mmu.c 84 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. * Copyright 2010 Red Hat, Inc. and/or its affilates.
  11. *
  12. * Authors:
  13. * Yaniv Kamay <yaniv@qumranet.com>
  14. * Avi Kivity <avi@qumranet.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include "mmu.h"
  21. #include "x86.h"
  22. #include "kvm_cache_regs.h"
  23. #include <linux/kvm_host.h>
  24. #include <linux/types.h>
  25. #include <linux/string.h>
  26. #include <linux/mm.h>
  27. #include <linux/highmem.h>
  28. #include <linux/module.h>
  29. #include <linux/swap.h>
  30. #include <linux/hugetlb.h>
  31. #include <linux/compiler.h>
  32. #include <linux/srcu.h>
  33. #include <linux/slab.h>
  34. #include <linux/uaccess.h>
  35. #include <asm/page.h>
  36. #include <asm/cmpxchg.h>
  37. #include <asm/io.h>
  38. #include <asm/vmx.h>
  39. /*
  40. * When setting this variable to true it enables Two-Dimensional-Paging
  41. * where the hardware walks 2 page tables:
  42. * 1. the guest-virtual to guest-physical
  43. * 2. while doing 1. it walks guest-physical to host-physical
  44. * If the hardware supports that we don't need to do shadow paging.
  45. */
  46. bool tdp_enabled = false;
  47. #undef MMU_DEBUG
  48. #undef AUDIT
  49. #ifdef AUDIT
  50. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  51. #else
  52. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  53. #endif
  54. #ifdef MMU_DEBUG
  55. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  56. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  57. #else
  58. #define pgprintk(x...) do { } while (0)
  59. #define rmap_printk(x...) do { } while (0)
  60. #endif
  61. #if defined(MMU_DEBUG) || defined(AUDIT)
  62. static int dbg = 0;
  63. module_param(dbg, bool, 0644);
  64. #endif
  65. static int oos_shadow = 1;
  66. module_param(oos_shadow, bool, 0644);
  67. #ifndef MMU_DEBUG
  68. #define ASSERT(x) do { } while (0)
  69. #else
  70. #define ASSERT(x) \
  71. if (!(x)) { \
  72. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  73. __FILE__, __LINE__, #x); \
  74. }
  75. #endif
  76. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  77. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  78. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  79. #define PT64_LEVEL_BITS 9
  80. #define PT64_LEVEL_SHIFT(level) \
  81. (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
  82. #define PT64_LEVEL_MASK(level) \
  83. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  84. #define PT64_INDEX(address, level)\
  85. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  86. #define PT32_LEVEL_BITS 10
  87. #define PT32_LEVEL_SHIFT(level) \
  88. (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
  89. #define PT32_LEVEL_MASK(level) \
  90. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  91. #define PT32_LVL_OFFSET_MASK(level) \
  92. (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  93. * PT32_LEVEL_BITS))) - 1))
  94. #define PT32_INDEX(address, level)\
  95. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  96. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  97. #define PT64_DIR_BASE_ADDR_MASK \
  98. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  99. #define PT64_LVL_ADDR_MASK(level) \
  100. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  101. * PT64_LEVEL_BITS))) - 1))
  102. #define PT64_LVL_OFFSET_MASK(level) \
  103. (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
  104. * PT64_LEVEL_BITS))) - 1))
  105. #define PT32_BASE_ADDR_MASK PAGE_MASK
  106. #define PT32_DIR_BASE_ADDR_MASK \
  107. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  108. #define PT32_LVL_ADDR_MASK(level) \
  109. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
  110. * PT32_LEVEL_BITS))) - 1))
  111. #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
  112. | PT64_NX_MASK)
  113. #define RMAP_EXT 4
  114. #define ACC_EXEC_MASK 1
  115. #define ACC_WRITE_MASK PT_WRITABLE_MASK
  116. #define ACC_USER_MASK PT_USER_MASK
  117. #define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
  118. #include <trace/events/kvm.h>
  119. #define CREATE_TRACE_POINTS
  120. #include "mmutrace.h"
  121. #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  122. #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
  123. struct kvm_rmap_desc {
  124. u64 *sptes[RMAP_EXT];
  125. struct kvm_rmap_desc *more;
  126. };
  127. struct kvm_shadow_walk_iterator {
  128. u64 addr;
  129. hpa_t shadow_addr;
  130. int level;
  131. u64 *sptep;
  132. unsigned index;
  133. };
  134. #define for_each_shadow_entry(_vcpu, _addr, _walker) \
  135. for (shadow_walk_init(&(_walker), _vcpu, _addr); \
  136. shadow_walk_okay(&(_walker)); \
  137. shadow_walk_next(&(_walker)))
  138. typedef void (*mmu_parent_walk_fn) (struct kvm_mmu_page *sp, u64 *spte);
  139. static struct kmem_cache *pte_chain_cache;
  140. static struct kmem_cache *rmap_desc_cache;
  141. static struct kmem_cache *mmu_page_header_cache;
  142. static u64 __read_mostly shadow_trap_nonpresent_pte;
  143. static u64 __read_mostly shadow_notrap_nonpresent_pte;
  144. static u64 __read_mostly shadow_base_present_pte;
  145. static u64 __read_mostly shadow_nx_mask;
  146. static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
  147. static u64 __read_mostly shadow_user_mask;
  148. static u64 __read_mostly shadow_accessed_mask;
  149. static u64 __read_mostly shadow_dirty_mask;
  150. static inline u64 rsvd_bits(int s, int e)
  151. {
  152. return ((1ULL << (e - s + 1)) - 1) << s;
  153. }
  154. void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
  155. {
  156. shadow_trap_nonpresent_pte = trap_pte;
  157. shadow_notrap_nonpresent_pte = notrap_pte;
  158. }
  159. EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
  160. void kvm_mmu_set_base_ptes(u64 base_pte)
  161. {
  162. shadow_base_present_pte = base_pte;
  163. }
  164. EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
  165. void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
  166. u64 dirty_mask, u64 nx_mask, u64 x_mask)
  167. {
  168. shadow_user_mask = user_mask;
  169. shadow_accessed_mask = accessed_mask;
  170. shadow_dirty_mask = dirty_mask;
  171. shadow_nx_mask = nx_mask;
  172. shadow_x_mask = x_mask;
  173. }
  174. EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
  175. static bool is_write_protection(struct kvm_vcpu *vcpu)
  176. {
  177. return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
  178. }
  179. static int is_cpuid_PSE36(void)
  180. {
  181. return 1;
  182. }
  183. static int is_nx(struct kvm_vcpu *vcpu)
  184. {
  185. return vcpu->arch.efer & EFER_NX;
  186. }
  187. static int is_shadow_present_pte(u64 pte)
  188. {
  189. return pte != shadow_trap_nonpresent_pte
  190. && pte != shadow_notrap_nonpresent_pte;
  191. }
  192. static int is_large_pte(u64 pte)
  193. {
  194. return pte & PT_PAGE_SIZE_MASK;
  195. }
  196. static int is_writable_pte(unsigned long pte)
  197. {
  198. return pte & PT_WRITABLE_MASK;
  199. }
  200. static int is_dirty_gpte(unsigned long pte)
  201. {
  202. return pte & PT_DIRTY_MASK;
  203. }
  204. static int is_rmap_spte(u64 pte)
  205. {
  206. return is_shadow_present_pte(pte);
  207. }
  208. static int is_last_spte(u64 pte, int level)
  209. {
  210. if (level == PT_PAGE_TABLE_LEVEL)
  211. return 1;
  212. if (is_large_pte(pte))
  213. return 1;
  214. return 0;
  215. }
  216. static pfn_t spte_to_pfn(u64 pte)
  217. {
  218. return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  219. }
  220. static gfn_t pse36_gfn_delta(u32 gpte)
  221. {
  222. int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
  223. return (gpte & PT32_DIR_PSE36_MASK) << shift;
  224. }
  225. static void __set_spte(u64 *sptep, u64 spte)
  226. {
  227. #ifdef CONFIG_X86_64
  228. set_64bit((unsigned long *)sptep, spte);
  229. #else
  230. set_64bit((unsigned long long *)sptep, spte);
  231. #endif
  232. }
  233. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  234. struct kmem_cache *base_cache, int min)
  235. {
  236. void *obj;
  237. if (cache->nobjs >= min)
  238. return 0;
  239. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  240. obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
  241. if (!obj)
  242. return -ENOMEM;
  243. cache->objects[cache->nobjs++] = obj;
  244. }
  245. return 0;
  246. }
  247. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
  248. struct kmem_cache *cache)
  249. {
  250. while (mc->nobjs)
  251. kmem_cache_free(cache, mc->objects[--mc->nobjs]);
  252. }
  253. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  254. int min)
  255. {
  256. struct page *page;
  257. if (cache->nobjs >= min)
  258. return 0;
  259. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  260. page = alloc_page(GFP_KERNEL);
  261. if (!page)
  262. return -ENOMEM;
  263. cache->objects[cache->nobjs++] = page_address(page);
  264. }
  265. return 0;
  266. }
  267. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  268. {
  269. while (mc->nobjs)
  270. free_page((unsigned long)mc->objects[--mc->nobjs]);
  271. }
  272. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  273. {
  274. int r;
  275. r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
  276. pte_chain_cache, 4);
  277. if (r)
  278. goto out;
  279. r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
  280. rmap_desc_cache, 4);
  281. if (r)
  282. goto out;
  283. r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
  284. if (r)
  285. goto out;
  286. r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
  287. mmu_page_header_cache, 4);
  288. out:
  289. return r;
  290. }
  291. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  292. {
  293. mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache, pte_chain_cache);
  294. mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache, rmap_desc_cache);
  295. mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
  296. mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
  297. mmu_page_header_cache);
  298. }
  299. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  300. size_t size)
  301. {
  302. void *p;
  303. BUG_ON(!mc->nobjs);
  304. p = mc->objects[--mc->nobjs];
  305. return p;
  306. }
  307. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  308. {
  309. return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
  310. sizeof(struct kvm_pte_chain));
  311. }
  312. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  313. {
  314. kmem_cache_free(pte_chain_cache, pc);
  315. }
  316. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  317. {
  318. return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
  319. sizeof(struct kvm_rmap_desc));
  320. }
  321. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  322. {
  323. kmem_cache_free(rmap_desc_cache, rd);
  324. }
  325. static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
  326. {
  327. if (!sp->role.direct)
  328. return sp->gfns[index];
  329. return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
  330. }
  331. static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
  332. {
  333. if (sp->role.direct)
  334. BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
  335. else
  336. sp->gfns[index] = gfn;
  337. }
  338. /*
  339. * Return the pointer to the largepage write count for a given
  340. * gfn, handling slots that are not large page aligned.
  341. */
  342. static int *slot_largepage_idx(gfn_t gfn,
  343. struct kvm_memory_slot *slot,
  344. int level)
  345. {
  346. unsigned long idx;
  347. idx = (gfn / KVM_PAGES_PER_HPAGE(level)) -
  348. (slot->base_gfn / KVM_PAGES_PER_HPAGE(level));
  349. return &slot->lpage_info[level - 2][idx].write_count;
  350. }
  351. static void account_shadowed(struct kvm *kvm, gfn_t gfn)
  352. {
  353. struct kvm_memory_slot *slot;
  354. int *write_count;
  355. int i;
  356. slot = gfn_to_memslot(kvm, gfn);
  357. for (i = PT_DIRECTORY_LEVEL;
  358. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  359. write_count = slot_largepage_idx(gfn, slot, i);
  360. *write_count += 1;
  361. }
  362. }
  363. static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
  364. {
  365. struct kvm_memory_slot *slot;
  366. int *write_count;
  367. int i;
  368. slot = gfn_to_memslot(kvm, gfn);
  369. for (i = PT_DIRECTORY_LEVEL;
  370. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  371. write_count = slot_largepage_idx(gfn, slot, i);
  372. *write_count -= 1;
  373. WARN_ON(*write_count < 0);
  374. }
  375. }
  376. static int has_wrprotected_page(struct kvm *kvm,
  377. gfn_t gfn,
  378. int level)
  379. {
  380. struct kvm_memory_slot *slot;
  381. int *largepage_idx;
  382. slot = gfn_to_memslot(kvm, gfn);
  383. if (slot) {
  384. largepage_idx = slot_largepage_idx(gfn, slot, level);
  385. return *largepage_idx;
  386. }
  387. return 1;
  388. }
  389. static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
  390. {
  391. unsigned long page_size;
  392. int i, ret = 0;
  393. page_size = kvm_host_page_size(kvm, gfn);
  394. for (i = PT_PAGE_TABLE_LEVEL;
  395. i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
  396. if (page_size >= KVM_HPAGE_SIZE(i))
  397. ret = i;
  398. else
  399. break;
  400. }
  401. return ret;
  402. }
  403. static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
  404. {
  405. struct kvm_memory_slot *slot;
  406. int host_level, level, max_level;
  407. slot = gfn_to_memslot(vcpu->kvm, large_gfn);
  408. if (slot && slot->dirty_bitmap)
  409. return PT_PAGE_TABLE_LEVEL;
  410. host_level = host_mapping_level(vcpu->kvm, large_gfn);
  411. if (host_level == PT_PAGE_TABLE_LEVEL)
  412. return host_level;
  413. max_level = kvm_x86_ops->get_lpage_level() < host_level ?
  414. kvm_x86_ops->get_lpage_level() : host_level;
  415. for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
  416. if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
  417. break;
  418. return level - 1;
  419. }
  420. /*
  421. * Take gfn and return the reverse mapping to it.
  422. */
  423. static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
  424. {
  425. struct kvm_memory_slot *slot;
  426. unsigned long idx;
  427. slot = gfn_to_memslot(kvm, gfn);
  428. if (likely(level == PT_PAGE_TABLE_LEVEL))
  429. return &slot->rmap[gfn - slot->base_gfn];
  430. idx = (gfn / KVM_PAGES_PER_HPAGE(level)) -
  431. (slot->base_gfn / KVM_PAGES_PER_HPAGE(level));
  432. return &slot->lpage_info[level - 2][idx].rmap_pde;
  433. }
  434. /*
  435. * Reverse mapping data structures:
  436. *
  437. * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
  438. * that points to page_address(page).
  439. *
  440. * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
  441. * containing more mappings.
  442. *
  443. * Returns the number of rmap entries before the spte was added or zero if
  444. * the spte was not added.
  445. *
  446. */
  447. static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  448. {
  449. struct kvm_mmu_page *sp;
  450. struct kvm_rmap_desc *desc;
  451. unsigned long *rmapp;
  452. int i, count = 0;
  453. if (!is_rmap_spte(*spte))
  454. return count;
  455. sp = page_header(__pa(spte));
  456. kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
  457. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  458. if (!*rmapp) {
  459. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  460. *rmapp = (unsigned long)spte;
  461. } else if (!(*rmapp & 1)) {
  462. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  463. desc = mmu_alloc_rmap_desc(vcpu);
  464. desc->sptes[0] = (u64 *)*rmapp;
  465. desc->sptes[1] = spte;
  466. *rmapp = (unsigned long)desc | 1;
  467. } else {
  468. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  469. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  470. while (desc->sptes[RMAP_EXT-1] && desc->more) {
  471. desc = desc->more;
  472. count += RMAP_EXT;
  473. }
  474. if (desc->sptes[RMAP_EXT-1]) {
  475. desc->more = mmu_alloc_rmap_desc(vcpu);
  476. desc = desc->more;
  477. }
  478. for (i = 0; desc->sptes[i]; ++i)
  479. ;
  480. desc->sptes[i] = spte;
  481. }
  482. return count;
  483. }
  484. static void rmap_desc_remove_entry(unsigned long *rmapp,
  485. struct kvm_rmap_desc *desc,
  486. int i,
  487. struct kvm_rmap_desc *prev_desc)
  488. {
  489. int j;
  490. for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
  491. ;
  492. desc->sptes[i] = desc->sptes[j];
  493. desc->sptes[j] = NULL;
  494. if (j != 0)
  495. return;
  496. if (!prev_desc && !desc->more)
  497. *rmapp = (unsigned long)desc->sptes[0];
  498. else
  499. if (prev_desc)
  500. prev_desc->more = desc->more;
  501. else
  502. *rmapp = (unsigned long)desc->more | 1;
  503. mmu_free_rmap_desc(desc);
  504. }
  505. static void rmap_remove(struct kvm *kvm, u64 *spte)
  506. {
  507. struct kvm_rmap_desc *desc;
  508. struct kvm_rmap_desc *prev_desc;
  509. struct kvm_mmu_page *sp;
  510. pfn_t pfn;
  511. gfn_t gfn;
  512. unsigned long *rmapp;
  513. int i;
  514. if (!is_rmap_spte(*spte))
  515. return;
  516. sp = page_header(__pa(spte));
  517. pfn = spte_to_pfn(*spte);
  518. if (*spte & shadow_accessed_mask)
  519. kvm_set_pfn_accessed(pfn);
  520. if (is_writable_pte(*spte))
  521. kvm_set_pfn_dirty(pfn);
  522. gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
  523. rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
  524. if (!*rmapp) {
  525. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  526. BUG();
  527. } else if (!(*rmapp & 1)) {
  528. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  529. if ((u64 *)*rmapp != spte) {
  530. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  531. spte, *spte);
  532. BUG();
  533. }
  534. *rmapp = 0;
  535. } else {
  536. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  537. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  538. prev_desc = NULL;
  539. while (desc) {
  540. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
  541. if (desc->sptes[i] == spte) {
  542. rmap_desc_remove_entry(rmapp,
  543. desc, i,
  544. prev_desc);
  545. return;
  546. }
  547. prev_desc = desc;
  548. desc = desc->more;
  549. }
  550. pr_err("rmap_remove: %p %llx many->many\n", spte, *spte);
  551. BUG();
  552. }
  553. }
  554. static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
  555. {
  556. struct kvm_rmap_desc *desc;
  557. u64 *prev_spte;
  558. int i;
  559. if (!*rmapp)
  560. return NULL;
  561. else if (!(*rmapp & 1)) {
  562. if (!spte)
  563. return (u64 *)*rmapp;
  564. return NULL;
  565. }
  566. desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  567. prev_spte = NULL;
  568. while (desc) {
  569. for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
  570. if (prev_spte == spte)
  571. return desc->sptes[i];
  572. prev_spte = desc->sptes[i];
  573. }
  574. desc = desc->more;
  575. }
  576. return NULL;
  577. }
  578. static int rmap_write_protect(struct kvm *kvm, u64 gfn)
  579. {
  580. unsigned long *rmapp;
  581. u64 *spte;
  582. int i, write_protected = 0;
  583. rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
  584. spte = rmap_next(kvm, rmapp, NULL);
  585. while (spte) {
  586. BUG_ON(!spte);
  587. BUG_ON(!(*spte & PT_PRESENT_MASK));
  588. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  589. if (is_writable_pte(*spte)) {
  590. __set_spte(spte, *spte & ~PT_WRITABLE_MASK);
  591. write_protected = 1;
  592. }
  593. spte = rmap_next(kvm, rmapp, spte);
  594. }
  595. if (write_protected) {
  596. pfn_t pfn;
  597. spte = rmap_next(kvm, rmapp, NULL);
  598. pfn = spte_to_pfn(*spte);
  599. kvm_set_pfn_dirty(pfn);
  600. }
  601. /* check for huge page mappings */
  602. for (i = PT_DIRECTORY_LEVEL;
  603. i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
  604. rmapp = gfn_to_rmap(kvm, gfn, i);
  605. spte = rmap_next(kvm, rmapp, NULL);
  606. while (spte) {
  607. BUG_ON(!spte);
  608. BUG_ON(!(*spte & PT_PRESENT_MASK));
  609. BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
  610. pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
  611. if (is_writable_pte(*spte)) {
  612. rmap_remove(kvm, spte);
  613. --kvm->stat.lpages;
  614. __set_spte(spte, shadow_trap_nonpresent_pte);
  615. spte = NULL;
  616. write_protected = 1;
  617. }
  618. spte = rmap_next(kvm, rmapp, spte);
  619. }
  620. }
  621. return write_protected;
  622. }
  623. static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
  624. unsigned long data)
  625. {
  626. u64 *spte;
  627. int need_tlb_flush = 0;
  628. while ((spte = rmap_next(kvm, rmapp, NULL))) {
  629. BUG_ON(!(*spte & PT_PRESENT_MASK));
  630. rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
  631. rmap_remove(kvm, spte);
  632. __set_spte(spte, shadow_trap_nonpresent_pte);
  633. need_tlb_flush = 1;
  634. }
  635. return need_tlb_flush;
  636. }
  637. static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
  638. unsigned long data)
  639. {
  640. int need_flush = 0;
  641. u64 *spte, new_spte;
  642. pte_t *ptep = (pte_t *)data;
  643. pfn_t new_pfn;
  644. WARN_ON(pte_huge(*ptep));
  645. new_pfn = pte_pfn(*ptep);
  646. spte = rmap_next(kvm, rmapp, NULL);
  647. while (spte) {
  648. BUG_ON(!is_shadow_present_pte(*spte));
  649. rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
  650. need_flush = 1;
  651. if (pte_write(*ptep)) {
  652. rmap_remove(kvm, spte);
  653. __set_spte(spte, shadow_trap_nonpresent_pte);
  654. spte = rmap_next(kvm, rmapp, NULL);
  655. } else {
  656. new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
  657. new_spte |= (u64)new_pfn << PAGE_SHIFT;
  658. new_spte &= ~PT_WRITABLE_MASK;
  659. new_spte &= ~SPTE_HOST_WRITEABLE;
  660. if (is_writable_pte(*spte))
  661. kvm_set_pfn_dirty(spte_to_pfn(*spte));
  662. __set_spte(spte, new_spte);
  663. spte = rmap_next(kvm, rmapp, spte);
  664. }
  665. }
  666. if (need_flush)
  667. kvm_flush_remote_tlbs(kvm);
  668. return 0;
  669. }
  670. static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
  671. unsigned long data,
  672. int (*handler)(struct kvm *kvm, unsigned long *rmapp,
  673. unsigned long data))
  674. {
  675. int i, j;
  676. int ret;
  677. int retval = 0;
  678. struct kvm_memslots *slots;
  679. slots = kvm_memslots(kvm);
  680. for (i = 0; i < slots->nmemslots; i++) {
  681. struct kvm_memory_slot *memslot = &slots->memslots[i];
  682. unsigned long start = memslot->userspace_addr;
  683. unsigned long end;
  684. end = start + (memslot->npages << PAGE_SHIFT);
  685. if (hva >= start && hva < end) {
  686. gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
  687. ret = handler(kvm, &memslot->rmap[gfn_offset], data);
  688. for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
  689. int idx = gfn_offset;
  690. idx /= KVM_PAGES_PER_HPAGE(PT_DIRECTORY_LEVEL + j);
  691. ret |= handler(kvm,
  692. &memslot->lpage_info[j][idx].rmap_pde,
  693. data);
  694. }
  695. trace_kvm_age_page(hva, memslot, ret);
  696. retval |= ret;
  697. }
  698. }
  699. return retval;
  700. }
  701. int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
  702. {
  703. return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
  704. }
  705. void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
  706. {
  707. kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
  708. }
  709. static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
  710. unsigned long data)
  711. {
  712. u64 *spte;
  713. int young = 0;
  714. /*
  715. * Emulate the accessed bit for EPT, by checking if this page has
  716. * an EPT mapping, and clearing it if it does. On the next access,
  717. * a new EPT mapping will be established.
  718. * This has some overhead, but not as much as the cost of swapping
  719. * out actively used pages or breaking up actively used hugepages.
  720. */
  721. if (!shadow_accessed_mask)
  722. return kvm_unmap_rmapp(kvm, rmapp, data);
  723. spte = rmap_next(kvm, rmapp, NULL);
  724. while (spte) {
  725. int _young;
  726. u64 _spte = *spte;
  727. BUG_ON(!(_spte & PT_PRESENT_MASK));
  728. _young = _spte & PT_ACCESSED_MASK;
  729. if (_young) {
  730. young = 1;
  731. clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  732. }
  733. spte = rmap_next(kvm, rmapp, spte);
  734. }
  735. return young;
  736. }
  737. #define RMAP_RECYCLE_THRESHOLD 1000
  738. static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
  739. {
  740. unsigned long *rmapp;
  741. struct kvm_mmu_page *sp;
  742. sp = page_header(__pa(spte));
  743. rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
  744. kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
  745. kvm_flush_remote_tlbs(vcpu->kvm);
  746. }
  747. int kvm_age_hva(struct kvm *kvm, unsigned long hva)
  748. {
  749. return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
  750. }
  751. #ifdef MMU_DEBUG
  752. static int is_empty_shadow_page(u64 *spt)
  753. {
  754. u64 *pos;
  755. u64 *end;
  756. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  757. if (is_shadow_present_pte(*pos)) {
  758. printk(KERN_ERR "%s: %p %llx\n", __func__,
  759. pos, *pos);
  760. return 0;
  761. }
  762. return 1;
  763. }
  764. #endif
  765. static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  766. {
  767. ASSERT(is_empty_shadow_page(sp->spt));
  768. hlist_del(&sp->hash_link);
  769. list_del(&sp->link);
  770. __free_page(virt_to_page(sp->spt));
  771. if (!sp->role.direct)
  772. __free_page(virt_to_page(sp->gfns));
  773. kmem_cache_free(mmu_page_header_cache, sp);
  774. ++kvm->arch.n_free_mmu_pages;
  775. }
  776. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  777. {
  778. return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
  779. }
  780. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  781. u64 *parent_pte, int direct)
  782. {
  783. struct kvm_mmu_page *sp;
  784. sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
  785. sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
  786. if (!direct)
  787. sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache,
  788. PAGE_SIZE);
  789. set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
  790. list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
  791. bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
  792. sp->multimapped = 0;
  793. sp->parent_pte = parent_pte;
  794. --vcpu->kvm->arch.n_free_mmu_pages;
  795. return sp;
  796. }
  797. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  798. struct kvm_mmu_page *sp, u64 *parent_pte)
  799. {
  800. struct kvm_pte_chain *pte_chain;
  801. struct hlist_node *node;
  802. int i;
  803. if (!parent_pte)
  804. return;
  805. if (!sp->multimapped) {
  806. u64 *old = sp->parent_pte;
  807. if (!old) {
  808. sp->parent_pte = parent_pte;
  809. return;
  810. }
  811. sp->multimapped = 1;
  812. pte_chain = mmu_alloc_pte_chain(vcpu);
  813. INIT_HLIST_HEAD(&sp->parent_ptes);
  814. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  815. pte_chain->parent_ptes[0] = old;
  816. }
  817. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
  818. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  819. continue;
  820. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  821. if (!pte_chain->parent_ptes[i]) {
  822. pte_chain->parent_ptes[i] = parent_pte;
  823. return;
  824. }
  825. }
  826. pte_chain = mmu_alloc_pte_chain(vcpu);
  827. BUG_ON(!pte_chain);
  828. hlist_add_head(&pte_chain->link, &sp->parent_ptes);
  829. pte_chain->parent_ptes[0] = parent_pte;
  830. }
  831. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
  832. u64 *parent_pte)
  833. {
  834. struct kvm_pte_chain *pte_chain;
  835. struct hlist_node *node;
  836. int i;
  837. if (!sp->multimapped) {
  838. BUG_ON(sp->parent_pte != parent_pte);
  839. sp->parent_pte = NULL;
  840. return;
  841. }
  842. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  843. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  844. if (!pte_chain->parent_ptes[i])
  845. break;
  846. if (pte_chain->parent_ptes[i] != parent_pte)
  847. continue;
  848. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  849. && pte_chain->parent_ptes[i + 1]) {
  850. pte_chain->parent_ptes[i]
  851. = pte_chain->parent_ptes[i + 1];
  852. ++i;
  853. }
  854. pte_chain->parent_ptes[i] = NULL;
  855. if (i == 0) {
  856. hlist_del(&pte_chain->link);
  857. mmu_free_pte_chain(pte_chain);
  858. if (hlist_empty(&sp->parent_ptes)) {
  859. sp->multimapped = 0;
  860. sp->parent_pte = NULL;
  861. }
  862. }
  863. return;
  864. }
  865. BUG();
  866. }
  867. static void mmu_parent_walk(struct kvm_mmu_page *sp, mmu_parent_walk_fn fn)
  868. {
  869. struct kvm_pte_chain *pte_chain;
  870. struct hlist_node *node;
  871. struct kvm_mmu_page *parent_sp;
  872. int i;
  873. if (!sp->multimapped && sp->parent_pte) {
  874. parent_sp = page_header(__pa(sp->parent_pte));
  875. fn(parent_sp, sp->parent_pte);
  876. return;
  877. }
  878. hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
  879. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  880. u64 *spte = pte_chain->parent_ptes[i];
  881. if (!spte)
  882. break;
  883. parent_sp = page_header(__pa(spte));
  884. fn(parent_sp, spte);
  885. }
  886. }
  887. static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte);
  888. static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
  889. {
  890. mmu_parent_walk(sp, mark_unsync);
  891. }
  892. static void mark_unsync(struct kvm_mmu_page *sp, u64 *spte)
  893. {
  894. unsigned int index;
  895. index = spte - sp->spt;
  896. if (__test_and_set_bit(index, sp->unsync_child_bitmap))
  897. return;
  898. if (sp->unsync_children++)
  899. return;
  900. kvm_mmu_mark_parents_unsync(sp);
  901. }
  902. static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
  903. struct kvm_mmu_page *sp)
  904. {
  905. int i;
  906. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  907. sp->spt[i] = shadow_trap_nonpresent_pte;
  908. }
  909. static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
  910. struct kvm_mmu_page *sp, bool clear_unsync)
  911. {
  912. return 1;
  913. }
  914. static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  915. {
  916. }
  917. #define KVM_PAGE_ARRAY_NR 16
  918. struct kvm_mmu_pages {
  919. struct mmu_page_and_offset {
  920. struct kvm_mmu_page *sp;
  921. unsigned int idx;
  922. } page[KVM_PAGE_ARRAY_NR];
  923. unsigned int nr;
  924. };
  925. #define for_each_unsync_children(bitmap, idx) \
  926. for (idx = find_first_bit(bitmap, 512); \
  927. idx < 512; \
  928. idx = find_next_bit(bitmap, 512, idx+1))
  929. static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
  930. int idx)
  931. {
  932. int i;
  933. if (sp->unsync)
  934. for (i=0; i < pvec->nr; i++)
  935. if (pvec->page[i].sp == sp)
  936. return 0;
  937. pvec->page[pvec->nr].sp = sp;
  938. pvec->page[pvec->nr].idx = idx;
  939. pvec->nr++;
  940. return (pvec->nr == KVM_PAGE_ARRAY_NR);
  941. }
  942. static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
  943. struct kvm_mmu_pages *pvec)
  944. {
  945. int i, ret, nr_unsync_leaf = 0;
  946. for_each_unsync_children(sp->unsync_child_bitmap, i) {
  947. struct kvm_mmu_page *child;
  948. u64 ent = sp->spt[i];
  949. if (!is_shadow_present_pte(ent) || is_large_pte(ent))
  950. goto clear_child_bitmap;
  951. child = page_header(ent & PT64_BASE_ADDR_MASK);
  952. if (child->unsync_children) {
  953. if (mmu_pages_add(pvec, child, i))
  954. return -ENOSPC;
  955. ret = __mmu_unsync_walk(child, pvec);
  956. if (!ret)
  957. goto clear_child_bitmap;
  958. else if (ret > 0)
  959. nr_unsync_leaf += ret;
  960. else
  961. return ret;
  962. } else if (child->unsync) {
  963. nr_unsync_leaf++;
  964. if (mmu_pages_add(pvec, child, i))
  965. return -ENOSPC;
  966. } else
  967. goto clear_child_bitmap;
  968. continue;
  969. clear_child_bitmap:
  970. __clear_bit(i, sp->unsync_child_bitmap);
  971. sp->unsync_children--;
  972. WARN_ON((int)sp->unsync_children < 0);
  973. }
  974. return nr_unsync_leaf;
  975. }
  976. static int mmu_unsync_walk(struct kvm_mmu_page *sp,
  977. struct kvm_mmu_pages *pvec)
  978. {
  979. if (!sp->unsync_children)
  980. return 0;
  981. mmu_pages_add(pvec, sp, 0);
  982. return __mmu_unsync_walk(sp, pvec);
  983. }
  984. static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
  985. {
  986. WARN_ON(!sp->unsync);
  987. trace_kvm_mmu_sync_page(sp);
  988. sp->unsync = 0;
  989. --kvm->stat.mmu_unsync;
  990. }
  991. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  992. struct list_head *invalid_list);
  993. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  994. struct list_head *invalid_list);
  995. #define for_each_gfn_sp(kvm, sp, gfn, pos) \
  996. hlist_for_each_entry(sp, pos, \
  997. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  998. if ((sp)->gfn != (gfn)) {} else
  999. #define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
  1000. hlist_for_each_entry(sp, pos, \
  1001. &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
  1002. if ((sp)->gfn != (gfn) || (sp)->role.direct || \
  1003. (sp)->role.invalid) {} else
  1004. /* @sp->gfn should be write-protected at the call site */
  1005. static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1006. struct list_head *invalid_list, bool clear_unsync)
  1007. {
  1008. if (sp->role.cr4_pae != !!is_pae(vcpu)) {
  1009. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1010. return 1;
  1011. }
  1012. if (clear_unsync)
  1013. kvm_unlink_unsync_page(vcpu->kvm, sp);
  1014. if (vcpu->arch.mmu.sync_page(vcpu, sp, clear_unsync)) {
  1015. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
  1016. return 1;
  1017. }
  1018. kvm_mmu_flush_tlb(vcpu);
  1019. return 0;
  1020. }
  1021. static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
  1022. struct kvm_mmu_page *sp)
  1023. {
  1024. LIST_HEAD(invalid_list);
  1025. int ret;
  1026. ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
  1027. if (ret)
  1028. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1029. return ret;
  1030. }
  1031. static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
  1032. struct list_head *invalid_list)
  1033. {
  1034. return __kvm_sync_page(vcpu, sp, invalid_list, true);
  1035. }
  1036. /* @gfn should be write-protected at the call site */
  1037. static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1038. {
  1039. struct kvm_mmu_page *s;
  1040. struct hlist_node *node;
  1041. LIST_HEAD(invalid_list);
  1042. bool flush = false;
  1043. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1044. if (!s->unsync)
  1045. continue;
  1046. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1047. if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
  1048. (vcpu->arch.mmu.sync_page(vcpu, s, true))) {
  1049. kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
  1050. continue;
  1051. }
  1052. kvm_unlink_unsync_page(vcpu->kvm, s);
  1053. flush = true;
  1054. }
  1055. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1056. if (flush)
  1057. kvm_mmu_flush_tlb(vcpu);
  1058. }
  1059. struct mmu_page_path {
  1060. struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
  1061. unsigned int idx[PT64_ROOT_LEVEL-1];
  1062. };
  1063. #define for_each_sp(pvec, sp, parents, i) \
  1064. for (i = mmu_pages_next(&pvec, &parents, -1), \
  1065. sp = pvec.page[i].sp; \
  1066. i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
  1067. i = mmu_pages_next(&pvec, &parents, i))
  1068. static int mmu_pages_next(struct kvm_mmu_pages *pvec,
  1069. struct mmu_page_path *parents,
  1070. int i)
  1071. {
  1072. int n;
  1073. for (n = i+1; n < pvec->nr; n++) {
  1074. struct kvm_mmu_page *sp = pvec->page[n].sp;
  1075. if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
  1076. parents->idx[0] = pvec->page[n].idx;
  1077. return n;
  1078. }
  1079. parents->parent[sp->role.level-2] = sp;
  1080. parents->idx[sp->role.level-1] = pvec->page[n].idx;
  1081. }
  1082. return n;
  1083. }
  1084. static void mmu_pages_clear_parents(struct mmu_page_path *parents)
  1085. {
  1086. struct kvm_mmu_page *sp;
  1087. unsigned int level = 0;
  1088. do {
  1089. unsigned int idx = parents->idx[level];
  1090. sp = parents->parent[level];
  1091. if (!sp)
  1092. return;
  1093. --sp->unsync_children;
  1094. WARN_ON((int)sp->unsync_children < 0);
  1095. __clear_bit(idx, sp->unsync_child_bitmap);
  1096. level++;
  1097. } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
  1098. }
  1099. static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
  1100. struct mmu_page_path *parents,
  1101. struct kvm_mmu_pages *pvec)
  1102. {
  1103. parents->parent[parent->role.level-1] = NULL;
  1104. pvec->nr = 0;
  1105. }
  1106. static void mmu_sync_children(struct kvm_vcpu *vcpu,
  1107. struct kvm_mmu_page *parent)
  1108. {
  1109. int i;
  1110. struct kvm_mmu_page *sp;
  1111. struct mmu_page_path parents;
  1112. struct kvm_mmu_pages pages;
  1113. LIST_HEAD(invalid_list);
  1114. kvm_mmu_pages_init(parent, &parents, &pages);
  1115. while (mmu_unsync_walk(parent, &pages)) {
  1116. int protected = 0;
  1117. for_each_sp(pages, sp, parents, i)
  1118. protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
  1119. if (protected)
  1120. kvm_flush_remote_tlbs(vcpu->kvm);
  1121. for_each_sp(pages, sp, parents, i) {
  1122. kvm_sync_page(vcpu, sp, &invalid_list);
  1123. mmu_pages_clear_parents(&parents);
  1124. }
  1125. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1126. cond_resched_lock(&vcpu->kvm->mmu_lock);
  1127. kvm_mmu_pages_init(parent, &parents, &pages);
  1128. }
  1129. }
  1130. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  1131. gfn_t gfn,
  1132. gva_t gaddr,
  1133. unsigned level,
  1134. int direct,
  1135. unsigned access,
  1136. u64 *parent_pte)
  1137. {
  1138. union kvm_mmu_page_role role;
  1139. unsigned quadrant;
  1140. struct kvm_mmu_page *sp;
  1141. struct hlist_node *node;
  1142. bool need_sync = false;
  1143. role = vcpu->arch.mmu.base_role;
  1144. role.level = level;
  1145. role.direct = direct;
  1146. if (role.direct)
  1147. role.cr4_pae = 0;
  1148. role.access = access;
  1149. if (!tdp_enabled && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
  1150. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  1151. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  1152. role.quadrant = quadrant;
  1153. }
  1154. for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
  1155. if (!need_sync && sp->unsync)
  1156. need_sync = true;
  1157. if (sp->role.word != role.word)
  1158. continue;
  1159. if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
  1160. break;
  1161. mmu_page_add_parent_pte(vcpu, sp, parent_pte);
  1162. if (sp->unsync_children) {
  1163. kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
  1164. kvm_mmu_mark_parents_unsync(sp);
  1165. } else if (sp->unsync)
  1166. kvm_mmu_mark_parents_unsync(sp);
  1167. trace_kvm_mmu_get_page(sp, false);
  1168. return sp;
  1169. }
  1170. ++vcpu->kvm->stat.mmu_cache_miss;
  1171. sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
  1172. if (!sp)
  1173. return sp;
  1174. sp->gfn = gfn;
  1175. sp->role = role;
  1176. hlist_add_head(&sp->hash_link,
  1177. &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
  1178. if (!direct) {
  1179. if (rmap_write_protect(vcpu->kvm, gfn))
  1180. kvm_flush_remote_tlbs(vcpu->kvm);
  1181. if (level > PT_PAGE_TABLE_LEVEL && need_sync)
  1182. kvm_sync_pages(vcpu, gfn);
  1183. account_shadowed(vcpu->kvm, gfn);
  1184. }
  1185. if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
  1186. vcpu->arch.mmu.prefetch_page(vcpu, sp);
  1187. else
  1188. nonpaging_prefetch_page(vcpu, sp);
  1189. trace_kvm_mmu_get_page(sp, true);
  1190. return sp;
  1191. }
  1192. static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
  1193. struct kvm_vcpu *vcpu, u64 addr)
  1194. {
  1195. iterator->addr = addr;
  1196. iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
  1197. iterator->level = vcpu->arch.mmu.shadow_root_level;
  1198. if (iterator->level == PT32E_ROOT_LEVEL) {
  1199. iterator->shadow_addr
  1200. = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
  1201. iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
  1202. --iterator->level;
  1203. if (!iterator->shadow_addr)
  1204. iterator->level = 0;
  1205. }
  1206. }
  1207. static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
  1208. {
  1209. if (iterator->level < PT_PAGE_TABLE_LEVEL)
  1210. return false;
  1211. if (iterator->level == PT_PAGE_TABLE_LEVEL)
  1212. if (is_large_pte(*iterator->sptep))
  1213. return false;
  1214. iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
  1215. iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
  1216. return true;
  1217. }
  1218. static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
  1219. {
  1220. iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
  1221. --iterator->level;
  1222. }
  1223. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  1224. struct kvm_mmu_page *sp)
  1225. {
  1226. unsigned i;
  1227. u64 *pt;
  1228. u64 ent;
  1229. pt = sp->spt;
  1230. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1231. ent = pt[i];
  1232. if (is_shadow_present_pte(ent)) {
  1233. if (!is_last_spte(ent, sp->role.level)) {
  1234. ent &= PT64_BASE_ADDR_MASK;
  1235. mmu_page_remove_parent_pte(page_header(ent),
  1236. &pt[i]);
  1237. } else {
  1238. if (is_large_pte(ent))
  1239. --kvm->stat.lpages;
  1240. rmap_remove(kvm, &pt[i]);
  1241. }
  1242. }
  1243. pt[i] = shadow_trap_nonpresent_pte;
  1244. }
  1245. }
  1246. static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
  1247. {
  1248. mmu_page_remove_parent_pte(sp, parent_pte);
  1249. }
  1250. static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
  1251. {
  1252. int i;
  1253. struct kvm_vcpu *vcpu;
  1254. kvm_for_each_vcpu(i, vcpu, kvm)
  1255. vcpu->arch.last_pte_updated = NULL;
  1256. }
  1257. static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
  1258. {
  1259. u64 *parent_pte;
  1260. while (sp->multimapped || sp->parent_pte) {
  1261. if (!sp->multimapped)
  1262. parent_pte = sp->parent_pte;
  1263. else {
  1264. struct kvm_pte_chain *chain;
  1265. chain = container_of(sp->parent_ptes.first,
  1266. struct kvm_pte_chain, link);
  1267. parent_pte = chain->parent_ptes[0];
  1268. }
  1269. BUG_ON(!parent_pte);
  1270. kvm_mmu_put_page(sp, parent_pte);
  1271. __set_spte(parent_pte, shadow_trap_nonpresent_pte);
  1272. }
  1273. }
  1274. static int mmu_zap_unsync_children(struct kvm *kvm,
  1275. struct kvm_mmu_page *parent,
  1276. struct list_head *invalid_list)
  1277. {
  1278. int i, zapped = 0;
  1279. struct mmu_page_path parents;
  1280. struct kvm_mmu_pages pages;
  1281. if (parent->role.level == PT_PAGE_TABLE_LEVEL)
  1282. return 0;
  1283. kvm_mmu_pages_init(parent, &parents, &pages);
  1284. while (mmu_unsync_walk(parent, &pages)) {
  1285. struct kvm_mmu_page *sp;
  1286. for_each_sp(pages, sp, parents, i) {
  1287. kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
  1288. mmu_pages_clear_parents(&parents);
  1289. zapped++;
  1290. }
  1291. kvm_mmu_pages_init(parent, &parents, &pages);
  1292. }
  1293. return zapped;
  1294. }
  1295. static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
  1296. struct list_head *invalid_list)
  1297. {
  1298. int ret;
  1299. trace_kvm_mmu_prepare_zap_page(sp);
  1300. ++kvm->stat.mmu_shadow_zapped;
  1301. ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
  1302. kvm_mmu_page_unlink_children(kvm, sp);
  1303. kvm_mmu_unlink_parents(kvm, sp);
  1304. if (!sp->role.invalid && !sp->role.direct)
  1305. unaccount_shadowed(kvm, sp->gfn);
  1306. if (sp->unsync)
  1307. kvm_unlink_unsync_page(kvm, sp);
  1308. if (!sp->root_count) {
  1309. /* Count self */
  1310. ret++;
  1311. list_move(&sp->link, invalid_list);
  1312. } else {
  1313. list_move(&sp->link, &kvm->arch.active_mmu_pages);
  1314. kvm_reload_remote_mmus(kvm);
  1315. }
  1316. sp->role.invalid = 1;
  1317. kvm_mmu_reset_last_pte_updated(kvm);
  1318. return ret;
  1319. }
  1320. static void kvm_mmu_commit_zap_page(struct kvm *kvm,
  1321. struct list_head *invalid_list)
  1322. {
  1323. struct kvm_mmu_page *sp;
  1324. if (list_empty(invalid_list))
  1325. return;
  1326. kvm_flush_remote_tlbs(kvm);
  1327. do {
  1328. sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
  1329. WARN_ON(!sp->role.invalid || sp->root_count);
  1330. kvm_mmu_free_page(kvm, sp);
  1331. } while (!list_empty(invalid_list));
  1332. }
  1333. /*
  1334. * Changing the number of mmu pages allocated to the vm
  1335. * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
  1336. */
  1337. void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
  1338. {
  1339. int used_pages;
  1340. LIST_HEAD(invalid_list);
  1341. used_pages = kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages;
  1342. used_pages = max(0, used_pages);
  1343. /*
  1344. * If we set the number of mmu pages to be smaller be than the
  1345. * number of actived pages , we must to free some mmu pages before we
  1346. * change the value
  1347. */
  1348. if (used_pages > kvm_nr_mmu_pages) {
  1349. while (used_pages > kvm_nr_mmu_pages &&
  1350. !list_empty(&kvm->arch.active_mmu_pages)) {
  1351. struct kvm_mmu_page *page;
  1352. page = container_of(kvm->arch.active_mmu_pages.prev,
  1353. struct kvm_mmu_page, link);
  1354. used_pages -= kvm_mmu_prepare_zap_page(kvm, page,
  1355. &invalid_list);
  1356. }
  1357. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1358. kvm_nr_mmu_pages = used_pages;
  1359. kvm->arch.n_free_mmu_pages = 0;
  1360. }
  1361. else
  1362. kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
  1363. - kvm->arch.n_alloc_mmu_pages;
  1364. kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
  1365. }
  1366. static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
  1367. {
  1368. struct kvm_mmu_page *sp;
  1369. struct hlist_node *node;
  1370. LIST_HEAD(invalid_list);
  1371. int r;
  1372. pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
  1373. r = 0;
  1374. for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
  1375. pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
  1376. sp->role.word);
  1377. r = 1;
  1378. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1379. }
  1380. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1381. return r;
  1382. }
  1383. static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
  1384. {
  1385. struct kvm_mmu_page *sp;
  1386. struct hlist_node *node;
  1387. LIST_HEAD(invalid_list);
  1388. for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
  1389. pgprintk("%s: zap %lx %x\n",
  1390. __func__, gfn, sp->role.word);
  1391. kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
  1392. }
  1393. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  1394. }
  1395. static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
  1396. {
  1397. int slot = memslot_id(kvm, gfn);
  1398. struct kvm_mmu_page *sp = page_header(__pa(pte));
  1399. __set_bit(slot, sp->slot_bitmap);
  1400. }
  1401. static void mmu_convert_notrap(struct kvm_mmu_page *sp)
  1402. {
  1403. int i;
  1404. u64 *pt = sp->spt;
  1405. if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
  1406. return;
  1407. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1408. if (pt[i] == shadow_notrap_nonpresent_pte)
  1409. __set_spte(&pt[i], shadow_trap_nonpresent_pte);
  1410. }
  1411. }
  1412. /*
  1413. * The function is based on mtrr_type_lookup() in
  1414. * arch/x86/kernel/cpu/mtrr/generic.c
  1415. */
  1416. static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
  1417. u64 start, u64 end)
  1418. {
  1419. int i;
  1420. u64 base, mask;
  1421. u8 prev_match, curr_match;
  1422. int num_var_ranges = KVM_NR_VAR_MTRR;
  1423. if (!mtrr_state->enabled)
  1424. return 0xFF;
  1425. /* Make end inclusive end, instead of exclusive */
  1426. end--;
  1427. /* Look in fixed ranges. Just return the type as per start */
  1428. if (mtrr_state->have_fixed && (start < 0x100000)) {
  1429. int idx;
  1430. if (start < 0x80000) {
  1431. idx = 0;
  1432. idx += (start >> 16);
  1433. return mtrr_state->fixed_ranges[idx];
  1434. } else if (start < 0xC0000) {
  1435. idx = 1 * 8;
  1436. idx += ((start - 0x80000) >> 14);
  1437. return mtrr_state->fixed_ranges[idx];
  1438. } else if (start < 0x1000000) {
  1439. idx = 3 * 8;
  1440. idx += ((start - 0xC0000) >> 12);
  1441. return mtrr_state->fixed_ranges[idx];
  1442. }
  1443. }
  1444. /*
  1445. * Look in variable ranges
  1446. * Look of multiple ranges matching this address and pick type
  1447. * as per MTRR precedence
  1448. */
  1449. if (!(mtrr_state->enabled & 2))
  1450. return mtrr_state->def_type;
  1451. prev_match = 0xFF;
  1452. for (i = 0; i < num_var_ranges; ++i) {
  1453. unsigned short start_state, end_state;
  1454. if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
  1455. continue;
  1456. base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
  1457. (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
  1458. mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
  1459. (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
  1460. start_state = ((start & mask) == (base & mask));
  1461. end_state = ((end & mask) == (base & mask));
  1462. if (start_state != end_state)
  1463. return 0xFE;
  1464. if ((start & mask) != (base & mask))
  1465. continue;
  1466. curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
  1467. if (prev_match == 0xFF) {
  1468. prev_match = curr_match;
  1469. continue;
  1470. }
  1471. if (prev_match == MTRR_TYPE_UNCACHABLE ||
  1472. curr_match == MTRR_TYPE_UNCACHABLE)
  1473. return MTRR_TYPE_UNCACHABLE;
  1474. if ((prev_match == MTRR_TYPE_WRBACK &&
  1475. curr_match == MTRR_TYPE_WRTHROUGH) ||
  1476. (prev_match == MTRR_TYPE_WRTHROUGH &&
  1477. curr_match == MTRR_TYPE_WRBACK)) {
  1478. prev_match = MTRR_TYPE_WRTHROUGH;
  1479. curr_match = MTRR_TYPE_WRTHROUGH;
  1480. }
  1481. if (prev_match != curr_match)
  1482. return MTRR_TYPE_UNCACHABLE;
  1483. }
  1484. if (prev_match != 0xFF)
  1485. return prev_match;
  1486. return mtrr_state->def_type;
  1487. }
  1488. u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
  1489. {
  1490. u8 mtrr;
  1491. mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
  1492. (gfn << PAGE_SHIFT) + PAGE_SIZE);
  1493. if (mtrr == 0xfe || mtrr == 0xff)
  1494. mtrr = MTRR_TYPE_WRBACK;
  1495. return mtrr;
  1496. }
  1497. EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
  1498. static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
  1499. {
  1500. trace_kvm_mmu_unsync_page(sp);
  1501. ++vcpu->kvm->stat.mmu_unsync;
  1502. sp->unsync = 1;
  1503. kvm_mmu_mark_parents_unsync(sp);
  1504. mmu_convert_notrap(sp);
  1505. }
  1506. static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
  1507. {
  1508. struct kvm_mmu_page *s;
  1509. struct hlist_node *node;
  1510. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1511. if (s->unsync)
  1512. continue;
  1513. WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
  1514. __kvm_unsync_page(vcpu, s);
  1515. }
  1516. }
  1517. static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
  1518. bool can_unsync)
  1519. {
  1520. struct kvm_mmu_page *s;
  1521. struct hlist_node *node;
  1522. bool need_unsync = false;
  1523. for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
  1524. if (!can_unsync)
  1525. return 1;
  1526. if (s->role.level != PT_PAGE_TABLE_LEVEL)
  1527. return 1;
  1528. if (!need_unsync && !s->unsync) {
  1529. if (!oos_shadow)
  1530. return 1;
  1531. need_unsync = true;
  1532. }
  1533. }
  1534. if (need_unsync)
  1535. kvm_unsync_pages(vcpu, gfn);
  1536. return 0;
  1537. }
  1538. static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1539. unsigned pte_access, int user_fault,
  1540. int write_fault, int dirty, int level,
  1541. gfn_t gfn, pfn_t pfn, bool speculative,
  1542. bool can_unsync, bool reset_host_protection)
  1543. {
  1544. u64 spte;
  1545. int ret = 0;
  1546. /*
  1547. * We don't set the accessed bit, since we sometimes want to see
  1548. * whether the guest actually used the pte (in order to detect
  1549. * demand paging).
  1550. */
  1551. spte = shadow_base_present_pte | shadow_dirty_mask;
  1552. if (!speculative)
  1553. spte |= shadow_accessed_mask;
  1554. if (!dirty)
  1555. pte_access &= ~ACC_WRITE_MASK;
  1556. if (pte_access & ACC_EXEC_MASK)
  1557. spte |= shadow_x_mask;
  1558. else
  1559. spte |= shadow_nx_mask;
  1560. if (pte_access & ACC_USER_MASK)
  1561. spte |= shadow_user_mask;
  1562. if (level > PT_PAGE_TABLE_LEVEL)
  1563. spte |= PT_PAGE_SIZE_MASK;
  1564. if (tdp_enabled)
  1565. spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
  1566. kvm_is_mmio_pfn(pfn));
  1567. if (reset_host_protection)
  1568. spte |= SPTE_HOST_WRITEABLE;
  1569. spte |= (u64)pfn << PAGE_SHIFT;
  1570. if ((pte_access & ACC_WRITE_MASK)
  1571. || (!tdp_enabled && write_fault && !is_write_protection(vcpu)
  1572. && !user_fault)) {
  1573. if (level > PT_PAGE_TABLE_LEVEL &&
  1574. has_wrprotected_page(vcpu->kvm, gfn, level)) {
  1575. ret = 1;
  1576. rmap_remove(vcpu->kvm, sptep);
  1577. spte = shadow_trap_nonpresent_pte;
  1578. goto set_pte;
  1579. }
  1580. spte |= PT_WRITABLE_MASK;
  1581. if (!tdp_enabled && !(pte_access & ACC_WRITE_MASK))
  1582. spte &= ~PT_USER_MASK;
  1583. /*
  1584. * Optimization: for pte sync, if spte was writable the hash
  1585. * lookup is unnecessary (and expensive). Write protection
  1586. * is responsibility of mmu_get_page / kvm_sync_page.
  1587. * Same reasoning can be applied to dirty page accounting.
  1588. */
  1589. if (!can_unsync && is_writable_pte(*sptep))
  1590. goto set_pte;
  1591. if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
  1592. pgprintk("%s: found shadow page for %lx, marking ro\n",
  1593. __func__, gfn);
  1594. ret = 1;
  1595. pte_access &= ~ACC_WRITE_MASK;
  1596. if (is_writable_pte(spte))
  1597. spte &= ~PT_WRITABLE_MASK;
  1598. }
  1599. }
  1600. if (pte_access & ACC_WRITE_MASK)
  1601. mark_page_dirty(vcpu->kvm, gfn);
  1602. set_pte:
  1603. __set_spte(sptep, spte);
  1604. return ret;
  1605. }
  1606. static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
  1607. unsigned pt_access, unsigned pte_access,
  1608. int user_fault, int write_fault, int dirty,
  1609. int *ptwrite, int level, gfn_t gfn,
  1610. pfn_t pfn, bool speculative,
  1611. bool reset_host_protection)
  1612. {
  1613. int was_rmapped = 0;
  1614. int was_writable = is_writable_pte(*sptep);
  1615. int rmap_count;
  1616. pgprintk("%s: spte %llx access %x write_fault %d"
  1617. " user_fault %d gfn %lx\n",
  1618. __func__, *sptep, pt_access,
  1619. write_fault, user_fault, gfn);
  1620. if (is_rmap_spte(*sptep)) {
  1621. /*
  1622. * If we overwrite a PTE page pointer with a 2MB PMD, unlink
  1623. * the parent of the now unreachable PTE.
  1624. */
  1625. if (level > PT_PAGE_TABLE_LEVEL &&
  1626. !is_large_pte(*sptep)) {
  1627. struct kvm_mmu_page *child;
  1628. u64 pte = *sptep;
  1629. child = page_header(pte & PT64_BASE_ADDR_MASK);
  1630. mmu_page_remove_parent_pte(child, sptep);
  1631. __set_spte(sptep, shadow_trap_nonpresent_pte);
  1632. kvm_flush_remote_tlbs(vcpu->kvm);
  1633. } else if (pfn != spte_to_pfn(*sptep)) {
  1634. pgprintk("hfn old %lx new %lx\n",
  1635. spte_to_pfn(*sptep), pfn);
  1636. rmap_remove(vcpu->kvm, sptep);
  1637. __set_spte(sptep, shadow_trap_nonpresent_pte);
  1638. kvm_flush_remote_tlbs(vcpu->kvm);
  1639. } else
  1640. was_rmapped = 1;
  1641. }
  1642. if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
  1643. dirty, level, gfn, pfn, speculative, true,
  1644. reset_host_protection)) {
  1645. if (write_fault)
  1646. *ptwrite = 1;
  1647. kvm_mmu_flush_tlb(vcpu);
  1648. }
  1649. pgprintk("%s: setting spte %llx\n", __func__, *sptep);
  1650. pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
  1651. is_large_pte(*sptep)? "2MB" : "4kB",
  1652. *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
  1653. *sptep, sptep);
  1654. if (!was_rmapped && is_large_pte(*sptep))
  1655. ++vcpu->kvm->stat.lpages;
  1656. page_header_update_slot(vcpu->kvm, sptep, gfn);
  1657. if (!was_rmapped) {
  1658. rmap_count = rmap_add(vcpu, sptep, gfn);
  1659. kvm_release_pfn_clean(pfn);
  1660. if (rmap_count > RMAP_RECYCLE_THRESHOLD)
  1661. rmap_recycle(vcpu, sptep, gfn);
  1662. } else {
  1663. if (was_writable)
  1664. kvm_release_pfn_dirty(pfn);
  1665. else
  1666. kvm_release_pfn_clean(pfn);
  1667. }
  1668. if (speculative) {
  1669. vcpu->arch.last_pte_updated = sptep;
  1670. vcpu->arch.last_pte_gfn = gfn;
  1671. }
  1672. }
  1673. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  1674. {
  1675. }
  1676. static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
  1677. int level, gfn_t gfn, pfn_t pfn)
  1678. {
  1679. struct kvm_shadow_walk_iterator iterator;
  1680. struct kvm_mmu_page *sp;
  1681. int pt_write = 0;
  1682. gfn_t pseudo_gfn;
  1683. for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
  1684. if (iterator.level == level) {
  1685. mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL,
  1686. 0, write, 1, &pt_write,
  1687. level, gfn, pfn, false, true);
  1688. ++vcpu->stat.pf_fixed;
  1689. break;
  1690. }
  1691. if (*iterator.sptep == shadow_trap_nonpresent_pte) {
  1692. u64 base_addr = iterator.addr;
  1693. base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
  1694. pseudo_gfn = base_addr >> PAGE_SHIFT;
  1695. sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
  1696. iterator.level - 1,
  1697. 1, ACC_ALL, iterator.sptep);
  1698. if (!sp) {
  1699. pgprintk("nonpaging_map: ENOMEM\n");
  1700. kvm_release_pfn_clean(pfn);
  1701. return -ENOMEM;
  1702. }
  1703. __set_spte(iterator.sptep,
  1704. __pa(sp->spt)
  1705. | PT_PRESENT_MASK | PT_WRITABLE_MASK
  1706. | shadow_user_mask | shadow_x_mask);
  1707. }
  1708. }
  1709. return pt_write;
  1710. }
  1711. static void kvm_send_hwpoison_signal(struct kvm *kvm, gfn_t gfn)
  1712. {
  1713. char buf[1];
  1714. void __user *hva;
  1715. int r;
  1716. /* Touch the page, so send SIGBUS */
  1717. hva = (void __user *)gfn_to_hva(kvm, gfn);
  1718. r = copy_from_user(buf, hva, 1);
  1719. }
  1720. static int kvm_handle_bad_page(struct kvm *kvm, gfn_t gfn, pfn_t pfn)
  1721. {
  1722. kvm_release_pfn_clean(pfn);
  1723. if (is_hwpoison_pfn(pfn)) {
  1724. kvm_send_hwpoison_signal(kvm, gfn);
  1725. return 0;
  1726. }
  1727. return 1;
  1728. }
  1729. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
  1730. {
  1731. int r;
  1732. int level;
  1733. pfn_t pfn;
  1734. unsigned long mmu_seq;
  1735. level = mapping_level(vcpu, gfn);
  1736. /*
  1737. * This path builds a PAE pagetable - so we can map 2mb pages at
  1738. * maximum. Therefore check if the level is larger than that.
  1739. */
  1740. if (level > PT_DIRECTORY_LEVEL)
  1741. level = PT_DIRECTORY_LEVEL;
  1742. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1743. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1744. smp_rmb();
  1745. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1746. /* mmio */
  1747. if (is_error_pfn(pfn))
  1748. return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
  1749. spin_lock(&vcpu->kvm->mmu_lock);
  1750. if (mmu_notifier_retry(vcpu, mmu_seq))
  1751. goto out_unlock;
  1752. kvm_mmu_free_some_pages(vcpu);
  1753. r = __direct_map(vcpu, v, write, level, gfn, pfn);
  1754. spin_unlock(&vcpu->kvm->mmu_lock);
  1755. return r;
  1756. out_unlock:
  1757. spin_unlock(&vcpu->kvm->mmu_lock);
  1758. kvm_release_pfn_clean(pfn);
  1759. return 0;
  1760. }
  1761. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  1762. {
  1763. int i;
  1764. struct kvm_mmu_page *sp;
  1765. LIST_HEAD(invalid_list);
  1766. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1767. return;
  1768. spin_lock(&vcpu->kvm->mmu_lock);
  1769. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1770. hpa_t root = vcpu->arch.mmu.root_hpa;
  1771. sp = page_header(root);
  1772. --sp->root_count;
  1773. if (!sp->root_count && sp->role.invalid) {
  1774. kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
  1775. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1776. }
  1777. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1778. spin_unlock(&vcpu->kvm->mmu_lock);
  1779. return;
  1780. }
  1781. for (i = 0; i < 4; ++i) {
  1782. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1783. if (root) {
  1784. root &= PT64_BASE_ADDR_MASK;
  1785. sp = page_header(root);
  1786. --sp->root_count;
  1787. if (!sp->root_count && sp->role.invalid)
  1788. kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  1789. &invalid_list);
  1790. }
  1791. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  1792. }
  1793. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  1794. spin_unlock(&vcpu->kvm->mmu_lock);
  1795. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  1796. }
  1797. static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
  1798. {
  1799. int ret = 0;
  1800. if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
  1801. kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
  1802. ret = 1;
  1803. }
  1804. return ret;
  1805. }
  1806. static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
  1807. {
  1808. int i;
  1809. gfn_t root_gfn;
  1810. struct kvm_mmu_page *sp;
  1811. int direct = 0;
  1812. u64 pdptr;
  1813. root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
  1814. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1815. hpa_t root = vcpu->arch.mmu.root_hpa;
  1816. ASSERT(!VALID_PAGE(root));
  1817. if (mmu_check_root(vcpu, root_gfn))
  1818. return 1;
  1819. if (tdp_enabled) {
  1820. direct = 1;
  1821. root_gfn = 0;
  1822. }
  1823. spin_lock(&vcpu->kvm->mmu_lock);
  1824. kvm_mmu_free_some_pages(vcpu);
  1825. sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
  1826. PT64_ROOT_LEVEL, direct,
  1827. ACC_ALL, NULL);
  1828. root = __pa(sp->spt);
  1829. ++sp->root_count;
  1830. spin_unlock(&vcpu->kvm->mmu_lock);
  1831. vcpu->arch.mmu.root_hpa = root;
  1832. return 0;
  1833. }
  1834. direct = !is_paging(vcpu);
  1835. for (i = 0; i < 4; ++i) {
  1836. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1837. ASSERT(!VALID_PAGE(root));
  1838. if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
  1839. pdptr = kvm_pdptr_read(vcpu, i);
  1840. if (!is_present_gpte(pdptr)) {
  1841. vcpu->arch.mmu.pae_root[i] = 0;
  1842. continue;
  1843. }
  1844. root_gfn = pdptr >> PAGE_SHIFT;
  1845. } else if (vcpu->arch.mmu.root_level == 0)
  1846. root_gfn = 0;
  1847. if (mmu_check_root(vcpu, root_gfn))
  1848. return 1;
  1849. if (tdp_enabled) {
  1850. direct = 1;
  1851. root_gfn = i << 30;
  1852. }
  1853. spin_lock(&vcpu->kvm->mmu_lock);
  1854. kvm_mmu_free_some_pages(vcpu);
  1855. sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  1856. PT32_ROOT_LEVEL, direct,
  1857. ACC_ALL, NULL);
  1858. root = __pa(sp->spt);
  1859. ++sp->root_count;
  1860. spin_unlock(&vcpu->kvm->mmu_lock);
  1861. vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
  1862. }
  1863. vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
  1864. return 0;
  1865. }
  1866. static void mmu_sync_roots(struct kvm_vcpu *vcpu)
  1867. {
  1868. int i;
  1869. struct kvm_mmu_page *sp;
  1870. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  1871. return;
  1872. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  1873. hpa_t root = vcpu->arch.mmu.root_hpa;
  1874. sp = page_header(root);
  1875. mmu_sync_children(vcpu, sp);
  1876. return;
  1877. }
  1878. for (i = 0; i < 4; ++i) {
  1879. hpa_t root = vcpu->arch.mmu.pae_root[i];
  1880. if (root && VALID_PAGE(root)) {
  1881. root &= PT64_BASE_ADDR_MASK;
  1882. sp = page_header(root);
  1883. mmu_sync_children(vcpu, sp);
  1884. }
  1885. }
  1886. }
  1887. void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
  1888. {
  1889. spin_lock(&vcpu->kvm->mmu_lock);
  1890. mmu_sync_roots(vcpu);
  1891. spin_unlock(&vcpu->kvm->mmu_lock);
  1892. }
  1893. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
  1894. u32 access, u32 *error)
  1895. {
  1896. if (error)
  1897. *error = 0;
  1898. return vaddr;
  1899. }
  1900. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  1901. u32 error_code)
  1902. {
  1903. gfn_t gfn;
  1904. int r;
  1905. pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
  1906. r = mmu_topup_memory_caches(vcpu);
  1907. if (r)
  1908. return r;
  1909. ASSERT(vcpu);
  1910. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1911. gfn = gva >> PAGE_SHIFT;
  1912. return nonpaging_map(vcpu, gva & PAGE_MASK,
  1913. error_code & PFERR_WRITE_MASK, gfn);
  1914. }
  1915. static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
  1916. u32 error_code)
  1917. {
  1918. pfn_t pfn;
  1919. int r;
  1920. int level;
  1921. gfn_t gfn = gpa >> PAGE_SHIFT;
  1922. unsigned long mmu_seq;
  1923. ASSERT(vcpu);
  1924. ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
  1925. r = mmu_topup_memory_caches(vcpu);
  1926. if (r)
  1927. return r;
  1928. level = mapping_level(vcpu, gfn);
  1929. gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
  1930. mmu_seq = vcpu->kvm->mmu_notifier_seq;
  1931. smp_rmb();
  1932. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  1933. if (is_error_pfn(pfn))
  1934. return kvm_handle_bad_page(vcpu->kvm, gfn, pfn);
  1935. spin_lock(&vcpu->kvm->mmu_lock);
  1936. if (mmu_notifier_retry(vcpu, mmu_seq))
  1937. goto out_unlock;
  1938. kvm_mmu_free_some_pages(vcpu);
  1939. r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
  1940. level, gfn, pfn);
  1941. spin_unlock(&vcpu->kvm->mmu_lock);
  1942. return r;
  1943. out_unlock:
  1944. spin_unlock(&vcpu->kvm->mmu_lock);
  1945. kvm_release_pfn_clean(pfn);
  1946. return 0;
  1947. }
  1948. static void nonpaging_free(struct kvm_vcpu *vcpu)
  1949. {
  1950. mmu_free_roots(vcpu);
  1951. }
  1952. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  1953. {
  1954. struct kvm_mmu *context = &vcpu->arch.mmu;
  1955. context->new_cr3 = nonpaging_new_cr3;
  1956. context->page_fault = nonpaging_page_fault;
  1957. context->gva_to_gpa = nonpaging_gva_to_gpa;
  1958. context->free = nonpaging_free;
  1959. context->prefetch_page = nonpaging_prefetch_page;
  1960. context->sync_page = nonpaging_sync_page;
  1961. context->invlpg = nonpaging_invlpg;
  1962. context->root_level = 0;
  1963. context->shadow_root_level = PT32E_ROOT_LEVEL;
  1964. context->root_hpa = INVALID_PAGE;
  1965. return 0;
  1966. }
  1967. void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  1968. {
  1969. ++vcpu->stat.tlb_flush;
  1970. kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
  1971. }
  1972. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  1973. {
  1974. pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
  1975. mmu_free_roots(vcpu);
  1976. }
  1977. static void inject_page_fault(struct kvm_vcpu *vcpu,
  1978. u64 addr,
  1979. u32 err_code)
  1980. {
  1981. kvm_inject_page_fault(vcpu, addr, err_code);
  1982. }
  1983. static void paging_free(struct kvm_vcpu *vcpu)
  1984. {
  1985. nonpaging_free(vcpu);
  1986. }
  1987. static bool is_rsvd_bits_set(struct kvm_vcpu *vcpu, u64 gpte, int level)
  1988. {
  1989. int bit7;
  1990. bit7 = (gpte >> 7) & 1;
  1991. return (gpte & vcpu->arch.mmu.rsvd_bits_mask[bit7][level-1]) != 0;
  1992. }
  1993. #define PTTYPE 64
  1994. #include "paging_tmpl.h"
  1995. #undef PTTYPE
  1996. #define PTTYPE 32
  1997. #include "paging_tmpl.h"
  1998. #undef PTTYPE
  1999. static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, int level)
  2000. {
  2001. struct kvm_mmu *context = &vcpu->arch.mmu;
  2002. int maxphyaddr = cpuid_maxphyaddr(vcpu);
  2003. u64 exb_bit_rsvd = 0;
  2004. if (!is_nx(vcpu))
  2005. exb_bit_rsvd = rsvd_bits(63, 63);
  2006. switch (level) {
  2007. case PT32_ROOT_LEVEL:
  2008. /* no rsvd bits for 2 level 4K page table entries */
  2009. context->rsvd_bits_mask[0][1] = 0;
  2010. context->rsvd_bits_mask[0][0] = 0;
  2011. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2012. if (!is_pse(vcpu)) {
  2013. context->rsvd_bits_mask[1][1] = 0;
  2014. break;
  2015. }
  2016. if (is_cpuid_PSE36())
  2017. /* 36bits PSE 4MB page */
  2018. context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
  2019. else
  2020. /* 32 bits PSE 4MB page */
  2021. context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
  2022. break;
  2023. case PT32E_ROOT_LEVEL:
  2024. context->rsvd_bits_mask[0][2] =
  2025. rsvd_bits(maxphyaddr, 63) |
  2026. rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
  2027. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2028. rsvd_bits(maxphyaddr, 62); /* PDE */
  2029. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2030. rsvd_bits(maxphyaddr, 62); /* PTE */
  2031. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2032. rsvd_bits(maxphyaddr, 62) |
  2033. rsvd_bits(13, 20); /* large page */
  2034. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2035. break;
  2036. case PT64_ROOT_LEVEL:
  2037. context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
  2038. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2039. context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
  2040. rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
  2041. context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
  2042. rsvd_bits(maxphyaddr, 51);
  2043. context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
  2044. rsvd_bits(maxphyaddr, 51);
  2045. context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
  2046. context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
  2047. rsvd_bits(maxphyaddr, 51) |
  2048. rsvd_bits(13, 29);
  2049. context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
  2050. rsvd_bits(maxphyaddr, 51) |
  2051. rsvd_bits(13, 20); /* large page */
  2052. context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
  2053. break;
  2054. }
  2055. }
  2056. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  2057. {
  2058. struct kvm_mmu *context = &vcpu->arch.mmu;
  2059. ASSERT(is_pae(vcpu));
  2060. context->new_cr3 = paging_new_cr3;
  2061. context->page_fault = paging64_page_fault;
  2062. context->gva_to_gpa = paging64_gva_to_gpa;
  2063. context->prefetch_page = paging64_prefetch_page;
  2064. context->sync_page = paging64_sync_page;
  2065. context->invlpg = paging64_invlpg;
  2066. context->free = paging_free;
  2067. context->root_level = level;
  2068. context->shadow_root_level = level;
  2069. context->root_hpa = INVALID_PAGE;
  2070. return 0;
  2071. }
  2072. static int paging64_init_context(struct kvm_vcpu *vcpu)
  2073. {
  2074. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2075. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  2076. }
  2077. static int paging32_init_context(struct kvm_vcpu *vcpu)
  2078. {
  2079. struct kvm_mmu *context = &vcpu->arch.mmu;
  2080. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2081. context->new_cr3 = paging_new_cr3;
  2082. context->page_fault = paging32_page_fault;
  2083. context->gva_to_gpa = paging32_gva_to_gpa;
  2084. context->free = paging_free;
  2085. context->prefetch_page = paging32_prefetch_page;
  2086. context->sync_page = paging32_sync_page;
  2087. context->invlpg = paging32_invlpg;
  2088. context->root_level = PT32_ROOT_LEVEL;
  2089. context->shadow_root_level = PT32E_ROOT_LEVEL;
  2090. context->root_hpa = INVALID_PAGE;
  2091. return 0;
  2092. }
  2093. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  2094. {
  2095. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2096. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  2097. }
  2098. static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
  2099. {
  2100. struct kvm_mmu *context = &vcpu->arch.mmu;
  2101. context->new_cr3 = nonpaging_new_cr3;
  2102. context->page_fault = tdp_page_fault;
  2103. context->free = nonpaging_free;
  2104. context->prefetch_page = nonpaging_prefetch_page;
  2105. context->sync_page = nonpaging_sync_page;
  2106. context->invlpg = nonpaging_invlpg;
  2107. context->shadow_root_level = kvm_x86_ops->get_tdp_level();
  2108. context->root_hpa = INVALID_PAGE;
  2109. if (!is_paging(vcpu)) {
  2110. context->gva_to_gpa = nonpaging_gva_to_gpa;
  2111. context->root_level = 0;
  2112. } else if (is_long_mode(vcpu)) {
  2113. reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
  2114. context->gva_to_gpa = paging64_gva_to_gpa;
  2115. context->root_level = PT64_ROOT_LEVEL;
  2116. } else if (is_pae(vcpu)) {
  2117. reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
  2118. context->gva_to_gpa = paging64_gva_to_gpa;
  2119. context->root_level = PT32E_ROOT_LEVEL;
  2120. } else {
  2121. reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
  2122. context->gva_to_gpa = paging32_gva_to_gpa;
  2123. context->root_level = PT32_ROOT_LEVEL;
  2124. }
  2125. return 0;
  2126. }
  2127. static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
  2128. {
  2129. int r;
  2130. ASSERT(vcpu);
  2131. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2132. if (!is_paging(vcpu))
  2133. r = nonpaging_init_context(vcpu);
  2134. else if (is_long_mode(vcpu))
  2135. r = paging64_init_context(vcpu);
  2136. else if (is_pae(vcpu))
  2137. r = paging32E_init_context(vcpu);
  2138. else
  2139. r = paging32_init_context(vcpu);
  2140. vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
  2141. vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
  2142. return r;
  2143. }
  2144. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  2145. {
  2146. vcpu->arch.update_pte.pfn = bad_pfn;
  2147. if (tdp_enabled)
  2148. return init_kvm_tdp_mmu(vcpu);
  2149. else
  2150. return init_kvm_softmmu(vcpu);
  2151. }
  2152. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  2153. {
  2154. ASSERT(vcpu);
  2155. if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2156. /* mmu.free() should set root_hpa = INVALID_PAGE */
  2157. vcpu->arch.mmu.free(vcpu);
  2158. }
  2159. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  2160. {
  2161. destroy_kvm_mmu(vcpu);
  2162. return init_kvm_mmu(vcpu);
  2163. }
  2164. EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
  2165. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  2166. {
  2167. int r;
  2168. r = mmu_topup_memory_caches(vcpu);
  2169. if (r)
  2170. goto out;
  2171. r = mmu_alloc_roots(vcpu);
  2172. spin_lock(&vcpu->kvm->mmu_lock);
  2173. mmu_sync_roots(vcpu);
  2174. spin_unlock(&vcpu->kvm->mmu_lock);
  2175. if (r)
  2176. goto out;
  2177. /* set_cr3() should ensure TLB has been flushed */
  2178. kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
  2179. out:
  2180. return r;
  2181. }
  2182. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  2183. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  2184. {
  2185. mmu_free_roots(vcpu);
  2186. }
  2187. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  2188. struct kvm_mmu_page *sp,
  2189. u64 *spte)
  2190. {
  2191. u64 pte;
  2192. struct kvm_mmu_page *child;
  2193. pte = *spte;
  2194. if (is_shadow_present_pte(pte)) {
  2195. if (is_last_spte(pte, sp->role.level))
  2196. rmap_remove(vcpu->kvm, spte);
  2197. else {
  2198. child = page_header(pte & PT64_BASE_ADDR_MASK);
  2199. mmu_page_remove_parent_pte(child, spte);
  2200. }
  2201. }
  2202. __set_spte(spte, shadow_trap_nonpresent_pte);
  2203. if (is_large_pte(pte))
  2204. --vcpu->kvm->stat.lpages;
  2205. }
  2206. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  2207. struct kvm_mmu_page *sp,
  2208. u64 *spte,
  2209. const void *new)
  2210. {
  2211. if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
  2212. ++vcpu->kvm->stat.mmu_pde_zapped;
  2213. return;
  2214. }
  2215. ++vcpu->kvm->stat.mmu_pte_updated;
  2216. if (!sp->role.cr4_pae)
  2217. paging32_update_pte(vcpu, sp, spte, new);
  2218. else
  2219. paging64_update_pte(vcpu, sp, spte, new);
  2220. }
  2221. static bool need_remote_flush(u64 old, u64 new)
  2222. {
  2223. if (!is_shadow_present_pte(old))
  2224. return false;
  2225. if (!is_shadow_present_pte(new))
  2226. return true;
  2227. if ((old ^ new) & PT64_BASE_ADDR_MASK)
  2228. return true;
  2229. old ^= PT64_NX_MASK;
  2230. new ^= PT64_NX_MASK;
  2231. return (old & ~new & PT64_PERM_MASK) != 0;
  2232. }
  2233. static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
  2234. bool remote_flush, bool local_flush)
  2235. {
  2236. if (zap_page)
  2237. return;
  2238. if (remote_flush)
  2239. kvm_flush_remote_tlbs(vcpu->kvm);
  2240. else if (local_flush)
  2241. kvm_mmu_flush_tlb(vcpu);
  2242. }
  2243. static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
  2244. {
  2245. u64 *spte = vcpu->arch.last_pte_updated;
  2246. return !!(spte && (*spte & shadow_accessed_mask));
  2247. }
  2248. static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2249. u64 gpte)
  2250. {
  2251. gfn_t gfn;
  2252. pfn_t pfn;
  2253. if (!is_present_gpte(gpte))
  2254. return;
  2255. gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
  2256. vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
  2257. smp_rmb();
  2258. pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2259. if (is_error_pfn(pfn)) {
  2260. kvm_release_pfn_clean(pfn);
  2261. return;
  2262. }
  2263. vcpu->arch.update_pte.gfn = gfn;
  2264. vcpu->arch.update_pte.pfn = pfn;
  2265. }
  2266. static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  2267. {
  2268. u64 *spte = vcpu->arch.last_pte_updated;
  2269. if (spte
  2270. && vcpu->arch.last_pte_gfn == gfn
  2271. && shadow_accessed_mask
  2272. && !(*spte & shadow_accessed_mask)
  2273. && is_shadow_present_pte(*spte))
  2274. set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
  2275. }
  2276. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  2277. const u8 *new, int bytes,
  2278. bool guest_initiated)
  2279. {
  2280. gfn_t gfn = gpa >> PAGE_SHIFT;
  2281. struct kvm_mmu_page *sp;
  2282. struct hlist_node *node;
  2283. LIST_HEAD(invalid_list);
  2284. u64 entry, gentry;
  2285. u64 *spte;
  2286. unsigned offset = offset_in_page(gpa);
  2287. unsigned pte_size;
  2288. unsigned page_offset;
  2289. unsigned misaligned;
  2290. unsigned quadrant;
  2291. int level;
  2292. int flooded = 0;
  2293. int npte;
  2294. int r;
  2295. int invlpg_counter;
  2296. bool remote_flush, local_flush, zap_page;
  2297. zap_page = remote_flush = local_flush = false;
  2298. pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
  2299. invlpg_counter = atomic_read(&vcpu->kvm->arch.invlpg_counter);
  2300. /*
  2301. * Assume that the pte write on a page table of the same type
  2302. * as the current vcpu paging mode. This is nearly always true
  2303. * (might be false while changing modes). Note it is verified later
  2304. * by update_pte().
  2305. */
  2306. if ((is_pae(vcpu) && bytes == 4) || !new) {
  2307. /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
  2308. if (is_pae(vcpu)) {
  2309. gpa &= ~(gpa_t)7;
  2310. bytes = 8;
  2311. }
  2312. r = kvm_read_guest(vcpu->kvm, gpa, &gentry, min(bytes, 8));
  2313. if (r)
  2314. gentry = 0;
  2315. new = (const u8 *)&gentry;
  2316. }
  2317. switch (bytes) {
  2318. case 4:
  2319. gentry = *(const u32 *)new;
  2320. break;
  2321. case 8:
  2322. gentry = *(const u64 *)new;
  2323. break;
  2324. default:
  2325. gentry = 0;
  2326. break;
  2327. }
  2328. mmu_guess_page_from_pte_write(vcpu, gpa, gentry);
  2329. spin_lock(&vcpu->kvm->mmu_lock);
  2330. if (atomic_read(&vcpu->kvm->arch.invlpg_counter) != invlpg_counter)
  2331. gentry = 0;
  2332. kvm_mmu_access_page(vcpu, gfn);
  2333. kvm_mmu_free_some_pages(vcpu);
  2334. ++vcpu->kvm->stat.mmu_pte_write;
  2335. kvm_mmu_audit(vcpu, "pre pte write");
  2336. if (guest_initiated) {
  2337. if (gfn == vcpu->arch.last_pt_write_gfn
  2338. && !last_updated_pte_accessed(vcpu)) {
  2339. ++vcpu->arch.last_pt_write_count;
  2340. if (vcpu->arch.last_pt_write_count >= 3)
  2341. flooded = 1;
  2342. } else {
  2343. vcpu->arch.last_pt_write_gfn = gfn;
  2344. vcpu->arch.last_pt_write_count = 1;
  2345. vcpu->arch.last_pte_updated = NULL;
  2346. }
  2347. }
  2348. for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
  2349. pte_size = sp->role.cr4_pae ? 8 : 4;
  2350. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  2351. misaligned |= bytes < 4;
  2352. if (misaligned || flooded) {
  2353. /*
  2354. * Misaligned accesses are too much trouble to fix
  2355. * up; also, they usually indicate a page is not used
  2356. * as a page table.
  2357. *
  2358. * If we're seeing too many writes to a page,
  2359. * it may no longer be a page table, or we may be
  2360. * forking, in which case it is better to unmap the
  2361. * page.
  2362. */
  2363. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  2364. gpa, bytes, sp->role.word);
  2365. zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2366. &invalid_list);
  2367. ++vcpu->kvm->stat.mmu_flooded;
  2368. continue;
  2369. }
  2370. page_offset = offset;
  2371. level = sp->role.level;
  2372. npte = 1;
  2373. if (!sp->role.cr4_pae) {
  2374. page_offset <<= 1; /* 32->64 */
  2375. /*
  2376. * A 32-bit pde maps 4MB while the shadow pdes map
  2377. * only 2MB. So we need to double the offset again
  2378. * and zap two pdes instead of one.
  2379. */
  2380. if (level == PT32_ROOT_LEVEL) {
  2381. page_offset &= ~7; /* kill rounding error */
  2382. page_offset <<= 1;
  2383. npte = 2;
  2384. }
  2385. quadrant = page_offset >> PAGE_SHIFT;
  2386. page_offset &= ~PAGE_MASK;
  2387. if (quadrant != sp->role.quadrant)
  2388. continue;
  2389. }
  2390. local_flush = true;
  2391. spte = &sp->spt[page_offset / sizeof(*spte)];
  2392. while (npte--) {
  2393. entry = *spte;
  2394. mmu_pte_write_zap_pte(vcpu, sp, spte);
  2395. if (gentry)
  2396. mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
  2397. if (!remote_flush && need_remote_flush(entry, *spte))
  2398. remote_flush = true;
  2399. ++spte;
  2400. }
  2401. }
  2402. mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
  2403. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2404. kvm_mmu_audit(vcpu, "post pte write");
  2405. spin_unlock(&vcpu->kvm->mmu_lock);
  2406. if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
  2407. kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
  2408. vcpu->arch.update_pte.pfn = bad_pfn;
  2409. }
  2410. }
  2411. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  2412. {
  2413. gpa_t gpa;
  2414. int r;
  2415. if (tdp_enabled)
  2416. return 0;
  2417. gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
  2418. spin_lock(&vcpu->kvm->mmu_lock);
  2419. r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2420. spin_unlock(&vcpu->kvm->mmu_lock);
  2421. return r;
  2422. }
  2423. EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
  2424. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  2425. {
  2426. int free_pages;
  2427. LIST_HEAD(invalid_list);
  2428. free_pages = vcpu->kvm->arch.n_free_mmu_pages;
  2429. while (free_pages < KVM_REFILL_PAGES &&
  2430. !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
  2431. struct kvm_mmu_page *sp;
  2432. sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
  2433. struct kvm_mmu_page, link);
  2434. free_pages += kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
  2435. &invalid_list);
  2436. ++vcpu->kvm->stat.mmu_recycled;
  2437. }
  2438. kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
  2439. }
  2440. int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
  2441. {
  2442. int r;
  2443. enum emulation_result er;
  2444. r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
  2445. if (r < 0)
  2446. goto out;
  2447. if (!r) {
  2448. r = 1;
  2449. goto out;
  2450. }
  2451. r = mmu_topup_memory_caches(vcpu);
  2452. if (r)
  2453. goto out;
  2454. er = emulate_instruction(vcpu, cr2, error_code, 0);
  2455. switch (er) {
  2456. case EMULATE_DONE:
  2457. return 1;
  2458. case EMULATE_DO_MMIO:
  2459. ++vcpu->stat.mmio_exits;
  2460. /* fall through */
  2461. case EMULATE_FAIL:
  2462. return 0;
  2463. default:
  2464. BUG();
  2465. }
  2466. out:
  2467. return r;
  2468. }
  2469. EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
  2470. void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
  2471. {
  2472. vcpu->arch.mmu.invlpg(vcpu, gva);
  2473. kvm_mmu_flush_tlb(vcpu);
  2474. ++vcpu->stat.invlpg;
  2475. }
  2476. EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
  2477. void kvm_enable_tdp(void)
  2478. {
  2479. tdp_enabled = true;
  2480. }
  2481. EXPORT_SYMBOL_GPL(kvm_enable_tdp);
  2482. void kvm_disable_tdp(void)
  2483. {
  2484. tdp_enabled = false;
  2485. }
  2486. EXPORT_SYMBOL_GPL(kvm_disable_tdp);
  2487. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  2488. {
  2489. free_page((unsigned long)vcpu->arch.mmu.pae_root);
  2490. }
  2491. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  2492. {
  2493. struct page *page;
  2494. int i;
  2495. ASSERT(vcpu);
  2496. /*
  2497. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  2498. * Therefore we need to allocate shadow page tables in the first
  2499. * 4GB of memory, which happens to fit the DMA32 zone.
  2500. */
  2501. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  2502. if (!page)
  2503. return -ENOMEM;
  2504. vcpu->arch.mmu.pae_root = page_address(page);
  2505. for (i = 0; i < 4; ++i)
  2506. vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
  2507. return 0;
  2508. }
  2509. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  2510. {
  2511. ASSERT(vcpu);
  2512. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2513. return alloc_mmu_pages(vcpu);
  2514. }
  2515. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  2516. {
  2517. ASSERT(vcpu);
  2518. ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
  2519. return init_kvm_mmu(vcpu);
  2520. }
  2521. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  2522. {
  2523. ASSERT(vcpu);
  2524. destroy_kvm_mmu(vcpu);
  2525. free_mmu_pages(vcpu);
  2526. mmu_free_memory_caches(vcpu);
  2527. }
  2528. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  2529. {
  2530. struct kvm_mmu_page *sp;
  2531. list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
  2532. int i;
  2533. u64 *pt;
  2534. if (!test_bit(slot, sp->slot_bitmap))
  2535. continue;
  2536. pt = sp->spt;
  2537. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  2538. /* avoid RMW */
  2539. if (is_writable_pte(pt[i]))
  2540. pt[i] &= ~PT_WRITABLE_MASK;
  2541. }
  2542. kvm_flush_remote_tlbs(kvm);
  2543. }
  2544. void kvm_mmu_zap_all(struct kvm *kvm)
  2545. {
  2546. struct kvm_mmu_page *sp, *node;
  2547. LIST_HEAD(invalid_list);
  2548. spin_lock(&kvm->mmu_lock);
  2549. restart:
  2550. list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
  2551. if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
  2552. goto restart;
  2553. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  2554. spin_unlock(&kvm->mmu_lock);
  2555. }
  2556. static int kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
  2557. struct list_head *invalid_list)
  2558. {
  2559. struct kvm_mmu_page *page;
  2560. page = container_of(kvm->arch.active_mmu_pages.prev,
  2561. struct kvm_mmu_page, link);
  2562. return kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
  2563. }
  2564. static int mmu_shrink(struct shrinker *shrink, int nr_to_scan, gfp_t gfp_mask)
  2565. {
  2566. struct kvm *kvm;
  2567. struct kvm *kvm_freed = NULL;
  2568. int cache_count = 0;
  2569. spin_lock(&kvm_lock);
  2570. list_for_each_entry(kvm, &vm_list, vm_list) {
  2571. int npages, idx, freed_pages;
  2572. LIST_HEAD(invalid_list);
  2573. idx = srcu_read_lock(&kvm->srcu);
  2574. spin_lock(&kvm->mmu_lock);
  2575. npages = kvm->arch.n_alloc_mmu_pages -
  2576. kvm->arch.n_free_mmu_pages;
  2577. cache_count += npages;
  2578. if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
  2579. freed_pages = kvm_mmu_remove_some_alloc_mmu_pages(kvm,
  2580. &invalid_list);
  2581. cache_count -= freed_pages;
  2582. kvm_freed = kvm;
  2583. }
  2584. nr_to_scan--;
  2585. kvm_mmu_commit_zap_page(kvm, &invalid_list);
  2586. spin_unlock(&kvm->mmu_lock);
  2587. srcu_read_unlock(&kvm->srcu, idx);
  2588. }
  2589. if (kvm_freed)
  2590. list_move_tail(&kvm_freed->vm_list, &vm_list);
  2591. spin_unlock(&kvm_lock);
  2592. return cache_count;
  2593. }
  2594. static struct shrinker mmu_shrinker = {
  2595. .shrink = mmu_shrink,
  2596. .seeks = DEFAULT_SEEKS * 10,
  2597. };
  2598. static void mmu_destroy_caches(void)
  2599. {
  2600. if (pte_chain_cache)
  2601. kmem_cache_destroy(pte_chain_cache);
  2602. if (rmap_desc_cache)
  2603. kmem_cache_destroy(rmap_desc_cache);
  2604. if (mmu_page_header_cache)
  2605. kmem_cache_destroy(mmu_page_header_cache);
  2606. }
  2607. void kvm_mmu_module_exit(void)
  2608. {
  2609. mmu_destroy_caches();
  2610. unregister_shrinker(&mmu_shrinker);
  2611. }
  2612. int kvm_mmu_module_init(void)
  2613. {
  2614. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  2615. sizeof(struct kvm_pte_chain),
  2616. 0, 0, NULL);
  2617. if (!pte_chain_cache)
  2618. goto nomem;
  2619. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  2620. sizeof(struct kvm_rmap_desc),
  2621. 0, 0, NULL);
  2622. if (!rmap_desc_cache)
  2623. goto nomem;
  2624. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  2625. sizeof(struct kvm_mmu_page),
  2626. 0, 0, NULL);
  2627. if (!mmu_page_header_cache)
  2628. goto nomem;
  2629. register_shrinker(&mmu_shrinker);
  2630. return 0;
  2631. nomem:
  2632. mmu_destroy_caches();
  2633. return -ENOMEM;
  2634. }
  2635. /*
  2636. * Caculate mmu pages needed for kvm.
  2637. */
  2638. unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
  2639. {
  2640. int i;
  2641. unsigned int nr_mmu_pages;
  2642. unsigned int nr_pages = 0;
  2643. struct kvm_memslots *slots;
  2644. slots = kvm_memslots(kvm);
  2645. for (i = 0; i < slots->nmemslots; i++)
  2646. nr_pages += slots->memslots[i].npages;
  2647. nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
  2648. nr_mmu_pages = max(nr_mmu_pages,
  2649. (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
  2650. return nr_mmu_pages;
  2651. }
  2652. static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2653. unsigned len)
  2654. {
  2655. if (len > buffer->len)
  2656. return NULL;
  2657. return buffer->ptr;
  2658. }
  2659. static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
  2660. unsigned len)
  2661. {
  2662. void *ret;
  2663. ret = pv_mmu_peek_buffer(buffer, len);
  2664. if (!ret)
  2665. return ret;
  2666. buffer->ptr += len;
  2667. buffer->len -= len;
  2668. buffer->processed += len;
  2669. return ret;
  2670. }
  2671. static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
  2672. gpa_t addr, gpa_t value)
  2673. {
  2674. int bytes = 8;
  2675. int r;
  2676. if (!is_long_mode(vcpu) && !is_pae(vcpu))
  2677. bytes = 4;
  2678. r = mmu_topup_memory_caches(vcpu);
  2679. if (r)
  2680. return r;
  2681. if (!emulator_write_phys(vcpu, addr, &value, bytes))
  2682. return -EFAULT;
  2683. return 1;
  2684. }
  2685. static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  2686. {
  2687. (void)kvm_set_cr3(vcpu, vcpu->arch.cr3);
  2688. return 1;
  2689. }
  2690. static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
  2691. {
  2692. spin_lock(&vcpu->kvm->mmu_lock);
  2693. mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
  2694. spin_unlock(&vcpu->kvm->mmu_lock);
  2695. return 1;
  2696. }
  2697. static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
  2698. struct kvm_pv_mmu_op_buffer *buffer)
  2699. {
  2700. struct kvm_mmu_op_header *header;
  2701. header = pv_mmu_peek_buffer(buffer, sizeof *header);
  2702. if (!header)
  2703. return 0;
  2704. switch (header->op) {
  2705. case KVM_MMU_OP_WRITE_PTE: {
  2706. struct kvm_mmu_op_write_pte *wpte;
  2707. wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
  2708. if (!wpte)
  2709. return 0;
  2710. return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
  2711. wpte->pte_val);
  2712. }
  2713. case KVM_MMU_OP_FLUSH_TLB: {
  2714. struct kvm_mmu_op_flush_tlb *ftlb;
  2715. ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
  2716. if (!ftlb)
  2717. return 0;
  2718. return kvm_pv_mmu_flush_tlb(vcpu);
  2719. }
  2720. case KVM_MMU_OP_RELEASE_PT: {
  2721. struct kvm_mmu_op_release_pt *rpt;
  2722. rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
  2723. if (!rpt)
  2724. return 0;
  2725. return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
  2726. }
  2727. default: return 0;
  2728. }
  2729. }
  2730. int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
  2731. gpa_t addr, unsigned long *ret)
  2732. {
  2733. int r;
  2734. struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
  2735. buffer->ptr = buffer->buf;
  2736. buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
  2737. buffer->processed = 0;
  2738. r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
  2739. if (r)
  2740. goto out;
  2741. while (buffer->len) {
  2742. r = kvm_pv_mmu_op_one(vcpu, buffer);
  2743. if (r < 0)
  2744. goto out;
  2745. if (r == 0)
  2746. break;
  2747. }
  2748. r = 1;
  2749. out:
  2750. *ret = buffer->processed;
  2751. return r;
  2752. }
  2753. int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
  2754. {
  2755. struct kvm_shadow_walk_iterator iterator;
  2756. int nr_sptes = 0;
  2757. spin_lock(&vcpu->kvm->mmu_lock);
  2758. for_each_shadow_entry(vcpu, addr, iterator) {
  2759. sptes[iterator.level-1] = *iterator.sptep;
  2760. nr_sptes++;
  2761. if (!is_shadow_present_pte(*iterator.sptep))
  2762. break;
  2763. }
  2764. spin_unlock(&vcpu->kvm->mmu_lock);
  2765. return nr_sptes;
  2766. }
  2767. EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
  2768. #ifdef AUDIT
  2769. static const char *audit_msg;
  2770. static gva_t canonicalize(gva_t gva)
  2771. {
  2772. #ifdef CONFIG_X86_64
  2773. gva = (long long)(gva << 16) >> 16;
  2774. #endif
  2775. return gva;
  2776. }
  2777. typedef void (*inspect_spte_fn) (struct kvm *kvm, u64 *sptep);
  2778. static void __mmu_spte_walk(struct kvm *kvm, struct kvm_mmu_page *sp,
  2779. inspect_spte_fn fn)
  2780. {
  2781. int i;
  2782. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2783. u64 ent = sp->spt[i];
  2784. if (is_shadow_present_pte(ent)) {
  2785. if (!is_last_spte(ent, sp->role.level)) {
  2786. struct kvm_mmu_page *child;
  2787. child = page_header(ent & PT64_BASE_ADDR_MASK);
  2788. __mmu_spte_walk(kvm, child, fn);
  2789. } else
  2790. fn(kvm, &sp->spt[i]);
  2791. }
  2792. }
  2793. }
  2794. static void mmu_spte_walk(struct kvm_vcpu *vcpu, inspect_spte_fn fn)
  2795. {
  2796. int i;
  2797. struct kvm_mmu_page *sp;
  2798. if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
  2799. return;
  2800. if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  2801. hpa_t root = vcpu->arch.mmu.root_hpa;
  2802. sp = page_header(root);
  2803. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2804. return;
  2805. }
  2806. for (i = 0; i < 4; ++i) {
  2807. hpa_t root = vcpu->arch.mmu.pae_root[i];
  2808. if (root && VALID_PAGE(root)) {
  2809. root &= PT64_BASE_ADDR_MASK;
  2810. sp = page_header(root);
  2811. __mmu_spte_walk(vcpu->kvm, sp, fn);
  2812. }
  2813. }
  2814. return;
  2815. }
  2816. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  2817. gva_t va, int level)
  2818. {
  2819. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  2820. int i;
  2821. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  2822. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  2823. u64 ent = pt[i];
  2824. if (ent == shadow_trap_nonpresent_pte)
  2825. continue;
  2826. va = canonicalize(va);
  2827. if (is_shadow_present_pte(ent) && !is_last_spte(ent, level))
  2828. audit_mappings_page(vcpu, ent, va, level - 1);
  2829. else {
  2830. gpa_t gpa = kvm_mmu_gva_to_gpa_read(vcpu, va, NULL);
  2831. gfn_t gfn = gpa >> PAGE_SHIFT;
  2832. pfn_t pfn = gfn_to_pfn(vcpu->kvm, gfn);
  2833. hpa_t hpa = (hpa_t)pfn << PAGE_SHIFT;
  2834. if (is_error_pfn(pfn)) {
  2835. kvm_release_pfn_clean(pfn);
  2836. continue;
  2837. }
  2838. if (is_shadow_present_pte(ent)
  2839. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  2840. printk(KERN_ERR "xx audit error: (%s) levels %d"
  2841. " gva %lx gpa %llx hpa %llx ent %llx %d\n",
  2842. audit_msg, vcpu->arch.mmu.root_level,
  2843. va, gpa, hpa, ent,
  2844. is_shadow_present_pte(ent));
  2845. else if (ent == shadow_notrap_nonpresent_pte
  2846. && !is_error_hpa(hpa))
  2847. printk(KERN_ERR "audit: (%s) notrap shadow,"
  2848. " valid guest gva %lx\n", audit_msg, va);
  2849. kvm_release_pfn_clean(pfn);
  2850. }
  2851. }
  2852. }
  2853. static void audit_mappings(struct kvm_vcpu *vcpu)
  2854. {
  2855. unsigned i;
  2856. if (vcpu->arch.mmu.root_level == 4)
  2857. audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
  2858. else
  2859. for (i = 0; i < 4; ++i)
  2860. if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
  2861. audit_mappings_page(vcpu,
  2862. vcpu->arch.mmu.pae_root[i],
  2863. i << 30,
  2864. 2);
  2865. }
  2866. static int count_rmaps(struct kvm_vcpu *vcpu)
  2867. {
  2868. struct kvm *kvm = vcpu->kvm;
  2869. struct kvm_memslots *slots;
  2870. int nmaps = 0;
  2871. int i, j, k, idx;
  2872. idx = srcu_read_lock(&kvm->srcu);
  2873. slots = kvm_memslots(kvm);
  2874. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  2875. struct kvm_memory_slot *m = &slots->memslots[i];
  2876. struct kvm_rmap_desc *d;
  2877. for (j = 0; j < m->npages; ++j) {
  2878. unsigned long *rmapp = &m->rmap[j];
  2879. if (!*rmapp)
  2880. continue;
  2881. if (!(*rmapp & 1)) {
  2882. ++nmaps;
  2883. continue;
  2884. }
  2885. d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
  2886. while (d) {
  2887. for (k = 0; k < RMAP_EXT; ++k)
  2888. if (d->sptes[k])
  2889. ++nmaps;
  2890. else
  2891. break;
  2892. d = d->more;
  2893. }
  2894. }
  2895. }
  2896. srcu_read_unlock(&kvm->srcu, idx);
  2897. return nmaps;
  2898. }
  2899. void inspect_spte_has_rmap(struct kvm *kvm, u64 *sptep)
  2900. {
  2901. unsigned long *rmapp;
  2902. struct kvm_mmu_page *rev_sp;
  2903. gfn_t gfn;
  2904. if (is_writable_pte(*sptep)) {
  2905. rev_sp = page_header(__pa(sptep));
  2906. gfn = kvm_mmu_page_get_gfn(rev_sp, sptep - rev_sp->spt);
  2907. if (!gfn_to_memslot(kvm, gfn)) {
  2908. if (!printk_ratelimit())
  2909. return;
  2910. printk(KERN_ERR "%s: no memslot for gfn %ld\n",
  2911. audit_msg, gfn);
  2912. printk(KERN_ERR "%s: index %ld of sp (gfn=%lx)\n",
  2913. audit_msg, (long int)(sptep - rev_sp->spt),
  2914. rev_sp->gfn);
  2915. dump_stack();
  2916. return;
  2917. }
  2918. rmapp = gfn_to_rmap(kvm, gfn, rev_sp->role.level);
  2919. if (!*rmapp) {
  2920. if (!printk_ratelimit())
  2921. return;
  2922. printk(KERN_ERR "%s: no rmap for writable spte %llx\n",
  2923. audit_msg, *sptep);
  2924. dump_stack();
  2925. }
  2926. }
  2927. }
  2928. void audit_writable_sptes_have_rmaps(struct kvm_vcpu *vcpu)
  2929. {
  2930. mmu_spte_walk(vcpu, inspect_spte_has_rmap);
  2931. }
  2932. static void check_writable_mappings_rmap(struct kvm_vcpu *vcpu)
  2933. {
  2934. struct kvm_mmu_page *sp;
  2935. int i;
  2936. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2937. u64 *pt = sp->spt;
  2938. if (sp->role.level != PT_PAGE_TABLE_LEVEL)
  2939. continue;
  2940. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  2941. u64 ent = pt[i];
  2942. if (!(ent & PT_PRESENT_MASK))
  2943. continue;
  2944. if (!is_writable_pte(ent))
  2945. continue;
  2946. inspect_spte_has_rmap(vcpu->kvm, &pt[i]);
  2947. }
  2948. }
  2949. return;
  2950. }
  2951. static void audit_rmap(struct kvm_vcpu *vcpu)
  2952. {
  2953. check_writable_mappings_rmap(vcpu);
  2954. count_rmaps(vcpu);
  2955. }
  2956. static void audit_write_protection(struct kvm_vcpu *vcpu)
  2957. {
  2958. struct kvm_mmu_page *sp;
  2959. struct kvm_memory_slot *slot;
  2960. unsigned long *rmapp;
  2961. u64 *spte;
  2962. gfn_t gfn;
  2963. list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
  2964. if (sp->role.direct)
  2965. continue;
  2966. if (sp->unsync)
  2967. continue;
  2968. slot = gfn_to_memslot(vcpu->kvm, sp->gfn);
  2969. rmapp = &slot->rmap[gfn - slot->base_gfn];
  2970. spte = rmap_next(vcpu->kvm, rmapp, NULL);
  2971. while (spte) {
  2972. if (is_writable_pte(*spte))
  2973. printk(KERN_ERR "%s: (%s) shadow page has "
  2974. "writable mappings: gfn %lx role %x\n",
  2975. __func__, audit_msg, sp->gfn,
  2976. sp->role.word);
  2977. spte = rmap_next(vcpu->kvm, rmapp, spte);
  2978. }
  2979. }
  2980. }
  2981. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  2982. {
  2983. int olddbg = dbg;
  2984. dbg = 0;
  2985. audit_msg = msg;
  2986. audit_rmap(vcpu);
  2987. audit_write_protection(vcpu);
  2988. if (strcmp("pre pte write", audit_msg) != 0)
  2989. audit_mappings(vcpu);
  2990. audit_writable_sptes_have_rmaps(vcpu);
  2991. dbg = olddbg;
  2992. }
  2993. #endif