vmem.c 8.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377
  1. /*
  2. * arch/s390/mm/vmem.c
  3. *
  4. * Copyright IBM Corp. 2006
  5. * Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
  6. */
  7. #include <linux/bootmem.h>
  8. #include <linux/pfn.h>
  9. #include <linux/mm.h>
  10. #include <linux/module.h>
  11. #include <linux/list.h>
  12. #include <asm/pgalloc.h>
  13. #include <asm/pgtable.h>
  14. #include <asm/setup.h>
  15. #include <asm/tlbflush.h>
  16. unsigned long vmalloc_end;
  17. EXPORT_SYMBOL(vmalloc_end);
  18. static struct page *vmem_map;
  19. static DEFINE_MUTEX(vmem_mutex);
  20. struct memory_segment {
  21. struct list_head list;
  22. unsigned long start;
  23. unsigned long size;
  24. };
  25. static LIST_HEAD(mem_segs);
  26. void __meminit memmap_init(unsigned long size, int nid, unsigned long zone,
  27. unsigned long start_pfn)
  28. {
  29. struct page *start, *end;
  30. struct page *map_start, *map_end;
  31. int i;
  32. start = pfn_to_page(start_pfn);
  33. end = start + size;
  34. for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
  35. unsigned long cstart, cend;
  36. cstart = PFN_DOWN(memory_chunk[i].addr);
  37. cend = cstart + PFN_DOWN(memory_chunk[i].size);
  38. map_start = mem_map + cstart;
  39. map_end = mem_map + cend;
  40. if (map_start < start)
  41. map_start = start;
  42. if (map_end > end)
  43. map_end = end;
  44. map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1))
  45. / sizeof(struct page);
  46. map_end += ((PFN_ALIGN((unsigned long) map_end)
  47. - (unsigned long) map_end)
  48. / sizeof(struct page));
  49. if (map_start < map_end)
  50. memmap_init_zone((unsigned long)(map_end - map_start),
  51. nid, zone, page_to_pfn(map_start),
  52. MEMMAP_EARLY);
  53. }
  54. }
  55. static void __init_refok *vmem_alloc_pages(unsigned int order)
  56. {
  57. if (slab_is_available())
  58. return (void *)__get_free_pages(GFP_KERNEL, order);
  59. return alloc_bootmem_pages((1 << order) * PAGE_SIZE);
  60. }
  61. static inline pmd_t *vmem_pmd_alloc(void)
  62. {
  63. pmd_t *pmd = NULL;
  64. #ifdef CONFIG_64BIT
  65. pmd = vmem_alloc_pages(2);
  66. if (!pmd)
  67. return NULL;
  68. clear_table((unsigned long *) pmd, _SEGMENT_ENTRY_EMPTY, PAGE_SIZE*4);
  69. #endif
  70. return pmd;
  71. }
  72. static inline pte_t *vmem_pte_alloc(void)
  73. {
  74. pte_t *pte = vmem_alloc_pages(0);
  75. if (!pte)
  76. return NULL;
  77. clear_table((unsigned long *) pte, _PAGE_TYPE_EMPTY, PAGE_SIZE);
  78. return pte;
  79. }
  80. /*
  81. * Add a physical memory range to the 1:1 mapping.
  82. */
  83. static int vmem_add_range(unsigned long start, unsigned long size)
  84. {
  85. unsigned long address;
  86. pgd_t *pg_dir;
  87. pmd_t *pm_dir;
  88. pte_t *pt_dir;
  89. pte_t pte;
  90. int ret = -ENOMEM;
  91. for (address = start; address < start + size; address += PAGE_SIZE) {
  92. pg_dir = pgd_offset_k(address);
  93. if (pgd_none(*pg_dir)) {
  94. pm_dir = vmem_pmd_alloc();
  95. if (!pm_dir)
  96. goto out;
  97. pgd_populate_kernel(&init_mm, pg_dir, pm_dir);
  98. }
  99. pm_dir = pmd_offset(pg_dir, address);
  100. if (pmd_none(*pm_dir)) {
  101. pt_dir = vmem_pte_alloc();
  102. if (!pt_dir)
  103. goto out;
  104. pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
  105. }
  106. pt_dir = pte_offset_kernel(pm_dir, address);
  107. pte = pfn_pte(address >> PAGE_SHIFT, PAGE_KERNEL);
  108. *pt_dir = pte;
  109. }
  110. ret = 0;
  111. out:
  112. flush_tlb_kernel_range(start, start + size);
  113. return ret;
  114. }
  115. /*
  116. * Remove a physical memory range from the 1:1 mapping.
  117. * Currently only invalidates page table entries.
  118. */
  119. static void vmem_remove_range(unsigned long start, unsigned long size)
  120. {
  121. unsigned long address;
  122. pgd_t *pg_dir;
  123. pmd_t *pm_dir;
  124. pte_t *pt_dir;
  125. pte_t pte;
  126. pte_val(pte) = _PAGE_TYPE_EMPTY;
  127. for (address = start; address < start + size; address += PAGE_SIZE) {
  128. pg_dir = pgd_offset_k(address);
  129. if (pgd_none(*pg_dir))
  130. continue;
  131. pm_dir = pmd_offset(pg_dir, address);
  132. if (pmd_none(*pm_dir))
  133. continue;
  134. pt_dir = pte_offset_kernel(pm_dir, address);
  135. *pt_dir = pte;
  136. }
  137. flush_tlb_kernel_range(start, start + size);
  138. }
  139. /*
  140. * Add a backed mem_map array to the virtual mem_map array.
  141. */
  142. static int vmem_add_mem_map(unsigned long start, unsigned long size)
  143. {
  144. unsigned long address, start_addr, end_addr;
  145. struct page *map_start, *map_end;
  146. pgd_t *pg_dir;
  147. pmd_t *pm_dir;
  148. pte_t *pt_dir;
  149. pte_t pte;
  150. int ret = -ENOMEM;
  151. map_start = vmem_map + PFN_DOWN(start);
  152. map_end = vmem_map + PFN_DOWN(start + size);
  153. start_addr = (unsigned long) map_start & PAGE_MASK;
  154. end_addr = PFN_ALIGN((unsigned long) map_end);
  155. for (address = start_addr; address < end_addr; address += PAGE_SIZE) {
  156. pg_dir = pgd_offset_k(address);
  157. if (pgd_none(*pg_dir)) {
  158. pm_dir = vmem_pmd_alloc();
  159. if (!pm_dir)
  160. goto out;
  161. pgd_populate_kernel(&init_mm, pg_dir, pm_dir);
  162. }
  163. pm_dir = pmd_offset(pg_dir, address);
  164. if (pmd_none(*pm_dir)) {
  165. pt_dir = vmem_pte_alloc();
  166. if (!pt_dir)
  167. goto out;
  168. pmd_populate_kernel(&init_mm, pm_dir, pt_dir);
  169. }
  170. pt_dir = pte_offset_kernel(pm_dir, address);
  171. if (pte_none(*pt_dir)) {
  172. unsigned long new_page;
  173. new_page =__pa(vmem_alloc_pages(0));
  174. if (!new_page)
  175. goto out;
  176. pte = pfn_pte(new_page >> PAGE_SHIFT, PAGE_KERNEL);
  177. *pt_dir = pte;
  178. }
  179. }
  180. ret = 0;
  181. out:
  182. flush_tlb_kernel_range(start_addr, end_addr);
  183. return ret;
  184. }
  185. static int vmem_add_mem(unsigned long start, unsigned long size)
  186. {
  187. int ret;
  188. ret = vmem_add_range(start, size);
  189. if (ret)
  190. return ret;
  191. return vmem_add_mem_map(start, size);
  192. }
  193. /*
  194. * Add memory segment to the segment list if it doesn't overlap with
  195. * an already present segment.
  196. */
  197. static int insert_memory_segment(struct memory_segment *seg)
  198. {
  199. struct memory_segment *tmp;
  200. if (PFN_DOWN(seg->start + seg->size) > max_pfn ||
  201. seg->start + seg->size < seg->start)
  202. return -ERANGE;
  203. list_for_each_entry(tmp, &mem_segs, list) {
  204. if (seg->start >= tmp->start + tmp->size)
  205. continue;
  206. if (seg->start + seg->size <= tmp->start)
  207. continue;
  208. return -ENOSPC;
  209. }
  210. list_add(&seg->list, &mem_segs);
  211. return 0;
  212. }
  213. /*
  214. * Remove memory segment from the segment list.
  215. */
  216. static void remove_memory_segment(struct memory_segment *seg)
  217. {
  218. list_del(&seg->list);
  219. }
  220. static void __remove_shared_memory(struct memory_segment *seg)
  221. {
  222. remove_memory_segment(seg);
  223. vmem_remove_range(seg->start, seg->size);
  224. }
  225. int remove_shared_memory(unsigned long start, unsigned long size)
  226. {
  227. struct memory_segment *seg;
  228. int ret;
  229. mutex_lock(&vmem_mutex);
  230. ret = -ENOENT;
  231. list_for_each_entry(seg, &mem_segs, list) {
  232. if (seg->start == start && seg->size == size)
  233. break;
  234. }
  235. if (seg->start != start || seg->size != size)
  236. goto out;
  237. ret = 0;
  238. __remove_shared_memory(seg);
  239. kfree(seg);
  240. out:
  241. mutex_unlock(&vmem_mutex);
  242. return ret;
  243. }
  244. int add_shared_memory(unsigned long start, unsigned long size)
  245. {
  246. struct memory_segment *seg;
  247. struct page *page;
  248. unsigned long pfn, num_pfn, end_pfn;
  249. int ret;
  250. mutex_lock(&vmem_mutex);
  251. ret = -ENOMEM;
  252. seg = kzalloc(sizeof(*seg), GFP_KERNEL);
  253. if (!seg)
  254. goto out;
  255. seg->start = start;
  256. seg->size = size;
  257. ret = insert_memory_segment(seg);
  258. if (ret)
  259. goto out_free;
  260. ret = vmem_add_mem(start, size);
  261. if (ret)
  262. goto out_remove;
  263. pfn = PFN_DOWN(start);
  264. num_pfn = PFN_DOWN(size);
  265. end_pfn = pfn + num_pfn;
  266. page = pfn_to_page(pfn);
  267. memset(page, 0, num_pfn * sizeof(struct page));
  268. for (; pfn < end_pfn; pfn++) {
  269. page = pfn_to_page(pfn);
  270. init_page_count(page);
  271. reset_page_mapcount(page);
  272. SetPageReserved(page);
  273. INIT_LIST_HEAD(&page->lru);
  274. }
  275. goto out;
  276. out_remove:
  277. __remove_shared_memory(seg);
  278. out_free:
  279. kfree(seg);
  280. out:
  281. mutex_unlock(&vmem_mutex);
  282. return ret;
  283. }
  284. /*
  285. * map whole physical memory to virtual memory (identity mapping)
  286. */
  287. void __init vmem_map_init(void)
  288. {
  289. unsigned long map_size;
  290. int i;
  291. map_size = ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) * sizeof(struct page);
  292. vmalloc_end = PFN_ALIGN(VMALLOC_END_INIT) - PFN_ALIGN(map_size);
  293. vmem_map = (struct page *) vmalloc_end;
  294. NODE_DATA(0)->node_mem_map = vmem_map;
  295. for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++)
  296. vmem_add_mem(memory_chunk[i].addr, memory_chunk[i].size);
  297. }
  298. /*
  299. * Convert memory chunk array to a memory segment list so there is a single
  300. * list that contains both r/w memory and shared memory segments.
  301. */
  302. static int __init vmem_convert_memory_chunk(void)
  303. {
  304. struct memory_segment *seg;
  305. int i;
  306. mutex_lock(&vmem_mutex);
  307. for (i = 0; i < MEMORY_CHUNKS && memory_chunk[i].size > 0; i++) {
  308. if (!memory_chunk[i].size)
  309. continue;
  310. seg = kzalloc(sizeof(*seg), GFP_KERNEL);
  311. if (!seg)
  312. panic("Out of memory...\n");
  313. seg->start = memory_chunk[i].addr;
  314. seg->size = memory_chunk[i].size;
  315. insert_memory_segment(seg);
  316. }
  317. mutex_unlock(&vmem_mutex);
  318. return 0;
  319. }
  320. core_initcall(vmem_convert_memory_chunk);