bio.c 26 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105
  1. /*
  2. * Copyright (C) 2001 Jens Axboe <axboe@suse.de>
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public Licens
  14. * along with this program; if not, write to the Free Software
  15. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
  16. *
  17. */
  18. #include <linux/mm.h>
  19. #include <linux/swap.h>
  20. #include <linux/bio.h>
  21. #include <linux/blkdev.h>
  22. #include <linux/slab.h>
  23. #include <linux/init.h>
  24. #include <linux/kernel.h>
  25. #include <linux/module.h>
  26. #include <linux/mempool.h>
  27. #include <linux/workqueue.h>
  28. #define BIO_POOL_SIZE 256
  29. static kmem_cache_t *bio_slab;
  30. #define BIOVEC_NR_POOLS 6
  31. /*
  32. * a small number of entries is fine, not going to be performance critical.
  33. * basically we just need to survive
  34. */
  35. #define BIO_SPLIT_ENTRIES 8
  36. mempool_t *bio_split_pool;
  37. struct biovec_slab {
  38. int nr_vecs;
  39. char *name;
  40. kmem_cache_t *slab;
  41. };
  42. /*
  43. * if you change this list, also change bvec_alloc or things will
  44. * break badly! cannot be bigger than what you can fit into an
  45. * unsigned short
  46. */
  47. #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
  48. static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = {
  49. BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
  50. };
  51. #undef BV
  52. /*
  53. * bio_set is used to allow other portions of the IO system to
  54. * allocate their own private memory pools for bio and iovec structures.
  55. * These memory pools in turn all allocate from the bio_slab
  56. * and the bvec_slabs[].
  57. */
  58. struct bio_set {
  59. mempool_t *bio_pool;
  60. mempool_t *bvec_pools[BIOVEC_NR_POOLS];
  61. };
  62. /*
  63. * fs_bio_set is the bio_set containing bio and iovec memory pools used by
  64. * IO code that does not need private memory pools.
  65. */
  66. static struct bio_set *fs_bio_set;
  67. static inline struct bio_vec *bvec_alloc_bs(unsigned int __nocast gfp_mask, int nr, unsigned long *idx, struct bio_set *bs)
  68. {
  69. struct bio_vec *bvl;
  70. struct biovec_slab *bp;
  71. /*
  72. * see comment near bvec_array define!
  73. */
  74. switch (nr) {
  75. case 1 : *idx = 0; break;
  76. case 2 ... 4: *idx = 1; break;
  77. case 5 ... 16: *idx = 2; break;
  78. case 17 ... 64: *idx = 3; break;
  79. case 65 ... 128: *idx = 4; break;
  80. case 129 ... BIO_MAX_PAGES: *idx = 5; break;
  81. default:
  82. return NULL;
  83. }
  84. /*
  85. * idx now points to the pool we want to allocate from
  86. */
  87. bp = bvec_slabs + *idx;
  88. bvl = mempool_alloc(bs->bvec_pools[*idx], gfp_mask);
  89. if (bvl)
  90. memset(bvl, 0, bp->nr_vecs * sizeof(struct bio_vec));
  91. return bvl;
  92. }
  93. void bio_free(struct bio *bio, struct bio_set *bio_set)
  94. {
  95. const int pool_idx = BIO_POOL_IDX(bio);
  96. BIO_BUG_ON(pool_idx >= BIOVEC_NR_POOLS);
  97. mempool_free(bio->bi_io_vec, bio_set->bvec_pools[pool_idx]);
  98. mempool_free(bio, bio_set->bio_pool);
  99. }
  100. /*
  101. * default destructor for a bio allocated with bio_alloc_bioset()
  102. */
  103. static void bio_fs_destructor(struct bio *bio)
  104. {
  105. bio_free(bio, fs_bio_set);
  106. }
  107. inline void bio_init(struct bio *bio)
  108. {
  109. bio->bi_next = NULL;
  110. bio->bi_flags = 1 << BIO_UPTODATE;
  111. bio->bi_rw = 0;
  112. bio->bi_vcnt = 0;
  113. bio->bi_idx = 0;
  114. bio->bi_phys_segments = 0;
  115. bio->bi_hw_segments = 0;
  116. bio->bi_hw_front_size = 0;
  117. bio->bi_hw_back_size = 0;
  118. bio->bi_size = 0;
  119. bio->bi_max_vecs = 0;
  120. bio->bi_end_io = NULL;
  121. atomic_set(&bio->bi_cnt, 1);
  122. bio->bi_private = NULL;
  123. }
  124. /**
  125. * bio_alloc_bioset - allocate a bio for I/O
  126. * @gfp_mask: the GFP_ mask given to the slab allocator
  127. * @nr_iovecs: number of iovecs to pre-allocate
  128. * @bs: the bio_set to allocate from
  129. *
  130. * Description:
  131. * bio_alloc_bioset will first try it's on mempool to satisfy the allocation.
  132. * If %__GFP_WAIT is set then we will block on the internal pool waiting
  133. * for a &struct bio to become free.
  134. *
  135. * allocate bio and iovecs from the memory pools specified by the
  136. * bio_set structure.
  137. **/
  138. struct bio *bio_alloc_bioset(unsigned int __nocast gfp_mask, int nr_iovecs, struct bio_set *bs)
  139. {
  140. struct bio *bio = mempool_alloc(bs->bio_pool, gfp_mask);
  141. if (likely(bio)) {
  142. struct bio_vec *bvl = NULL;
  143. bio_init(bio);
  144. if (likely(nr_iovecs)) {
  145. unsigned long idx;
  146. bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs);
  147. if (unlikely(!bvl)) {
  148. mempool_free(bio, bs->bio_pool);
  149. bio = NULL;
  150. goto out;
  151. }
  152. bio->bi_flags |= idx << BIO_POOL_OFFSET;
  153. bio->bi_max_vecs = bvec_slabs[idx].nr_vecs;
  154. }
  155. bio->bi_io_vec = bvl;
  156. }
  157. out:
  158. return bio;
  159. }
  160. struct bio *bio_alloc(unsigned int __nocast gfp_mask, int nr_iovecs)
  161. {
  162. struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set);
  163. if (bio)
  164. bio->bi_destructor = bio_fs_destructor;
  165. return bio;
  166. }
  167. void zero_fill_bio(struct bio *bio)
  168. {
  169. unsigned long flags;
  170. struct bio_vec *bv;
  171. int i;
  172. bio_for_each_segment(bv, bio, i) {
  173. char *data = bvec_kmap_irq(bv, &flags);
  174. memset(data, 0, bv->bv_len);
  175. flush_dcache_page(bv->bv_page);
  176. bvec_kunmap_irq(data, &flags);
  177. }
  178. }
  179. EXPORT_SYMBOL(zero_fill_bio);
  180. /**
  181. * bio_put - release a reference to a bio
  182. * @bio: bio to release reference to
  183. *
  184. * Description:
  185. * Put a reference to a &struct bio, either one you have gotten with
  186. * bio_alloc or bio_get. The last put of a bio will free it.
  187. **/
  188. void bio_put(struct bio *bio)
  189. {
  190. BIO_BUG_ON(!atomic_read(&bio->bi_cnt));
  191. /*
  192. * last put frees it
  193. */
  194. if (atomic_dec_and_test(&bio->bi_cnt)) {
  195. bio->bi_next = NULL;
  196. bio->bi_destructor(bio);
  197. }
  198. }
  199. inline int bio_phys_segments(request_queue_t *q, struct bio *bio)
  200. {
  201. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  202. blk_recount_segments(q, bio);
  203. return bio->bi_phys_segments;
  204. }
  205. inline int bio_hw_segments(request_queue_t *q, struct bio *bio)
  206. {
  207. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  208. blk_recount_segments(q, bio);
  209. return bio->bi_hw_segments;
  210. }
  211. /**
  212. * __bio_clone - clone a bio
  213. * @bio: destination bio
  214. * @bio_src: bio to clone
  215. *
  216. * Clone a &bio. Caller will own the returned bio, but not
  217. * the actual data it points to. Reference count of returned
  218. * bio will be one.
  219. */
  220. inline void __bio_clone(struct bio *bio, struct bio *bio_src)
  221. {
  222. request_queue_t *q = bdev_get_queue(bio_src->bi_bdev);
  223. memcpy(bio->bi_io_vec, bio_src->bi_io_vec,
  224. bio_src->bi_max_vecs * sizeof(struct bio_vec));
  225. bio->bi_sector = bio_src->bi_sector;
  226. bio->bi_bdev = bio_src->bi_bdev;
  227. bio->bi_flags |= 1 << BIO_CLONED;
  228. bio->bi_rw = bio_src->bi_rw;
  229. bio->bi_vcnt = bio_src->bi_vcnt;
  230. bio->bi_size = bio_src->bi_size;
  231. bio->bi_idx = bio_src->bi_idx;
  232. bio_phys_segments(q, bio);
  233. bio_hw_segments(q, bio);
  234. }
  235. /**
  236. * bio_clone - clone a bio
  237. * @bio: bio to clone
  238. * @gfp_mask: allocation priority
  239. *
  240. * Like __bio_clone, only also allocates the returned bio
  241. */
  242. struct bio *bio_clone(struct bio *bio, unsigned int __nocast gfp_mask)
  243. {
  244. struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set);
  245. if (b) {
  246. b->bi_destructor = bio_fs_destructor;
  247. __bio_clone(b, bio);
  248. }
  249. return b;
  250. }
  251. /**
  252. * bio_get_nr_vecs - return approx number of vecs
  253. * @bdev: I/O target
  254. *
  255. * Return the approximate number of pages we can send to this target.
  256. * There's no guarantee that you will be able to fit this number of pages
  257. * into a bio, it does not account for dynamic restrictions that vary
  258. * on offset.
  259. */
  260. int bio_get_nr_vecs(struct block_device *bdev)
  261. {
  262. request_queue_t *q = bdev_get_queue(bdev);
  263. int nr_pages;
  264. nr_pages = ((q->max_sectors << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT;
  265. if (nr_pages > q->max_phys_segments)
  266. nr_pages = q->max_phys_segments;
  267. if (nr_pages > q->max_hw_segments)
  268. nr_pages = q->max_hw_segments;
  269. return nr_pages;
  270. }
  271. static int __bio_add_page(request_queue_t *q, struct bio *bio, struct page
  272. *page, unsigned int len, unsigned int offset)
  273. {
  274. int retried_segments = 0;
  275. struct bio_vec *bvec;
  276. /*
  277. * cloned bio must not modify vec list
  278. */
  279. if (unlikely(bio_flagged(bio, BIO_CLONED)))
  280. return 0;
  281. if (bio->bi_vcnt >= bio->bi_max_vecs)
  282. return 0;
  283. if (((bio->bi_size + len) >> 9) > q->max_sectors)
  284. return 0;
  285. /*
  286. * we might lose a segment or two here, but rather that than
  287. * make this too complex.
  288. */
  289. while (bio->bi_phys_segments >= q->max_phys_segments
  290. || bio->bi_hw_segments >= q->max_hw_segments
  291. || BIOVEC_VIRT_OVERSIZE(bio->bi_size)) {
  292. if (retried_segments)
  293. return 0;
  294. retried_segments = 1;
  295. blk_recount_segments(q, bio);
  296. }
  297. /*
  298. * setup the new entry, we might clear it again later if we
  299. * cannot add the page
  300. */
  301. bvec = &bio->bi_io_vec[bio->bi_vcnt];
  302. bvec->bv_page = page;
  303. bvec->bv_len = len;
  304. bvec->bv_offset = offset;
  305. /*
  306. * if queue has other restrictions (eg varying max sector size
  307. * depending on offset), it can specify a merge_bvec_fn in the
  308. * queue to get further control
  309. */
  310. if (q->merge_bvec_fn) {
  311. /*
  312. * merge_bvec_fn() returns number of bytes it can accept
  313. * at this offset
  314. */
  315. if (q->merge_bvec_fn(q, bio, bvec) < len) {
  316. bvec->bv_page = NULL;
  317. bvec->bv_len = 0;
  318. bvec->bv_offset = 0;
  319. return 0;
  320. }
  321. }
  322. /* If we may be able to merge these biovecs, force a recount */
  323. if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec) ||
  324. BIOVEC_VIRT_MERGEABLE(bvec-1, bvec)))
  325. bio->bi_flags &= ~(1 << BIO_SEG_VALID);
  326. bio->bi_vcnt++;
  327. bio->bi_phys_segments++;
  328. bio->bi_hw_segments++;
  329. bio->bi_size += len;
  330. return len;
  331. }
  332. /**
  333. * bio_add_page - attempt to add page to bio
  334. * @bio: destination bio
  335. * @page: page to add
  336. * @len: vec entry length
  337. * @offset: vec entry offset
  338. *
  339. * Attempt to add a page to the bio_vec maplist. This can fail for a
  340. * number of reasons, such as the bio being full or target block
  341. * device limitations. The target block device must allow bio's
  342. * smaller than PAGE_SIZE, so it is always possible to add a single
  343. * page to an empty bio.
  344. */
  345. int bio_add_page(struct bio *bio, struct page *page, unsigned int len,
  346. unsigned int offset)
  347. {
  348. return __bio_add_page(bdev_get_queue(bio->bi_bdev), bio, page,
  349. len, offset);
  350. }
  351. struct bio_map_data {
  352. struct bio_vec *iovecs;
  353. void __user *userptr;
  354. };
  355. static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio)
  356. {
  357. memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt);
  358. bio->bi_private = bmd;
  359. }
  360. static void bio_free_map_data(struct bio_map_data *bmd)
  361. {
  362. kfree(bmd->iovecs);
  363. kfree(bmd);
  364. }
  365. static struct bio_map_data *bio_alloc_map_data(int nr_segs)
  366. {
  367. struct bio_map_data *bmd = kmalloc(sizeof(*bmd), GFP_KERNEL);
  368. if (!bmd)
  369. return NULL;
  370. bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, GFP_KERNEL);
  371. if (bmd->iovecs)
  372. return bmd;
  373. kfree(bmd);
  374. return NULL;
  375. }
  376. /**
  377. * bio_uncopy_user - finish previously mapped bio
  378. * @bio: bio being terminated
  379. *
  380. * Free pages allocated from bio_copy_user() and write back data
  381. * to user space in case of a read.
  382. */
  383. int bio_uncopy_user(struct bio *bio)
  384. {
  385. struct bio_map_data *bmd = bio->bi_private;
  386. const int read = bio_data_dir(bio) == READ;
  387. struct bio_vec *bvec;
  388. int i, ret = 0;
  389. __bio_for_each_segment(bvec, bio, i, 0) {
  390. char *addr = page_address(bvec->bv_page);
  391. unsigned int len = bmd->iovecs[i].bv_len;
  392. if (read && !ret && copy_to_user(bmd->userptr, addr, len))
  393. ret = -EFAULT;
  394. __free_page(bvec->bv_page);
  395. bmd->userptr += len;
  396. }
  397. bio_free_map_data(bmd);
  398. bio_put(bio);
  399. return ret;
  400. }
  401. /**
  402. * bio_copy_user - copy user data to bio
  403. * @q: destination block queue
  404. * @uaddr: start of user address
  405. * @len: length in bytes
  406. * @write_to_vm: bool indicating writing to pages or not
  407. *
  408. * Prepares and returns a bio for indirect user io, bouncing data
  409. * to/from kernel pages as necessary. Must be paired with
  410. * call bio_uncopy_user() on io completion.
  411. */
  412. struct bio *bio_copy_user(request_queue_t *q, unsigned long uaddr,
  413. unsigned int len, int write_to_vm)
  414. {
  415. unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  416. unsigned long start = uaddr >> PAGE_SHIFT;
  417. struct bio_map_data *bmd;
  418. struct bio_vec *bvec;
  419. struct page *page;
  420. struct bio *bio;
  421. int i, ret;
  422. bmd = bio_alloc_map_data(end - start);
  423. if (!bmd)
  424. return ERR_PTR(-ENOMEM);
  425. bmd->userptr = (void __user *) uaddr;
  426. ret = -ENOMEM;
  427. bio = bio_alloc(GFP_KERNEL, end - start);
  428. if (!bio)
  429. goto out_bmd;
  430. bio->bi_rw |= (!write_to_vm << BIO_RW);
  431. ret = 0;
  432. while (len) {
  433. unsigned int bytes = PAGE_SIZE;
  434. if (bytes > len)
  435. bytes = len;
  436. page = alloc_page(q->bounce_gfp | GFP_KERNEL);
  437. if (!page) {
  438. ret = -ENOMEM;
  439. break;
  440. }
  441. if (__bio_add_page(q, bio, page, bytes, 0) < bytes) {
  442. ret = -EINVAL;
  443. break;
  444. }
  445. len -= bytes;
  446. }
  447. if (ret)
  448. goto cleanup;
  449. /*
  450. * success
  451. */
  452. if (!write_to_vm) {
  453. char __user *p = (char __user *) uaddr;
  454. /*
  455. * for a write, copy in data to kernel pages
  456. */
  457. ret = -EFAULT;
  458. bio_for_each_segment(bvec, bio, i) {
  459. char *addr = page_address(bvec->bv_page);
  460. if (copy_from_user(addr, p, bvec->bv_len))
  461. goto cleanup;
  462. p += bvec->bv_len;
  463. }
  464. }
  465. bio_set_map_data(bmd, bio);
  466. return bio;
  467. cleanup:
  468. bio_for_each_segment(bvec, bio, i)
  469. __free_page(bvec->bv_page);
  470. bio_put(bio);
  471. out_bmd:
  472. bio_free_map_data(bmd);
  473. return ERR_PTR(ret);
  474. }
  475. static struct bio *__bio_map_user(request_queue_t *q, struct block_device *bdev,
  476. unsigned long uaddr, unsigned int len,
  477. int write_to_vm)
  478. {
  479. unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
  480. unsigned long start = uaddr >> PAGE_SHIFT;
  481. const int nr_pages = end - start;
  482. int ret, offset, i;
  483. struct page **pages;
  484. struct bio *bio;
  485. /*
  486. * transfer and buffer must be aligned to at least hardsector
  487. * size for now, in the future we can relax this restriction
  488. */
  489. if ((uaddr & queue_dma_alignment(q)) || (len & queue_dma_alignment(q)))
  490. return ERR_PTR(-EINVAL);
  491. bio = bio_alloc(GFP_KERNEL, nr_pages);
  492. if (!bio)
  493. return ERR_PTR(-ENOMEM);
  494. ret = -ENOMEM;
  495. pages = kmalloc(nr_pages * sizeof(struct page *), GFP_KERNEL);
  496. if (!pages)
  497. goto out;
  498. down_read(&current->mm->mmap_sem);
  499. ret = get_user_pages(current, current->mm, uaddr, nr_pages,
  500. write_to_vm, 0, pages, NULL);
  501. up_read(&current->mm->mmap_sem);
  502. if (ret < nr_pages)
  503. goto out;
  504. bio->bi_bdev = bdev;
  505. offset = uaddr & ~PAGE_MASK;
  506. for (i = 0; i < nr_pages; i++) {
  507. unsigned int bytes = PAGE_SIZE - offset;
  508. if (len <= 0)
  509. break;
  510. if (bytes > len)
  511. bytes = len;
  512. /*
  513. * sorry...
  514. */
  515. if (__bio_add_page(q, bio, pages[i], bytes, offset) < bytes)
  516. break;
  517. len -= bytes;
  518. offset = 0;
  519. }
  520. /*
  521. * release the pages we didn't map into the bio, if any
  522. */
  523. while (i < nr_pages)
  524. page_cache_release(pages[i++]);
  525. kfree(pages);
  526. /*
  527. * set data direction, and check if mapped pages need bouncing
  528. */
  529. if (!write_to_vm)
  530. bio->bi_rw |= (1 << BIO_RW);
  531. bio->bi_flags |= (1 << BIO_USER_MAPPED);
  532. return bio;
  533. out:
  534. kfree(pages);
  535. bio_put(bio);
  536. return ERR_PTR(ret);
  537. }
  538. /**
  539. * bio_map_user - map user address into bio
  540. * @q: the request_queue_t for the bio
  541. * @bdev: destination block device
  542. * @uaddr: start of user address
  543. * @len: length in bytes
  544. * @write_to_vm: bool indicating writing to pages or not
  545. *
  546. * Map the user space address into a bio suitable for io to a block
  547. * device. Returns an error pointer in case of error.
  548. */
  549. struct bio *bio_map_user(request_queue_t *q, struct block_device *bdev,
  550. unsigned long uaddr, unsigned int len, int write_to_vm)
  551. {
  552. struct bio *bio;
  553. bio = __bio_map_user(q, bdev, uaddr, len, write_to_vm);
  554. if (IS_ERR(bio))
  555. return bio;
  556. /*
  557. * subtle -- if __bio_map_user() ended up bouncing a bio,
  558. * it would normally disappear when its bi_end_io is run.
  559. * however, we need it for the unmap, so grab an extra
  560. * reference to it
  561. */
  562. bio_get(bio);
  563. if (bio->bi_size == len)
  564. return bio;
  565. /*
  566. * don't support partial mappings
  567. */
  568. bio_endio(bio, bio->bi_size, 0);
  569. bio_unmap_user(bio);
  570. return ERR_PTR(-EINVAL);
  571. }
  572. static void __bio_unmap_user(struct bio *bio)
  573. {
  574. struct bio_vec *bvec;
  575. int i;
  576. /*
  577. * make sure we dirty pages we wrote to
  578. */
  579. __bio_for_each_segment(bvec, bio, i, 0) {
  580. if (bio_data_dir(bio) == READ)
  581. set_page_dirty_lock(bvec->bv_page);
  582. page_cache_release(bvec->bv_page);
  583. }
  584. bio_put(bio);
  585. }
  586. /**
  587. * bio_unmap_user - unmap a bio
  588. * @bio: the bio being unmapped
  589. *
  590. * Unmap a bio previously mapped by bio_map_user(). Must be called with
  591. * a process context.
  592. *
  593. * bio_unmap_user() may sleep.
  594. */
  595. void bio_unmap_user(struct bio *bio)
  596. {
  597. __bio_unmap_user(bio);
  598. bio_put(bio);
  599. }
  600. /*
  601. * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
  602. * for performing direct-IO in BIOs.
  603. *
  604. * The problem is that we cannot run set_page_dirty() from interrupt context
  605. * because the required locks are not interrupt-safe. So what we can do is to
  606. * mark the pages dirty _before_ performing IO. And in interrupt context,
  607. * check that the pages are still dirty. If so, fine. If not, redirty them
  608. * in process context.
  609. *
  610. * We special-case compound pages here: normally this means reads into hugetlb
  611. * pages. The logic in here doesn't really work right for compound pages
  612. * because the VM does not uniformly chase down the head page in all cases.
  613. * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
  614. * handle them at all. So we skip compound pages here at an early stage.
  615. *
  616. * Note that this code is very hard to test under normal circumstances because
  617. * direct-io pins the pages with get_user_pages(). This makes
  618. * is_page_cache_freeable return false, and the VM will not clean the pages.
  619. * But other code (eg, pdflush) could clean the pages if they are mapped
  620. * pagecache.
  621. *
  622. * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
  623. * deferred bio dirtying paths.
  624. */
  625. /*
  626. * bio_set_pages_dirty() will mark all the bio's pages as dirty.
  627. */
  628. void bio_set_pages_dirty(struct bio *bio)
  629. {
  630. struct bio_vec *bvec = bio->bi_io_vec;
  631. int i;
  632. for (i = 0; i < bio->bi_vcnt; i++) {
  633. struct page *page = bvec[i].bv_page;
  634. if (page && !PageCompound(page))
  635. set_page_dirty_lock(page);
  636. }
  637. }
  638. static void bio_release_pages(struct bio *bio)
  639. {
  640. struct bio_vec *bvec = bio->bi_io_vec;
  641. int i;
  642. for (i = 0; i < bio->bi_vcnt; i++) {
  643. struct page *page = bvec[i].bv_page;
  644. if (page)
  645. put_page(page);
  646. }
  647. }
  648. /*
  649. * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
  650. * If they are, then fine. If, however, some pages are clean then they must
  651. * have been written out during the direct-IO read. So we take another ref on
  652. * the BIO and the offending pages and re-dirty the pages in process context.
  653. *
  654. * It is expected that bio_check_pages_dirty() will wholly own the BIO from
  655. * here on. It will run one page_cache_release() against each page and will
  656. * run one bio_put() against the BIO.
  657. */
  658. static void bio_dirty_fn(void *data);
  659. static DECLARE_WORK(bio_dirty_work, bio_dirty_fn, NULL);
  660. static DEFINE_SPINLOCK(bio_dirty_lock);
  661. static struct bio *bio_dirty_list;
  662. /*
  663. * This runs in process context
  664. */
  665. static void bio_dirty_fn(void *data)
  666. {
  667. unsigned long flags;
  668. struct bio *bio;
  669. spin_lock_irqsave(&bio_dirty_lock, flags);
  670. bio = bio_dirty_list;
  671. bio_dirty_list = NULL;
  672. spin_unlock_irqrestore(&bio_dirty_lock, flags);
  673. while (bio) {
  674. struct bio *next = bio->bi_private;
  675. bio_set_pages_dirty(bio);
  676. bio_release_pages(bio);
  677. bio_put(bio);
  678. bio = next;
  679. }
  680. }
  681. void bio_check_pages_dirty(struct bio *bio)
  682. {
  683. struct bio_vec *bvec = bio->bi_io_vec;
  684. int nr_clean_pages = 0;
  685. int i;
  686. for (i = 0; i < bio->bi_vcnt; i++) {
  687. struct page *page = bvec[i].bv_page;
  688. if (PageDirty(page) || PageCompound(page)) {
  689. page_cache_release(page);
  690. bvec[i].bv_page = NULL;
  691. } else {
  692. nr_clean_pages++;
  693. }
  694. }
  695. if (nr_clean_pages) {
  696. unsigned long flags;
  697. spin_lock_irqsave(&bio_dirty_lock, flags);
  698. bio->bi_private = bio_dirty_list;
  699. bio_dirty_list = bio;
  700. spin_unlock_irqrestore(&bio_dirty_lock, flags);
  701. schedule_work(&bio_dirty_work);
  702. } else {
  703. bio_put(bio);
  704. }
  705. }
  706. /**
  707. * bio_endio - end I/O on a bio
  708. * @bio: bio
  709. * @bytes_done: number of bytes completed
  710. * @error: error, if any
  711. *
  712. * Description:
  713. * bio_endio() will end I/O on @bytes_done number of bytes. This may be
  714. * just a partial part of the bio, or it may be the whole bio. bio_endio()
  715. * is the preferred way to end I/O on a bio, it takes care of decrementing
  716. * bi_size and clearing BIO_UPTODATE on error. @error is 0 on success, and
  717. * and one of the established -Exxxx (-EIO, for instance) error values in
  718. * case something went wrong. Noone should call bi_end_io() directly on
  719. * a bio unless they own it and thus know that it has an end_io function.
  720. **/
  721. void bio_endio(struct bio *bio, unsigned int bytes_done, int error)
  722. {
  723. if (error)
  724. clear_bit(BIO_UPTODATE, &bio->bi_flags);
  725. if (unlikely(bytes_done > bio->bi_size)) {
  726. printk("%s: want %u bytes done, only %u left\n", __FUNCTION__,
  727. bytes_done, bio->bi_size);
  728. bytes_done = bio->bi_size;
  729. }
  730. bio->bi_size -= bytes_done;
  731. bio->bi_sector += (bytes_done >> 9);
  732. if (bio->bi_end_io)
  733. bio->bi_end_io(bio, bytes_done, error);
  734. }
  735. void bio_pair_release(struct bio_pair *bp)
  736. {
  737. if (atomic_dec_and_test(&bp->cnt)) {
  738. struct bio *master = bp->bio1.bi_private;
  739. bio_endio(master, master->bi_size, bp->error);
  740. mempool_free(bp, bp->bio2.bi_private);
  741. }
  742. }
  743. static int bio_pair_end_1(struct bio * bi, unsigned int done, int err)
  744. {
  745. struct bio_pair *bp = container_of(bi, struct bio_pair, bio1);
  746. if (err)
  747. bp->error = err;
  748. if (bi->bi_size)
  749. return 1;
  750. bio_pair_release(bp);
  751. return 0;
  752. }
  753. static int bio_pair_end_2(struct bio * bi, unsigned int done, int err)
  754. {
  755. struct bio_pair *bp = container_of(bi, struct bio_pair, bio2);
  756. if (err)
  757. bp->error = err;
  758. if (bi->bi_size)
  759. return 1;
  760. bio_pair_release(bp);
  761. return 0;
  762. }
  763. /*
  764. * split a bio - only worry about a bio with a single page
  765. * in it's iovec
  766. */
  767. struct bio_pair *bio_split(struct bio *bi, mempool_t *pool, int first_sectors)
  768. {
  769. struct bio_pair *bp = mempool_alloc(pool, GFP_NOIO);
  770. if (!bp)
  771. return bp;
  772. BUG_ON(bi->bi_vcnt != 1);
  773. BUG_ON(bi->bi_idx != 0);
  774. atomic_set(&bp->cnt, 3);
  775. bp->error = 0;
  776. bp->bio1 = *bi;
  777. bp->bio2 = *bi;
  778. bp->bio2.bi_sector += first_sectors;
  779. bp->bio2.bi_size -= first_sectors << 9;
  780. bp->bio1.bi_size = first_sectors << 9;
  781. bp->bv1 = bi->bi_io_vec[0];
  782. bp->bv2 = bi->bi_io_vec[0];
  783. bp->bv2.bv_offset += first_sectors << 9;
  784. bp->bv2.bv_len -= first_sectors << 9;
  785. bp->bv1.bv_len = first_sectors << 9;
  786. bp->bio1.bi_io_vec = &bp->bv1;
  787. bp->bio2.bi_io_vec = &bp->bv2;
  788. bp->bio1.bi_end_io = bio_pair_end_1;
  789. bp->bio2.bi_end_io = bio_pair_end_2;
  790. bp->bio1.bi_private = bi;
  791. bp->bio2.bi_private = pool;
  792. return bp;
  793. }
  794. static void *bio_pair_alloc(unsigned int __nocast gfp_flags, void *data)
  795. {
  796. return kmalloc(sizeof(struct bio_pair), gfp_flags);
  797. }
  798. static void bio_pair_free(void *bp, void *data)
  799. {
  800. kfree(bp);
  801. }
  802. /*
  803. * create memory pools for biovec's in a bio_set.
  804. * use the global biovec slabs created for general use.
  805. */
  806. static int biovec_create_pools(struct bio_set *bs, int pool_entries, int scale)
  807. {
  808. int i;
  809. for (i = 0; i < BIOVEC_NR_POOLS; i++) {
  810. struct biovec_slab *bp = bvec_slabs + i;
  811. mempool_t **bvp = bs->bvec_pools + i;
  812. if (i >= scale)
  813. pool_entries >>= 1;
  814. *bvp = mempool_create(pool_entries, mempool_alloc_slab,
  815. mempool_free_slab, bp->slab);
  816. if (!*bvp)
  817. return -ENOMEM;
  818. }
  819. return 0;
  820. }
  821. static void biovec_free_pools(struct bio_set *bs)
  822. {
  823. int i;
  824. for (i = 0; i < BIOVEC_NR_POOLS; i++) {
  825. mempool_t *bvp = bs->bvec_pools[i];
  826. if (bvp)
  827. mempool_destroy(bvp);
  828. }
  829. }
  830. void bioset_free(struct bio_set *bs)
  831. {
  832. if (bs->bio_pool)
  833. mempool_destroy(bs->bio_pool);
  834. biovec_free_pools(bs);
  835. kfree(bs);
  836. }
  837. struct bio_set *bioset_create(int bio_pool_size, int bvec_pool_size, int scale)
  838. {
  839. struct bio_set *bs = kmalloc(sizeof(*bs), GFP_KERNEL);
  840. if (!bs)
  841. return NULL;
  842. memset(bs, 0, sizeof(*bs));
  843. bs->bio_pool = mempool_create(bio_pool_size, mempool_alloc_slab,
  844. mempool_free_slab, bio_slab);
  845. if (!bs->bio_pool)
  846. goto bad;
  847. if (!biovec_create_pools(bs, bvec_pool_size, scale))
  848. return bs;
  849. bad:
  850. bioset_free(bs);
  851. return NULL;
  852. }
  853. static void __init biovec_init_slabs(void)
  854. {
  855. int i;
  856. for (i = 0; i < BIOVEC_NR_POOLS; i++) {
  857. int size;
  858. struct biovec_slab *bvs = bvec_slabs + i;
  859. size = bvs->nr_vecs * sizeof(struct bio_vec);
  860. bvs->slab = kmem_cache_create(bvs->name, size, 0,
  861. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  862. }
  863. }
  864. static int __init init_bio(void)
  865. {
  866. int megabytes, bvec_pool_entries;
  867. int scale = BIOVEC_NR_POOLS;
  868. bio_slab = kmem_cache_create("bio", sizeof(struct bio), 0,
  869. SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
  870. biovec_init_slabs();
  871. megabytes = nr_free_pages() >> (20 - PAGE_SHIFT);
  872. /*
  873. * find out where to start scaling
  874. */
  875. if (megabytes <= 16)
  876. scale = 0;
  877. else if (megabytes <= 32)
  878. scale = 1;
  879. else if (megabytes <= 64)
  880. scale = 2;
  881. else if (megabytes <= 96)
  882. scale = 3;
  883. else if (megabytes <= 128)
  884. scale = 4;
  885. /*
  886. * scale number of entries
  887. */
  888. bvec_pool_entries = megabytes * 2;
  889. if (bvec_pool_entries > 256)
  890. bvec_pool_entries = 256;
  891. fs_bio_set = bioset_create(BIO_POOL_SIZE, bvec_pool_entries, scale);
  892. if (!fs_bio_set)
  893. panic("bio: can't allocate bios\n");
  894. bio_split_pool = mempool_create(BIO_SPLIT_ENTRIES,
  895. bio_pair_alloc, bio_pair_free, NULL);
  896. if (!bio_split_pool)
  897. panic("bio: can't create split pool\n");
  898. return 0;
  899. }
  900. subsys_initcall(init_bio);
  901. EXPORT_SYMBOL(bio_alloc);
  902. EXPORT_SYMBOL(bio_put);
  903. EXPORT_SYMBOL(bio_free);
  904. EXPORT_SYMBOL(bio_endio);
  905. EXPORT_SYMBOL(bio_init);
  906. EXPORT_SYMBOL(__bio_clone);
  907. EXPORT_SYMBOL(bio_clone);
  908. EXPORT_SYMBOL(bio_phys_segments);
  909. EXPORT_SYMBOL(bio_hw_segments);
  910. EXPORT_SYMBOL(bio_add_page);
  911. EXPORT_SYMBOL(bio_get_nr_vecs);
  912. EXPORT_SYMBOL(bio_map_user);
  913. EXPORT_SYMBOL(bio_unmap_user);
  914. EXPORT_SYMBOL(bio_pair_release);
  915. EXPORT_SYMBOL(bio_split);
  916. EXPORT_SYMBOL(bio_split_pool);
  917. EXPORT_SYMBOL(bio_copy_user);
  918. EXPORT_SYMBOL(bio_uncopy_user);
  919. EXPORT_SYMBOL(bioset_create);
  920. EXPORT_SYMBOL(bioset_free);
  921. EXPORT_SYMBOL(bio_alloc_bioset);