
  6270. } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
  6271. max_sectors = mddev->dev_sectors;
  6272. else {
  6273. /* recovery follows the physical size of devices */
  6274. max_sectors = mddev->dev_sectors;
  6275. j = MaxSector;
  6276. rcu_read_lock();
  6277. list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
  6278. if (rdev->raid_disk >= 0 &&
  6279. !test_bit(Faulty, &rdev->flags) &&
  6280. !test_bit(In_sync, &rdev->flags) &&
  6281. rdev->recovery_offset < j)
  6282. j = rdev->recovery_offset;
  6283. rcu_read_unlock();
  6284. }
  6285. printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
  6286. printk(KERN_INFO "md: minimum _guaranteed_ speed:"
  6287. " %d KB/sec/disk.\n", speed_min(mddev));
  6288. printk(KERN_INFO "md: using maximum available idle IO bandwidth "
  6289. "(but not more than %d KB/sec) for %s.\n",
  6290. speed_max(mddev), desc);
  6291. is_mddev_idle(mddev, 1); /* this initializes IO event counters */
  6292. io_sectors = 0;
  6293. for (m = 0; m < SYNC_MARKS; m++) {
  6294. mark[m] = jiffies;
  6295. mark_cnt[m] = io_sectors;
  6296. }
  6297. last_mark = 0;
  6298. mddev->resync_mark = mark[last_mark];
  6299. mddev->resync_mark_cnt = mark_cnt[last_mark];
  6300. /*
  6301. * Tune reconstruction:
  6302. */
  6303. window = 32*(PAGE_SIZE/512);
  6304. printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
  6305. window/2, (unsigned long long)max_sectors/2);
  6306. atomic_set(&mddev->recovery_active, 0);
  6307. last_check = 0;
  6308. if (j>2) {
  6309. printk(KERN_INFO
  6310. "md: resuming %s of %s from checkpoint.\n",
  6311. desc, mdname(mddev));
  6312. mddev->curr_resync = j;
  6313. }
  6314. mddev->curr_resync_completed = j;
  6315. while (j < max_sectors) {
  6316. sector_t sectors;
  6317. skipped = 0;
  6318. if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6319. ((mddev->curr_resync > mddev->curr_resync_completed &&
  6320. (mddev->curr_resync - mddev->curr_resync_completed)
  6321. > (max_sectors >> 4)) ||
  6322. (j - mddev->curr_resync_completed)*2
  6323. >= mddev->resync_max - mddev->curr_resync_completed
  6324. )) {
  6325. /* time to update curr_resync_completed */
  6326. wait_event(mddev->recovery_wait,
  6327. atomic_read(&mddev->recovery_active) == 0);
  6328. mddev->curr_resync_completed = j;
  6329. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6330. sysfs_notify(&mddev->kobj, NULL, "sync_completed");
  6331. }
  6332. while (j >= mddev->resync_max && !kthread_should_stop()) {
  6333. /* As this condition is controlled by user-space,
  6334. * we can block indefinitely, so use '_interruptible'
  6335. * to avoid triggering warnings.
  6336. */
  6337. flush_signals(current); /* just in case */
  6338. wait_event_interruptible(mddev->recovery_wait,
  6339. mddev->resync_max > j
  6340. || kthread_should_stop());
  6341. }
  6342. if (kthread_should_stop())
  6343. goto interrupted;
  6344. sectors = mddev->pers->sync_request(mddev, j, &skipped,
  6345. currspeed < speed_min(mddev));
  6346. if (sectors == 0) {
  6347. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6348. goto out;
  6349. }
  6350. if (!skipped) { /* actual IO requested */
  6351. io_sectors += sectors;
  6352. atomic_add(sectors, &mddev->recovery_active);
  6353. }
  6354. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6355. break;
  6356. j += sectors;
  6357. if (j>1) mddev->curr_resync = j;
  6358. mddev->curr_mark_cnt = io_sectors;
  6359. if (last_check == 0)
  6360. /* this is the earliest that rebuild will be
  6361. * visible in /proc/mdstat
  6362. */
  6363. md_new_event(mddev);
  6364. if (last_check + window > io_sectors || j == max_sectors)
  6365. continue;
  6366. last_check = io_sectors;
  6367. repeat:
  6368. if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
  6369. /* step marks */
  6370. int next = (last_mark+1) % SYNC_MARKS;
  6371. mddev->resync_mark = mark[next];
  6372. mddev->resync_mark_cnt = mark_cnt[next];
  6373. mark[next] = jiffies;
  6374. mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
  6375. last_mark = next;
  6376. }
  6377. if (kthread_should_stop())
  6378. goto interrupted;
  6379. /*
  6380. * this loop exits only if either when we are slower than
  6381. * the 'hard' speed limit, or the system was IO-idle for
  6382. * a jiffy.
  6383. * the system might be non-idle CPU-wise, but we only care
  6384. * about not overloading the IO subsystem. (things like an
  6385. * e2fsck being done on the RAID array should execute fast)
  6386. */
  6387. cond_resched();
  6388. currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
  6389. /((jiffies-mddev->resync_mark)/HZ +1) +1;
  6390. if (currspeed > speed_min(mddev)) {
  6391. if ((currspeed > speed_max(mddev)) ||
  6392. !is_mddev_idle(mddev, 0)) {
  6393. msleep(500);
  6394. goto repeat;
  6395. }
  6396. }
  6397. }
  6398. printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
  6399. /*
  6400. * this also signals 'finished resyncing' to md_stop
  6401. */
  6402. out:
  6403. wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
  6404. /* tell personality that we are finished */
  6405. mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
  6406. if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
  6407. mddev->curr_resync > 2) {
  6408. if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
  6409. if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6410. if (mddev->curr_resync >= mddev->recovery_cp) {
  6411. printk(KERN_INFO
  6412. "md: checkpointing %s of %s.\n",
  6413. desc, mdname(mddev));
  6414. mddev->recovery_cp = mddev->curr_resync;
  6415. }
  6416. } else
  6417. mddev->recovery_cp = MaxSector;
  6418. } else {
  6419. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
  6420. mddev->curr_resync = MaxSector;
  6421. rcu_read_lock();
  6422. list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
  6423. if (rdev->raid_disk >= 0 &&
  6424. mddev->delta_disks >= 0 &&
  6425. !test_bit(Faulty, &rdev->flags) &&
  6426. !test_bit(In_sync, &rdev->flags) &&
  6427. rdev->recovery_offset < mddev->curr_resync)
  6428. rdev->recovery_offset = mddev->curr_resync;
  6429. rcu_read_unlock();
  6430. }
  6431. }
  6432. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6433. skip:
  6434. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
  6435. /* We completed so min/max setting can be forgotten if used. */
  6436. if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6437. mddev->resync_min = 0;
  6438. mddev->resync_max = MaxSector;
  6439. } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
  6440. mddev->resync_min = mddev->curr_resync_completed;
  6441. mddev->curr_resync = 0;
  6442. wake_up(&resync_wait);
  6443. set_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6444. md_wakeup_thread(mddev->thread);
  6445. return;
  6446. interrupted:
  6447. /*
  6448. * got a signal, exit.
  6449. */
  6450. printk(KERN_INFO
  6451. "md: md_do_sync() got signal ... exiting\n");
  6452. set_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6453. goto out;
  6454. }
  6455. EXPORT_SYMBOL_GPL(md_do_sync);
  6456. static int remove_and_add_spares(mddev_t *mddev)
  6457. {
  6458. mdk_rdev_t *rdev;
  6459. int spares = 0;
  6460. mddev->curr_resync_completed = 0;
  6461. list_for_each_entry(rdev, &mddev->disks, same_set)
  6462. if (rdev->raid_disk >= 0 &&
  6463. !test_bit(Blocked, &rdev->flags) &&
  6464. (test_bit(Faulty, &rdev->flags) ||
  6465. ! test_bit(In_sync, &rdev->flags)) &&
  6466. atomic_read(&rdev->nr_pending)==0) {
  6467. if (mddev->pers->hot_remove_disk(
  6468. mddev, rdev->raid_disk)==0) {
  6469. sysfs_unlink_rdev(mddev, rdev);
  6470. rdev->raid_disk = -1;
  6471. }
  6472. }
  6473. if (mddev->degraded) {
  6474. list_for_each_entry(rdev, &mddev->disks, same_set) {
  6475. if (rdev->raid_disk >= 0 &&
  6476. !test_bit(In_sync, &rdev->flags) &&
  6477. !test_bit(Faulty, &rdev->flags))
  6478. spares++;
  6479. if (rdev->raid_disk < 0
  6480. && !test_bit(Faulty, &rdev->flags)) {
  6481. rdev->recovery_offset = 0;
  6482. if (mddev->pers->
  6483. hot_add_disk(mddev, rdev) == 0) {
  6484. if (sysfs_link_rdev(mddev, rdev))
  6485. /* failure here is OK */;
  6486. spares++;
  6487. md_new_event(mddev);
  6488. set_bit(MD_CHANGE_DEVS, &mddev->flags);
  6489. } else
  6490. break;
  6491. }
  6492. }
  6493. }
  6494. return spares;
  6495. }
  6496. static void reap_sync_thread(mddev_t *mddev)
  6497. {
  6498. mdk_rdev_t *rdev;
  6499. /* resync has finished, collect result */
  6500. md_unregister_thread(&mddev->sync_thread);
  6501. if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
  6502. !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
  6503. /* success...*/
  6504. /* activate any spares */
  6505. if (mddev->pers->spare_active(mddev))
  6506. sysfs_notify(&mddev->kobj, NULL,
  6507. "degraded");
  6508. }
  6509. if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
  6510. mddev->pers->finish_reshape)
  6511. mddev->pers->finish_reshape(mddev);
  6512. md_update_sb(mddev, 1);
  6513. /* if array is no-longer degraded, then any saved_raid_disk
  6514. * information must be scrapped
  6515. */
  6516. if (!mddev->degraded)
  6517. list_for_each_entry(rdev, &mddev->disks, same_set)
  6518. rdev->saved_raid_disk = -1;
  6519. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6520. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6521. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6522. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6523. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6524. /* flag recovery needed just to double check */
  6525. set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6526. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6527. md_new_event(mddev);
  6528. if (mddev->event_work.func)
  6529. queue_work(md_misc_wq, &mddev->event_work);
  6530. }
  6531. /*
  6532. * This routine is regularly called by all per-raid-array threads to
  6533. * deal with generic issues like resync and super-block update.
  6534. * Raid personalities that don't have a thread (linear/raid0) do not
  6535. * need this as they never do any recovery or update the superblock.
  6536. *
  6537. * It does not do any resync itself, but rather "forks" off other threads
  6538. * to do that as needed.
  6539. * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
  6540. * "->recovery" and create a thread at ->sync_thread.
  6541. * When the thread finishes it sets MD_RECOVERY_DONE
  6542. * and wakeups up this thread which will reap the thread and finish up.
  6543. * This thread also removes any faulty devices (with nr_pending == 0).
  6544. *
  6545. * The overall approach is:
  6546. * 1/ if the superblock needs updating, update it.
  6547. * 2/ If a recovery thread is running, don't do anything else.
  6548. * 3/ If recovery has finished, clean up, possibly marking spares active.
  6549. * 4/ If there are any faulty devices, remove them.
  6550. * 5/ If array is degraded, try to add spares devices
  6551. * 6/ If array has spares or is not in-sync, start a resync thread.
  6552. */
  6553. void md_check_recovery(mddev_t *mddev)
  6554. {
  6555. if (mddev->suspended)
  6556. return;
  6557. if (mddev->bitmap)
  6558. bitmap_daemon_work(mddev);
  6559. if (signal_pending(current)) {
  6560. if (mddev->pers->sync_request && !mddev->external) {
  6561. printk(KERN_INFO "md: %s in immediate safe mode\n",
  6562. mdname(mddev));
  6563. mddev->safemode = 2;
  6564. }
  6565. flush_signals(current);
  6566. }
  6567. if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
  6568. return;
  6569. if ( ! (
  6570. (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
  6571. test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
  6572. test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
  6573. (mddev->external == 0 && mddev->safemode == 1) ||
  6574. (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
  6575. && !mddev->in_sync && mddev->recovery_cp == MaxSector)
  6576. ))
  6577. return;
  6578. if (mddev_trylock(mddev)) {
  6579. int spares = 0;
  6580. if (mddev->ro) {
  6581. /* Only thing we do on a ro array is remove
  6582. * failed devices.
  6583. */
  6584. mdk_rdev_t *rdev;
  6585. list_for_each_entry(rdev, &mddev->disks, same_set)
  6586. if (rdev->raid_disk >= 0 &&
  6587. !test_bit(Blocked, &rdev->flags) &&
  6588. test_bit(Faulty, &rdev->flags) &&
  6589. atomic_read(&rdev->nr_pending)==0) {
  6590. if (mddev->pers->hot_remove_disk(
  6591. mddev, rdev->raid_disk)==0) {
  6592. sysfs_unlink_rdev(mddev, rdev);
  6593. rdev->raid_disk = -1;
  6594. }
  6595. }
  6596. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6597. goto unlock;
  6598. }
  6599. if (!mddev->external) {
  6600. int did_change = 0;
  6601. spin_lock_irq(&mddev->write_lock);
  6602. if (mddev->safemode &&
  6603. !atomic_read(&mddev->writes_pending) &&
  6604. !mddev->in_sync &&
  6605. mddev->recovery_cp == MaxSector) {
  6606. mddev->in_sync = 1;
  6607. did_change = 1;
  6608. set_bit(MD_CHANGE_CLEAN, &mddev->flags);
  6609. }
  6610. if (mddev->safemode == 1)
  6611. mddev->safemode = 0;
  6612. spin_unlock_irq(&mddev->write_lock);
  6613. if (did_change)
  6614. sysfs_notify_dirent_safe(mddev->sysfs_state);
  6615. }
  6616. if (mddev->flags)
  6617. md_update_sb(mddev, 0);
  6618. if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
  6619. !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
  6620. /* resync/recovery still happening */
  6621. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6622. goto unlock;
  6623. }
  6624. if (mddev->sync_thread) {
  6625. reap_sync_thread(mddev);
  6626. goto unlock;
  6627. }
  6628. /* Set RUNNING before clearing NEEDED to avoid
  6629. * any transients in the value of "sync_action".
  6630. */
  6631. set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6632. clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
  6633. /* Clear some bits that don't mean anything, but
  6634. * might be left set
  6635. */
  6636. clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
  6637. clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
  6638. if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
  6639. goto unlock;
  6640. /* no recovery is running.
  6641. * remove any failed drives, then
  6642. * add spares if possible.
  6643. * Spare are also removed and re-added, to allow
  6644. * the personality to fail the re-add.
  6645. */
  6646. if (mddev->reshape_position != MaxSector) {
  6647. if (mddev->pers->check_reshape == NULL ||
  6648. mddev->pers->check_reshape(mddev) != 0)
  6649. /* Cannot proceed */
  6650. goto unlock;
  6651. set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6652. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6653. } else if ((spares = remove_and_add_spares(mddev))) {
  6654. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6655. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6656. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6657. set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6658. } else if (mddev->recovery_cp < MaxSector) {
  6659. set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6660. clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
  6661. } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
  6662. /* nothing to be done ... */
  6663. goto unlock;
  6664. if (mddev->pers->sync_request) {
  6665. if (spares && mddev->bitmap && ! mddev->bitmap->file) {
  6666. /* We are adding a device or devices to an array
  6667. * which has the bitmap stored on all devices.
  6668. * So make sure all bitmap pages get written
  6669. */
  6670. bitmap_write_all(mddev->bitmap);
  6671. }
  6672. mddev->sync_thread = md_register_thread(md_do_sync,
  6673. mddev,
  6674. "resync");
  6675. if (!mddev->sync_thread) {
  6676. printk(KERN_ERR "%s: could not start resync"
  6677. " thread...\n",
  6678. mdname(mddev));
  6679. /* leave the spares where they are, it shouldn't hurt */
  6680. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6681. clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
  6682. clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
  6683. clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
  6684. clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
  6685. } else
  6686. md_wakeup_thread(mddev->sync_thread);
  6687. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6688. md_new_event(mddev);
  6689. }
  6690. unlock:
  6691. if (!mddev->sync_thread) {
  6692. clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
  6693. if (test_and_clear_bit(MD_RECOVERY_RECOVER,
  6694. &mddev->recovery))
  6695. if (mddev->sysfs_action)
  6696. sysfs_notify_dirent_safe(mddev->sysfs_action);
  6697. }
  6698. mddev_unlock(mddev);
  6699. }
  6700. }
  6701. void md_wait_for_blocked_rdev(mdk_rdev_t *rdev, mddev_t *mddev)
  6702. {
  6703. sysfs_notify_dirent_safe(rdev->sysfs_state);
  6704. wait_event_timeout(rdev->blocked_wait,
  6705. !test_bit(Blocked, &rdev->flags) &&
  6706. !test_bit(BlockedBadBlocks, &rdev->flags),
  6707. msecs_to_jiffies(5000));
  6708. rdev_dec_pending(rdev, mddev);
  6709. }
  6710. EXPORT_SYMBOL(md_wait_for_blocked_rdev);
  6711. /* Bad block management.
  6712. * We can record which blocks on each device are 'bad' and so just
  6713. * fail those blocks, or that stripe, rather than the whole device.
  6714. * Entries in the bad-block table are 64bits wide. This comprises:
  6715. * Length of bad-range, in sectors: 0-511 for lengths 1-512
  6716. * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
  6717. * A 'shift' can be set so that larger blocks are tracked and
  6718. * consequently larger devices can be covered.
  6719. * 'Acknowledged' flag - 1 bit. - the most significant bit.
  6720. *
  6721. * Locking of the bad-block table uses a seqlock so md_is_badblock
  6722. * might need to retry if it is very unlucky.
  6723. * We will sometimes want to check for bad blocks in a bi_end_io function,
  6724. * so we use the write_seqlock_irq variant.
  6725. *
  6726. * When looking for a bad block we specify a range and want to
  6727. * know if any block in the range is bad. So we binary-search
  6728. * to the last range that starts at-or-before the given endpoint,
  6729. * (or "before the sector after the target range")
  6730. * then see if it ends after the given start.
  6731. * We return
  6732. * 0 if there are no known bad blocks in the range
  6733. * 1 if there are known bad block which are all acknowledged
  6734. * -1 if there are bad blocks which have not yet been acknowledged in metadata.
  6735. * plus the start/length of the first bad section we overlap.
  6736. */
  6737. int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
  6738. sector_t *first_bad, int *bad_sectors)
  6739. {
  6740. int hi;
  6741. int lo = 0;
  6742. u64 *p = bb->page;
  6743. int rv = 0;
  6744. sector_t target = s + sectors;
  6745. unsigned seq;
  6746. if (bb->shift > 0) {
  6747. /* round the start down, and the end up */
  6748. s >>= bb->shift;
  6749. target += (1<<bb->shift) - 1;
  6750. target >>= bb->shift;
  6751. sectors = target - s;
  6752. }
  6753. /* 'target' is now the first block after the bad range */
  6754. retry:
  6755. seq = read_seqbegin(&bb->lock);
  6756. hi = bb->count;
  6757. /* Binary search between lo and hi for 'target'
  6758. * i.e. for the last range that starts before 'target'
  6759. */
  6760. /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
  6761. * are known not to be the last range before target.
  6762. * VARIANT: hi-lo is the number of possible
  6763. * ranges, and decreases until it reaches 1
  6764. */
  6765. while (hi - lo > 1) {
  6766. int mid = (lo + hi) / 2;
  6767. sector_t a = BB_OFFSET(p[mid]);
  6768. if (a < target)
  6769. /* This could still be the one, earlier ranges
  6770. * could not. */
  6771. lo = mid;
  6772. else
  6773. /* This and later ranges are definitely out. */
  6774. hi = mid;
  6775. }
  6776. /* 'lo' might be the last that started before target, but 'hi' isn't */
  6777. if (hi > lo) {
  6778. /* need to check all range that end after 's' to see if
  6779. * any are unacknowledged.
  6780. */
  6781. while (lo >= 0 &&
  6782. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  6783. if (BB_OFFSET(p[lo]) < target) {
  6784. /* starts before the end, and finishes after
  6785. * the start, so they must overlap
  6786. */
  6787. if (rv != -1 && BB_ACK(p[lo]))
  6788. rv = 1;
  6789. else
  6790. rv = -1;
  6791. *first_bad = BB_OFFSET(p[lo]);
  6792. *bad_sectors = BB_LEN(p[lo]);
  6793. }
  6794. lo--;
  6795. }
  6796. }
  6797. if (read_seqretry(&bb->lock, seq))
  6798. goto retry;
  6799. return rv;
  6800. }
  6801. EXPORT_SYMBOL_GPL(md_is_badblock);
  6802. /*
  6803. * Add a range of bad blocks to the table.
  6804. * This might extend the table, or might contract it
  6805. * if two adjacent ranges can be merged.
  6806. * We binary-search to find the 'insertion' point, then
  6807. * decide how best to handle it.
  6808. */
  6809. static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
  6810. int acknowledged)
  6811. {
  6812. u64 *p;
  6813. int lo, hi;
  6814. int rv = 1;
  6815. if (bb->shift < 0)
  6816. /* badblocks are disabled */
  6817. return 0;
  6818. if (bb->shift) {
  6819. /* round the start down, and the end up */
  6820. sector_t next = s + sectors;
  6821. s >>= bb->shift;
  6822. next += (1<<bb->shift) - 1;
  6823. next >>= bb->shift;
  6824. sectors = next - s;
  6825. }
  6826. write_seqlock_irq(&bb->lock);
  6827. p = bb->page;
  6828. lo = 0;
  6829. hi = bb->count;
  6830. /* Find the last range that starts at-or-before 's' */
  6831. while (hi - lo > 1) {
  6832. int mid = (lo + hi) / 2;
  6833. sector_t a = BB_OFFSET(p[mid]);
  6834. if (a <= s)
  6835. lo = mid;
  6836. else
  6837. hi = mid;
  6838. }
  6839. if (hi > lo && BB_OFFSET(p[lo]) > s)
  6840. hi = lo;
  6841. if (hi > lo) {
  6842. /* we found a range that might merge with the start
  6843. * of our new range
  6844. */
  6845. sector_t a = BB_OFFSET(p[lo]);
  6846. sector_t e = a + BB_LEN(p[lo]);
  6847. int ack = BB_ACK(p[lo]);
  6848. if (e >= s) {
  6849. /* Yes, we can merge with a previous range */
  6850. if (s == a && s + sectors >= e)
  6851. /* new range covers old */
  6852. ack = acknowledged;
  6853. else
  6854. ack = ack && acknowledged;
  6855. if (e < s + sectors)
  6856. e = s + sectors;
  6857. if (e - a <= BB_MAX_LEN) {
  6858. p[lo] = BB_MAKE(a, e-a, ack);
  6859. s = e;
  6860. } else {
  6861. /* does not all fit in one range,
  6862. * make p[lo] maximal
  6863. */
  6864. if (BB_LEN(p[lo]) != BB_MAX_LEN)
  6865. p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
  6866. s = a + BB_MAX_LEN;
  6867. }
  6868. sectors = e - s;
  6869. }
  6870. }
  6871. if (sectors && hi < bb->count) {
  6872. /* 'hi' points to the first range that starts after 's'.
  6873. * Maybe we can merge with the start of that range */
  6874. sector_t a = BB_OFFSET(p[hi]);
  6875. sector_t e = a + BB_LEN(p[hi]);
  6876. int ack = BB_ACK(p[hi]);
  6877. if (a <= s + sectors) {
  6878. /* merging is possible */
  6879. if (e <= s + sectors) {
  6880. /* full overlap */
  6881. e = s + sectors;
  6882. ack = acknowledged;
  6883. } else
  6884. ack = ack && acknowledged;
  6885. a = s;
  6886. if (e - a <= BB_MAX_LEN) {
  6887. p[hi] = BB_MAKE(a, e-a, ack);
  6888. s = e;
  6889. } else {
  6890. p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
  6891. s = a + BB_MAX_LEN;
  6892. }
  6893. sectors = e - s;
  6894. lo = hi;
  6895. hi++;
  6896. }
  6897. }
  6898. if (sectors == 0 && hi < bb->count) {
  6899. /* we might be able to combine lo and hi */
  6900. /* Note: 's' is at the end of 'lo' */
  6901. sector_t a = BB_OFFSET(p[hi]);
  6902. int lolen = BB_LEN(p[lo]);
  6903. int hilen = BB_LEN(p[hi]);
  6904. int newlen = lolen + hilen - (s - a);
  6905. if (s >= a && newlen < BB_MAX_LEN) {
  6906. /* yes, we can combine them */
  6907. int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
  6908. p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
  6909. memmove(p + hi, p + hi + 1,
  6910. (bb->count - hi - 1) * 8);
  6911. bb->count--;
  6912. }
  6913. }
  6914. while (sectors) {
  6915. /* didn't merge (it all).
  6916. * Need to add a range just before 'hi' */
  6917. if (bb->count >= MD_MAX_BADBLOCKS) {
  6918. /* No room for more */
  6919. rv = 0;
  6920. break;
  6921. } else {
  6922. int this_sectors = sectors;
  6923. memmove(p + hi + 1, p + hi,
  6924. (bb->count - hi) * 8);
  6925. bb->count++;
  6926. if (this_sectors > BB_MAX_LEN)
  6927. this_sectors = BB_MAX_LEN;
  6928. p[hi] = BB_MAKE(s, this_sectors, acknowledged);
  6929. sectors -= this_sectors;
  6930. s += this_sectors;
  6931. }
  6932. }
  6933. bb->changed = 1;
  6934. if (!acknowledged)
  6935. bb->unacked_exist = 1;
  6936. write_sequnlock_irq(&bb->lock);
  6937. return rv;
  6938. }
  6939. int rdev_set_badblocks(mdk_rdev_t *rdev, sector_t s, int sectors,
  6940. int acknowledged)
  6941. {
  6942. int rv = md_set_badblocks(&rdev->badblocks,
  6943. s + rdev->data_offset, sectors, acknowledged);
  6944. if (rv) {
  6945. /* Make sure they get written out promptly */
  6946. set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
  6947. md_wakeup_thread(rdev->mddev->thread);
  6948. }
  6949. return rv;
  6950. }
  6951. EXPORT_SYMBOL_GPL(rdev_set_badblocks);
  6952. /*
  6953. * Remove a range of bad blocks from the table.
  6954. * This may involve extending the table if we spilt a region,
  6955. * but it must not fail. So if the table becomes full, we just
  6956. * drop the remove request.
  6957. */
  6958. static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
  6959. {
  6960. u64 *p;
  6961. int lo, hi;
  6962. sector_t target = s + sectors;
  6963. int rv = 0;
  6964. if (bb->shift > 0) {
  6965. /* When clearing we round the start up and the end down.
  6966. * This should not matter as the shift should align with
  6967. * the block size and no rounding should ever be needed.
  6968. * However it is better the think a block is bad when it
  6969. * isn't than to think a block is not bad when it is.
  6970. */
  6971. s += (1<<bb->shift) - 1;
  6972. s >>= bb->shift;
  6973. target >>= bb->shift;
  6974. sectors = target - s;
  6975. }
  6976. write_seqlock_irq(&bb->lock);
  6977. p = bb->page;
  6978. lo = 0;
  6979. hi = bb->count;
  6980. /* Find the last range that starts before 'target' */
  6981. while (hi - lo > 1) {
  6982. int mid = (lo + hi) / 2;
  6983. sector_t a = BB_OFFSET(p[mid]);
  6984. if (a < target)
  6985. lo = mid;
  6986. else
  6987. hi = mid;
  6988. }
  6989. if (hi > lo) {
  6990. /* p[lo] is the last range that could overlap the
  6991. * current range. Earlier ranges could also overlap,
  6992. * but only this one can overlap the end of the range.
  6993. */
  6994. if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
  6995. /* Partial overlap, leave the tail of this range */
  6996. int ack = BB_ACK(p[lo]);
  6997. sector_t a = BB_OFFSET(p[lo]);
  6998. sector_t end = a + BB_LEN(p[lo]);
  6999. if (a < s) {
  7000. /* we need to split this range */
  7001. if (bb->count >= MD_MAX_BADBLOCKS) {
  7002. rv = 0;
  7003. goto out;
  7004. }
  7005. memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
  7006. bb->count++;
  7007. p[lo] = BB_MAKE(a, s-a, ack);
  7008. lo++;
  7009. }
  7010. p[lo] = BB_MAKE(target, end - target, ack);
  7011. /* there is no longer an overlap */
  7012. hi = lo;
  7013. lo--;
  7014. }
  7015. while (lo >= 0 &&
  7016. BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
  7017. /* This range does overlap */
  7018. if (BB_OFFSET(p[lo]) < s) {
  7019. /* Keep the early parts of this range. */
  7020. int ack = BB_ACK(p[lo]);
  7021. sector_t start = BB_OFFSET(p[lo]);
  7022. p[lo] = BB_MAKE(start, s - start, ack);
  7023. /* now low doesn't overlap, so.. */
  7024. break;
  7025. }
  7026. lo--;
  7027. }
  7028. /* 'lo' is strictly before, 'hi' is strictly after,
  7029. * anything between needs to be discarded
  7030. */
  7031. if (hi - lo > 1) {
  7032. memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
  7033. bb->count -= (hi - lo - 1);
  7034. }
  7035. }
  7036. bb->changed = 1;
  7037. out:
  7038. write_sequnlock_irq(&bb->lock);
  7039. return rv;
  7040. }
  7041. int rdev_clear_badblocks(mdk_rdev_t *rdev, sector_t s, int sectors)
  7042. {
  7043. return md_clear_badblocks(&rdev->badblocks,
  7044. s + rdev->data_offset,
  7045. sectors);
  7046. }
  7047. EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
  7048. /*
  7049. * Acknowledge all bad blocks in a list.
  7050. * This only succeeds if ->changed is clear. It is used by
  7051. * in-kernel metadata updates
  7052. */
  7053. void md_ack_all_badblocks(struct badblocks *bb)
  7054. {
  7055. if (bb->page == NULL || bb->changed)
  7056. /* no point even trying */
  7057. return;
  7058. write_seqlock_irq(&bb->lock);
  7059. if (bb->changed == 0) {
  7060. u64 *p = bb->page;
  7061. int i;
  7062. for (i = 0; i < bb->count ; i++) {
  7063. if (!BB_ACK(p[i])) {
  7064. sector_t start = BB_OFFSET(p[i]);
  7065. int len = BB_LEN(p[i]);
  7066. p[i] = BB_MAKE(start, len, 1);
  7067. }
  7068. }
  7069. bb->unacked_exist = 0;
  7070. }
  7071. write_sequnlock_irq(&bb->lock);
  7072. }
  7073. EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
  7074. /* sysfs access to bad-blocks list.
  7075. * We present two files.
  7076. * 'bad-blocks' lists sector numbers and lengths of ranges that
  7077. * are recorded as bad. The list is truncated to fit within
  7078. * the one-page limit of sysfs.
  7079. * Writing "sector length" to this file adds an acknowledged
  7080. * bad block list.
  7081. * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
  7082. * been acknowledged. Writing to this file adds bad blocks
  7083. * without acknowledging them. This is largely for testing.
  7084. */
  7085. static ssize_t
  7086. badblocks_show(struct badblocks *bb, char *page, int unack)
  7087. {
  7088. size_t len;
  7089. int i;
  7090. u64 *p = bb->page;
  7091. unsigned seq;
  7092. if (bb->shift < 0)
  7093. return 0;
  7094. retry:
  7095. seq = read_seqbegin(&bb->lock);
  7096. len = 0;
  7097. i = 0;
  7098. while (len < PAGE_SIZE && i < bb->count) {
  7099. sector_t s = BB_OFFSET(p[i]);
  7100. unsigned int length = BB_LEN(p[i]);
  7101. int ack = BB_ACK(p[i]);
  7102. i++;
  7103. if (unack && ack)
  7104. continue;
  7105. len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
  7106. (unsigned long long)s << bb->shift,
  7107. length << bb->shift);
  7108. }
  7109. if (unack && len == 0)
  7110. bb->unacked_exist = 0;
  7111. if (read_seqretry(&bb->lock, seq))
  7112. goto retry;
  7113. return len;
  7114. }
  7115. #define DO_DEBUG 1
  7116. static ssize_t
  7117. badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
  7118. {
  7119. unsigned long long sector;
  7120. int length;
  7121. char newline;
  7122. #ifdef DO_DEBUG
  7123. /* Allow clearing via sysfs *only* for testing/debugging.
  7124. * Normally only a successful write may clear a badblock
  7125. */
  7126. int clear = 0;
  7127. if (page[0] == '-') {
  7128. clear = 1;
  7129. page++;
  7130. }
  7131. #endif /* DO_DEBUG */
  7132. switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
  7133. case 3:
  7134. if (newline != '\n')
  7135. return -EINVAL;
  7136. case 2:
  7137. if (length <= 0)
  7138. return -EINVAL;
  7139. break;
  7140. default:
  7141. return -EINVAL;
  7142. }
  7143. #ifdef DO_DEBUG
  7144. if (clear) {
  7145. md_clear_badblocks(bb, sector, length);
  7146. return len;
  7147. }
  7148. #endif /* DO_DEBUG */
  7149. if (md_set_badblocks(bb, sector, length, !unack))
  7150. return len;
  7151. else
  7152. return -ENOSPC;
  7153. }
  7154. static int md_notify_reboot(struct notifier_block *this,
  7155. unsigned long code, void *x)
  7156. {
  7157. struct list_head *tmp;
  7158. mddev_t *mddev;
  7159. int need_delay = 0;
  7160. if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
  7161. printk(KERN_INFO "md: stopping all md devices.\n");
  7162. for_each_mddev(mddev, tmp) {
  7163. if (mddev_trylock(mddev)) {
  7164. /* Force a switch to readonly even array
  7165. * appears to still be in use. Hence
  7166. * the '100'.
  7167. */
  7168. md_set_readonly(mddev, 100);
  7169. mddev_unlock(mddev);
  7170. }
  7171. need_delay = 1;
  7172. }
  7173. /*
  7174. * certain more exotic SCSI devices are known to be
  7175. * volatile wrt too early system reboots. While the
  7176. * right place to handle this issue is the given
  7177. * driver, we do want to have a safe RAID driver ...
  7178. */
  7179. if (need_delay)
  7180. mdelay(1000*1);
  7181. }
  7182. return NOTIFY_DONE;
  7183. }
  7184. static struct notifier_block md_notifier = {
  7185. .notifier_call = md_notify_reboot,
  7186. .next = NULL,
  7187. .priority = INT_MAX, /* before any real devices */
  7188. };
  7189. static void md_geninit(void)
  7190. {
  7191. pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
  7192. proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
  7193. }
  7194. static int __init md_init(void)
  7195. {
  7196. int ret = -ENOMEM;
  7197. md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
  7198. if (!md_wq)
  7199. goto err_wq;
  7200. md_misc_wq = alloc_workqueue("md_misc", 0, 0);
  7201. if (!md_misc_wq)
  7202. goto err_misc_wq;
  7203. if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
  7204. goto err_md;
  7205. if ((ret = register_blkdev(0, "mdp")) < 0)
  7206. goto err_mdp;
  7207. mdp_major = ret;
  7208. blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
  7209. md_probe, NULL, NULL);
  7210. blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
  7211. md_probe, NULL, NULL);
  7212. register_reboot_notifier(&md_notifier);
  7213. raid_table_header = register_sysctl_table(raid_root_table);
  7214. md_geninit();
  7215. return 0;
  7216. err_mdp:
  7217. unregister_blkdev(MD_MAJOR, "md");
  7218. err_md:
  7219. destroy_workqueue(md_misc_wq);
  7220. err_misc_wq:
  7221. destroy_workqueue(md_wq);
  7222. err_wq:
  7223. return ret;
  7224. }
  7225. #ifndef MODULE
  7226. /*
  7227. * Searches all registered partitions for autorun RAID arrays
  7228. * at boot time.
  7229. */
  7230. static LIST_HEAD(all_detected_devices);
  7231. struct detected_devices_node {
  7232. struct list_head list;
  7233. dev_t dev;
  7234. };
  7235. void md_autodetect_dev(dev_t dev)
  7236. {
  7237. struct detected_devices_node *node_detected_dev;
  7238. node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
  7239. if (node_detected_dev) {
  7240. node_detected_dev->dev = dev;
  7241. list_add_tail(&node_detected_dev->list, &all_detected_devices);
  7242. } else {
  7243. printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
  7244. ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
  7245. }
  7246. }
  7247. static void autostart_arrays(int part)
  7248. {
  7249. mdk_rdev_t *rdev;
  7250. struct detected_devices_node *node_detected_dev;
  7251. dev_t dev;
  7252. int i_scanned, i_passed;
  7253. i_scanned = 0;
  7254. i_passed = 0;
  7255. printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
  7256. while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
  7257. i_scanned++;
  7258. node_detected_dev = list_entry(all_detected_devices.next,
  7259. struct detected_devices_node, list);
  7260. list_del(&node_detected_dev->list);
  7261. dev = node_detected_dev->dev;
  7262. kfree(node_detected_dev);
  7263. rdev = md_import_device(dev,0, 90);
  7264. if (IS_ERR(rdev))
  7265. continue;
  7266. if (test_bit(Faulty, &rdev->flags)) {
  7267. MD_BUG();
  7268. continue;
  7269. }
  7270. set_bit(AutoDetected, &rdev->flags);
  7271. list_add(&rdev->same_set, &pending_raid_disks);
  7272. i_passed++;
  7273. }
  7274. printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
  7275. i_scanned, i_passed);
  7276. autorun_devices(part);
  7277. }
  7278. #endif /* !MODULE */
  7279. static __exit void md_exit(void)
  7280. {
  7281. mddev_t *mddev;
  7282. struct list_head *tmp;
  7283. blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
  7284. blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
  7285. unregister_blkdev(MD_MAJOR,"md");
  7286. unregister_blkdev(mdp_major, "mdp");
  7287. unregister_reboot_notifier(&md_notifier);
  7288. unregister_sysctl_table(raid_table_header);
  7289. remove_proc_entry("mdstat", NULL);
  7290. for_each_mddev(mddev, tmp) {
  7291. export_array(mddev);
  7292. mddev->hold_active = 0;
  7293. }
  7294. destroy_workqueue(md_misc_wq);
  7295. destroy_workqueue(md_wq);
  7296. }
  7297. subsys_initcall(md_init);
  7298. module_exit(md_exit)
  7299. static int get_ro(char *buffer, struct kernel_param *kp)
  7300. {
  7301. return sprintf(buffer, "%d", start_readonly);
  7302. }
  7303. static int set_ro(const char *val, struct kernel_param *kp)
  7304. {
  7305. char *e;
  7306. int num = simple_strtoul(val, &e, 10);
  7307. if (*val && (*e == '\0' || *e == '\n')) {
  7308. start_readonly = num;
  7309. return 0;
  7310. }
  7311. return -EINVAL;
  7312. }
  7313. module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
  7314. module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
  7315. module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
  7316. EXPORT_SYMBOL(register_md_personality);
  7317. EXPORT_SYMBOL(unregister_md_personality);
  7318. EXPORT_SYMBOL(md_error);
  7319. EXPORT_SYMBOL(md_done_sync);
  7320. EXPORT_SYMBOL(md_write_start);
  7321. EXPORT_SYMBOL(md_write_end);
  7322. EXPORT_SYMBOL(md_register_thread);
  7323. EXPORT_SYMBOL(md_unregister_thread);
  7324. EXPORT_SYMBOL(md_wakeup_thread);
  7325. EXPORT_SYMBOL(md_check_recovery);
  7326. MODULE_LICENSE("GPL");
  7327. MODULE_DESCRIPTION("MD RAID framework");
  7328. MODULE_ALIAS("md");
  7329. MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);