sdio_chip.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940
  1. /*
  2. * Copyright (c) 2011 Broadcom Corporation
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
  11. * SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
  13. * OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
  14. * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. /* ***** SDIO interface chip backplane handle functions ***** */
  17. #include <linux/types.h>
  18. #include <linux/netdevice.h>
  19. #include <linux/mmc/card.h>
  20. #include <linux/ssb/ssb_regs.h>
  21. #include <linux/bcma/bcma.h>
  22. #include <chipcommon.h>
  23. #include <brcm_hw_ids.h>
  24. #include <brcmu_wifi.h>
  25. #include <brcmu_utils.h>
  26. #include <soc.h>
  27. #include "dhd_dbg.h"
  28. #include "sdio_host.h"
  29. #include "sdio_chip.h"
  30. /* chip core base & ramsize */
  31. /* bcm4329 */
  32. /* SDIO device core, ID 0x829 */
  33. #define BCM4329_CORE_BUS_BASE 0x18011000
  34. /* internal memory core, ID 0x80e */
  35. #define BCM4329_CORE_SOCRAM_BASE 0x18003000
  36. /* ARM Cortex M3 core, ID 0x82a */
  37. #define BCM4329_CORE_ARM_BASE 0x18002000
  38. #define BCM4329_RAMSIZE 0x48000
  39. /* bcm43143 */
  40. /* SDIO device core */
  41. #define BCM43143_CORE_BUS_BASE 0x18002000
  42. /* internal memory core */
  43. #define BCM43143_CORE_SOCRAM_BASE 0x18004000
  44. /* ARM Cortex M3 core, ID 0x82a */
  45. #define BCM43143_CORE_ARM_BASE 0x18003000
  46. #define BCM43143_RAMSIZE 0x70000
  47. #define SBCOREREV(sbidh) \
  48. ((((sbidh) & SSB_IDHIGH_RCHI) >> SSB_IDHIGH_RCHI_SHIFT) | \
  49. ((sbidh) & SSB_IDHIGH_RCLO))
  50. /* SOC Interconnect types (aka chip types) */
  51. #define SOCI_SB 0
  52. #define SOCI_AI 1
  53. /* EROM CompIdentB */
  54. #define CIB_REV_MASK 0xff000000
  55. #define CIB_REV_SHIFT 24
  56. /* ARM CR4 core specific control flag bits */
  57. #define ARMCR4_BCMA_IOCTL_CPUHALT 0x0020
  58. #define SDIOD_DRVSTR_KEY(chip, pmu) (((chip) << 16) | (pmu))
  59. /* SDIO Pad drive strength to select value mappings */
  60. struct sdiod_drive_str {
  61. u8 strength; /* Pad Drive Strength in mA */
  62. u8 sel; /* Chip-specific select value */
  63. };
  64. /* SDIO Drive Strength to sel value table for PMU Rev 11 (1.8V) */
  65. static const struct sdiod_drive_str sdiod_drvstr_tab1_1v8[] = {
  66. {32, 0x6},
  67. {26, 0x7},
  68. {22, 0x4},
  69. {16, 0x5},
  70. {12, 0x2},
  71. {8, 0x3},
  72. {4, 0x0},
  73. {0, 0x1}
  74. };
  75. u8
  76. brcmf_sdio_chip_getinfidx(struct chip_info *ci, u16 coreid)
  77. {
  78. u8 idx;
  79. for (idx = 0; idx < BRCMF_MAX_CORENUM; idx++)
  80. if (coreid == ci->c_inf[idx].id)
  81. return idx;
  82. return BRCMF_MAX_CORENUM;
  83. }
  84. static u32
  85. brcmf_sdio_sb_corerev(struct brcmf_sdio_dev *sdiodev,
  86. struct chip_info *ci, u16 coreid)
  87. {
  88. u32 regdata;
  89. u8 idx;
  90. idx = brcmf_sdio_chip_getinfidx(ci, coreid);
  91. regdata = brcmf_sdio_regrl(sdiodev,
  92. CORE_SB(ci->c_inf[idx].base, sbidhigh),
  93. NULL);
  94. return SBCOREREV(regdata);
  95. }
  96. static u32
  97. brcmf_sdio_ai_corerev(struct brcmf_sdio_dev *sdiodev,
  98. struct chip_info *ci, u16 coreid)
  99. {
  100. u8 idx;
  101. idx = brcmf_sdio_chip_getinfidx(ci, coreid);
  102. return (ci->c_inf[idx].cib & CIB_REV_MASK) >> CIB_REV_SHIFT;
  103. }
  104. static bool
  105. brcmf_sdio_sb_iscoreup(struct brcmf_sdio_dev *sdiodev,
  106. struct chip_info *ci, u16 coreid)
  107. {
  108. u32 regdata;
  109. u8 idx;
  110. idx = brcmf_sdio_chip_getinfidx(ci, coreid);
  111. regdata = brcmf_sdio_regrl(sdiodev,
  112. CORE_SB(ci->c_inf[idx].base, sbtmstatelow),
  113. NULL);
  114. regdata &= (SSB_TMSLOW_RESET | SSB_TMSLOW_REJECT |
  115. SSB_IMSTATE_REJECT | SSB_TMSLOW_CLOCK);
  116. return (SSB_TMSLOW_CLOCK == regdata);
  117. }
  118. static bool
  119. brcmf_sdio_ai_iscoreup(struct brcmf_sdio_dev *sdiodev,
  120. struct chip_info *ci, u16 coreid)
  121. {
  122. u32 regdata;
  123. u8 idx;
  124. bool ret;
  125. idx = brcmf_sdio_chip_getinfidx(ci, coreid);
  126. regdata = brcmf_sdio_regrl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL,
  127. NULL);
  128. ret = (regdata & (BCMA_IOCTL_FGC | BCMA_IOCTL_CLK)) == BCMA_IOCTL_CLK;
  129. regdata = brcmf_sdio_regrl(sdiodev,
  130. ci->c_inf[idx].wrapbase+BCMA_RESET_CTL,
  131. NULL);
  132. ret = ret && ((regdata & BCMA_RESET_CTL_RESET) == 0);
  133. return ret;
  134. }
  135. static void
  136. brcmf_sdio_sb_coredisable(struct brcmf_sdio_dev *sdiodev,
  137. struct chip_info *ci, u16 coreid, u32 core_bits)
  138. {
  139. u32 regdata, base;
  140. u8 idx;
  141. idx = brcmf_sdio_chip_getinfidx(ci, coreid);
  142. base = ci->c_inf[idx].base;
  143. regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbtmstatelow), NULL);
  144. if (regdata & SSB_TMSLOW_RESET)
  145. return;
  146. regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbtmstatelow), NULL);
  147. if ((regdata & SSB_TMSLOW_CLOCK) != 0) {
  148. /*
  149. * set target reject and spin until busy is clear
  150. * (preserve core-specific bits)
  151. */
  152. regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbtmstatelow),
  153. NULL);
  154. brcmf_sdio_regwl(sdiodev, CORE_SB(base, sbtmstatelow),
  155. regdata | SSB_TMSLOW_REJECT, NULL);
  156. regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbtmstatelow),
  157. NULL);
  158. udelay(1);
  159. SPINWAIT((brcmf_sdio_regrl(sdiodev,
  160. CORE_SB(base, sbtmstatehigh),
  161. NULL) &
  162. SSB_TMSHIGH_BUSY), 100000);
  163. regdata = brcmf_sdio_regrl(sdiodev,
  164. CORE_SB(base, sbtmstatehigh),
  165. NULL);
  166. if (regdata & SSB_TMSHIGH_BUSY)
  167. brcmf_err("core state still busy\n");
  168. regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbidlow),
  169. NULL);
  170. if (regdata & SSB_IDLOW_INITIATOR) {
  171. regdata = brcmf_sdio_regrl(sdiodev,
  172. CORE_SB(base, sbimstate),
  173. NULL);
  174. regdata |= SSB_IMSTATE_REJECT;
  175. brcmf_sdio_regwl(sdiodev, CORE_SB(base, sbimstate),
  176. regdata, NULL);
  177. regdata = brcmf_sdio_regrl(sdiodev,
  178. CORE_SB(base, sbimstate),
  179. NULL);
  180. udelay(1);
  181. SPINWAIT((brcmf_sdio_regrl(sdiodev,
  182. CORE_SB(base, sbimstate),
  183. NULL) &
  184. SSB_IMSTATE_BUSY), 100000);
  185. }
  186. /* set reset and reject while enabling the clocks */
  187. regdata = SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK |
  188. SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET;
  189. brcmf_sdio_regwl(sdiodev, CORE_SB(base, sbtmstatelow),
  190. regdata, NULL);
  191. regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbtmstatelow),
  192. NULL);
  193. udelay(10);
  194. /* clear the initiator reject bit */
  195. regdata = brcmf_sdio_regrl(sdiodev, CORE_SB(base, sbidlow),
  196. NULL);
  197. if (regdata & SSB_IDLOW_INITIATOR) {
  198. regdata = brcmf_sdio_regrl(sdiodev,
  199. CORE_SB(base, sbimstate),
  200. NULL);
  201. regdata &= ~SSB_IMSTATE_REJECT;
  202. brcmf_sdio_regwl(sdiodev, CORE_SB(base, sbimstate),
  203. regdata, NULL);
  204. }
  205. }
  206. /* leave reset and reject asserted */
  207. brcmf_sdio_regwl(sdiodev, CORE_SB(base, sbtmstatelow),
  208. (SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET), NULL);
  209. udelay(1);
  210. }
  211. static void
  212. brcmf_sdio_ai_coredisable(struct brcmf_sdio_dev *sdiodev,
  213. struct chip_info *ci, u16 coreid, u32 core_bits)
  214. {
  215. u8 idx;
  216. u32 regdata;
  217. idx = brcmf_sdio_chip_getinfidx(ci, coreid);
  218. /* if core is already in reset, just return */
  219. regdata = brcmf_sdio_regrl(sdiodev,
  220. ci->c_inf[idx].wrapbase+BCMA_RESET_CTL,
  221. NULL);
  222. if ((regdata & BCMA_RESET_CTL_RESET) != 0)
  223. return;
  224. /* ensure no pending backplane operation
  225. * 300uc should be sufficient for backplane ops to be finish
  226. * extra 10ms is taken into account for firmware load stage
  227. * after 10300us carry on disabling the core anyway
  228. */
  229. SPINWAIT(brcmf_sdio_regrl(sdiodev,
  230. ci->c_inf[idx].wrapbase+BCMA_RESET_ST,
  231. NULL), 10300);
  232. regdata = brcmf_sdio_regrl(sdiodev,
  233. ci->c_inf[idx].wrapbase+BCMA_RESET_ST,
  234. NULL);
  235. if (regdata)
  236. brcmf_err("disabling core 0x%x with reset status %x\n",
  237. coreid, regdata);
  238. brcmf_sdio_regwl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_RESET_CTL,
  239. BCMA_RESET_CTL_RESET, NULL);
  240. udelay(1);
  241. brcmf_sdio_regwl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL,
  242. core_bits, NULL);
  243. regdata = brcmf_sdio_regrl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL,
  244. NULL);
  245. usleep_range(10, 20);
  246. }
  247. static void
  248. brcmf_sdio_sb_resetcore(struct brcmf_sdio_dev *sdiodev,
  249. struct chip_info *ci, u16 coreid, u32 core_bits)
  250. {
  251. u32 regdata;
  252. u8 idx;
  253. idx = brcmf_sdio_chip_getinfidx(ci, coreid);
  254. /*
  255. * Must do the disable sequence first to work for
  256. * arbitrary current core state.
  257. */
  258. brcmf_sdio_sb_coredisable(sdiodev, ci, coreid, 0);
  259. /*
  260. * Now do the initialization sequence.
  261. * set reset while enabling the clock and
  262. * forcing them on throughout the core
  263. */
  264. brcmf_sdio_regwl(sdiodev,
  265. CORE_SB(ci->c_inf[idx].base, sbtmstatelow),
  266. SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK | SSB_TMSLOW_RESET,
  267. NULL);
  268. regdata = brcmf_sdio_regrl(sdiodev,
  269. CORE_SB(ci->c_inf[idx].base, sbtmstatelow),
  270. NULL);
  271. udelay(1);
  272. /* clear any serror */
  273. regdata = brcmf_sdio_regrl(sdiodev,
  274. CORE_SB(ci->c_inf[idx].base, sbtmstatehigh),
  275. NULL);
  276. if (regdata & SSB_TMSHIGH_SERR)
  277. brcmf_sdio_regwl(sdiodev,
  278. CORE_SB(ci->c_inf[idx].base, sbtmstatehigh),
  279. 0, NULL);
  280. regdata = brcmf_sdio_regrl(sdiodev,
  281. CORE_SB(ci->c_inf[idx].base, sbimstate),
  282. NULL);
  283. if (regdata & (SSB_IMSTATE_IBE | SSB_IMSTATE_TO))
  284. brcmf_sdio_regwl(sdiodev,
  285. CORE_SB(ci->c_inf[idx].base, sbimstate),
  286. regdata & ~(SSB_IMSTATE_IBE | SSB_IMSTATE_TO),
  287. NULL);
  288. /* clear reset and allow it to propagate throughout the core */
  289. brcmf_sdio_regwl(sdiodev, CORE_SB(ci->c_inf[idx].base, sbtmstatelow),
  290. SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK, NULL);
  291. regdata = brcmf_sdio_regrl(sdiodev,
  292. CORE_SB(ci->c_inf[idx].base, sbtmstatelow),
  293. NULL);
  294. udelay(1);
  295. /* leave clock enabled */
  296. brcmf_sdio_regwl(sdiodev, CORE_SB(ci->c_inf[idx].base, sbtmstatelow),
  297. SSB_TMSLOW_CLOCK, NULL);
  298. regdata = brcmf_sdio_regrl(sdiodev,
  299. CORE_SB(ci->c_inf[idx].base, sbtmstatelow),
  300. NULL);
  301. udelay(1);
  302. }
  303. static void
  304. brcmf_sdio_ai_resetcore(struct brcmf_sdio_dev *sdiodev,
  305. struct chip_info *ci, u16 coreid, u32 core_bits)
  306. {
  307. u8 idx;
  308. u32 regdata;
  309. idx = brcmf_sdio_chip_getinfidx(ci, coreid);
  310. /* must disable first to work for arbitrary current core state */
  311. brcmf_sdio_ai_coredisable(sdiodev, ci, coreid, core_bits);
  312. /* now do initialization sequence */
  313. brcmf_sdio_regwl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL,
  314. core_bits | BCMA_IOCTL_FGC | BCMA_IOCTL_CLK, NULL);
  315. regdata = brcmf_sdio_regrl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL,
  316. NULL);
  317. brcmf_sdio_regwl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_RESET_CTL,
  318. 0, NULL);
  319. regdata = brcmf_sdio_regrl(sdiodev,
  320. ci->c_inf[idx].wrapbase+BCMA_RESET_CTL,
  321. NULL);
  322. udelay(1);
  323. brcmf_sdio_regwl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL,
  324. core_bits | BCMA_IOCTL_CLK, NULL);
  325. regdata = brcmf_sdio_regrl(sdiodev, ci->c_inf[idx].wrapbase+BCMA_IOCTL,
  326. NULL);
  327. udelay(1);
  328. }
  329. #ifdef DEBUG
  330. /* safety check for chipinfo */
  331. static int brcmf_sdio_chip_cichk(struct chip_info *ci)
  332. {
  333. u8 core_idx;
  334. /* check RAM core presence for ARM CM3 core */
  335. core_idx = brcmf_sdio_chip_getinfidx(ci, BCMA_CORE_ARM_CM3);
  336. if (BRCMF_MAX_CORENUM != core_idx) {
  337. core_idx = brcmf_sdio_chip_getinfidx(ci,
  338. BCMA_CORE_INTERNAL_MEM);
  339. if (BRCMF_MAX_CORENUM == core_idx) {
  340. brcmf_err("RAM core not provided with ARM CM3 core\n");
  341. return -ENODEV;
  342. }
  343. }
  344. /* check RAM base for ARM CR4 core */
  345. core_idx = brcmf_sdio_chip_getinfidx(ci, BCMA_CORE_ARM_CR4);
  346. if (BRCMF_MAX_CORENUM != core_idx) {
  347. if (ci->rambase == 0) {
  348. brcmf_err("RAM base not provided with ARM CR4 core\n");
  349. return -ENOMEM;
  350. }
  351. }
  352. return 0;
  353. }
  354. #else /* DEBUG */
  355. static inline int brcmf_sdio_chip_cichk(struct chip_info *ci)
  356. {
  357. return 0;
  358. }
  359. #endif
  360. static int brcmf_sdio_chip_recognition(struct brcmf_sdio_dev *sdiodev,
  361. struct chip_info *ci, u32 regs)
  362. {
  363. u32 regdata;
  364. int ret;
  365. /* Get CC core rev
  366. * Chipid is assume to be at offset 0 from regs arg
  367. * For different chiptypes or old sdio hosts w/o chipcommon,
  368. * other ways of recognition should be added here.
  369. */
  370. ci->c_inf[0].id = BCMA_CORE_CHIPCOMMON;
  371. ci->c_inf[0].base = regs;
  372. regdata = brcmf_sdio_regrl(sdiodev,
  373. CORE_CC_REG(ci->c_inf[0].base, chipid),
  374. NULL);
  375. ci->chip = regdata & CID_ID_MASK;
  376. ci->chiprev = (regdata & CID_REV_MASK) >> CID_REV_SHIFT;
  377. ci->socitype = (regdata & CID_TYPE_MASK) >> CID_TYPE_SHIFT;
  378. brcmf_dbg(INFO, "chipid=0x%x chiprev=%d\n", ci->chip, ci->chiprev);
  379. /* Address of cores for new chips should be added here */
  380. switch (ci->chip) {
  381. case BCM43143_CHIP_ID:
  382. ci->c_inf[0].wrapbase = ci->c_inf[0].base + 0x00100000;
  383. ci->c_inf[0].cib = 0x2b000000;
  384. ci->c_inf[1].id = BCMA_CORE_SDIO_DEV;
  385. ci->c_inf[1].base = BCM43143_CORE_BUS_BASE;
  386. ci->c_inf[1].wrapbase = ci->c_inf[1].base + 0x00100000;
  387. ci->c_inf[1].cib = 0x18000000;
  388. ci->c_inf[2].id = BCMA_CORE_INTERNAL_MEM;
  389. ci->c_inf[2].base = BCM43143_CORE_SOCRAM_BASE;
  390. ci->c_inf[2].wrapbase = ci->c_inf[2].base + 0x00100000;
  391. ci->c_inf[2].cib = 0x14000000;
  392. ci->c_inf[3].id = BCMA_CORE_ARM_CM3;
  393. ci->c_inf[3].base = BCM43143_CORE_ARM_BASE;
  394. ci->c_inf[3].wrapbase = ci->c_inf[3].base + 0x00100000;
  395. ci->c_inf[3].cib = 0x07000000;
  396. ci->ramsize = BCM43143_RAMSIZE;
  397. break;
  398. case BCM43241_CHIP_ID:
  399. ci->c_inf[0].wrapbase = 0x18100000;
  400. ci->c_inf[0].cib = 0x2a084411;
  401. ci->c_inf[1].id = BCMA_CORE_SDIO_DEV;
  402. ci->c_inf[1].base = 0x18002000;
  403. ci->c_inf[1].wrapbase = 0x18102000;
  404. ci->c_inf[1].cib = 0x0e004211;
  405. ci->c_inf[2].id = BCMA_CORE_INTERNAL_MEM;
  406. ci->c_inf[2].base = 0x18004000;
  407. ci->c_inf[2].wrapbase = 0x18104000;
  408. ci->c_inf[2].cib = 0x14080401;
  409. ci->c_inf[3].id = BCMA_CORE_ARM_CM3;
  410. ci->c_inf[3].base = 0x18003000;
  411. ci->c_inf[3].wrapbase = 0x18103000;
  412. ci->c_inf[3].cib = 0x07004211;
  413. ci->ramsize = 0x90000;
  414. break;
  415. case BCM4329_CHIP_ID:
  416. ci->c_inf[1].id = BCMA_CORE_SDIO_DEV;
  417. ci->c_inf[1].base = BCM4329_CORE_BUS_BASE;
  418. ci->c_inf[2].id = BCMA_CORE_INTERNAL_MEM;
  419. ci->c_inf[2].base = BCM4329_CORE_SOCRAM_BASE;
  420. ci->c_inf[3].id = BCMA_CORE_ARM_CM3;
  421. ci->c_inf[3].base = BCM4329_CORE_ARM_BASE;
  422. ci->ramsize = BCM4329_RAMSIZE;
  423. break;
  424. case BCM4330_CHIP_ID:
  425. ci->c_inf[0].wrapbase = 0x18100000;
  426. ci->c_inf[0].cib = 0x27004211;
  427. ci->c_inf[1].id = BCMA_CORE_SDIO_DEV;
  428. ci->c_inf[1].base = 0x18002000;
  429. ci->c_inf[1].wrapbase = 0x18102000;
  430. ci->c_inf[1].cib = 0x07004211;
  431. ci->c_inf[2].id = BCMA_CORE_INTERNAL_MEM;
  432. ci->c_inf[2].base = 0x18004000;
  433. ci->c_inf[2].wrapbase = 0x18104000;
  434. ci->c_inf[2].cib = 0x0d080401;
  435. ci->c_inf[3].id = BCMA_CORE_ARM_CM3;
  436. ci->c_inf[3].base = 0x18003000;
  437. ci->c_inf[3].wrapbase = 0x18103000;
  438. ci->c_inf[3].cib = 0x03004211;
  439. ci->ramsize = 0x48000;
  440. break;
  441. case BCM4334_CHIP_ID:
  442. ci->c_inf[0].wrapbase = 0x18100000;
  443. ci->c_inf[0].cib = 0x29004211;
  444. ci->c_inf[1].id = BCMA_CORE_SDIO_DEV;
  445. ci->c_inf[1].base = 0x18002000;
  446. ci->c_inf[1].wrapbase = 0x18102000;
  447. ci->c_inf[1].cib = 0x0d004211;
  448. ci->c_inf[2].id = BCMA_CORE_INTERNAL_MEM;
  449. ci->c_inf[2].base = 0x18004000;
  450. ci->c_inf[2].wrapbase = 0x18104000;
  451. ci->c_inf[2].cib = 0x13080401;
  452. ci->c_inf[3].id = BCMA_CORE_ARM_CM3;
  453. ci->c_inf[3].base = 0x18003000;
  454. ci->c_inf[3].wrapbase = 0x18103000;
  455. ci->c_inf[3].cib = 0x07004211;
  456. ci->ramsize = 0x80000;
  457. break;
  458. case BCM4335_CHIP_ID:
  459. ci->c_inf[0].wrapbase = 0x18100000;
  460. ci->c_inf[0].cib = 0x2b084411;
  461. ci->c_inf[1].id = BCMA_CORE_SDIO_DEV;
  462. ci->c_inf[1].base = 0x18005000;
  463. ci->c_inf[1].wrapbase = 0x18105000;
  464. ci->c_inf[1].cib = 0x0f004211;
  465. ci->c_inf[2].id = BCMA_CORE_ARM_CR4;
  466. ci->c_inf[2].base = 0x18002000;
  467. ci->c_inf[2].wrapbase = 0x18102000;
  468. ci->c_inf[2].cib = 0x01084411;
  469. ci->ramsize = 0xc0000;
  470. ci->rambase = 0x180000;
  471. break;
  472. default:
  473. brcmf_err("chipid 0x%x is not supported\n", ci->chip);
  474. return -ENODEV;
  475. }
  476. ret = brcmf_sdio_chip_cichk(ci);
  477. if (ret)
  478. return ret;
  479. switch (ci->socitype) {
  480. case SOCI_SB:
  481. ci->iscoreup = brcmf_sdio_sb_iscoreup;
  482. ci->corerev = brcmf_sdio_sb_corerev;
  483. ci->coredisable = brcmf_sdio_sb_coredisable;
  484. ci->resetcore = brcmf_sdio_sb_resetcore;
  485. break;
  486. case SOCI_AI:
  487. ci->iscoreup = brcmf_sdio_ai_iscoreup;
  488. ci->corerev = brcmf_sdio_ai_corerev;
  489. ci->coredisable = brcmf_sdio_ai_coredisable;
  490. ci->resetcore = brcmf_sdio_ai_resetcore;
  491. break;
  492. default:
  493. brcmf_err("socitype %u not supported\n", ci->socitype);
  494. return -ENODEV;
  495. }
  496. return 0;
  497. }
  498. static int
  499. brcmf_sdio_chip_buscoreprep(struct brcmf_sdio_dev *sdiodev)
  500. {
  501. int err = 0;
  502. u8 clkval, clkset;
  503. /* Try forcing SDIO core to do ALPAvail request only */
  504. clkset = SBSDIO_FORCE_HW_CLKREQ_OFF | SBSDIO_ALP_AVAIL_REQ;
  505. brcmf_sdio_regwb(sdiodev, SBSDIO_FUNC1_CHIPCLKCSR, clkset, &err);
  506. if (err) {
  507. brcmf_err("error writing for HT off\n");
  508. return err;
  509. }
  510. /* If register supported, wait for ALPAvail and then force ALP */
  511. /* This may take up to 15 milliseconds */
  512. clkval = brcmf_sdio_regrb(sdiodev,
  513. SBSDIO_FUNC1_CHIPCLKCSR, NULL);
  514. if ((clkval & ~SBSDIO_AVBITS) != clkset) {
  515. brcmf_err("ChipClkCSR access: wrote 0x%02x read 0x%02x\n",
  516. clkset, clkval);
  517. return -EACCES;
  518. }
  519. SPINWAIT(((clkval = brcmf_sdio_regrb(sdiodev,
  520. SBSDIO_FUNC1_CHIPCLKCSR, NULL)),
  521. !SBSDIO_ALPAV(clkval)),
  522. PMU_MAX_TRANSITION_DLY);
  523. if (!SBSDIO_ALPAV(clkval)) {
  524. brcmf_err("timeout on ALPAV wait, clkval 0x%02x\n",
  525. clkval);
  526. return -EBUSY;
  527. }
  528. clkset = SBSDIO_FORCE_HW_CLKREQ_OFF | SBSDIO_FORCE_ALP;
  529. brcmf_sdio_regwb(sdiodev, SBSDIO_FUNC1_CHIPCLKCSR, clkset, &err);
  530. udelay(65);
  531. /* Also, disable the extra SDIO pull-ups */
  532. brcmf_sdio_regwb(sdiodev, SBSDIO_FUNC1_SDIOPULLUP, 0, NULL);
  533. return 0;
  534. }
  535. static void
  536. brcmf_sdio_chip_buscoresetup(struct brcmf_sdio_dev *sdiodev,
  537. struct chip_info *ci)
  538. {
  539. u32 base = ci->c_inf[0].base;
  540. /* get chipcommon rev */
  541. ci->c_inf[0].rev = ci->corerev(sdiodev, ci, ci->c_inf[0].id);
  542. /* get chipcommon capabilites */
  543. ci->c_inf[0].caps = brcmf_sdio_regrl(sdiodev,
  544. CORE_CC_REG(base, capabilities),
  545. NULL);
  546. /* get pmu caps & rev */
  547. if (ci->c_inf[0].caps & CC_CAP_PMU) {
  548. ci->pmucaps =
  549. brcmf_sdio_regrl(sdiodev,
  550. CORE_CC_REG(base, pmucapabilities),
  551. NULL);
  552. ci->pmurev = ci->pmucaps & PCAP_REV_MASK;
  553. }
  554. ci->c_inf[1].rev = ci->corerev(sdiodev, ci, ci->c_inf[1].id);
  555. brcmf_dbg(INFO, "ccrev=%d, pmurev=%d, buscore rev/type=%d/0x%x\n",
  556. ci->c_inf[0].rev, ci->pmurev,
  557. ci->c_inf[1].rev, ci->c_inf[1].id);
  558. /*
  559. * Make sure any on-chip ARM is off (in case strapping is wrong),
  560. * or downloaded code was already running.
  561. */
  562. ci->coredisable(sdiodev, ci, BCMA_CORE_ARM_CM3, 0);
  563. }
  564. int brcmf_sdio_chip_attach(struct brcmf_sdio_dev *sdiodev,
  565. struct chip_info **ci_ptr, u32 regs)
  566. {
  567. int ret;
  568. struct chip_info *ci;
  569. brcmf_dbg(TRACE, "Enter\n");
  570. /* alloc chip_info_t */
  571. ci = kzalloc(sizeof(struct chip_info), GFP_ATOMIC);
  572. if (!ci)
  573. return -ENOMEM;
  574. ret = brcmf_sdio_chip_buscoreprep(sdiodev);
  575. if (ret != 0)
  576. goto err;
  577. ret = brcmf_sdio_chip_recognition(sdiodev, ci, regs);
  578. if (ret != 0)
  579. goto err;
  580. brcmf_sdio_chip_buscoresetup(sdiodev, ci);
  581. brcmf_sdio_regwl(sdiodev, CORE_CC_REG(ci->c_inf[0].base, gpiopullup),
  582. 0, NULL);
  583. brcmf_sdio_regwl(sdiodev, CORE_CC_REG(ci->c_inf[0].base, gpiopulldown),
  584. 0, NULL);
  585. *ci_ptr = ci;
  586. return 0;
  587. err:
  588. kfree(ci);
  589. return ret;
  590. }
  591. void
  592. brcmf_sdio_chip_detach(struct chip_info **ci_ptr)
  593. {
  594. brcmf_dbg(TRACE, "Enter\n");
  595. kfree(*ci_ptr);
  596. *ci_ptr = NULL;
  597. }
  598. static char *brcmf_sdio_chip_name(uint chipid, char *buf, uint len)
  599. {
  600. const char *fmt;
  601. fmt = ((chipid > 0xa000) || (chipid < 0x4000)) ? "%d" : "%x";
  602. snprintf(buf, len, fmt, chipid);
  603. return buf;
  604. }
  605. void
  606. brcmf_sdio_chip_drivestrengthinit(struct brcmf_sdio_dev *sdiodev,
  607. struct chip_info *ci, u32 drivestrength)
  608. {
  609. struct sdiod_drive_str *str_tab = NULL;
  610. u32 str_mask = 0;
  611. u32 str_shift = 0;
  612. char chn[8];
  613. u32 base = ci->c_inf[0].base;
  614. if (!(ci->c_inf[0].caps & CC_CAP_PMU))
  615. return;
  616. switch (SDIOD_DRVSTR_KEY(ci->chip, ci->pmurev)) {
  617. case SDIOD_DRVSTR_KEY(BCM4330_CHIP_ID, 12):
  618. str_tab = (struct sdiod_drive_str *)&sdiod_drvstr_tab1_1v8;
  619. str_mask = 0x00003800;
  620. str_shift = 11;
  621. break;
  622. default:
  623. brcmf_err("No SDIO Drive strength init done for chip %s rev %d pmurev %d\n",
  624. brcmf_sdio_chip_name(ci->chip, chn, 8),
  625. ci->chiprev, ci->pmurev);
  626. break;
  627. }
  628. if (str_tab != NULL) {
  629. u32 drivestrength_sel = 0;
  630. u32 cc_data_temp;
  631. int i;
  632. for (i = 0; str_tab[i].strength != 0; i++) {
  633. if (drivestrength >= str_tab[i].strength) {
  634. drivestrength_sel = str_tab[i].sel;
  635. break;
  636. }
  637. }
  638. brcmf_sdio_regwl(sdiodev, CORE_CC_REG(base, chipcontrol_addr),
  639. 1, NULL);
  640. cc_data_temp =
  641. brcmf_sdio_regrl(sdiodev,
  642. CORE_CC_REG(base, chipcontrol_addr),
  643. NULL);
  644. cc_data_temp &= ~str_mask;
  645. drivestrength_sel <<= str_shift;
  646. cc_data_temp |= drivestrength_sel;
  647. brcmf_sdio_regwl(sdiodev, CORE_CC_REG(base, chipcontrol_addr),
  648. cc_data_temp, NULL);
  649. brcmf_dbg(INFO, "SDIO: %dmA drive strength selected, set to 0x%08x\n",
  650. drivestrength, cc_data_temp);
  651. }
  652. }
  653. #ifdef DEBUG
  654. static bool
  655. brcmf_sdio_chip_verifynvram(struct brcmf_sdio_dev *sdiodev, u32 nvram_addr,
  656. char *nvram_dat, uint nvram_sz)
  657. {
  658. char *nvram_ularray;
  659. int err;
  660. bool ret = true;
  661. /* read back and verify */
  662. brcmf_dbg(INFO, "Compare NVRAM dl & ul; size=%d\n", nvram_sz);
  663. nvram_ularray = kmalloc(nvram_sz, GFP_KERNEL);
  664. /* do not proceed while no memory but */
  665. if (!nvram_ularray)
  666. return true;
  667. /* Upload image to verify downloaded contents. */
  668. memset(nvram_ularray, 0xaa, nvram_sz);
  669. /* Read the vars list to temp buffer for comparison */
  670. err = brcmf_sdio_ramrw(sdiodev, false, nvram_addr, nvram_ularray,
  671. nvram_sz);
  672. if (err) {
  673. brcmf_err("error %d on reading %d nvram bytes at 0x%08x\n",
  674. err, nvram_sz, nvram_addr);
  675. } else if (memcmp(nvram_dat, nvram_ularray, nvram_sz)) {
  676. brcmf_err("Downloaded NVRAM image is corrupted\n");
  677. ret = false;
  678. }
  679. kfree(nvram_ularray);
  680. return ret;
  681. }
  682. #else /* DEBUG */
  683. static inline bool
  684. brcmf_sdio_chip_verifynvram(struct brcmf_sdio_dev *sdiodev, u32 nvram_addr,
  685. char *nvram_dat, uint nvram_sz)
  686. {
  687. return true;
  688. }
  689. #endif /* DEBUG */
  690. static bool brcmf_sdio_chip_writenvram(struct brcmf_sdio_dev *sdiodev,
  691. struct chip_info *ci,
  692. char *nvram_dat, uint nvram_sz)
  693. {
  694. int err;
  695. u32 nvram_addr;
  696. u32 token;
  697. __le32 token_le;
  698. nvram_addr = (ci->ramsize - 4) - nvram_sz + ci->rambase;
  699. /* Write the vars list */
  700. err = brcmf_sdio_ramrw(sdiodev, true, nvram_addr, nvram_dat, nvram_sz);
  701. if (err) {
  702. brcmf_err("error %d on writing %d nvram bytes at 0x%08x\n",
  703. err, nvram_sz, nvram_addr);
  704. return false;
  705. }
  706. if (!brcmf_sdio_chip_verifynvram(sdiodev, nvram_addr,
  707. nvram_dat, nvram_sz))
  708. return false;
  709. /* generate token:
  710. * nvram size, converted to words, in lower 16-bits, checksum
  711. * in upper 16-bits.
  712. */
  713. token = nvram_sz / 4;
  714. token = (~token << 16) | (token & 0x0000FFFF);
  715. token_le = cpu_to_le32(token);
  716. brcmf_dbg(INFO, "RAM size: %d\n", ci->ramsize);
  717. brcmf_dbg(INFO, "nvram is placed at %d, size %d, token=0x%08x\n",
  718. nvram_addr, nvram_sz, token);
  719. /* Write the length token to the last word */
  720. if (brcmf_sdio_ramrw(sdiodev, true, (ci->ramsize - 4 + ci->rambase),
  721. (u8 *)&token_le, 4))
  722. return false;
  723. return true;
  724. }
  725. static void
  726. brcmf_sdio_chip_cm3_enterdl(struct brcmf_sdio_dev *sdiodev,
  727. struct chip_info *ci)
  728. {
  729. u32 zeros = 0;
  730. ci->coredisable(sdiodev, ci, BCMA_CORE_ARM_CM3, 0);
  731. ci->resetcore(sdiodev, ci, BCMA_CORE_INTERNAL_MEM, 0);
  732. /* clear length token */
  733. brcmf_sdio_ramrw(sdiodev, true, ci->ramsize - 4, (u8 *)&zeros, 4);
  734. }
  735. static bool
  736. brcmf_sdio_chip_cm3_exitdl(struct brcmf_sdio_dev *sdiodev, struct chip_info *ci,
  737. char *nvram_dat, uint nvram_sz)
  738. {
  739. u8 core_idx;
  740. u32 reg_addr;
  741. if (!ci->iscoreup(sdiodev, ci, BCMA_CORE_INTERNAL_MEM)) {
  742. brcmf_err("SOCRAM core is down after reset?\n");
  743. return false;
  744. }
  745. if (!brcmf_sdio_chip_writenvram(sdiodev, ci, nvram_dat, nvram_sz))
  746. return false;
  747. /* clear all interrupts */
  748. core_idx = brcmf_sdio_chip_getinfidx(ci, BCMA_CORE_SDIO_DEV);
  749. reg_addr = ci->c_inf[core_idx].base;
  750. reg_addr += offsetof(struct sdpcmd_regs, intstatus);
  751. brcmf_sdio_regwl(sdiodev, reg_addr, 0xFFFFFFFF, NULL);
  752. ci->resetcore(sdiodev, ci, BCMA_CORE_ARM_CM3, 0);
  753. return true;
  754. }
  755. static inline void
  756. brcmf_sdio_chip_cr4_enterdl(struct brcmf_sdio_dev *sdiodev,
  757. struct chip_info *ci)
  758. {
  759. ci->resetcore(sdiodev, ci, BCMA_CORE_ARM_CR4,
  760. ARMCR4_BCMA_IOCTL_CPUHALT);
  761. }
  762. static bool
  763. brcmf_sdio_chip_cr4_exitdl(struct brcmf_sdio_dev *sdiodev, struct chip_info *ci,
  764. char *nvram_dat, uint nvram_sz)
  765. {
  766. u8 core_idx;
  767. u32 reg_addr;
  768. if (!brcmf_sdio_chip_writenvram(sdiodev, ci, nvram_dat, nvram_sz))
  769. return false;
  770. /* clear all interrupts */
  771. core_idx = brcmf_sdio_chip_getinfidx(ci, BCMA_CORE_SDIO_DEV);
  772. reg_addr = ci->c_inf[core_idx].base;
  773. reg_addr += offsetof(struct sdpcmd_regs, intstatus);
  774. brcmf_sdio_regwl(sdiodev, reg_addr, 0xFFFFFFFF, NULL);
  775. /* Write reset vector to address 0 */
  776. brcmf_sdio_ramrw(sdiodev, true, 0, (void *)&ci->rst_vec,
  777. sizeof(ci->rst_vec));
  778. /* restore ARM */
  779. ci->resetcore(sdiodev, ci, BCMA_CORE_ARM_CR4, 0);
  780. return true;
  781. }
  782. void brcmf_sdio_chip_enter_download(struct brcmf_sdio_dev *sdiodev,
  783. struct chip_info *ci)
  784. {
  785. u8 arm_core_idx;
  786. arm_core_idx = brcmf_sdio_chip_getinfidx(ci, BCMA_CORE_ARM_CM3);
  787. if (BRCMF_MAX_CORENUM != arm_core_idx) {
  788. brcmf_sdio_chip_cm3_enterdl(sdiodev, ci);
  789. return;
  790. }
  791. brcmf_sdio_chip_cr4_enterdl(sdiodev, ci);
  792. }
  793. bool brcmf_sdio_chip_exit_download(struct brcmf_sdio_dev *sdiodev,
  794. struct chip_info *ci, char *nvram_dat,
  795. uint nvram_sz)
  796. {
  797. u8 arm_core_idx;
  798. arm_core_idx = brcmf_sdio_chip_getinfidx(ci, BCMA_CORE_ARM_CM3);
  799. if (BRCMF_MAX_CORENUM != arm_core_idx)
  800. return brcmf_sdio_chip_cm3_exitdl(sdiodev, ci, nvram_dat,
  801. nvram_sz);
  802. return brcmf_sdio_chip_cr4_exitdl(sdiodev, ci, nvram_dat, nvram_sz);
  803. }