discontig.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736
  1. /*
  2. * Copyright (c) 2000, 2003 Silicon Graphics, Inc. All rights reserved.
  3. * Copyright (c) 2001 Intel Corp.
  4. * Copyright (c) 2001 Tony Luck <tony.luck@intel.com>
  5. * Copyright (c) 2002 NEC Corp.
  6. * Copyright (c) 2002 Kimio Suganuma <k-suganuma@da.jp.nec.com>
  7. * Copyright (c) 2004 Silicon Graphics, Inc
  8. * Russ Anderson <rja@sgi.com>
  9. * Jesse Barnes <jbarnes@sgi.com>
  10. * Jack Steiner <steiner@sgi.com>
  11. */
  12. /*
  13. * Platform initialization for Discontig Memory
  14. */
  15. #include <linux/kernel.h>
  16. #include <linux/mm.h>
  17. #include <linux/nmi.h>
  18. #include <linux/swap.h>
  19. #include <linux/bootmem.h>
  20. #include <linux/acpi.h>
  21. #include <linux/efi.h>
  22. #include <linux/nodemask.h>
  23. #include <asm/pgalloc.h>
  24. #include <asm/tlb.h>
  25. #include <asm/meminit.h>
  26. #include <asm/numa.h>
  27. #include <asm/sections.h>
  28. /*
  29. * Track per-node information needed to setup the boot memory allocator, the
  30. * per-node areas, and the real VM.
  31. */
  32. struct early_node_data {
  33. struct ia64_node_data *node_data;
  34. unsigned long pernode_addr;
  35. unsigned long pernode_size;
  36. unsigned long num_physpages;
  37. #ifdef CONFIG_ZONE_DMA
  38. unsigned long num_dma_physpages;
  39. #endif
  40. unsigned long min_pfn;
  41. unsigned long max_pfn;
  42. };
  43. static struct early_node_data mem_data[MAX_NUMNODES] __initdata;
  44. static nodemask_t memory_less_mask __initdata;
  45. pg_data_t *pgdat_list[MAX_NUMNODES];
  46. /*
  47. * To prevent cache aliasing effects, align per-node structures so that they
  48. * start at addresses that are strided by node number.
  49. */
  50. #define MAX_NODE_ALIGN_OFFSET (32 * 1024 * 1024)
  51. #define NODEDATA_ALIGN(addr, node) \
  52. ((((addr) + 1024*1024-1) & ~(1024*1024-1)) + \
  53. (((node)*PERCPU_PAGE_SIZE) & (MAX_NODE_ALIGN_OFFSET - 1)))
  54. /**
  55. * build_node_maps - callback to setup bootmem structs for each node
  56. * @start: physical start of range
  57. * @len: length of range
  58. * @node: node where this range resides
  59. *
  60. * We allocate a struct bootmem_data for each piece of memory that we wish to
  61. * treat as a virtually contiguous block (i.e. each node). Each such block
  62. * must start on an %IA64_GRANULE_SIZE boundary, so we round the address down
  63. * if necessary. Any non-existent pages will simply be part of the virtual
  64. * memmap. We also update min_low_pfn and max_low_pfn here as we receive
  65. * memory ranges from the caller.
  66. */
  67. static int __init build_node_maps(unsigned long start, unsigned long len,
  68. int node)
  69. {
  70. unsigned long spfn, epfn, end = start + len;
  71. struct bootmem_data *bdp = &bootmem_node_data[node];
  72. epfn = GRANULEROUNDUP(end) >> PAGE_SHIFT;
  73. spfn = GRANULEROUNDDOWN(start) >> PAGE_SHIFT;
  74. if (!bdp->node_low_pfn) {
  75. bdp->node_min_pfn = spfn;
  76. bdp->node_low_pfn = epfn;
  77. } else {
  78. bdp->node_min_pfn = min(spfn, bdp->node_min_pfn);
  79. bdp->node_low_pfn = max(epfn, bdp->node_low_pfn);
  80. }
  81. return 0;
  82. }
  83. /**
  84. * early_nr_cpus_node - return number of cpus on a given node
  85. * @node: node to check
  86. *
  87. * Count the number of cpus on @node. We can't use nr_cpus_node() yet because
  88. * acpi_boot_init() (which builds the node_to_cpu_mask array) hasn't been
  89. * called yet. Note that node 0 will also count all non-existent cpus.
  90. */
  91. static int __meminit early_nr_cpus_node(int node)
  92. {
  93. int cpu, n = 0;
  94. for_each_possible_early_cpu(cpu)
  95. if (node == node_cpuid[cpu].nid)
  96. n++;
  97. return n;
  98. }
  99. /**
  100. * compute_pernodesize - compute size of pernode data
  101. * @node: the node id.
  102. */
  103. static unsigned long __meminit compute_pernodesize(int node)
  104. {
  105. unsigned long pernodesize = 0, cpus;
  106. cpus = early_nr_cpus_node(node);
  107. pernodesize += PERCPU_PAGE_SIZE * cpus;
  108. pernodesize += node * L1_CACHE_BYTES;
  109. pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
  110. pernodesize += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
  111. pernodesize += L1_CACHE_ALIGN(sizeof(pg_data_t));
  112. pernodesize = PAGE_ALIGN(pernodesize);
  113. return pernodesize;
  114. }
  115. /**
  116. * per_cpu_node_setup - setup per-cpu areas on each node
  117. * @cpu_data: per-cpu area on this node
  118. * @node: node to setup
  119. *
  120. * Copy the static per-cpu data into the region we just set aside and then
  121. * setup __per_cpu_offset for each CPU on this node. Return a pointer to
  122. * the end of the area.
  123. */
  124. static void *per_cpu_node_setup(void *cpu_data, int node)
  125. {
  126. #ifdef CONFIG_SMP
  127. int cpu;
  128. for_each_possible_early_cpu(cpu) {
  129. void *src = cpu == 0 ? __cpu0_per_cpu : __phys_per_cpu_start;
  130. if (node != node_cpuid[cpu].nid)
  131. continue;
  132. memcpy(__va(cpu_data), src, __per_cpu_end - __per_cpu_start);
  133. __per_cpu_offset[cpu] = (char *)__va(cpu_data) -
  134. __per_cpu_start;
  135. /*
  136. * percpu area for cpu0 is moved from the __init area
  137. * which is setup by head.S and used till this point.
  138. * Update ar.k3. This move is ensures that percpu
  139. * area for cpu0 is on the correct node and its
  140. * virtual address isn't insanely far from other
  141. * percpu areas which is important for congruent
  142. * percpu allocator.
  143. */
  144. if (cpu == 0)
  145. ia64_set_kr(IA64_KR_PER_CPU_DATA,
  146. (unsigned long)cpu_data -
  147. (unsigned long)__per_cpu_start);
  148. cpu_data += PERCPU_PAGE_SIZE;
  149. }
  150. #endif
  151. return cpu_data;
  152. }
  153. /**
  154. * fill_pernode - initialize pernode data.
  155. * @node: the node id.
  156. * @pernode: physical address of pernode data
  157. * @pernodesize: size of the pernode data
  158. */
  159. static void __init fill_pernode(int node, unsigned long pernode,
  160. unsigned long pernodesize)
  161. {
  162. void *cpu_data;
  163. int cpus = early_nr_cpus_node(node);
  164. struct bootmem_data *bdp = &bootmem_node_data[node];
  165. mem_data[node].pernode_addr = pernode;
  166. mem_data[node].pernode_size = pernodesize;
  167. memset(__va(pernode), 0, pernodesize);
  168. cpu_data = (void *)pernode;
  169. pernode += PERCPU_PAGE_SIZE * cpus;
  170. pernode += node * L1_CACHE_BYTES;
  171. pgdat_list[node] = __va(pernode);
  172. pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
  173. mem_data[node].node_data = __va(pernode);
  174. pernode += L1_CACHE_ALIGN(sizeof(struct ia64_node_data));
  175. pgdat_list[node]->bdata = bdp;
  176. pernode += L1_CACHE_ALIGN(sizeof(pg_data_t));
  177. cpu_data = per_cpu_node_setup(cpu_data, node);
  178. return;
  179. }
  180. /**
  181. * find_pernode_space - allocate memory for memory map and per-node structures
  182. * @start: physical start of range
  183. * @len: length of range
  184. * @node: node where this range resides
  185. *
  186. * This routine reserves space for the per-cpu data struct, the list of
  187. * pg_data_ts and the per-node data struct. Each node will have something like
  188. * the following in the first chunk of addr. space large enough to hold it.
  189. *
  190. * ________________________
  191. * | |
  192. * |~~~~~~~~~~~~~~~~~~~~~~~~| <-- NODEDATA_ALIGN(start, node) for the first
  193. * | PERCPU_PAGE_SIZE * | start and length big enough
  194. * | cpus_on_this_node | Node 0 will also have entries for all non-existent cpus.
  195. * |------------------------|
  196. * | local pg_data_t * |
  197. * |------------------------|
  198. * | local ia64_node_data |
  199. * |------------------------|
  200. * | ??? |
  201. * |________________________|
  202. *
  203. * Once this space has been set aside, the bootmem maps are initialized. We
  204. * could probably move the allocation of the per-cpu and ia64_node_data space
  205. * outside of this function and use alloc_bootmem_node(), but doing it here
  206. * is straightforward and we get the alignments we want so...
  207. */
  208. static int __init find_pernode_space(unsigned long start, unsigned long len,
  209. int node)
  210. {
  211. unsigned long spfn, epfn;
  212. unsigned long pernodesize = 0, pernode, pages, mapsize;
  213. struct bootmem_data *bdp = &bootmem_node_data[node];
  214. spfn = start >> PAGE_SHIFT;
  215. epfn = (start + len) >> PAGE_SHIFT;
  216. pages = bdp->node_low_pfn - bdp->node_min_pfn;
  217. mapsize = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
  218. /*
  219. * Make sure this memory falls within this node's usable memory
  220. * since we may have thrown some away in build_maps().
  221. */
  222. if (spfn < bdp->node_min_pfn || epfn > bdp->node_low_pfn)
  223. return 0;
  224. /* Don't setup this node's local space twice... */
  225. if (mem_data[node].pernode_addr)
  226. return 0;
  227. /*
  228. * Calculate total size needed, incl. what's necessary
  229. * for good alignment and alias prevention.
  230. */
  231. pernodesize = compute_pernodesize(node);
  232. pernode = NODEDATA_ALIGN(start, node);
  233. /* Is this range big enough for what we want to store here? */
  234. if (start + len > (pernode + pernodesize + mapsize))
  235. fill_pernode(node, pernode, pernodesize);
  236. return 0;
  237. }
  238. /**
  239. * free_node_bootmem - free bootmem allocator memory for use
  240. * @start: physical start of range
  241. * @len: length of range
  242. * @node: node where this range resides
  243. *
  244. * Simply calls the bootmem allocator to free the specified ranged from
  245. * the given pg_data_t's bdata struct. After this function has been called
  246. * for all the entries in the EFI memory map, the bootmem allocator will
  247. * be ready to service allocation requests.
  248. */
  249. static int __init free_node_bootmem(unsigned long start, unsigned long len,
  250. int node)
  251. {
  252. free_bootmem_node(pgdat_list[node], start, len);
  253. return 0;
  254. }
  255. /**
  256. * reserve_pernode_space - reserve memory for per-node space
  257. *
  258. * Reserve the space used by the bootmem maps & per-node space in the boot
  259. * allocator so that when we actually create the real mem maps we don't
  260. * use their memory.
  261. */
  262. static void __init reserve_pernode_space(void)
  263. {
  264. unsigned long base, size, pages;
  265. struct bootmem_data *bdp;
  266. int node;
  267. for_each_online_node(node) {
  268. pg_data_t *pdp = pgdat_list[node];
  269. if (node_isset(node, memory_less_mask))
  270. continue;
  271. bdp = pdp->bdata;
  272. /* First the bootmem_map itself */
  273. pages = bdp->node_low_pfn - bdp->node_min_pfn;
  274. size = bootmem_bootmap_pages(pages) << PAGE_SHIFT;
  275. base = __pa(bdp->node_bootmem_map);
  276. reserve_bootmem_node(pdp, base, size, BOOTMEM_DEFAULT);
  277. /* Now the per-node space */
  278. size = mem_data[node].pernode_size;
  279. base = __pa(mem_data[node].pernode_addr);
  280. reserve_bootmem_node(pdp, base, size, BOOTMEM_DEFAULT);
  281. }
  282. }
  283. static void __meminit scatter_node_data(void)
  284. {
  285. pg_data_t **dst;
  286. int node;
  287. /*
  288. * for_each_online_node() can't be used at here.
  289. * node_online_map is not set for hot-added nodes at this time,
  290. * because we are halfway through initialization of the new node's
  291. * structures. If for_each_online_node() is used, a new node's
  292. * pg_data_ptrs will be not initialized. Instead of using it,
  293. * pgdat_list[] is checked.
  294. */
  295. for_each_node(node) {
  296. if (pgdat_list[node]) {
  297. dst = LOCAL_DATA_ADDR(pgdat_list[node])->pg_data_ptrs;
  298. memcpy(dst, pgdat_list, sizeof(pgdat_list));
  299. }
  300. }
  301. }
  302. /**
  303. * initialize_pernode_data - fixup per-cpu & per-node pointers
  304. *
  305. * Each node's per-node area has a copy of the global pg_data_t list, so
  306. * we copy that to each node here, as well as setting the per-cpu pointer
  307. * to the local node data structure. The active_cpus field of the per-node
  308. * structure gets setup by the platform_cpu_init() function later.
  309. */
  310. static void __init initialize_pernode_data(void)
  311. {
  312. int cpu, node;
  313. scatter_node_data();
  314. #ifdef CONFIG_SMP
  315. /* Set the node_data pointer for each per-cpu struct */
  316. for_each_possible_early_cpu(cpu) {
  317. node = node_cpuid[cpu].nid;
  318. per_cpu(cpu_info, cpu).node_data = mem_data[node].node_data;
  319. }
  320. #else
  321. {
  322. struct cpuinfo_ia64 *cpu0_cpu_info;
  323. cpu = 0;
  324. node = node_cpuid[cpu].nid;
  325. cpu0_cpu_info = (struct cpuinfo_ia64 *)(__phys_per_cpu_start +
  326. ((char *)&per_cpu__cpu_info - __per_cpu_start));
  327. cpu0_cpu_info->node_data = mem_data[node].node_data;
  328. }
  329. #endif /* CONFIG_SMP */
  330. }
  331. /**
  332. * memory_less_node_alloc - * attempt to allocate memory on the best NUMA slit
  333. * node but fall back to any other node when __alloc_bootmem_node fails
  334. * for best.
  335. * @nid: node id
  336. * @pernodesize: size of this node's pernode data
  337. */
  338. static void __init *memory_less_node_alloc(int nid, unsigned long pernodesize)
  339. {
  340. void *ptr = NULL;
  341. u8 best = 0xff;
  342. int bestnode = -1, node, anynode = 0;
  343. for_each_online_node(node) {
  344. if (node_isset(node, memory_less_mask))
  345. continue;
  346. else if (node_distance(nid, node) < best) {
  347. best = node_distance(nid, node);
  348. bestnode = node;
  349. }
  350. anynode = node;
  351. }
  352. if (bestnode == -1)
  353. bestnode = anynode;
  354. ptr = __alloc_bootmem_node(pgdat_list[bestnode], pernodesize,
  355. PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
  356. return ptr;
  357. }
  358. /**
  359. * memory_less_nodes - allocate and initialize CPU only nodes pernode
  360. * information.
  361. */
  362. static void __init memory_less_nodes(void)
  363. {
  364. unsigned long pernodesize;
  365. void *pernode;
  366. int node;
  367. for_each_node_mask(node, memory_less_mask) {
  368. pernodesize = compute_pernodesize(node);
  369. pernode = memory_less_node_alloc(node, pernodesize);
  370. fill_pernode(node, __pa(pernode), pernodesize);
  371. }
  372. return;
  373. }
  374. /**
  375. * find_memory - walk the EFI memory map and setup the bootmem allocator
  376. *
  377. * Called early in boot to setup the bootmem allocator, and to
  378. * allocate the per-cpu and per-node structures.
  379. */
  380. void __init find_memory(void)
  381. {
  382. int node;
  383. reserve_memory();
  384. if (num_online_nodes() == 0) {
  385. printk(KERN_ERR "node info missing!\n");
  386. node_set_online(0);
  387. }
  388. nodes_or(memory_less_mask, memory_less_mask, node_online_map);
  389. min_low_pfn = -1;
  390. max_low_pfn = 0;
  391. /* These actually end up getting called by call_pernode_memory() */
  392. efi_memmap_walk(filter_rsvd_memory, build_node_maps);
  393. efi_memmap_walk(filter_rsvd_memory, find_pernode_space);
  394. efi_memmap_walk(find_max_min_low_pfn, NULL);
  395. for_each_online_node(node)
  396. if (bootmem_node_data[node].node_low_pfn) {
  397. node_clear(node, memory_less_mask);
  398. mem_data[node].min_pfn = ~0UL;
  399. }
  400. efi_memmap_walk(filter_memory, register_active_ranges);
  401. /*
  402. * Initialize the boot memory maps in reverse order since that's
  403. * what the bootmem allocator expects
  404. */
  405. for (node = MAX_NUMNODES - 1; node >= 0; node--) {
  406. unsigned long pernode, pernodesize, map;
  407. struct bootmem_data *bdp;
  408. if (!node_online(node))
  409. continue;
  410. else if (node_isset(node, memory_less_mask))
  411. continue;
  412. bdp = &bootmem_node_data[node];
  413. pernode = mem_data[node].pernode_addr;
  414. pernodesize = mem_data[node].pernode_size;
  415. map = pernode + pernodesize;
  416. init_bootmem_node(pgdat_list[node],
  417. map>>PAGE_SHIFT,
  418. bdp->node_min_pfn,
  419. bdp->node_low_pfn);
  420. }
  421. efi_memmap_walk(filter_rsvd_memory, free_node_bootmem);
  422. reserve_pernode_space();
  423. memory_less_nodes();
  424. initialize_pernode_data();
  425. max_pfn = max_low_pfn;
  426. find_initrd();
  427. }
  428. #ifdef CONFIG_SMP
  429. /**
  430. * per_cpu_init - setup per-cpu variables
  431. *
  432. * find_pernode_space() does most of this already, we just need to set
  433. * local_per_cpu_offset
  434. */
  435. void __cpuinit *per_cpu_init(void)
  436. {
  437. int cpu;
  438. static int first_time = 1;
  439. if (first_time) {
  440. first_time = 0;
  441. for_each_possible_early_cpu(cpu)
  442. per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
  443. }
  444. return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
  445. }
  446. #endif /* CONFIG_SMP */
  447. /**
  448. * show_mem - give short summary of memory stats
  449. *
  450. * Shows a simple page count of reserved and used pages in the system.
  451. * For discontig machines, it does this on a per-pgdat basis.
  452. */
  453. void show_mem(void)
  454. {
  455. int i, total_reserved = 0;
  456. int total_shared = 0, total_cached = 0;
  457. unsigned long total_present = 0;
  458. pg_data_t *pgdat;
  459. printk(KERN_INFO "Mem-info:\n");
  460. show_free_areas();
  461. printk(KERN_INFO "Node memory in pages:\n");
  462. for_each_online_pgdat(pgdat) {
  463. unsigned long present;
  464. unsigned long flags;
  465. int shared = 0, cached = 0, reserved = 0;
  466. pgdat_resize_lock(pgdat, &flags);
  467. present = pgdat->node_present_pages;
  468. for(i = 0; i < pgdat->node_spanned_pages; i++) {
  469. struct page *page;
  470. if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
  471. touch_nmi_watchdog();
  472. if (pfn_valid(pgdat->node_start_pfn + i))
  473. page = pfn_to_page(pgdat->node_start_pfn + i);
  474. else {
  475. i = vmemmap_find_next_valid_pfn(pgdat->node_id,
  476. i) - 1;
  477. continue;
  478. }
  479. if (PageReserved(page))
  480. reserved++;
  481. else if (PageSwapCache(page))
  482. cached++;
  483. else if (page_count(page))
  484. shared += page_count(page)-1;
  485. }
  486. pgdat_resize_unlock(pgdat, &flags);
  487. total_present += present;
  488. total_reserved += reserved;
  489. total_cached += cached;
  490. total_shared += shared;
  491. printk(KERN_INFO "Node %4d: RAM: %11ld, rsvd: %8d, "
  492. "shrd: %10d, swpd: %10d\n", pgdat->node_id,
  493. present, reserved, shared, cached);
  494. }
  495. printk(KERN_INFO "%ld pages of RAM\n", total_present);
  496. printk(KERN_INFO "%d reserved pages\n", total_reserved);
  497. printk(KERN_INFO "%d pages shared\n", total_shared);
  498. printk(KERN_INFO "%d pages swap cached\n", total_cached);
  499. printk(KERN_INFO "Total of %ld pages in page table cache\n",
  500. quicklist_total_size());
  501. printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages());
  502. }
  503. /**
  504. * call_pernode_memory - use SRAT to call callback functions with node info
  505. * @start: physical start of range
  506. * @len: length of range
  507. * @arg: function to call for each range
  508. *
  509. * efi_memmap_walk() knows nothing about layout of memory across nodes. Find
  510. * out to which node a block of memory belongs. Ignore memory that we cannot
  511. * identify, and split blocks that run across multiple nodes.
  512. *
  513. * Take this opportunity to round the start address up and the end address
  514. * down to page boundaries.
  515. */
  516. void call_pernode_memory(unsigned long start, unsigned long len, void *arg)
  517. {
  518. unsigned long rs, re, end = start + len;
  519. void (*func)(unsigned long, unsigned long, int);
  520. int i;
  521. start = PAGE_ALIGN(start);
  522. end &= PAGE_MASK;
  523. if (start >= end)
  524. return;
  525. func = arg;
  526. if (!num_node_memblks) {
  527. /* No SRAT table, so assume one node (node 0) */
  528. if (start < end)
  529. (*func)(start, end - start, 0);
  530. return;
  531. }
  532. for (i = 0; i < num_node_memblks; i++) {
  533. rs = max(start, node_memblk[i].start_paddr);
  534. re = min(end, node_memblk[i].start_paddr +
  535. node_memblk[i].size);
  536. if (rs < re)
  537. (*func)(rs, re - rs, node_memblk[i].nid);
  538. if (re == end)
  539. break;
  540. }
  541. }
  542. /**
  543. * count_node_pages - callback to build per-node memory info structures
  544. * @start: physical start of range
  545. * @len: length of range
  546. * @node: node where this range resides
  547. *
  548. * Each node has it's own number of physical pages, DMAable pages, start, and
  549. * end page frame number. This routine will be called by call_pernode_memory()
  550. * for each piece of usable memory and will setup these values for each node.
  551. * Very similar to build_maps().
  552. */
  553. static __init int count_node_pages(unsigned long start, unsigned long len, int node)
  554. {
  555. unsigned long end = start + len;
  556. mem_data[node].num_physpages += len >> PAGE_SHIFT;
  557. #ifdef CONFIG_ZONE_DMA
  558. if (start <= __pa(MAX_DMA_ADDRESS))
  559. mem_data[node].num_dma_physpages +=
  560. (min(end, __pa(MAX_DMA_ADDRESS)) - start) >>PAGE_SHIFT;
  561. #endif
  562. start = GRANULEROUNDDOWN(start);
  563. end = GRANULEROUNDUP(end);
  564. mem_data[node].max_pfn = max(mem_data[node].max_pfn,
  565. end >> PAGE_SHIFT);
  566. mem_data[node].min_pfn = min(mem_data[node].min_pfn,
  567. start >> PAGE_SHIFT);
  568. return 0;
  569. }
  570. /**
  571. * paging_init - setup page tables
  572. *
  573. * paging_init() sets up the page tables for each node of the system and frees
  574. * the bootmem allocator memory for general use.
  575. */
  576. void __init paging_init(void)
  577. {
  578. unsigned long max_dma;
  579. unsigned long pfn_offset = 0;
  580. unsigned long max_pfn = 0;
  581. int node;
  582. unsigned long max_zone_pfns[MAX_NR_ZONES];
  583. max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
  584. efi_memmap_walk(filter_rsvd_memory, count_node_pages);
  585. sparse_memory_present_with_active_regions(MAX_NUMNODES);
  586. sparse_init();
  587. #ifdef CONFIG_VIRTUAL_MEM_MAP
  588. VMALLOC_END -= PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
  589. sizeof(struct page));
  590. vmem_map = (struct page *) VMALLOC_END;
  591. efi_memmap_walk(create_mem_map_page_table, NULL);
  592. printk("Virtual mem_map starts at 0x%p\n", vmem_map);
  593. #endif
  594. for_each_online_node(node) {
  595. num_physpages += mem_data[node].num_physpages;
  596. pfn_offset = mem_data[node].min_pfn;
  597. #ifdef CONFIG_VIRTUAL_MEM_MAP
  598. NODE_DATA(node)->node_mem_map = vmem_map + pfn_offset;
  599. #endif
  600. if (mem_data[node].max_pfn > max_pfn)
  601. max_pfn = mem_data[node].max_pfn;
  602. }
  603. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  604. #ifdef CONFIG_ZONE_DMA
  605. max_zone_pfns[ZONE_DMA] = max_dma;
  606. #endif
  607. max_zone_pfns[ZONE_NORMAL] = max_pfn;
  608. free_area_init_nodes(max_zone_pfns);
  609. zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
  610. }
  611. #ifdef CONFIG_MEMORY_HOTPLUG
  612. pg_data_t *arch_alloc_nodedata(int nid)
  613. {
  614. unsigned long size = compute_pernodesize(nid);
  615. return kzalloc(size, GFP_KERNEL);
  616. }
  617. void arch_free_nodedata(pg_data_t *pgdat)
  618. {
  619. kfree(pgdat);
  620. }
  621. void arch_refresh_nodedata(int update_node, pg_data_t *update_pgdat)
  622. {
  623. pgdat_list[update_node] = update_pgdat;
  624. scatter_node_data();
  625. }
  626. #endif
  627. #ifdef CONFIG_SPARSEMEM_VMEMMAP
  628. int __meminit vmemmap_populate(struct page *start_page,
  629. unsigned long size, int node)
  630. {
  631. return vmemmap_populate_basepages(start_page, size, node);
  632. }
  633. #endif