mmu.c 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include <linux/types.h>
  20. #include <linux/string.h>
  21. #include <asm/page.h>
  22. #include <linux/mm.h>
  23. #include <linux/highmem.h>
  24. #include <linux/module.h>
  25. #include "vmx.h"
  26. #include "kvm.h"
  27. #undef MMU_DEBUG
  28. #undef AUDIT
  29. #ifdef AUDIT
  30. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  31. #else
  32. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  33. #endif
  34. #ifdef MMU_DEBUG
  35. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  36. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  37. #else
  38. #define pgprintk(x...) do { } while (0)
  39. #define rmap_printk(x...) do { } while (0)
  40. #endif
  41. #if defined(MMU_DEBUG) || defined(AUDIT)
  42. static int dbg = 1;
  43. #endif
  44. #define ASSERT(x) \
  45. if (!(x)) { \
  46. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  47. __FILE__, __LINE__, #x); \
  48. }
  49. #define PT64_PT_BITS 9
  50. #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
  51. #define PT32_PT_BITS 10
  52. #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
  53. #define PT_WRITABLE_SHIFT 1
  54. #define PT_PRESENT_MASK (1ULL << 0)
  55. #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
  56. #define PT_USER_MASK (1ULL << 2)
  57. #define PT_PWT_MASK (1ULL << 3)
  58. #define PT_PCD_MASK (1ULL << 4)
  59. #define PT_ACCESSED_MASK (1ULL << 5)
  60. #define PT_DIRTY_MASK (1ULL << 6)
  61. #define PT_PAGE_SIZE_MASK (1ULL << 7)
  62. #define PT_PAT_MASK (1ULL << 7)
  63. #define PT_GLOBAL_MASK (1ULL << 8)
  64. #define PT64_NX_MASK (1ULL << 63)
  65. #define PT_PAT_SHIFT 7
  66. #define PT_DIR_PAT_SHIFT 12
  67. #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
  68. #define PT32_DIR_PSE36_SIZE 4
  69. #define PT32_DIR_PSE36_SHIFT 13
  70. #define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
  71. #define PT32_PTE_COPY_MASK \
  72. (PT_PRESENT_MASK | PT_ACCESSED_MASK | PT_DIRTY_MASK | PT_GLOBAL_MASK)
  73. #define PT64_PTE_COPY_MASK (PT64_NX_MASK | PT32_PTE_COPY_MASK)
  74. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  75. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  76. #define PT_SHADOW_PS_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  77. #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  78. #define PT_SHADOW_WRITABLE_SHIFT (PT_FIRST_AVAIL_BITS_SHIFT + 1)
  79. #define PT_SHADOW_WRITABLE_MASK (1ULL << PT_SHADOW_WRITABLE_SHIFT)
  80. #define PT_SHADOW_USER_SHIFT (PT_SHADOW_WRITABLE_SHIFT + 1)
  81. #define PT_SHADOW_USER_MASK (1ULL << (PT_SHADOW_USER_SHIFT))
  82. #define PT_SHADOW_BITS_OFFSET (PT_SHADOW_WRITABLE_SHIFT - PT_WRITABLE_SHIFT)
  83. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  84. #define PT64_LEVEL_BITS 9
  85. #define PT64_LEVEL_SHIFT(level) \
  86. ( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS )
  87. #define PT64_LEVEL_MASK(level) \
  88. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  89. #define PT64_INDEX(address, level)\
  90. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  91. #define PT32_LEVEL_BITS 10
  92. #define PT32_LEVEL_SHIFT(level) \
  93. ( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS )
  94. #define PT32_LEVEL_MASK(level) \
  95. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  96. #define PT32_INDEX(address, level)\
  97. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  98. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  99. #define PT64_DIR_BASE_ADDR_MASK \
  100. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  101. #define PT32_BASE_ADDR_MASK PAGE_MASK
  102. #define PT32_DIR_BASE_ADDR_MASK \
  103. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  104. #define PFERR_PRESENT_MASK (1U << 0)
  105. #define PFERR_WRITE_MASK (1U << 1)
  106. #define PFERR_USER_MASK (1U << 2)
  107. #define PFERR_FETCH_MASK (1U << 4)
  108. #define PT64_ROOT_LEVEL 4
  109. #define PT32_ROOT_LEVEL 2
  110. #define PT32E_ROOT_LEVEL 3
  111. #define PT_DIRECTORY_LEVEL 2
  112. #define PT_PAGE_TABLE_LEVEL 1
  113. #define RMAP_EXT 4
  114. struct kvm_rmap_desc {
  115. u64 *shadow_ptes[RMAP_EXT];
  116. struct kvm_rmap_desc *more;
  117. };
  118. static int is_write_protection(struct kvm_vcpu *vcpu)
  119. {
  120. return vcpu->cr0 & CR0_WP_MASK;
  121. }
  122. static int is_cpuid_PSE36(void)
  123. {
  124. return 1;
  125. }
  126. static int is_nx(struct kvm_vcpu *vcpu)
  127. {
  128. return vcpu->shadow_efer & EFER_NX;
  129. }
  130. static int is_present_pte(unsigned long pte)
  131. {
  132. return pte & PT_PRESENT_MASK;
  133. }
  134. static int is_writeble_pte(unsigned long pte)
  135. {
  136. return pte & PT_WRITABLE_MASK;
  137. }
  138. static int is_io_pte(unsigned long pte)
  139. {
  140. return pte & PT_SHADOW_IO_MARK;
  141. }
  142. static int is_rmap_pte(u64 pte)
  143. {
  144. return (pte & (PT_WRITABLE_MASK | PT_PRESENT_MASK))
  145. == (PT_WRITABLE_MASK | PT_PRESENT_MASK);
  146. }
  147. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  148. size_t objsize, int min)
  149. {
  150. void *obj;
  151. if (cache->nobjs >= min)
  152. return 0;
  153. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  154. obj = kzalloc(objsize, GFP_NOWAIT);
  155. if (!obj)
  156. return -ENOMEM;
  157. cache->objects[cache->nobjs++] = obj;
  158. }
  159. return 0;
  160. }
  161. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  162. {
  163. while (mc->nobjs)
  164. kfree(mc->objects[--mc->nobjs]);
  165. }
  166. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  167. {
  168. int r;
  169. r = mmu_topup_memory_cache(&vcpu->mmu_pte_chain_cache,
  170. sizeof(struct kvm_pte_chain), 4);
  171. if (r)
  172. goto out;
  173. r = mmu_topup_memory_cache(&vcpu->mmu_rmap_desc_cache,
  174. sizeof(struct kvm_rmap_desc), 1);
  175. out:
  176. return r;
  177. }
  178. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  179. {
  180. mmu_free_memory_cache(&vcpu->mmu_pte_chain_cache);
  181. mmu_free_memory_cache(&vcpu->mmu_rmap_desc_cache);
  182. }
  183. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  184. size_t size)
  185. {
  186. void *p;
  187. BUG_ON(!mc->nobjs);
  188. p = mc->objects[--mc->nobjs];
  189. memset(p, 0, size);
  190. return p;
  191. }
  192. static void mmu_memory_cache_free(struct kvm_mmu_memory_cache *mc, void *obj)
  193. {
  194. if (mc->nobjs < KVM_NR_MEM_OBJS)
  195. mc->objects[mc->nobjs++] = obj;
  196. else
  197. kfree(obj);
  198. }
  199. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  200. {
  201. return mmu_memory_cache_alloc(&vcpu->mmu_pte_chain_cache,
  202. sizeof(struct kvm_pte_chain));
  203. }
  204. static void mmu_free_pte_chain(struct kvm_vcpu *vcpu,
  205. struct kvm_pte_chain *pc)
  206. {
  207. mmu_memory_cache_free(&vcpu->mmu_pte_chain_cache, pc);
  208. }
  209. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  210. {
  211. return mmu_memory_cache_alloc(&vcpu->mmu_rmap_desc_cache,
  212. sizeof(struct kvm_rmap_desc));
  213. }
  214. static void mmu_free_rmap_desc(struct kvm_vcpu *vcpu,
  215. struct kvm_rmap_desc *rd)
  216. {
  217. mmu_memory_cache_free(&vcpu->mmu_rmap_desc_cache, rd);
  218. }
  219. /*
  220. * Reverse mapping data structures:
  221. *
  222. * If page->private bit zero is zero, then page->private points to the
  223. * shadow page table entry that points to page_address(page).
  224. *
  225. * If page->private bit zero is one, (then page->private & ~1) points
  226. * to a struct kvm_rmap_desc containing more mappings.
  227. */
  228. static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte)
  229. {
  230. struct page *page;
  231. struct kvm_rmap_desc *desc;
  232. int i;
  233. if (!is_rmap_pte(*spte))
  234. return;
  235. page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
  236. if (!page_private(page)) {
  237. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  238. set_page_private(page,(unsigned long)spte);
  239. } else if (!(page_private(page) & 1)) {
  240. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  241. desc = mmu_alloc_rmap_desc(vcpu);
  242. desc->shadow_ptes[0] = (u64 *)page_private(page);
  243. desc->shadow_ptes[1] = spte;
  244. set_page_private(page,(unsigned long)desc | 1);
  245. } else {
  246. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  247. desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
  248. while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
  249. desc = desc->more;
  250. if (desc->shadow_ptes[RMAP_EXT-1]) {
  251. desc->more = mmu_alloc_rmap_desc(vcpu);
  252. desc = desc->more;
  253. }
  254. for (i = 0; desc->shadow_ptes[i]; ++i)
  255. ;
  256. desc->shadow_ptes[i] = spte;
  257. }
  258. }
  259. static void rmap_desc_remove_entry(struct kvm_vcpu *vcpu,
  260. struct page *page,
  261. struct kvm_rmap_desc *desc,
  262. int i,
  263. struct kvm_rmap_desc *prev_desc)
  264. {
  265. int j;
  266. for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
  267. ;
  268. desc->shadow_ptes[i] = desc->shadow_ptes[j];
  269. desc->shadow_ptes[j] = NULL;
  270. if (j != 0)
  271. return;
  272. if (!prev_desc && !desc->more)
  273. set_page_private(page,(unsigned long)desc->shadow_ptes[0]);
  274. else
  275. if (prev_desc)
  276. prev_desc->more = desc->more;
  277. else
  278. set_page_private(page,(unsigned long)desc->more | 1);
  279. mmu_free_rmap_desc(vcpu, desc);
  280. }
  281. static void rmap_remove(struct kvm_vcpu *vcpu, u64 *spte)
  282. {
  283. struct page *page;
  284. struct kvm_rmap_desc *desc;
  285. struct kvm_rmap_desc *prev_desc;
  286. int i;
  287. if (!is_rmap_pte(*spte))
  288. return;
  289. page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
  290. if (!page_private(page)) {
  291. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  292. BUG();
  293. } else if (!(page_private(page) & 1)) {
  294. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  295. if ((u64 *)page_private(page) != spte) {
  296. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  297. spte, *spte);
  298. BUG();
  299. }
  300. set_page_private(page,0);
  301. } else {
  302. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  303. desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
  304. prev_desc = NULL;
  305. while (desc) {
  306. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
  307. if (desc->shadow_ptes[i] == spte) {
  308. rmap_desc_remove_entry(vcpu, page,
  309. desc, i,
  310. prev_desc);
  311. return;
  312. }
  313. prev_desc = desc;
  314. desc = desc->more;
  315. }
  316. BUG();
  317. }
  318. }
  319. static void rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
  320. {
  321. struct kvm *kvm = vcpu->kvm;
  322. struct page *page;
  323. struct kvm_memory_slot *slot;
  324. struct kvm_rmap_desc *desc;
  325. u64 *spte;
  326. slot = gfn_to_memslot(kvm, gfn);
  327. BUG_ON(!slot);
  328. page = gfn_to_page(slot, gfn);
  329. while (page_private(page)) {
  330. if (!(page_private(page) & 1))
  331. spte = (u64 *)page_private(page);
  332. else {
  333. desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
  334. spte = desc->shadow_ptes[0];
  335. }
  336. BUG_ON(!spte);
  337. BUG_ON((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT
  338. != page_to_pfn(page));
  339. BUG_ON(!(*spte & PT_PRESENT_MASK));
  340. BUG_ON(!(*spte & PT_WRITABLE_MASK));
  341. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  342. rmap_remove(vcpu, spte);
  343. kvm_arch_ops->tlb_flush(vcpu);
  344. *spte &= ~(u64)PT_WRITABLE_MASK;
  345. }
  346. }
  347. static int is_empty_shadow_page(hpa_t page_hpa)
  348. {
  349. u64 *pos;
  350. u64 *end;
  351. for (pos = __va(page_hpa), end = pos + PAGE_SIZE / sizeof(u64);
  352. pos != end; pos++)
  353. if (*pos != 0) {
  354. printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__,
  355. pos, *pos);
  356. return 0;
  357. }
  358. return 1;
  359. }
  360. static void kvm_mmu_free_page(struct kvm_vcpu *vcpu, hpa_t page_hpa)
  361. {
  362. struct kvm_mmu_page *page_head = page_header(page_hpa);
  363. ASSERT(is_empty_shadow_page(page_hpa));
  364. page_head->page_hpa = page_hpa;
  365. list_move(&page_head->link, &vcpu->free_pages);
  366. ++vcpu->kvm->n_free_mmu_pages;
  367. }
  368. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  369. {
  370. return gfn;
  371. }
  372. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  373. u64 *parent_pte)
  374. {
  375. struct kvm_mmu_page *page;
  376. if (list_empty(&vcpu->free_pages))
  377. return NULL;
  378. page = list_entry(vcpu->free_pages.next, struct kvm_mmu_page, link);
  379. list_move(&page->link, &vcpu->kvm->active_mmu_pages);
  380. ASSERT(is_empty_shadow_page(page->page_hpa));
  381. page->slot_bitmap = 0;
  382. page->multimapped = 0;
  383. page->parent_pte = parent_pte;
  384. --vcpu->kvm->n_free_mmu_pages;
  385. return page;
  386. }
  387. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  388. struct kvm_mmu_page *page, u64 *parent_pte)
  389. {
  390. struct kvm_pte_chain *pte_chain;
  391. struct hlist_node *node;
  392. int i;
  393. if (!parent_pte)
  394. return;
  395. if (!page->multimapped) {
  396. u64 *old = page->parent_pte;
  397. if (!old) {
  398. page->parent_pte = parent_pte;
  399. return;
  400. }
  401. page->multimapped = 1;
  402. pte_chain = mmu_alloc_pte_chain(vcpu);
  403. INIT_HLIST_HEAD(&page->parent_ptes);
  404. hlist_add_head(&pte_chain->link, &page->parent_ptes);
  405. pte_chain->parent_ptes[0] = old;
  406. }
  407. hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) {
  408. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  409. continue;
  410. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  411. if (!pte_chain->parent_ptes[i]) {
  412. pte_chain->parent_ptes[i] = parent_pte;
  413. return;
  414. }
  415. }
  416. pte_chain = mmu_alloc_pte_chain(vcpu);
  417. BUG_ON(!pte_chain);
  418. hlist_add_head(&pte_chain->link, &page->parent_ptes);
  419. pte_chain->parent_ptes[0] = parent_pte;
  420. }
  421. static void mmu_page_remove_parent_pte(struct kvm_vcpu *vcpu,
  422. struct kvm_mmu_page *page,
  423. u64 *parent_pte)
  424. {
  425. struct kvm_pte_chain *pte_chain;
  426. struct hlist_node *node;
  427. int i;
  428. if (!page->multimapped) {
  429. BUG_ON(page->parent_pte != parent_pte);
  430. page->parent_pte = NULL;
  431. return;
  432. }
  433. hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link)
  434. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  435. if (!pte_chain->parent_ptes[i])
  436. break;
  437. if (pte_chain->parent_ptes[i] != parent_pte)
  438. continue;
  439. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  440. && pte_chain->parent_ptes[i + 1]) {
  441. pte_chain->parent_ptes[i]
  442. = pte_chain->parent_ptes[i + 1];
  443. ++i;
  444. }
  445. pte_chain->parent_ptes[i] = NULL;
  446. if (i == 0) {
  447. hlist_del(&pte_chain->link);
  448. mmu_free_pte_chain(vcpu, pte_chain);
  449. if (hlist_empty(&page->parent_ptes)) {
  450. page->multimapped = 0;
  451. page->parent_pte = NULL;
  452. }
  453. }
  454. return;
  455. }
  456. BUG();
  457. }
  458. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm_vcpu *vcpu,
  459. gfn_t gfn)
  460. {
  461. unsigned index;
  462. struct hlist_head *bucket;
  463. struct kvm_mmu_page *page;
  464. struct hlist_node *node;
  465. pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
  466. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  467. bucket = &vcpu->kvm->mmu_page_hash[index];
  468. hlist_for_each_entry(page, node, bucket, hash_link)
  469. if (page->gfn == gfn && !page->role.metaphysical) {
  470. pgprintk("%s: found role %x\n",
  471. __FUNCTION__, page->role.word);
  472. return page;
  473. }
  474. return NULL;
  475. }
  476. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  477. gfn_t gfn,
  478. gva_t gaddr,
  479. unsigned level,
  480. int metaphysical,
  481. unsigned hugepage_access,
  482. u64 *parent_pte)
  483. {
  484. union kvm_mmu_page_role role;
  485. unsigned index;
  486. unsigned quadrant;
  487. struct hlist_head *bucket;
  488. struct kvm_mmu_page *page;
  489. struct hlist_node *node;
  490. role.word = 0;
  491. role.glevels = vcpu->mmu.root_level;
  492. role.level = level;
  493. role.metaphysical = metaphysical;
  494. role.hugepage_access = hugepage_access;
  495. if (vcpu->mmu.root_level <= PT32_ROOT_LEVEL) {
  496. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  497. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  498. role.quadrant = quadrant;
  499. }
  500. pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
  501. gfn, role.word);
  502. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  503. bucket = &vcpu->kvm->mmu_page_hash[index];
  504. hlist_for_each_entry(page, node, bucket, hash_link)
  505. if (page->gfn == gfn && page->role.word == role.word) {
  506. mmu_page_add_parent_pte(vcpu, page, parent_pte);
  507. pgprintk("%s: found\n", __FUNCTION__);
  508. return page;
  509. }
  510. page = kvm_mmu_alloc_page(vcpu, parent_pte);
  511. if (!page)
  512. return page;
  513. pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
  514. page->gfn = gfn;
  515. page->role = role;
  516. hlist_add_head(&page->hash_link, bucket);
  517. if (!metaphysical)
  518. rmap_write_protect(vcpu, gfn);
  519. return page;
  520. }
  521. static void kvm_mmu_page_unlink_children(struct kvm_vcpu *vcpu,
  522. struct kvm_mmu_page *page)
  523. {
  524. unsigned i;
  525. u64 *pt;
  526. u64 ent;
  527. pt = __va(page->page_hpa);
  528. if (page->role.level == PT_PAGE_TABLE_LEVEL) {
  529. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  530. if (pt[i] & PT_PRESENT_MASK)
  531. rmap_remove(vcpu, &pt[i]);
  532. pt[i] = 0;
  533. }
  534. kvm_arch_ops->tlb_flush(vcpu);
  535. return;
  536. }
  537. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  538. ent = pt[i];
  539. pt[i] = 0;
  540. if (!(ent & PT_PRESENT_MASK))
  541. continue;
  542. ent &= PT64_BASE_ADDR_MASK;
  543. mmu_page_remove_parent_pte(vcpu, page_header(ent), &pt[i]);
  544. }
  545. }
  546. static void kvm_mmu_put_page(struct kvm_vcpu *vcpu,
  547. struct kvm_mmu_page *page,
  548. u64 *parent_pte)
  549. {
  550. mmu_page_remove_parent_pte(vcpu, page, parent_pte);
  551. }
  552. static void kvm_mmu_zap_page(struct kvm_vcpu *vcpu,
  553. struct kvm_mmu_page *page)
  554. {
  555. u64 *parent_pte;
  556. while (page->multimapped || page->parent_pte) {
  557. if (!page->multimapped)
  558. parent_pte = page->parent_pte;
  559. else {
  560. struct kvm_pte_chain *chain;
  561. chain = container_of(page->parent_ptes.first,
  562. struct kvm_pte_chain, link);
  563. parent_pte = chain->parent_ptes[0];
  564. }
  565. BUG_ON(!parent_pte);
  566. kvm_mmu_put_page(vcpu, page, parent_pte);
  567. *parent_pte = 0;
  568. }
  569. kvm_mmu_page_unlink_children(vcpu, page);
  570. if (!page->root_count) {
  571. hlist_del(&page->hash_link);
  572. kvm_mmu_free_page(vcpu, page->page_hpa);
  573. } else
  574. list_move(&page->link, &vcpu->kvm->active_mmu_pages);
  575. }
  576. static int kvm_mmu_unprotect_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  577. {
  578. unsigned index;
  579. struct hlist_head *bucket;
  580. struct kvm_mmu_page *page;
  581. struct hlist_node *node, *n;
  582. int r;
  583. pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
  584. r = 0;
  585. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  586. bucket = &vcpu->kvm->mmu_page_hash[index];
  587. hlist_for_each_entry_safe(page, node, n, bucket, hash_link)
  588. if (page->gfn == gfn && !page->role.metaphysical) {
  589. pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
  590. page->role.word);
  591. kvm_mmu_zap_page(vcpu, page);
  592. r = 1;
  593. }
  594. return r;
  595. }
  596. static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa)
  597. {
  598. int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT));
  599. struct kvm_mmu_page *page_head = page_header(__pa(pte));
  600. __set_bit(slot, &page_head->slot_bitmap);
  601. }
  602. hpa_t safe_gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
  603. {
  604. hpa_t hpa = gpa_to_hpa(vcpu, gpa);
  605. return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK): hpa;
  606. }
  607. hpa_t gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
  608. {
  609. struct kvm_memory_slot *slot;
  610. struct page *page;
  611. ASSERT((gpa & HPA_ERR_MASK) == 0);
  612. slot = gfn_to_memslot(vcpu->kvm, gpa >> PAGE_SHIFT);
  613. if (!slot)
  614. return gpa | HPA_ERR_MASK;
  615. page = gfn_to_page(slot, gpa >> PAGE_SHIFT);
  616. return ((hpa_t)page_to_pfn(page) << PAGE_SHIFT)
  617. | (gpa & (PAGE_SIZE-1));
  618. }
  619. hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva)
  620. {
  621. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
  622. if (gpa == UNMAPPED_GVA)
  623. return UNMAPPED_GVA;
  624. return gpa_to_hpa(vcpu, gpa);
  625. }
  626. struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
  627. {
  628. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
  629. if (gpa == UNMAPPED_GVA)
  630. return NULL;
  631. return pfn_to_page(gpa_to_hpa(vcpu, gpa) >> PAGE_SHIFT);
  632. }
  633. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  634. {
  635. }
  636. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p)
  637. {
  638. int level = PT32E_ROOT_LEVEL;
  639. hpa_t table_addr = vcpu->mmu.root_hpa;
  640. for (; ; level--) {
  641. u32 index = PT64_INDEX(v, level);
  642. u64 *table;
  643. u64 pte;
  644. ASSERT(VALID_PAGE(table_addr));
  645. table = __va(table_addr);
  646. if (level == 1) {
  647. pte = table[index];
  648. if (is_present_pte(pte) && is_writeble_pte(pte))
  649. return 0;
  650. mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
  651. page_header_update_slot(vcpu->kvm, table, v);
  652. table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK |
  653. PT_USER_MASK;
  654. rmap_add(vcpu, &table[index]);
  655. return 0;
  656. }
  657. if (table[index] == 0) {
  658. struct kvm_mmu_page *new_table;
  659. gfn_t pseudo_gfn;
  660. pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
  661. >> PAGE_SHIFT;
  662. new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
  663. v, level - 1,
  664. 1, 0, &table[index]);
  665. if (!new_table) {
  666. pgprintk("nonpaging_map: ENOMEM\n");
  667. return -ENOMEM;
  668. }
  669. table[index] = new_table->page_hpa | PT_PRESENT_MASK
  670. | PT_WRITABLE_MASK | PT_USER_MASK;
  671. }
  672. table_addr = table[index] & PT64_BASE_ADDR_MASK;
  673. }
  674. }
  675. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  676. {
  677. int i;
  678. struct kvm_mmu_page *page;
  679. #ifdef CONFIG_X86_64
  680. if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  681. hpa_t root = vcpu->mmu.root_hpa;
  682. ASSERT(VALID_PAGE(root));
  683. page = page_header(root);
  684. --page->root_count;
  685. vcpu->mmu.root_hpa = INVALID_PAGE;
  686. return;
  687. }
  688. #endif
  689. for (i = 0; i < 4; ++i) {
  690. hpa_t root = vcpu->mmu.pae_root[i];
  691. ASSERT(VALID_PAGE(root));
  692. root &= PT64_BASE_ADDR_MASK;
  693. page = page_header(root);
  694. --page->root_count;
  695. vcpu->mmu.pae_root[i] = INVALID_PAGE;
  696. }
  697. vcpu->mmu.root_hpa = INVALID_PAGE;
  698. }
  699. static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
  700. {
  701. int i;
  702. gfn_t root_gfn;
  703. struct kvm_mmu_page *page;
  704. root_gfn = vcpu->cr3 >> PAGE_SHIFT;
  705. #ifdef CONFIG_X86_64
  706. if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  707. hpa_t root = vcpu->mmu.root_hpa;
  708. ASSERT(!VALID_PAGE(root));
  709. page = kvm_mmu_get_page(vcpu, root_gfn, 0,
  710. PT64_ROOT_LEVEL, 0, 0, NULL);
  711. root = page->page_hpa;
  712. ++page->root_count;
  713. vcpu->mmu.root_hpa = root;
  714. return;
  715. }
  716. #endif
  717. for (i = 0; i < 4; ++i) {
  718. hpa_t root = vcpu->mmu.pae_root[i];
  719. ASSERT(!VALID_PAGE(root));
  720. if (vcpu->mmu.root_level == PT32E_ROOT_LEVEL)
  721. root_gfn = vcpu->pdptrs[i] >> PAGE_SHIFT;
  722. else if (vcpu->mmu.root_level == 0)
  723. root_gfn = 0;
  724. page = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  725. PT32_ROOT_LEVEL, !is_paging(vcpu),
  726. 0, NULL);
  727. root = page->page_hpa;
  728. ++page->root_count;
  729. vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK;
  730. }
  731. vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root);
  732. }
  733. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
  734. {
  735. return vaddr;
  736. }
  737. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  738. u32 error_code)
  739. {
  740. gpa_t addr = gva;
  741. hpa_t paddr;
  742. int r;
  743. r = mmu_topup_memory_caches(vcpu);
  744. if (r)
  745. return r;
  746. ASSERT(vcpu);
  747. ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
  748. paddr = gpa_to_hpa(vcpu , addr & PT64_BASE_ADDR_MASK);
  749. if (is_error_hpa(paddr))
  750. return 1;
  751. return nonpaging_map(vcpu, addr & PAGE_MASK, paddr);
  752. }
  753. static void nonpaging_free(struct kvm_vcpu *vcpu)
  754. {
  755. mmu_free_roots(vcpu);
  756. }
  757. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  758. {
  759. struct kvm_mmu *context = &vcpu->mmu;
  760. context->new_cr3 = nonpaging_new_cr3;
  761. context->page_fault = nonpaging_page_fault;
  762. context->gva_to_gpa = nonpaging_gva_to_gpa;
  763. context->free = nonpaging_free;
  764. context->root_level = 0;
  765. context->shadow_root_level = PT32E_ROOT_LEVEL;
  766. mmu_alloc_roots(vcpu);
  767. ASSERT(VALID_PAGE(context->root_hpa));
  768. kvm_arch_ops->set_cr3(vcpu, context->root_hpa);
  769. return 0;
  770. }
  771. static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  772. {
  773. ++kvm_stat.tlb_flush;
  774. kvm_arch_ops->tlb_flush(vcpu);
  775. }
  776. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  777. {
  778. pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3);
  779. mmu_free_roots(vcpu);
  780. if (unlikely(vcpu->kvm->n_free_mmu_pages < KVM_MIN_FREE_MMU_PAGES))
  781. kvm_mmu_free_some_pages(vcpu);
  782. mmu_alloc_roots(vcpu);
  783. kvm_mmu_flush_tlb(vcpu);
  784. kvm_arch_ops->set_cr3(vcpu, vcpu->mmu.root_hpa);
  785. }
  786. static inline void set_pte_common(struct kvm_vcpu *vcpu,
  787. u64 *shadow_pte,
  788. gpa_t gaddr,
  789. int dirty,
  790. u64 access_bits,
  791. gfn_t gfn)
  792. {
  793. hpa_t paddr;
  794. *shadow_pte |= access_bits << PT_SHADOW_BITS_OFFSET;
  795. if (!dirty)
  796. access_bits &= ~PT_WRITABLE_MASK;
  797. paddr = gpa_to_hpa(vcpu, gaddr & PT64_BASE_ADDR_MASK);
  798. *shadow_pte |= access_bits;
  799. if (is_error_hpa(paddr)) {
  800. *shadow_pte |= gaddr;
  801. *shadow_pte |= PT_SHADOW_IO_MARK;
  802. *shadow_pte &= ~PT_PRESENT_MASK;
  803. return;
  804. }
  805. *shadow_pte |= paddr;
  806. if (access_bits & PT_WRITABLE_MASK) {
  807. struct kvm_mmu_page *shadow;
  808. shadow = kvm_mmu_lookup_page(vcpu, gfn);
  809. if (shadow) {
  810. pgprintk("%s: found shadow page for %lx, marking ro\n",
  811. __FUNCTION__, gfn);
  812. access_bits &= ~PT_WRITABLE_MASK;
  813. if (is_writeble_pte(*shadow_pte)) {
  814. *shadow_pte &= ~PT_WRITABLE_MASK;
  815. kvm_arch_ops->tlb_flush(vcpu);
  816. }
  817. }
  818. }
  819. if (access_bits & PT_WRITABLE_MASK)
  820. mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT);
  821. page_header_update_slot(vcpu->kvm, shadow_pte, gaddr);
  822. rmap_add(vcpu, shadow_pte);
  823. }
  824. static void inject_page_fault(struct kvm_vcpu *vcpu,
  825. u64 addr,
  826. u32 err_code)
  827. {
  828. kvm_arch_ops->inject_page_fault(vcpu, addr, err_code);
  829. }
  830. static inline int fix_read_pf(u64 *shadow_ent)
  831. {
  832. if ((*shadow_ent & PT_SHADOW_USER_MASK) &&
  833. !(*shadow_ent & PT_USER_MASK)) {
  834. /*
  835. * If supervisor write protect is disabled, we shadow kernel
  836. * pages as user pages so we can trap the write access.
  837. */
  838. *shadow_ent |= PT_USER_MASK;
  839. *shadow_ent &= ~PT_WRITABLE_MASK;
  840. return 1;
  841. }
  842. return 0;
  843. }
  844. static void paging_free(struct kvm_vcpu *vcpu)
  845. {
  846. nonpaging_free(vcpu);
  847. }
  848. #define PTTYPE 64
  849. #include "paging_tmpl.h"
  850. #undef PTTYPE
  851. #define PTTYPE 32
  852. #include "paging_tmpl.h"
  853. #undef PTTYPE
  854. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  855. {
  856. struct kvm_mmu *context = &vcpu->mmu;
  857. ASSERT(is_pae(vcpu));
  858. context->new_cr3 = paging_new_cr3;
  859. context->page_fault = paging64_page_fault;
  860. context->gva_to_gpa = paging64_gva_to_gpa;
  861. context->free = paging_free;
  862. context->root_level = level;
  863. context->shadow_root_level = level;
  864. mmu_alloc_roots(vcpu);
  865. ASSERT(VALID_PAGE(context->root_hpa));
  866. kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
  867. (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
  868. return 0;
  869. }
  870. static int paging64_init_context(struct kvm_vcpu *vcpu)
  871. {
  872. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  873. }
  874. static int paging32_init_context(struct kvm_vcpu *vcpu)
  875. {
  876. struct kvm_mmu *context = &vcpu->mmu;
  877. context->new_cr3 = paging_new_cr3;
  878. context->page_fault = paging32_page_fault;
  879. context->gva_to_gpa = paging32_gva_to_gpa;
  880. context->free = paging_free;
  881. context->root_level = PT32_ROOT_LEVEL;
  882. context->shadow_root_level = PT32E_ROOT_LEVEL;
  883. mmu_alloc_roots(vcpu);
  884. ASSERT(VALID_PAGE(context->root_hpa));
  885. kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
  886. (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
  887. return 0;
  888. }
  889. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  890. {
  891. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  892. }
  893. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  894. {
  895. ASSERT(vcpu);
  896. ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
  897. if (!is_paging(vcpu))
  898. return nonpaging_init_context(vcpu);
  899. else if (is_long_mode(vcpu))
  900. return paging64_init_context(vcpu);
  901. else if (is_pae(vcpu))
  902. return paging32E_init_context(vcpu);
  903. else
  904. return paging32_init_context(vcpu);
  905. }
  906. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  907. {
  908. ASSERT(vcpu);
  909. if (VALID_PAGE(vcpu->mmu.root_hpa)) {
  910. vcpu->mmu.free(vcpu);
  911. vcpu->mmu.root_hpa = INVALID_PAGE;
  912. }
  913. }
  914. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  915. {
  916. int r;
  917. destroy_kvm_mmu(vcpu);
  918. r = init_kvm_mmu(vcpu);
  919. if (r < 0)
  920. goto out;
  921. r = mmu_topup_memory_caches(vcpu);
  922. out:
  923. return r;
  924. }
  925. static void mmu_pre_write_zap_pte(struct kvm_vcpu *vcpu,
  926. struct kvm_mmu_page *page,
  927. u64 *spte)
  928. {
  929. u64 pte;
  930. struct kvm_mmu_page *child;
  931. pte = *spte;
  932. if (is_present_pte(pte)) {
  933. if (page->role.level == PT_PAGE_TABLE_LEVEL)
  934. rmap_remove(vcpu, spte);
  935. else {
  936. child = page_header(pte & PT64_BASE_ADDR_MASK);
  937. mmu_page_remove_parent_pte(vcpu, child, spte);
  938. }
  939. }
  940. *spte = 0;
  941. }
  942. void kvm_mmu_pre_write(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes)
  943. {
  944. gfn_t gfn = gpa >> PAGE_SHIFT;
  945. struct kvm_mmu_page *page;
  946. struct hlist_node *node, *n;
  947. struct hlist_head *bucket;
  948. unsigned index;
  949. u64 *spte;
  950. unsigned offset = offset_in_page(gpa);
  951. unsigned pte_size;
  952. unsigned page_offset;
  953. unsigned misaligned;
  954. int level;
  955. int flooded = 0;
  956. int npte;
  957. pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
  958. if (gfn == vcpu->last_pt_write_gfn) {
  959. ++vcpu->last_pt_write_count;
  960. if (vcpu->last_pt_write_count >= 3)
  961. flooded = 1;
  962. } else {
  963. vcpu->last_pt_write_gfn = gfn;
  964. vcpu->last_pt_write_count = 1;
  965. }
  966. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  967. bucket = &vcpu->kvm->mmu_page_hash[index];
  968. hlist_for_each_entry_safe(page, node, n, bucket, hash_link) {
  969. if (page->gfn != gfn || page->role.metaphysical)
  970. continue;
  971. pte_size = page->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
  972. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  973. if (misaligned || flooded) {
  974. /*
  975. * Misaligned accesses are too much trouble to fix
  976. * up; also, they usually indicate a page is not used
  977. * as a page table.
  978. *
  979. * If we're seeing too many writes to a page,
  980. * it may no longer be a page table, or we may be
  981. * forking, in which case it is better to unmap the
  982. * page.
  983. */
  984. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  985. gpa, bytes, page->role.word);
  986. kvm_mmu_zap_page(vcpu, page);
  987. continue;
  988. }
  989. page_offset = offset;
  990. level = page->role.level;
  991. npte = 1;
  992. if (page->role.glevels == PT32_ROOT_LEVEL) {
  993. page_offset <<= 1; /* 32->64 */
  994. /*
  995. * A 32-bit pde maps 4MB while the shadow pdes map
  996. * only 2MB. So we need to double the offset again
  997. * and zap two pdes instead of one.
  998. */
  999. if (level == PT32_ROOT_LEVEL) {
  1000. page_offset &= ~7; /* kill rounding error */
  1001. page_offset <<= 1;
  1002. npte = 2;
  1003. }
  1004. page_offset &= ~PAGE_MASK;
  1005. }
  1006. spte = __va(page->page_hpa);
  1007. spte += page_offset / sizeof(*spte);
  1008. while (npte--) {
  1009. mmu_pre_write_zap_pte(vcpu, page, spte);
  1010. ++spte;
  1011. }
  1012. }
  1013. }
  1014. void kvm_mmu_post_write(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes)
  1015. {
  1016. }
  1017. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  1018. {
  1019. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
  1020. return kvm_mmu_unprotect_page(vcpu, gpa >> PAGE_SHIFT);
  1021. }
  1022. void kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  1023. {
  1024. while (vcpu->kvm->n_free_mmu_pages < KVM_REFILL_PAGES) {
  1025. struct kvm_mmu_page *page;
  1026. page = container_of(vcpu->kvm->active_mmu_pages.prev,
  1027. struct kvm_mmu_page, link);
  1028. kvm_mmu_zap_page(vcpu, page);
  1029. }
  1030. }
  1031. EXPORT_SYMBOL_GPL(kvm_mmu_free_some_pages);
  1032. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  1033. {
  1034. struct kvm_mmu_page *page;
  1035. while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
  1036. page = container_of(vcpu->kvm->active_mmu_pages.next,
  1037. struct kvm_mmu_page, link);
  1038. kvm_mmu_zap_page(vcpu, page);
  1039. }
  1040. while (!list_empty(&vcpu->free_pages)) {
  1041. page = list_entry(vcpu->free_pages.next,
  1042. struct kvm_mmu_page, link);
  1043. list_del(&page->link);
  1044. __free_page(pfn_to_page(page->page_hpa >> PAGE_SHIFT));
  1045. page->page_hpa = INVALID_PAGE;
  1046. }
  1047. free_page((unsigned long)vcpu->mmu.pae_root);
  1048. }
  1049. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  1050. {
  1051. struct page *page;
  1052. int i;
  1053. ASSERT(vcpu);
  1054. for (i = 0; i < KVM_NUM_MMU_PAGES; i++) {
  1055. struct kvm_mmu_page *page_header = &vcpu->page_header_buf[i];
  1056. INIT_LIST_HEAD(&page_header->link);
  1057. if ((page = alloc_page(GFP_KERNEL)) == NULL)
  1058. goto error_1;
  1059. set_page_private(page, (unsigned long)page_header);
  1060. page_header->page_hpa = (hpa_t)page_to_pfn(page) << PAGE_SHIFT;
  1061. memset(__va(page_header->page_hpa), 0, PAGE_SIZE);
  1062. list_add(&page_header->link, &vcpu->free_pages);
  1063. ++vcpu->kvm->n_free_mmu_pages;
  1064. }
  1065. /*
  1066. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  1067. * Therefore we need to allocate shadow page tables in the first
  1068. * 4GB of memory, which happens to fit the DMA32 zone.
  1069. */
  1070. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  1071. if (!page)
  1072. goto error_1;
  1073. vcpu->mmu.pae_root = page_address(page);
  1074. for (i = 0; i < 4; ++i)
  1075. vcpu->mmu.pae_root[i] = INVALID_PAGE;
  1076. return 0;
  1077. error_1:
  1078. free_mmu_pages(vcpu);
  1079. return -ENOMEM;
  1080. }
  1081. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  1082. {
  1083. ASSERT(vcpu);
  1084. ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
  1085. ASSERT(list_empty(&vcpu->free_pages));
  1086. return alloc_mmu_pages(vcpu);
  1087. }
  1088. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  1089. {
  1090. ASSERT(vcpu);
  1091. ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
  1092. ASSERT(!list_empty(&vcpu->free_pages));
  1093. return init_kvm_mmu(vcpu);
  1094. }
  1095. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  1096. {
  1097. ASSERT(vcpu);
  1098. destroy_kvm_mmu(vcpu);
  1099. free_mmu_pages(vcpu);
  1100. mmu_free_memory_caches(vcpu);
  1101. }
  1102. void kvm_mmu_slot_remove_write_access(struct kvm_vcpu *vcpu, int slot)
  1103. {
  1104. struct kvm *kvm = vcpu->kvm;
  1105. struct kvm_mmu_page *page;
  1106. list_for_each_entry(page, &kvm->active_mmu_pages, link) {
  1107. int i;
  1108. u64 *pt;
  1109. if (!test_bit(slot, &page->slot_bitmap))
  1110. continue;
  1111. pt = __va(page->page_hpa);
  1112. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1113. /* avoid RMW */
  1114. if (pt[i] & PT_WRITABLE_MASK) {
  1115. rmap_remove(vcpu, &pt[i]);
  1116. pt[i] &= ~PT_WRITABLE_MASK;
  1117. }
  1118. }
  1119. }
  1120. #ifdef AUDIT
  1121. static const char *audit_msg;
  1122. static gva_t canonicalize(gva_t gva)
  1123. {
  1124. #ifdef CONFIG_X86_64
  1125. gva = (long long)(gva << 16) >> 16;
  1126. #endif
  1127. return gva;
  1128. }
  1129. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  1130. gva_t va, int level)
  1131. {
  1132. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  1133. int i;
  1134. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  1135. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  1136. u64 ent = pt[i];
  1137. if (!ent & PT_PRESENT_MASK)
  1138. continue;
  1139. va = canonicalize(va);
  1140. if (level > 1)
  1141. audit_mappings_page(vcpu, ent, va, level - 1);
  1142. else {
  1143. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, va);
  1144. hpa_t hpa = gpa_to_hpa(vcpu, gpa);
  1145. if ((ent & PT_PRESENT_MASK)
  1146. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  1147. printk(KERN_ERR "audit error: (%s) levels %d"
  1148. " gva %lx gpa %llx hpa %llx ent %llx\n",
  1149. audit_msg, vcpu->mmu.root_level,
  1150. va, gpa, hpa, ent);
  1151. }
  1152. }
  1153. }
  1154. static void audit_mappings(struct kvm_vcpu *vcpu)
  1155. {
  1156. unsigned i;
  1157. if (vcpu->mmu.root_level == 4)
  1158. audit_mappings_page(vcpu, vcpu->mmu.root_hpa, 0, 4);
  1159. else
  1160. for (i = 0; i < 4; ++i)
  1161. if (vcpu->mmu.pae_root[i] & PT_PRESENT_MASK)
  1162. audit_mappings_page(vcpu,
  1163. vcpu->mmu.pae_root[i],
  1164. i << 30,
  1165. 2);
  1166. }
  1167. static int count_rmaps(struct kvm_vcpu *vcpu)
  1168. {
  1169. int nmaps = 0;
  1170. int i, j, k;
  1171. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  1172. struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
  1173. struct kvm_rmap_desc *d;
  1174. for (j = 0; j < m->npages; ++j) {
  1175. struct page *page = m->phys_mem[j];
  1176. if (!page->private)
  1177. continue;
  1178. if (!(page->private & 1)) {
  1179. ++nmaps;
  1180. continue;
  1181. }
  1182. d = (struct kvm_rmap_desc *)(page->private & ~1ul);
  1183. while (d) {
  1184. for (k = 0; k < RMAP_EXT; ++k)
  1185. if (d->shadow_ptes[k])
  1186. ++nmaps;
  1187. else
  1188. break;
  1189. d = d->more;
  1190. }
  1191. }
  1192. }
  1193. return nmaps;
  1194. }
  1195. static int count_writable_mappings(struct kvm_vcpu *vcpu)
  1196. {
  1197. int nmaps = 0;
  1198. struct kvm_mmu_page *page;
  1199. int i;
  1200. list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
  1201. u64 *pt = __va(page->page_hpa);
  1202. if (page->role.level != PT_PAGE_TABLE_LEVEL)
  1203. continue;
  1204. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1205. u64 ent = pt[i];
  1206. if (!(ent & PT_PRESENT_MASK))
  1207. continue;
  1208. if (!(ent & PT_WRITABLE_MASK))
  1209. continue;
  1210. ++nmaps;
  1211. }
  1212. }
  1213. return nmaps;
  1214. }
  1215. static void audit_rmap(struct kvm_vcpu *vcpu)
  1216. {
  1217. int n_rmap = count_rmaps(vcpu);
  1218. int n_actual = count_writable_mappings(vcpu);
  1219. if (n_rmap != n_actual)
  1220. printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
  1221. __FUNCTION__, audit_msg, n_rmap, n_actual);
  1222. }
  1223. static void audit_write_protection(struct kvm_vcpu *vcpu)
  1224. {
  1225. struct kvm_mmu_page *page;
  1226. list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
  1227. hfn_t hfn;
  1228. struct page *pg;
  1229. if (page->role.metaphysical)
  1230. continue;
  1231. hfn = gpa_to_hpa(vcpu, (gpa_t)page->gfn << PAGE_SHIFT)
  1232. >> PAGE_SHIFT;
  1233. pg = pfn_to_page(hfn);
  1234. if (pg->private)
  1235. printk(KERN_ERR "%s: (%s) shadow page has writable"
  1236. " mappings: gfn %lx role %x\n",
  1237. __FUNCTION__, audit_msg, page->gfn,
  1238. page->role.word);
  1239. }
  1240. }
  1241. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  1242. {
  1243. int olddbg = dbg;
  1244. dbg = 0;
  1245. audit_msg = msg;
  1246. audit_rmap(vcpu);
  1247. audit_write_protection(vcpu);
  1248. audit_mappings(vcpu);
  1249. dbg = olddbg;
  1250. }
  1251. #endif