btree.c 55 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494
  1. /*
  2. * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
  3. *
  4. * Uses a block device as cache for other block devices; optimized for SSDs.
  5. * All allocation is done in buckets, which should match the erase block size
  6. * of the device.
  7. *
  8. * Buckets containing cached data are kept on a heap sorted by priority;
  9. * bucket priority is increased on cache hit, and periodically all the buckets
  10. * on the heap have their priority scaled down. This currently is just used as
  11. * an LRU but in the future should allow for more intelligent heuristics.
  12. *
  13. * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
  14. * counter. Garbage collection is used to remove stale pointers.
  15. *
  16. * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
  17. * as keys are inserted we only sort the pages that have not yet been written.
  18. * When garbage collection is run, we resort the entire node.
  19. *
  20. * All configuration is done via sysfs; see Documentation/bcache.txt.
  21. */
  22. #include "bcache.h"
  23. #include "btree.h"
  24. #include "debug.h"
  25. #include "request.h"
  26. #include "writeback.h"
  27. #include <linux/slab.h>
  28. #include <linux/bitops.h>
  29. #include <linux/hash.h>
  30. #include <linux/prefetch.h>
  31. #include <linux/random.h>
  32. #include <linux/rcupdate.h>
  33. #include <trace/events/bcache.h>
  34. /*
  35. * Todo:
  36. * register_bcache: Return errors out to userspace correctly
  37. *
  38. * Writeback: don't undirty key until after a cache flush
  39. *
  40. * Create an iterator for key pointers
  41. *
  42. * On btree write error, mark bucket such that it won't be freed from the cache
  43. *
  44. * Journalling:
  45. * Check for bad keys in replay
  46. * Propagate barriers
  47. * Refcount journal entries in journal_replay
  48. *
  49. * Garbage collection:
  50. * Finish incremental gc
  51. * Gc should free old UUIDs, data for invalid UUIDs
  52. *
  53. * Provide a way to list backing device UUIDs we have data cached for, and
  54. * probably how long it's been since we've seen them, and a way to invalidate
  55. * dirty data for devices that will never be attached again
  56. *
  57. * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so
  58. * that based on that and how much dirty data we have we can keep writeback
  59. * from being starved
  60. *
  61. * Add a tracepoint or somesuch to watch for writeback starvation
  62. *
  63. * When btree depth > 1 and splitting an interior node, we have to make sure
  64. * alloc_bucket() cannot fail. This should be true but is not completely
  65. * obvious.
  66. *
  67. * Make sure all allocations get charged to the root cgroup
  68. *
  69. * Plugging?
  70. *
  71. * If data write is less than hard sector size of ssd, round up offset in open
  72. * bucket to the next whole sector
  73. *
  74. * Also lookup by cgroup in get_open_bucket()
  75. *
  76. * Superblock needs to be fleshed out for multiple cache devices
  77. *
  78. * Add a sysfs tunable for the number of writeback IOs in flight
  79. *
  80. * Add a sysfs tunable for the number of open data buckets
  81. *
  82. * IO tracking: Can we track when one process is doing io on behalf of another?
  83. * IO tracking: Don't use just an average, weigh more recent stuff higher
  84. *
  85. * Test module load/unload
  86. */
  87. static const char * const op_types[] = {
  88. "insert", "replace"
  89. };
  90. static const char *op_type(struct btree_op *op)
  91. {
  92. return op_types[op->type];
  93. }
  94. #define MAX_NEED_GC 64
  95. #define MAX_SAVE_PRIO 72
  96. #define PTR_DIRTY_BIT (((uint64_t) 1 << 36))
  97. #define PTR_HASH(c, k) \
  98. (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0))
  99. struct workqueue_struct *bch_gc_wq;
  100. static struct workqueue_struct *btree_io_wq;
  101. void bch_btree_op_init_stack(struct btree_op *op)
  102. {
  103. memset(op, 0, sizeof(struct btree_op));
  104. closure_init_stack(&op->cl);
  105. op->lock = -1;
  106. }
  107. /* Btree key manipulation */
  108. void __bkey_put(struct cache_set *c, struct bkey *k)
  109. {
  110. unsigned i;
  111. for (i = 0; i < KEY_PTRS(k); i++)
  112. if (ptr_available(c, k, i))
  113. atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin);
  114. }
  115. static void bkey_put(struct cache_set *c, struct bkey *k, int level)
  116. {
  117. if ((level && KEY_OFFSET(k)) || !level)
  118. __bkey_put(c, k);
  119. }
  120. /* Btree IO */
  121. static uint64_t btree_csum_set(struct btree *b, struct bset *i)
  122. {
  123. uint64_t crc = b->key.ptr[0];
  124. void *data = (void *) i + 8, *end = end(i);
  125. crc = bch_crc64_update(crc, data, end - data);
  126. return crc ^ 0xffffffffffffffffULL;
  127. }
  128. static void bch_btree_node_read_done(struct btree *b)
  129. {
  130. const char *err = "bad btree header";
  131. struct bset *i = b->sets[0].data;
  132. struct btree_iter *iter;
  133. iter = mempool_alloc(b->c->fill_iter, GFP_NOWAIT);
  134. iter->size = b->c->sb.bucket_size / b->c->sb.block_size;
  135. iter->used = 0;
  136. if (!i->seq)
  137. goto err;
  138. for (;
  139. b->written < btree_blocks(b) && i->seq == b->sets[0].data->seq;
  140. i = write_block(b)) {
  141. err = "unsupported bset version";
  142. if (i->version > BCACHE_BSET_VERSION)
  143. goto err;
  144. err = "bad btree header";
  145. if (b->written + set_blocks(i, b->c) > btree_blocks(b))
  146. goto err;
  147. err = "bad magic";
  148. if (i->magic != bset_magic(b->c))
  149. goto err;
  150. err = "bad checksum";
  151. switch (i->version) {
  152. case 0:
  153. if (i->csum != csum_set(i))
  154. goto err;
  155. break;
  156. case BCACHE_BSET_VERSION:
  157. if (i->csum != btree_csum_set(b, i))
  158. goto err;
  159. break;
  160. }
  161. err = "empty set";
  162. if (i != b->sets[0].data && !i->keys)
  163. goto err;
  164. bch_btree_iter_push(iter, i->start, end(i));
  165. b->written += set_blocks(i, b->c);
  166. }
  167. err = "corrupted btree";
  168. for (i = write_block(b);
  169. index(i, b) < btree_blocks(b);
  170. i = ((void *) i) + block_bytes(b->c))
  171. if (i->seq == b->sets[0].data->seq)
  172. goto err;
  173. bch_btree_sort_and_fix_extents(b, iter);
  174. i = b->sets[0].data;
  175. err = "short btree key";
  176. if (b->sets[0].size &&
  177. bkey_cmp(&b->key, &b->sets[0].end) < 0)
  178. goto err;
  179. if (b->written < btree_blocks(b))
  180. bch_bset_init_next(b);
  181. out:
  182. mempool_free(iter, b->c->fill_iter);
  183. return;
  184. err:
  185. set_btree_node_io_error(b);
  186. bch_cache_set_error(b->c, "%s at bucket %zu, block %zu, %u keys",
  187. err, PTR_BUCKET_NR(b->c, &b->key, 0),
  188. index(i, b), i->keys);
  189. goto out;
  190. }
  191. static void btree_node_read_endio(struct bio *bio, int error)
  192. {
  193. struct closure *cl = bio->bi_private;
  194. closure_put(cl);
  195. }
  196. void bch_btree_node_read(struct btree *b)
  197. {
  198. uint64_t start_time = local_clock();
  199. struct closure cl;
  200. struct bio *bio;
  201. trace_bcache_btree_read(b);
  202. closure_init_stack(&cl);
  203. bio = bch_bbio_alloc(b->c);
  204. bio->bi_rw = REQ_META|READ_SYNC;
  205. bio->bi_size = KEY_SIZE(&b->key) << 9;
  206. bio->bi_end_io = btree_node_read_endio;
  207. bio->bi_private = &cl;
  208. bch_bio_map(bio, b->sets[0].data);
  209. bch_submit_bbio(bio, b->c, &b->key, 0);
  210. closure_sync(&cl);
  211. if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
  212. set_btree_node_io_error(b);
  213. bch_bbio_free(bio, b->c);
  214. if (btree_node_io_error(b))
  215. goto err;
  216. bch_btree_node_read_done(b);
  217. spin_lock(&b->c->btree_read_time_lock);
  218. bch_time_stats_update(&b->c->btree_read_time, start_time);
  219. spin_unlock(&b->c->btree_read_time_lock);
  220. return;
  221. err:
  222. bch_cache_set_error(b->c, "io error reading bucket %zu",
  223. PTR_BUCKET_NR(b->c, &b->key, 0));
  224. }
  225. static void btree_complete_write(struct btree *b, struct btree_write *w)
  226. {
  227. if (w->prio_blocked &&
  228. !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked))
  229. wake_up_allocators(b->c);
  230. if (w->journal) {
  231. atomic_dec_bug(w->journal);
  232. __closure_wake_up(&b->c->journal.wait);
  233. }
  234. w->prio_blocked = 0;
  235. w->journal = NULL;
  236. }
  237. static void __btree_node_write_done(struct closure *cl)
  238. {
  239. struct btree *b = container_of(cl, struct btree, io.cl);
  240. struct btree_write *w = btree_prev_write(b);
  241. bch_bbio_free(b->bio, b->c);
  242. b->bio = NULL;
  243. btree_complete_write(b, w);
  244. if (btree_node_dirty(b))
  245. queue_delayed_work(btree_io_wq, &b->work,
  246. msecs_to_jiffies(30000));
  247. closure_return(cl);
  248. }
  249. static void btree_node_write_done(struct closure *cl)
  250. {
  251. struct btree *b = container_of(cl, struct btree, io.cl);
  252. struct bio_vec *bv;
  253. int n;
  254. __bio_for_each_segment(bv, b->bio, n, 0)
  255. __free_page(bv->bv_page);
  256. __btree_node_write_done(cl);
  257. }
  258. static void btree_node_write_endio(struct bio *bio, int error)
  259. {
  260. struct closure *cl = bio->bi_private;
  261. struct btree *b = container_of(cl, struct btree, io.cl);
  262. if (error)
  263. set_btree_node_io_error(b);
  264. bch_bbio_count_io_errors(b->c, bio, error, "writing btree");
  265. closure_put(cl);
  266. }
  267. static void do_btree_node_write(struct btree *b)
  268. {
  269. struct closure *cl = &b->io.cl;
  270. struct bset *i = b->sets[b->nsets].data;
  271. BKEY_PADDED(key) k;
  272. i->version = BCACHE_BSET_VERSION;
  273. i->csum = btree_csum_set(b, i);
  274. BUG_ON(b->bio);
  275. b->bio = bch_bbio_alloc(b->c);
  276. b->bio->bi_end_io = btree_node_write_endio;
  277. b->bio->bi_private = &b->io.cl;
  278. b->bio->bi_rw = REQ_META|WRITE_SYNC|REQ_FUA;
  279. b->bio->bi_size = set_blocks(i, b->c) * block_bytes(b->c);
  280. bch_bio_map(b->bio, i);
  281. /*
  282. * If we're appending to a leaf node, we don't technically need FUA -
  283. * this write just needs to be persisted before the next journal write,
  284. * which will be marked FLUSH|FUA.
  285. *
  286. * Similarly if we're writing a new btree root - the pointer is going to
  287. * be in the next journal entry.
  288. *
  289. * But if we're writing a new btree node (that isn't a root) or
  290. * appending to a non leaf btree node, we need either FUA or a flush
  291. * when we write the parent with the new pointer. FUA is cheaper than a
  292. * flush, and writes appending to leaf nodes aren't blocking anything so
  293. * just make all btree node writes FUA to keep things sane.
  294. */
  295. bkey_copy(&k.key, &b->key);
  296. SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) + bset_offset(b, i));
  297. if (!bio_alloc_pages(b->bio, GFP_NOIO)) {
  298. int j;
  299. struct bio_vec *bv;
  300. void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1));
  301. bio_for_each_segment(bv, b->bio, j)
  302. memcpy(page_address(bv->bv_page),
  303. base + j * PAGE_SIZE, PAGE_SIZE);
  304. bch_submit_bbio(b->bio, b->c, &k.key, 0);
  305. continue_at(cl, btree_node_write_done, NULL);
  306. } else {
  307. b->bio->bi_vcnt = 0;
  308. bch_bio_map(b->bio, i);
  309. bch_submit_bbio(b->bio, b->c, &k.key, 0);
  310. closure_sync(cl);
  311. __btree_node_write_done(cl);
  312. }
  313. }
  314. void bch_btree_node_write(struct btree *b, struct closure *parent)
  315. {
  316. struct bset *i = b->sets[b->nsets].data;
  317. trace_bcache_btree_write(b);
  318. BUG_ON(current->bio_list);
  319. BUG_ON(b->written >= btree_blocks(b));
  320. BUG_ON(b->written && !i->keys);
  321. BUG_ON(b->sets->data->seq != i->seq);
  322. bch_check_key_order(b, i);
  323. cancel_delayed_work(&b->work);
  324. /* If caller isn't waiting for write, parent refcount is cache set */
  325. closure_lock(&b->io, parent ?: &b->c->cl);
  326. clear_bit(BTREE_NODE_dirty, &b->flags);
  327. change_bit(BTREE_NODE_write_idx, &b->flags);
  328. do_btree_node_write(b);
  329. b->written += set_blocks(i, b->c);
  330. atomic_long_add(set_blocks(i, b->c) * b->c->sb.block_size,
  331. &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written);
  332. bch_btree_sort_lazy(b);
  333. if (b->written < btree_blocks(b))
  334. bch_bset_init_next(b);
  335. }
  336. static void btree_node_write_work(struct work_struct *w)
  337. {
  338. struct btree *b = container_of(to_delayed_work(w), struct btree, work);
  339. rw_lock(true, b, b->level);
  340. if (btree_node_dirty(b))
  341. bch_btree_node_write(b, NULL);
  342. rw_unlock(true, b);
  343. }
  344. static void bch_btree_leaf_dirty(struct btree *b, struct btree_op *op)
  345. {
  346. struct bset *i = b->sets[b->nsets].data;
  347. struct btree_write *w = btree_current_write(b);
  348. BUG_ON(!b->written);
  349. BUG_ON(!i->keys);
  350. if (!btree_node_dirty(b))
  351. queue_delayed_work(btree_io_wq, &b->work, 30 * HZ);
  352. set_btree_node_dirty(b);
  353. if (op->journal) {
  354. if (w->journal &&
  355. journal_pin_cmp(b->c, w, op)) {
  356. atomic_dec_bug(w->journal);
  357. w->journal = NULL;
  358. }
  359. if (!w->journal) {
  360. w->journal = op->journal;
  361. atomic_inc(w->journal);
  362. }
  363. }
  364. /* Force write if set is too big */
  365. if (set_bytes(i) > PAGE_SIZE - 48 &&
  366. !current->bio_list)
  367. bch_btree_node_write(b, NULL);
  368. }
  369. /*
  370. * Btree in memory cache - allocation/freeing
  371. * mca -> memory cache
  372. */
  373. static void mca_reinit(struct btree *b)
  374. {
  375. unsigned i;
  376. b->flags = 0;
  377. b->written = 0;
  378. b->nsets = 0;
  379. for (i = 0; i < MAX_BSETS; i++)
  380. b->sets[i].size = 0;
  381. /*
  382. * Second loop starts at 1 because b->sets[0]->data is the memory we
  383. * allocated
  384. */
  385. for (i = 1; i < MAX_BSETS; i++)
  386. b->sets[i].data = NULL;
  387. }
  388. #define mca_reserve(c) (((c->root && c->root->level) \
  389. ? c->root->level : 1) * 8 + 16)
  390. #define mca_can_free(c) \
  391. max_t(int, 0, c->bucket_cache_used - mca_reserve(c))
  392. static void mca_data_free(struct btree *b)
  393. {
  394. struct bset_tree *t = b->sets;
  395. BUG_ON(!closure_is_unlocked(&b->io.cl));
  396. if (bset_prev_bytes(b) < PAGE_SIZE)
  397. kfree(t->prev);
  398. else
  399. free_pages((unsigned long) t->prev,
  400. get_order(bset_prev_bytes(b)));
  401. if (bset_tree_bytes(b) < PAGE_SIZE)
  402. kfree(t->tree);
  403. else
  404. free_pages((unsigned long) t->tree,
  405. get_order(bset_tree_bytes(b)));
  406. free_pages((unsigned long) t->data, b->page_order);
  407. t->prev = NULL;
  408. t->tree = NULL;
  409. t->data = NULL;
  410. list_move(&b->list, &b->c->btree_cache_freed);
  411. b->c->bucket_cache_used--;
  412. }
  413. static void mca_bucket_free(struct btree *b)
  414. {
  415. BUG_ON(btree_node_dirty(b));
  416. b->key.ptr[0] = 0;
  417. hlist_del_init_rcu(&b->hash);
  418. list_move(&b->list, &b->c->btree_cache_freeable);
  419. }
  420. static unsigned btree_order(struct bkey *k)
  421. {
  422. return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1);
  423. }
  424. static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp)
  425. {
  426. struct bset_tree *t = b->sets;
  427. BUG_ON(t->data);
  428. b->page_order = max_t(unsigned,
  429. ilog2(b->c->btree_pages),
  430. btree_order(k));
  431. t->data = (void *) __get_free_pages(gfp, b->page_order);
  432. if (!t->data)
  433. goto err;
  434. t->tree = bset_tree_bytes(b) < PAGE_SIZE
  435. ? kmalloc(bset_tree_bytes(b), gfp)
  436. : (void *) __get_free_pages(gfp, get_order(bset_tree_bytes(b)));
  437. if (!t->tree)
  438. goto err;
  439. t->prev = bset_prev_bytes(b) < PAGE_SIZE
  440. ? kmalloc(bset_prev_bytes(b), gfp)
  441. : (void *) __get_free_pages(gfp, get_order(bset_prev_bytes(b)));
  442. if (!t->prev)
  443. goto err;
  444. list_move(&b->list, &b->c->btree_cache);
  445. b->c->bucket_cache_used++;
  446. return;
  447. err:
  448. mca_data_free(b);
  449. }
  450. static struct btree *mca_bucket_alloc(struct cache_set *c,
  451. struct bkey *k, gfp_t gfp)
  452. {
  453. struct btree *b = kzalloc(sizeof(struct btree), gfp);
  454. if (!b)
  455. return NULL;
  456. init_rwsem(&b->lock);
  457. lockdep_set_novalidate_class(&b->lock);
  458. INIT_LIST_HEAD(&b->list);
  459. INIT_DELAYED_WORK(&b->work, btree_node_write_work);
  460. b->c = c;
  461. closure_init_unlocked(&b->io);
  462. mca_data_alloc(b, k, gfp);
  463. return b;
  464. }
  465. static int mca_reap(struct btree *b, unsigned min_order, bool flush)
  466. {
  467. struct closure cl;
  468. closure_init_stack(&cl);
  469. lockdep_assert_held(&b->c->bucket_lock);
  470. if (!down_write_trylock(&b->lock))
  471. return -ENOMEM;
  472. BUG_ON(btree_node_dirty(b) && !b->sets[0].data);
  473. if (b->page_order < min_order ||
  474. (!flush &&
  475. (btree_node_dirty(b) ||
  476. atomic_read(&b->io.cl.remaining) != -1))) {
  477. rw_unlock(true, b);
  478. return -ENOMEM;
  479. }
  480. if (btree_node_dirty(b)) {
  481. bch_btree_node_write(b, &cl);
  482. closure_sync(&cl);
  483. }
  484. /* wait for any in flight btree write */
  485. closure_wait_event_sync(&b->io.wait, &cl,
  486. atomic_read(&b->io.cl.remaining) == -1);
  487. return 0;
  488. }
  489. static unsigned long bch_mca_scan(struct shrinker *shrink,
  490. struct shrink_control *sc)
  491. {
  492. struct cache_set *c = container_of(shrink, struct cache_set, shrink);
  493. struct btree *b, *t;
  494. unsigned long i, nr = sc->nr_to_scan;
  495. unsigned long freed = 0;
  496. if (c->shrinker_disabled)
  497. return SHRINK_STOP;
  498. if (c->try_harder)
  499. return SHRINK_STOP;
  500. /* Return -1 if we can't do anything right now */
  501. if (sc->gfp_mask & __GFP_IO)
  502. mutex_lock(&c->bucket_lock);
  503. else if (!mutex_trylock(&c->bucket_lock))
  504. return -1;
  505. /*
  506. * It's _really_ critical that we don't free too many btree nodes - we
  507. * have to always leave ourselves a reserve. The reserve is how we
  508. * guarantee that allocating memory for a new btree node can always
  509. * succeed, so that inserting keys into the btree can always succeed and
  510. * IO can always make forward progress:
  511. */
  512. nr /= c->btree_pages;
  513. nr = min_t(unsigned long, nr, mca_can_free(c));
  514. i = 0;
  515. list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) {
  516. if (freed >= nr)
  517. break;
  518. if (++i > 3 &&
  519. !mca_reap(b, 0, false)) {
  520. mca_data_free(b);
  521. rw_unlock(true, b);
  522. freed++;
  523. }
  524. }
  525. /*
  526. * Can happen right when we first start up, before we've read in any
  527. * btree nodes
  528. */
  529. if (list_empty(&c->btree_cache))
  530. goto out;
  531. for (i = 0; (nr--) && i < c->bucket_cache_used; i++) {
  532. b = list_first_entry(&c->btree_cache, struct btree, list);
  533. list_rotate_left(&c->btree_cache);
  534. if (!b->accessed &&
  535. !mca_reap(b, 0, false)) {
  536. mca_bucket_free(b);
  537. mca_data_free(b);
  538. rw_unlock(true, b);
  539. freed++;
  540. } else
  541. b->accessed = 0;
  542. }
  543. out:
  544. mutex_unlock(&c->bucket_lock);
  545. return freed;
  546. }
  547. static unsigned long bch_mca_count(struct shrinker *shrink,
  548. struct shrink_control *sc)
  549. {
  550. struct cache_set *c = container_of(shrink, struct cache_set, shrink);
  551. if (c->shrinker_disabled)
  552. return 0;
  553. if (c->try_harder)
  554. return 0;
  555. return mca_can_free(c) * c->btree_pages;
  556. }
  557. void bch_btree_cache_free(struct cache_set *c)
  558. {
  559. struct btree *b;
  560. struct closure cl;
  561. closure_init_stack(&cl);
  562. if (c->shrink.list.next)
  563. unregister_shrinker(&c->shrink);
  564. mutex_lock(&c->bucket_lock);
  565. #ifdef CONFIG_BCACHE_DEBUG
  566. if (c->verify_data)
  567. list_move(&c->verify_data->list, &c->btree_cache);
  568. #endif
  569. list_splice(&c->btree_cache_freeable,
  570. &c->btree_cache);
  571. while (!list_empty(&c->btree_cache)) {
  572. b = list_first_entry(&c->btree_cache, struct btree, list);
  573. if (btree_node_dirty(b))
  574. btree_complete_write(b, btree_current_write(b));
  575. clear_bit(BTREE_NODE_dirty, &b->flags);
  576. mca_data_free(b);
  577. }
  578. while (!list_empty(&c->btree_cache_freed)) {
  579. b = list_first_entry(&c->btree_cache_freed,
  580. struct btree, list);
  581. list_del(&b->list);
  582. cancel_delayed_work_sync(&b->work);
  583. kfree(b);
  584. }
  585. mutex_unlock(&c->bucket_lock);
  586. }
  587. int bch_btree_cache_alloc(struct cache_set *c)
  588. {
  589. unsigned i;
  590. /* XXX: doesn't check for errors */
  591. closure_init_unlocked(&c->gc);
  592. for (i = 0; i < mca_reserve(c); i++)
  593. mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
  594. list_splice_init(&c->btree_cache,
  595. &c->btree_cache_freeable);
  596. #ifdef CONFIG_BCACHE_DEBUG
  597. mutex_init(&c->verify_lock);
  598. c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL);
  599. if (c->verify_data &&
  600. c->verify_data->sets[0].data)
  601. list_del_init(&c->verify_data->list);
  602. else
  603. c->verify_data = NULL;
  604. #endif
  605. c->shrink.count_objects = bch_mca_count;
  606. c->shrink.scan_objects = bch_mca_scan;
  607. c->shrink.seeks = 4;
  608. c->shrink.batch = c->btree_pages * 2;
  609. register_shrinker(&c->shrink);
  610. return 0;
  611. }
  612. /* Btree in memory cache - hash table */
  613. static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k)
  614. {
  615. return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)];
  616. }
  617. static struct btree *mca_find(struct cache_set *c, struct bkey *k)
  618. {
  619. struct btree *b;
  620. rcu_read_lock();
  621. hlist_for_each_entry_rcu(b, mca_hash(c, k), hash)
  622. if (PTR_HASH(c, &b->key) == PTR_HASH(c, k))
  623. goto out;
  624. b = NULL;
  625. out:
  626. rcu_read_unlock();
  627. return b;
  628. }
  629. static struct btree *mca_cannibalize(struct cache_set *c, struct bkey *k)
  630. {
  631. struct btree *b;
  632. trace_bcache_btree_cache_cannibalize(c);
  633. if (!c->try_harder) {
  634. c->try_harder = current;
  635. c->try_harder_start = local_clock();
  636. } else if (c->try_harder != current)
  637. return ERR_PTR(-ENOSPC);
  638. list_for_each_entry_reverse(b, &c->btree_cache, list)
  639. if (!mca_reap(b, btree_order(k), false))
  640. return b;
  641. list_for_each_entry_reverse(b, &c->btree_cache, list)
  642. if (!mca_reap(b, btree_order(k), true))
  643. return b;
  644. return ERR_PTR(-ENOMEM);
  645. }
  646. /*
  647. * We can only have one thread cannibalizing other cached btree nodes at a time,
  648. * or we'll deadlock. We use an open coded mutex to ensure that, which a
  649. * cannibalize_bucket() will take. This means every time we unlock the root of
  650. * the btree, we need to release this lock if we have it held.
  651. */
  652. void bch_cannibalize_unlock(struct cache_set *c)
  653. {
  654. if (c->try_harder == current) {
  655. bch_time_stats_update(&c->try_harder_time, c->try_harder_start);
  656. c->try_harder = NULL;
  657. wake_up(&c->try_wait);
  658. }
  659. }
  660. static struct btree *mca_alloc(struct cache_set *c, struct bkey *k, int level)
  661. {
  662. struct btree *b;
  663. BUG_ON(current->bio_list);
  664. lockdep_assert_held(&c->bucket_lock);
  665. if (mca_find(c, k))
  666. return NULL;
  667. /* btree_free() doesn't free memory; it sticks the node on the end of
  668. * the list. Check if there's any freed nodes there:
  669. */
  670. list_for_each_entry(b, &c->btree_cache_freeable, list)
  671. if (!mca_reap(b, btree_order(k), false))
  672. goto out;
  673. /* We never free struct btree itself, just the memory that holds the on
  674. * disk node. Check the freed list before allocating a new one:
  675. */
  676. list_for_each_entry(b, &c->btree_cache_freed, list)
  677. if (!mca_reap(b, 0, false)) {
  678. mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO);
  679. if (!b->sets[0].data)
  680. goto err;
  681. else
  682. goto out;
  683. }
  684. b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO);
  685. if (!b)
  686. goto err;
  687. BUG_ON(!down_write_trylock(&b->lock));
  688. if (!b->sets->data)
  689. goto err;
  690. out:
  691. BUG_ON(!closure_is_unlocked(&b->io.cl));
  692. bkey_copy(&b->key, k);
  693. list_move(&b->list, &c->btree_cache);
  694. hlist_del_init_rcu(&b->hash);
  695. hlist_add_head_rcu(&b->hash, mca_hash(c, k));
  696. lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_);
  697. b->level = level;
  698. b->parent = (void *) ~0UL;
  699. mca_reinit(b);
  700. return b;
  701. err:
  702. if (b)
  703. rw_unlock(true, b);
  704. b = mca_cannibalize(c, k);
  705. if (!IS_ERR(b))
  706. goto out;
  707. return b;
  708. }
  709. /**
  710. * bch_btree_node_get - find a btree node in the cache and lock it, reading it
  711. * in from disk if necessary.
  712. *
  713. * If IO is necessary, it uses the closure embedded in struct btree_op to wait;
  714. * if that closure is in non blocking mode, will return -EAGAIN.
  715. *
  716. * The btree node will have either a read or a write lock held, depending on
  717. * level and op->lock.
  718. */
  719. struct btree *bch_btree_node_get(struct cache_set *c, struct bkey *k,
  720. int level, bool write)
  721. {
  722. int i = 0;
  723. struct btree *b;
  724. BUG_ON(level < 0);
  725. retry:
  726. b = mca_find(c, k);
  727. if (!b) {
  728. if (current->bio_list)
  729. return ERR_PTR(-EAGAIN);
  730. mutex_lock(&c->bucket_lock);
  731. b = mca_alloc(c, k, level);
  732. mutex_unlock(&c->bucket_lock);
  733. if (!b)
  734. goto retry;
  735. if (IS_ERR(b))
  736. return b;
  737. bch_btree_node_read(b);
  738. if (!write)
  739. downgrade_write(&b->lock);
  740. } else {
  741. rw_lock(write, b, level);
  742. if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) {
  743. rw_unlock(write, b);
  744. goto retry;
  745. }
  746. BUG_ON(b->level != level);
  747. }
  748. b->accessed = 1;
  749. for (; i <= b->nsets && b->sets[i].size; i++) {
  750. prefetch(b->sets[i].tree);
  751. prefetch(b->sets[i].data);
  752. }
  753. for (; i <= b->nsets; i++)
  754. prefetch(b->sets[i].data);
  755. if (btree_node_io_error(b)) {
  756. rw_unlock(write, b);
  757. return ERR_PTR(-EIO);
  758. }
  759. BUG_ON(!b->written);
  760. return b;
  761. }
  762. static void btree_node_prefetch(struct cache_set *c, struct bkey *k, int level)
  763. {
  764. struct btree *b;
  765. mutex_lock(&c->bucket_lock);
  766. b = mca_alloc(c, k, level);
  767. mutex_unlock(&c->bucket_lock);
  768. if (!IS_ERR_OR_NULL(b)) {
  769. bch_btree_node_read(b);
  770. rw_unlock(true, b);
  771. }
  772. }
  773. /* Btree alloc */
  774. static void btree_node_free(struct btree *b)
  775. {
  776. unsigned i;
  777. trace_bcache_btree_node_free(b);
  778. BUG_ON(b == b->c->root);
  779. if (btree_node_dirty(b))
  780. btree_complete_write(b, btree_current_write(b));
  781. clear_bit(BTREE_NODE_dirty, &b->flags);
  782. cancel_delayed_work(&b->work);
  783. mutex_lock(&b->c->bucket_lock);
  784. for (i = 0; i < KEY_PTRS(&b->key); i++) {
  785. BUG_ON(atomic_read(&PTR_BUCKET(b->c, &b->key, i)->pin));
  786. bch_inc_gen(PTR_CACHE(b->c, &b->key, i),
  787. PTR_BUCKET(b->c, &b->key, i));
  788. }
  789. bch_bucket_free(b->c, &b->key);
  790. mca_bucket_free(b);
  791. mutex_unlock(&b->c->bucket_lock);
  792. }
  793. struct btree *bch_btree_node_alloc(struct cache_set *c, int level)
  794. {
  795. BKEY_PADDED(key) k;
  796. struct btree *b = ERR_PTR(-EAGAIN);
  797. mutex_lock(&c->bucket_lock);
  798. retry:
  799. if (__bch_bucket_alloc_set(c, WATERMARK_METADATA, &k.key, 1, true))
  800. goto err;
  801. SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS);
  802. b = mca_alloc(c, &k.key, level);
  803. if (IS_ERR(b))
  804. goto err_free;
  805. if (!b) {
  806. cache_bug(c,
  807. "Tried to allocate bucket that was in btree cache");
  808. __bkey_put(c, &k.key);
  809. goto retry;
  810. }
  811. b->accessed = 1;
  812. bch_bset_init_next(b);
  813. mutex_unlock(&c->bucket_lock);
  814. trace_bcache_btree_node_alloc(b);
  815. return b;
  816. err_free:
  817. bch_bucket_free(c, &k.key);
  818. __bkey_put(c, &k.key);
  819. err:
  820. mutex_unlock(&c->bucket_lock);
  821. trace_bcache_btree_node_alloc_fail(b);
  822. return b;
  823. }
  824. static struct btree *btree_node_alloc_replacement(struct btree *b)
  825. {
  826. struct btree *n = bch_btree_node_alloc(b->c, b->level);
  827. if (!IS_ERR_OR_NULL(n))
  828. bch_btree_sort_into(b, n);
  829. return n;
  830. }
  831. /* Garbage collection */
  832. uint8_t __bch_btree_mark_key(struct cache_set *c, int level, struct bkey *k)
  833. {
  834. uint8_t stale = 0;
  835. unsigned i;
  836. struct bucket *g;
  837. /*
  838. * ptr_invalid() can't return true for the keys that mark btree nodes as
  839. * freed, but since ptr_bad() returns true we'll never actually use them
  840. * for anything and thus we don't want mark their pointers here
  841. */
  842. if (!bkey_cmp(k, &ZERO_KEY))
  843. return stale;
  844. for (i = 0; i < KEY_PTRS(k); i++) {
  845. if (!ptr_available(c, k, i))
  846. continue;
  847. g = PTR_BUCKET(c, k, i);
  848. if (gen_after(g->gc_gen, PTR_GEN(k, i)))
  849. g->gc_gen = PTR_GEN(k, i);
  850. if (ptr_stale(c, k, i)) {
  851. stale = max(stale, ptr_stale(c, k, i));
  852. continue;
  853. }
  854. cache_bug_on(GC_MARK(g) &&
  855. (GC_MARK(g) == GC_MARK_METADATA) != (level != 0),
  856. c, "inconsistent ptrs: mark = %llu, level = %i",
  857. GC_MARK(g), level);
  858. if (level)
  859. SET_GC_MARK(g, GC_MARK_METADATA);
  860. else if (KEY_DIRTY(k))
  861. SET_GC_MARK(g, GC_MARK_DIRTY);
  862. /* guard against overflow */
  863. SET_GC_SECTORS_USED(g, min_t(unsigned,
  864. GC_SECTORS_USED(g) + KEY_SIZE(k),
  865. (1 << 14) - 1));
  866. BUG_ON(!GC_SECTORS_USED(g));
  867. }
  868. return stale;
  869. }
  870. #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k)
  871. static int btree_gc_mark_node(struct btree *b, unsigned *keys,
  872. struct gc_stat *gc)
  873. {
  874. uint8_t stale = 0;
  875. unsigned last_dev = -1;
  876. struct bcache_device *d = NULL;
  877. struct bkey *k;
  878. struct btree_iter iter;
  879. struct bset_tree *t;
  880. gc->nodes++;
  881. for_each_key_filter(b, k, &iter, bch_ptr_invalid) {
  882. if (last_dev != KEY_INODE(k)) {
  883. last_dev = KEY_INODE(k);
  884. d = KEY_INODE(k) < b->c->nr_uuids
  885. ? b->c->devices[last_dev]
  886. : NULL;
  887. }
  888. stale = max(stale, btree_mark_key(b, k));
  889. if (bch_ptr_bad(b, k))
  890. continue;
  891. *keys += bkey_u64s(k);
  892. gc->key_bytes += bkey_u64s(k);
  893. gc->nkeys++;
  894. gc->data += KEY_SIZE(k);
  895. if (KEY_DIRTY(k))
  896. gc->dirty += KEY_SIZE(k);
  897. }
  898. for (t = b->sets; t <= &b->sets[b->nsets]; t++)
  899. btree_bug_on(t->size &&
  900. bset_written(b, t) &&
  901. bkey_cmp(&b->key, &t->end) < 0,
  902. b, "found short btree key in gc");
  903. return stale;
  904. }
  905. static struct btree *btree_gc_alloc(struct btree *b, struct bkey *k)
  906. {
  907. /*
  908. * We block priorities from being written for the duration of garbage
  909. * collection, so we can't sleep in btree_alloc() ->
  910. * bch_bucket_alloc_set(), or we'd risk deadlock - so we don't pass it
  911. * our closure.
  912. */
  913. struct btree *n = btree_node_alloc_replacement(b);
  914. if (!IS_ERR_OR_NULL(n)) {
  915. swap(b, n);
  916. __bkey_put(b->c, &b->key);
  917. memcpy(k->ptr, b->key.ptr,
  918. sizeof(uint64_t) * KEY_PTRS(&b->key));
  919. btree_node_free(n);
  920. up_write(&n->lock);
  921. }
  922. return b;
  923. }
  924. /*
  925. * Leaving this at 2 until we've got incremental garbage collection done; it
  926. * could be higher (and has been tested with 4) except that garbage collection
  927. * could take much longer, adversely affecting latency.
  928. */
  929. #define GC_MERGE_NODES 2U
  930. struct gc_merge_info {
  931. struct btree *b;
  932. struct bkey *k;
  933. unsigned keys;
  934. };
  935. static void btree_gc_coalesce(struct btree *b, struct gc_stat *gc,
  936. struct gc_merge_info *r)
  937. {
  938. unsigned nodes = 0, keys = 0, blocks;
  939. int i;
  940. while (nodes < GC_MERGE_NODES && r[nodes].b)
  941. keys += r[nodes++].keys;
  942. blocks = btree_default_blocks(b->c) * 2 / 3;
  943. if (nodes < 2 ||
  944. __set_blocks(b->sets[0].data, keys, b->c) > blocks * (nodes - 1))
  945. return;
  946. for (i = nodes - 1; i >= 0; --i) {
  947. if (r[i].b->written)
  948. r[i].b = btree_gc_alloc(r[i].b, r[i].k);
  949. if (r[i].b->written)
  950. return;
  951. }
  952. for (i = nodes - 1; i > 0; --i) {
  953. struct bset *n1 = r[i].b->sets->data;
  954. struct bset *n2 = r[i - 1].b->sets->data;
  955. struct bkey *k, *last = NULL;
  956. keys = 0;
  957. if (i == 1) {
  958. /*
  959. * Last node we're not getting rid of - we're getting
  960. * rid of the node at r[0]. Have to try and fit all of
  961. * the remaining keys into this node; we can't ensure
  962. * they will always fit due to rounding and variable
  963. * length keys (shouldn't be possible in practice,
  964. * though)
  965. */
  966. if (__set_blocks(n1, n1->keys + r->keys,
  967. b->c) > btree_blocks(r[i].b))
  968. return;
  969. keys = n2->keys;
  970. last = &r->b->key;
  971. } else
  972. for (k = n2->start;
  973. k < end(n2);
  974. k = bkey_next(k)) {
  975. if (__set_blocks(n1, n1->keys + keys +
  976. bkey_u64s(k), b->c) > blocks)
  977. break;
  978. last = k;
  979. keys += bkey_u64s(k);
  980. }
  981. BUG_ON(__set_blocks(n1, n1->keys + keys,
  982. b->c) > btree_blocks(r[i].b));
  983. if (last) {
  984. bkey_copy_key(&r[i].b->key, last);
  985. bkey_copy_key(r[i].k, last);
  986. }
  987. memcpy(end(n1),
  988. n2->start,
  989. (void *) node(n2, keys) - (void *) n2->start);
  990. n1->keys += keys;
  991. memmove(n2->start,
  992. node(n2, keys),
  993. (void *) end(n2) - (void *) node(n2, keys));
  994. n2->keys -= keys;
  995. r[i].keys = n1->keys;
  996. r[i - 1].keys = n2->keys;
  997. }
  998. btree_node_free(r->b);
  999. up_write(&r->b->lock);
  1000. trace_bcache_btree_gc_coalesce(nodes);
  1001. gc->nodes--;
  1002. nodes--;
  1003. memmove(&r[0], &r[1], sizeof(struct gc_merge_info) * nodes);
  1004. memset(&r[nodes], 0, sizeof(struct gc_merge_info));
  1005. }
  1006. static int btree_gc_recurse(struct btree *b, struct btree_op *op,
  1007. struct closure *writes, struct gc_stat *gc)
  1008. {
  1009. void write(struct btree *r)
  1010. {
  1011. if (!r->written)
  1012. bch_btree_node_write(r, &op->cl);
  1013. else if (btree_node_dirty(r))
  1014. bch_btree_node_write(r, writes);
  1015. up_write(&r->lock);
  1016. }
  1017. int ret = 0, stale;
  1018. unsigned i;
  1019. struct gc_merge_info r[GC_MERGE_NODES];
  1020. memset(r, 0, sizeof(r));
  1021. while ((r->k = bch_next_recurse_key(b, &b->c->gc_done))) {
  1022. r->b = bch_btree_node_get(b->c, r->k, b->level - 1, true);
  1023. if (IS_ERR(r->b)) {
  1024. ret = PTR_ERR(r->b);
  1025. break;
  1026. }
  1027. r->keys = 0;
  1028. stale = btree_gc_mark_node(r->b, &r->keys, gc);
  1029. if (!b->written &&
  1030. (r->b->level || stale > 10 ||
  1031. b->c->gc_always_rewrite))
  1032. r->b = btree_gc_alloc(r->b, r->k);
  1033. if (r->b->level)
  1034. ret = btree_gc_recurse(r->b, op, writes, gc);
  1035. if (ret) {
  1036. write(r->b);
  1037. break;
  1038. }
  1039. bkey_copy_key(&b->c->gc_done, r->k);
  1040. if (!b->written)
  1041. btree_gc_coalesce(b, gc, r);
  1042. if (r[GC_MERGE_NODES - 1].b)
  1043. write(r[GC_MERGE_NODES - 1].b);
  1044. memmove(&r[1], &r[0],
  1045. sizeof(struct gc_merge_info) * (GC_MERGE_NODES - 1));
  1046. /* When we've got incremental GC working, we'll want to do
  1047. * if (should_resched())
  1048. * return -EAGAIN;
  1049. */
  1050. cond_resched();
  1051. #if 0
  1052. if (need_resched()) {
  1053. ret = -EAGAIN;
  1054. break;
  1055. }
  1056. #endif
  1057. }
  1058. for (i = 1; i < GC_MERGE_NODES && r[i].b; i++)
  1059. write(r[i].b);
  1060. /* Might have freed some children, must remove their keys */
  1061. if (!b->written)
  1062. bch_btree_sort(b);
  1063. return ret;
  1064. }
  1065. static int bch_btree_gc_root(struct btree *b, struct btree_op *op,
  1066. struct closure *writes, struct gc_stat *gc)
  1067. {
  1068. struct btree *n = NULL;
  1069. unsigned keys = 0;
  1070. int ret = 0, stale = btree_gc_mark_node(b, &keys, gc);
  1071. if (b->level || stale > 10)
  1072. n = btree_node_alloc_replacement(b);
  1073. if (!IS_ERR_OR_NULL(n))
  1074. swap(b, n);
  1075. if (b->level)
  1076. ret = btree_gc_recurse(b, op, writes, gc);
  1077. if (!b->written || btree_node_dirty(b)) {
  1078. bch_btree_node_write(b, n ? &op->cl : NULL);
  1079. }
  1080. if (!IS_ERR_OR_NULL(n)) {
  1081. closure_sync(&op->cl);
  1082. bch_btree_set_root(b);
  1083. btree_node_free(n);
  1084. rw_unlock(true, b);
  1085. }
  1086. return ret;
  1087. }
  1088. static void btree_gc_start(struct cache_set *c)
  1089. {
  1090. struct cache *ca;
  1091. struct bucket *b;
  1092. unsigned i;
  1093. if (!c->gc_mark_valid)
  1094. return;
  1095. mutex_lock(&c->bucket_lock);
  1096. c->gc_mark_valid = 0;
  1097. c->gc_done = ZERO_KEY;
  1098. for_each_cache(ca, c, i)
  1099. for_each_bucket(b, ca) {
  1100. b->gc_gen = b->gen;
  1101. if (!atomic_read(&b->pin)) {
  1102. SET_GC_MARK(b, GC_MARK_RECLAIMABLE);
  1103. SET_GC_SECTORS_USED(b, 0);
  1104. }
  1105. }
  1106. mutex_unlock(&c->bucket_lock);
  1107. }
  1108. size_t bch_btree_gc_finish(struct cache_set *c)
  1109. {
  1110. size_t available = 0;
  1111. struct bucket *b;
  1112. struct cache *ca;
  1113. unsigned i;
  1114. mutex_lock(&c->bucket_lock);
  1115. set_gc_sectors(c);
  1116. c->gc_mark_valid = 1;
  1117. c->need_gc = 0;
  1118. if (c->root)
  1119. for (i = 0; i < KEY_PTRS(&c->root->key); i++)
  1120. SET_GC_MARK(PTR_BUCKET(c, &c->root->key, i),
  1121. GC_MARK_METADATA);
  1122. for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++)
  1123. SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i),
  1124. GC_MARK_METADATA);
  1125. for_each_cache(ca, c, i) {
  1126. uint64_t *i;
  1127. ca->invalidate_needs_gc = 0;
  1128. for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++)
  1129. SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
  1130. for (i = ca->prio_buckets;
  1131. i < ca->prio_buckets + prio_buckets(ca) * 2; i++)
  1132. SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA);
  1133. for_each_bucket(b, ca) {
  1134. b->last_gc = b->gc_gen;
  1135. c->need_gc = max(c->need_gc, bucket_gc_gen(b));
  1136. if (!atomic_read(&b->pin) &&
  1137. GC_MARK(b) == GC_MARK_RECLAIMABLE) {
  1138. available++;
  1139. if (!GC_SECTORS_USED(b))
  1140. bch_bucket_add_unused(ca, b);
  1141. }
  1142. }
  1143. }
  1144. mutex_unlock(&c->bucket_lock);
  1145. return available;
  1146. }
  1147. static void bch_btree_gc(struct closure *cl)
  1148. {
  1149. struct cache_set *c = container_of(cl, struct cache_set, gc.cl);
  1150. int ret;
  1151. unsigned long available;
  1152. struct gc_stat stats;
  1153. struct closure writes;
  1154. struct btree_op op;
  1155. uint64_t start_time = local_clock();
  1156. trace_bcache_gc_start(c);
  1157. memset(&stats, 0, sizeof(struct gc_stat));
  1158. closure_init_stack(&writes);
  1159. bch_btree_op_init_stack(&op);
  1160. op.lock = SHRT_MAX;
  1161. btree_gc_start(c);
  1162. atomic_inc(&c->prio_blocked);
  1163. ret = btree_root(gc_root, c, &op, &writes, &stats);
  1164. closure_sync(&op.cl);
  1165. closure_sync(&writes);
  1166. if (ret) {
  1167. pr_warn("gc failed!");
  1168. continue_at(cl, bch_btree_gc, bch_gc_wq);
  1169. }
  1170. /* Possibly wait for new UUIDs or whatever to hit disk */
  1171. bch_journal_meta(c, &op.cl);
  1172. closure_sync(&op.cl);
  1173. available = bch_btree_gc_finish(c);
  1174. atomic_dec(&c->prio_blocked);
  1175. wake_up_allocators(c);
  1176. bch_time_stats_update(&c->btree_gc_time, start_time);
  1177. stats.key_bytes *= sizeof(uint64_t);
  1178. stats.dirty <<= 9;
  1179. stats.data <<= 9;
  1180. stats.in_use = (c->nbuckets - available) * 100 / c->nbuckets;
  1181. memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat));
  1182. trace_bcache_gc_end(c);
  1183. continue_at(cl, bch_moving_gc, bch_gc_wq);
  1184. }
  1185. void bch_queue_gc(struct cache_set *c)
  1186. {
  1187. closure_trylock_call(&c->gc.cl, bch_btree_gc, bch_gc_wq, &c->cl);
  1188. }
  1189. /* Initial partial gc */
  1190. static int bch_btree_check_recurse(struct btree *b, struct btree_op *op,
  1191. unsigned long **seen)
  1192. {
  1193. int ret;
  1194. unsigned i;
  1195. struct bkey *k;
  1196. struct bucket *g;
  1197. struct btree_iter iter;
  1198. for_each_key_filter(b, k, &iter, bch_ptr_invalid) {
  1199. for (i = 0; i < KEY_PTRS(k); i++) {
  1200. if (!ptr_available(b->c, k, i))
  1201. continue;
  1202. g = PTR_BUCKET(b->c, k, i);
  1203. if (!__test_and_set_bit(PTR_BUCKET_NR(b->c, k, i),
  1204. seen[PTR_DEV(k, i)]) ||
  1205. !ptr_stale(b->c, k, i)) {
  1206. g->gen = PTR_GEN(k, i);
  1207. if (b->level)
  1208. g->prio = BTREE_PRIO;
  1209. else if (g->prio == BTREE_PRIO)
  1210. g->prio = INITIAL_PRIO;
  1211. }
  1212. }
  1213. btree_mark_key(b, k);
  1214. }
  1215. if (b->level) {
  1216. k = bch_next_recurse_key(b, &ZERO_KEY);
  1217. while (k) {
  1218. struct bkey *p = bch_next_recurse_key(b, k);
  1219. if (p)
  1220. btree_node_prefetch(b->c, p, b->level - 1);
  1221. ret = btree(check_recurse, k, b, op, seen);
  1222. if (ret)
  1223. return ret;
  1224. k = p;
  1225. }
  1226. }
  1227. return 0;
  1228. }
  1229. int bch_btree_check(struct cache_set *c, struct btree_op *op)
  1230. {
  1231. int ret = -ENOMEM;
  1232. unsigned i;
  1233. unsigned long *seen[MAX_CACHES_PER_SET];
  1234. memset(seen, 0, sizeof(seen));
  1235. for (i = 0; c->cache[i]; i++) {
  1236. size_t n = DIV_ROUND_UP(c->cache[i]->sb.nbuckets, 8);
  1237. seen[i] = kmalloc(n, GFP_KERNEL);
  1238. if (!seen[i])
  1239. goto err;
  1240. /* Disables the seen array until prio_read() uses it too */
  1241. memset(seen[i], 0xFF, n);
  1242. }
  1243. ret = btree_root(check_recurse, c, op, seen);
  1244. err:
  1245. for (i = 0; i < MAX_CACHES_PER_SET; i++)
  1246. kfree(seen[i]);
  1247. return ret;
  1248. }
  1249. /* Btree insertion */
  1250. static void shift_keys(struct btree *b, struct bkey *where, struct bkey *insert)
  1251. {
  1252. struct bset *i = b->sets[b->nsets].data;
  1253. memmove((uint64_t *) where + bkey_u64s(insert),
  1254. where,
  1255. (void *) end(i) - (void *) where);
  1256. i->keys += bkey_u64s(insert);
  1257. bkey_copy(where, insert);
  1258. bch_bset_fix_lookup_table(b, where);
  1259. }
  1260. static bool fix_overlapping_extents(struct btree *b,
  1261. struct bkey *insert,
  1262. struct btree_iter *iter,
  1263. struct btree_op *op)
  1264. {
  1265. void subtract_dirty(struct bkey *k, uint64_t offset, int sectors)
  1266. {
  1267. if (KEY_DIRTY(k))
  1268. bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
  1269. offset, -sectors);
  1270. }
  1271. uint64_t old_offset;
  1272. unsigned old_size, sectors_found = 0;
  1273. while (1) {
  1274. struct bkey *k = bch_btree_iter_next(iter);
  1275. if (!k ||
  1276. bkey_cmp(&START_KEY(k), insert) >= 0)
  1277. break;
  1278. if (bkey_cmp(k, &START_KEY(insert)) <= 0)
  1279. continue;
  1280. old_offset = KEY_START(k);
  1281. old_size = KEY_SIZE(k);
  1282. /*
  1283. * We might overlap with 0 size extents; we can't skip these
  1284. * because if they're in the set we're inserting to we have to
  1285. * adjust them so they don't overlap with the key we're
  1286. * inserting. But we don't want to check them for BTREE_REPLACE
  1287. * operations.
  1288. */
  1289. if (op->type == BTREE_REPLACE &&
  1290. KEY_SIZE(k)) {
  1291. /*
  1292. * k might have been split since we inserted/found the
  1293. * key we're replacing
  1294. */
  1295. unsigned i;
  1296. uint64_t offset = KEY_START(k) -
  1297. KEY_START(&op->replace);
  1298. /* But it must be a subset of the replace key */
  1299. if (KEY_START(k) < KEY_START(&op->replace) ||
  1300. KEY_OFFSET(k) > KEY_OFFSET(&op->replace))
  1301. goto check_failed;
  1302. /* We didn't find a key that we were supposed to */
  1303. if (KEY_START(k) > KEY_START(insert) + sectors_found)
  1304. goto check_failed;
  1305. if (KEY_PTRS(&op->replace) != KEY_PTRS(k))
  1306. goto check_failed;
  1307. /* skip past gen */
  1308. offset <<= 8;
  1309. BUG_ON(!KEY_PTRS(&op->replace));
  1310. for (i = 0; i < KEY_PTRS(&op->replace); i++)
  1311. if (k->ptr[i] != op->replace.ptr[i] + offset)
  1312. goto check_failed;
  1313. sectors_found = KEY_OFFSET(k) - KEY_START(insert);
  1314. }
  1315. if (bkey_cmp(insert, k) < 0 &&
  1316. bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0) {
  1317. /*
  1318. * We overlapped in the middle of an existing key: that
  1319. * means we have to split the old key. But we have to do
  1320. * slightly different things depending on whether the
  1321. * old key has been written out yet.
  1322. */
  1323. struct bkey *top;
  1324. subtract_dirty(k, KEY_START(insert), KEY_SIZE(insert));
  1325. if (bkey_written(b, k)) {
  1326. /*
  1327. * We insert a new key to cover the top of the
  1328. * old key, and the old key is modified in place
  1329. * to represent the bottom split.
  1330. *
  1331. * It's completely arbitrary whether the new key
  1332. * is the top or the bottom, but it has to match
  1333. * up with what btree_sort_fixup() does - it
  1334. * doesn't check for this kind of overlap, it
  1335. * depends on us inserting a new key for the top
  1336. * here.
  1337. */
  1338. top = bch_bset_search(b, &b->sets[b->nsets],
  1339. insert);
  1340. shift_keys(b, top, k);
  1341. } else {
  1342. BKEY_PADDED(key) temp;
  1343. bkey_copy(&temp.key, k);
  1344. shift_keys(b, k, &temp.key);
  1345. top = bkey_next(k);
  1346. }
  1347. bch_cut_front(insert, top);
  1348. bch_cut_back(&START_KEY(insert), k);
  1349. bch_bset_fix_invalidated_key(b, k);
  1350. return false;
  1351. }
  1352. if (bkey_cmp(insert, k) < 0) {
  1353. bch_cut_front(insert, k);
  1354. } else {
  1355. if (bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0)
  1356. old_offset = KEY_START(insert);
  1357. if (bkey_written(b, k) &&
  1358. bkey_cmp(&START_KEY(insert), &START_KEY(k)) <= 0) {
  1359. /*
  1360. * Completely overwrote, so we don't have to
  1361. * invalidate the binary search tree
  1362. */
  1363. bch_cut_front(k, k);
  1364. } else {
  1365. __bch_cut_back(&START_KEY(insert), k);
  1366. bch_bset_fix_invalidated_key(b, k);
  1367. }
  1368. }
  1369. subtract_dirty(k, old_offset, old_size - KEY_SIZE(k));
  1370. }
  1371. check_failed:
  1372. if (op->type == BTREE_REPLACE) {
  1373. if (!sectors_found) {
  1374. op->insert_collision = true;
  1375. return true;
  1376. } else if (sectors_found < KEY_SIZE(insert)) {
  1377. SET_KEY_OFFSET(insert, KEY_OFFSET(insert) -
  1378. (KEY_SIZE(insert) - sectors_found));
  1379. SET_KEY_SIZE(insert, sectors_found);
  1380. }
  1381. }
  1382. return false;
  1383. }
  1384. static bool btree_insert_key(struct btree *b, struct btree_op *op,
  1385. struct bkey *k)
  1386. {
  1387. struct bset *i = b->sets[b->nsets].data;
  1388. struct bkey *m, *prev;
  1389. unsigned status = BTREE_INSERT_STATUS_INSERT;
  1390. BUG_ON(bkey_cmp(k, &b->key) > 0);
  1391. BUG_ON(b->level && !KEY_PTRS(k));
  1392. BUG_ON(!b->level && !KEY_OFFSET(k));
  1393. if (!b->level) {
  1394. struct btree_iter iter;
  1395. struct bkey search = KEY(KEY_INODE(k), KEY_START(k), 0);
  1396. /*
  1397. * bset_search() returns the first key that is strictly greater
  1398. * than the search key - but for back merging, we want to find
  1399. * the first key that is greater than or equal to KEY_START(k) -
  1400. * unless KEY_START(k) is 0.
  1401. */
  1402. if (KEY_OFFSET(&search))
  1403. SET_KEY_OFFSET(&search, KEY_OFFSET(&search) - 1);
  1404. prev = NULL;
  1405. m = bch_btree_iter_init(b, &iter, &search);
  1406. if (fix_overlapping_extents(b, k, &iter, op))
  1407. return false;
  1408. if (KEY_DIRTY(k))
  1409. bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k),
  1410. KEY_START(k), KEY_SIZE(k));
  1411. while (m != end(i) &&
  1412. bkey_cmp(k, &START_KEY(m)) > 0)
  1413. prev = m, m = bkey_next(m);
  1414. if (key_merging_disabled(b->c))
  1415. goto insert;
  1416. /* prev is in the tree, if we merge we're done */
  1417. status = BTREE_INSERT_STATUS_BACK_MERGE;
  1418. if (prev &&
  1419. bch_bkey_try_merge(b, prev, k))
  1420. goto merged;
  1421. status = BTREE_INSERT_STATUS_OVERWROTE;
  1422. if (m != end(i) &&
  1423. KEY_PTRS(m) == KEY_PTRS(k) && !KEY_SIZE(m))
  1424. goto copy;
  1425. status = BTREE_INSERT_STATUS_FRONT_MERGE;
  1426. if (m != end(i) &&
  1427. bch_bkey_try_merge(b, k, m))
  1428. goto copy;
  1429. } else
  1430. m = bch_bset_search(b, &b->sets[b->nsets], k);
  1431. insert: shift_keys(b, m, k);
  1432. copy: bkey_copy(m, k);
  1433. merged:
  1434. bch_check_keys(b, "%u for %s", status, op_type(op));
  1435. if (b->level && !KEY_OFFSET(k))
  1436. btree_current_write(b)->prio_blocked++;
  1437. trace_bcache_btree_insert_key(b, k, op->type, status);
  1438. return true;
  1439. }
  1440. static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op,
  1441. struct keylist *insert_keys)
  1442. {
  1443. bool ret = false;
  1444. unsigned oldsize = bch_count_data(b);
  1445. while (!bch_keylist_empty(insert_keys)) {
  1446. struct bset *i = write_block(b);
  1447. struct bkey *k = insert_keys->keys;
  1448. if (b->written + __set_blocks(i, i->keys + bkey_u64s(k), b->c)
  1449. > btree_blocks(b))
  1450. break;
  1451. if (bkey_cmp(k, &b->key) <= 0) {
  1452. bkey_put(b->c, k, b->level);
  1453. ret |= btree_insert_key(b, op, k);
  1454. bch_keylist_pop_front(insert_keys);
  1455. } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) {
  1456. #if 0
  1457. if (op->type == BTREE_REPLACE) {
  1458. bkey_put(b->c, k, b->level);
  1459. bch_keylist_pop_front(insert_keys);
  1460. op->insert_collision = true;
  1461. break;
  1462. }
  1463. #endif
  1464. BKEY_PADDED(key) temp;
  1465. bkey_copy(&temp.key, insert_keys->keys);
  1466. bch_cut_back(&b->key, &temp.key);
  1467. bch_cut_front(&b->key, insert_keys->keys);
  1468. ret |= btree_insert_key(b, op, &temp.key);
  1469. break;
  1470. } else {
  1471. break;
  1472. }
  1473. }
  1474. BUG_ON(!bch_keylist_empty(insert_keys) && b->level);
  1475. BUG_ON(bch_count_data(b) < oldsize);
  1476. return ret;
  1477. }
  1478. static int btree_split(struct btree *b, struct btree_op *op,
  1479. struct keylist *insert_keys,
  1480. struct keylist *parent_keys)
  1481. {
  1482. bool split;
  1483. struct btree *n1, *n2 = NULL, *n3 = NULL;
  1484. uint64_t start_time = local_clock();
  1485. n1 = btree_node_alloc_replacement(b);
  1486. if (IS_ERR(n1))
  1487. goto err;
  1488. split = set_blocks(n1->sets[0].data, n1->c) > (btree_blocks(b) * 4) / 5;
  1489. if (split) {
  1490. unsigned keys = 0;
  1491. trace_bcache_btree_node_split(b, n1->sets[0].data->keys);
  1492. n2 = bch_btree_node_alloc(b->c, b->level);
  1493. if (IS_ERR(n2))
  1494. goto err_free1;
  1495. if (!b->parent) {
  1496. n3 = bch_btree_node_alloc(b->c, b->level + 1);
  1497. if (IS_ERR(n3))
  1498. goto err_free2;
  1499. }
  1500. bch_btree_insert_keys(n1, op, insert_keys);
  1501. /*
  1502. * Has to be a linear search because we don't have an auxiliary
  1503. * search tree yet
  1504. */
  1505. while (keys < (n1->sets[0].data->keys * 3) / 5)
  1506. keys += bkey_u64s(node(n1->sets[0].data, keys));
  1507. bkey_copy_key(&n1->key, node(n1->sets[0].data, keys));
  1508. keys += bkey_u64s(node(n1->sets[0].data, keys));
  1509. n2->sets[0].data->keys = n1->sets[0].data->keys - keys;
  1510. n1->sets[0].data->keys = keys;
  1511. memcpy(n2->sets[0].data->start,
  1512. end(n1->sets[0].data),
  1513. n2->sets[0].data->keys * sizeof(uint64_t));
  1514. bkey_copy_key(&n2->key, &b->key);
  1515. bch_keylist_add(parent_keys, &n2->key);
  1516. bch_btree_node_write(n2, &op->cl);
  1517. rw_unlock(true, n2);
  1518. } else {
  1519. trace_bcache_btree_node_compact(b, n1->sets[0].data->keys);
  1520. bch_btree_insert_keys(n1, op, insert_keys);
  1521. }
  1522. bch_keylist_add(parent_keys, &n1->key);
  1523. bch_btree_node_write(n1, &op->cl);
  1524. if (n3) {
  1525. /* Depth increases, make a new root */
  1526. bkey_copy_key(&n3->key, &MAX_KEY);
  1527. bch_btree_insert_keys(n3, op, parent_keys);
  1528. bch_btree_node_write(n3, &op->cl);
  1529. closure_sync(&op->cl);
  1530. bch_btree_set_root(n3);
  1531. rw_unlock(true, n3);
  1532. } else if (!b->parent) {
  1533. /* Root filled up but didn't need to be split */
  1534. bch_keylist_reset(parent_keys);
  1535. closure_sync(&op->cl);
  1536. bch_btree_set_root(n1);
  1537. } else {
  1538. unsigned i;
  1539. bkey_copy(parent_keys->top, &b->key);
  1540. bkey_copy_key(parent_keys->top, &ZERO_KEY);
  1541. for (i = 0; i < KEY_PTRS(&b->key); i++) {
  1542. uint8_t g = PTR_BUCKET(b->c, &b->key, i)->gen + 1;
  1543. SET_PTR_GEN(parent_keys->top, i, g);
  1544. }
  1545. bch_keylist_push(parent_keys);
  1546. closure_sync(&op->cl);
  1547. atomic_inc(&b->c->prio_blocked);
  1548. }
  1549. rw_unlock(true, n1);
  1550. btree_node_free(b);
  1551. bch_time_stats_update(&b->c->btree_split_time, start_time);
  1552. return 0;
  1553. err_free2:
  1554. __bkey_put(n2->c, &n2->key);
  1555. btree_node_free(n2);
  1556. rw_unlock(true, n2);
  1557. err_free1:
  1558. __bkey_put(n1->c, &n1->key);
  1559. btree_node_free(n1);
  1560. rw_unlock(true, n1);
  1561. err:
  1562. if (n3 == ERR_PTR(-EAGAIN) ||
  1563. n2 == ERR_PTR(-EAGAIN) ||
  1564. n1 == ERR_PTR(-EAGAIN))
  1565. return -EAGAIN;
  1566. pr_warn("couldn't split");
  1567. return -ENOMEM;
  1568. }
  1569. static int bch_btree_insert_node(struct btree *b, struct btree_op *op,
  1570. struct keylist *insert_keys)
  1571. {
  1572. int ret = 0;
  1573. struct keylist split_keys;
  1574. bch_keylist_init(&split_keys);
  1575. BUG_ON(b->level);
  1576. do {
  1577. if (should_split(b)) {
  1578. if (current->bio_list) {
  1579. op->lock = b->c->root->level + 1;
  1580. ret = -EAGAIN;
  1581. } else if (op->lock <= b->c->root->level) {
  1582. op->lock = b->c->root->level + 1;
  1583. ret = -EINTR;
  1584. } else {
  1585. struct btree *parent = b->parent;
  1586. ret = btree_split(b, op, insert_keys,
  1587. &split_keys);
  1588. insert_keys = &split_keys;
  1589. b = parent;
  1590. if (!ret)
  1591. ret = -EINTR;
  1592. }
  1593. } else {
  1594. BUG_ON(write_block(b) != b->sets[b->nsets].data);
  1595. if (bch_btree_insert_keys(b, op, insert_keys)) {
  1596. if (!b->level)
  1597. bch_btree_leaf_dirty(b, op);
  1598. else
  1599. bch_btree_node_write(b, &op->cl);
  1600. }
  1601. }
  1602. } while (!bch_keylist_empty(&split_keys));
  1603. return ret;
  1604. }
  1605. int bch_btree_insert_check_key(struct btree *b, struct btree_op *op,
  1606. struct bkey *check_key)
  1607. {
  1608. int ret = -EINTR;
  1609. uint64_t btree_ptr = b->key.ptr[0];
  1610. unsigned long seq = b->seq;
  1611. struct keylist insert;
  1612. bool upgrade = op->lock == -1;
  1613. bch_keylist_init(&insert);
  1614. if (upgrade) {
  1615. rw_unlock(false, b);
  1616. rw_lock(true, b, b->level);
  1617. if (b->key.ptr[0] != btree_ptr ||
  1618. b->seq != seq + 1)
  1619. goto out;
  1620. }
  1621. SET_KEY_PTRS(check_key, 1);
  1622. get_random_bytes(&check_key->ptr[0], sizeof(uint64_t));
  1623. SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV);
  1624. bch_keylist_add(&insert, check_key);
  1625. BUG_ON(op->type != BTREE_INSERT);
  1626. ret = bch_btree_insert_node(b, op, &insert);
  1627. BUG_ON(!ret && !bch_keylist_empty(&insert));
  1628. out:
  1629. if (upgrade)
  1630. downgrade_write(&b->lock);
  1631. return ret;
  1632. }
  1633. static int bch_btree_insert_recurse(struct btree *b, struct btree_op *op,
  1634. struct keylist *keys)
  1635. {
  1636. if (bch_keylist_empty(keys))
  1637. return 0;
  1638. if (b->level) {
  1639. struct bkey *k;
  1640. k = bch_next_recurse_key(b, &START_KEY(keys->keys));
  1641. if (!k) {
  1642. btree_bug(b, "no key to recurse on at level %i/%i",
  1643. b->level, b->c->root->level);
  1644. bch_keylist_reset(keys);
  1645. return -EIO;
  1646. }
  1647. return btree(insert_recurse, k, b, op, keys);
  1648. } else {
  1649. return bch_btree_insert_node(b, op, keys);
  1650. }
  1651. }
  1652. int bch_btree_insert(struct btree_op *op, struct cache_set *c,
  1653. struct keylist *keys)
  1654. {
  1655. int ret = 0;
  1656. /*
  1657. * Don't want to block with the btree locked unless we have to,
  1658. * otherwise we get deadlocks with try_harder and between split/gc
  1659. */
  1660. clear_closure_blocking(&op->cl);
  1661. BUG_ON(bch_keylist_empty(keys));
  1662. while (!bch_keylist_empty(keys)) {
  1663. op->lock = 0;
  1664. ret = btree_root(insert_recurse, c, op, keys);
  1665. if (ret == -EAGAIN) {
  1666. ret = 0;
  1667. closure_sync(&op->cl);
  1668. } else if (ret) {
  1669. struct bkey *k;
  1670. pr_err("error %i trying to insert key for %s",
  1671. ret, op_type(op));
  1672. while ((k = bch_keylist_pop(keys)))
  1673. bkey_put(c, k, 0);
  1674. }
  1675. }
  1676. return ret;
  1677. }
  1678. void bch_btree_set_root(struct btree *b)
  1679. {
  1680. unsigned i;
  1681. struct closure cl;
  1682. closure_init_stack(&cl);
  1683. trace_bcache_btree_set_root(b);
  1684. BUG_ON(!b->written);
  1685. for (i = 0; i < KEY_PTRS(&b->key); i++)
  1686. BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO);
  1687. mutex_lock(&b->c->bucket_lock);
  1688. list_del_init(&b->list);
  1689. mutex_unlock(&b->c->bucket_lock);
  1690. b->c->root = b;
  1691. __bkey_put(b->c, &b->key);
  1692. bch_journal_meta(b->c, &cl);
  1693. closure_sync(&cl);
  1694. }
  1695. /* Cache lookup */
  1696. static int submit_partial_cache_miss(struct btree *b, struct btree_op *op,
  1697. struct bkey *k)
  1698. {
  1699. struct search *s = container_of(op, struct search, op);
  1700. struct bio *bio = &s->bio.bio;
  1701. int ret = 0;
  1702. while (!ret &&
  1703. !op->lookup_done) {
  1704. unsigned sectors = INT_MAX;
  1705. if (KEY_INODE(k) == op->inode) {
  1706. if (KEY_START(k) <= bio->bi_sector)
  1707. break;
  1708. sectors = min_t(uint64_t, sectors,
  1709. KEY_START(k) - bio->bi_sector);
  1710. }
  1711. ret = s->d->cache_miss(b, s, bio, sectors);
  1712. }
  1713. return ret;
  1714. }
  1715. /*
  1716. * Read from a single key, handling the initial cache miss if the key starts in
  1717. * the middle of the bio
  1718. */
  1719. static int submit_partial_cache_hit(struct btree *b, struct btree_op *op,
  1720. struct bkey *k)
  1721. {
  1722. struct search *s = container_of(op, struct search, op);
  1723. struct bio *bio = &s->bio.bio;
  1724. unsigned ptr;
  1725. struct bio *n;
  1726. int ret = submit_partial_cache_miss(b, op, k);
  1727. if (ret || op->lookup_done)
  1728. return ret;
  1729. /* XXX: figure out best pointer - for multiple cache devices */
  1730. ptr = 0;
  1731. PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
  1732. while (!op->lookup_done &&
  1733. KEY_INODE(k) == op->inode &&
  1734. bio->bi_sector < KEY_OFFSET(k)) {
  1735. struct bkey *bio_key;
  1736. sector_t sector = PTR_OFFSET(k, ptr) +
  1737. (bio->bi_sector - KEY_START(k));
  1738. unsigned sectors = min_t(uint64_t, INT_MAX,
  1739. KEY_OFFSET(k) - bio->bi_sector);
  1740. n = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split);
  1741. if (n == bio)
  1742. op->lookup_done = true;
  1743. bio_key = &container_of(n, struct bbio, bio)->key;
  1744. /*
  1745. * The bucket we're reading from might be reused while our bio
  1746. * is in flight, and we could then end up reading the wrong
  1747. * data.
  1748. *
  1749. * We guard against this by checking (in cache_read_endio()) if
  1750. * the pointer is stale again; if so, we treat it as an error
  1751. * and reread from the backing device (but we don't pass that
  1752. * error up anywhere).
  1753. */
  1754. bch_bkey_copy_single_ptr(bio_key, k, ptr);
  1755. SET_PTR_OFFSET(bio_key, 0, sector);
  1756. n->bi_end_io = bch_cache_read_endio;
  1757. n->bi_private = &s->cl;
  1758. __bch_submit_bbio(n, b->c);
  1759. }
  1760. return 0;
  1761. }
  1762. int bch_btree_search_recurse(struct btree *b, struct btree_op *op)
  1763. {
  1764. struct search *s = container_of(op, struct search, op);
  1765. struct bio *bio = &s->bio.bio;
  1766. int ret = 0;
  1767. struct bkey *k;
  1768. struct btree_iter iter;
  1769. bch_btree_iter_init(b, &iter, &KEY(op->inode, bio->bi_sector, 0));
  1770. do {
  1771. k = bch_btree_iter_next_filter(&iter, b, bch_ptr_bad);
  1772. if (!k) {
  1773. /*
  1774. * b->key would be exactly what we want, except that
  1775. * pointers to btree nodes have nonzero size - we
  1776. * wouldn't go far enough
  1777. */
  1778. ret = submit_partial_cache_miss(b, op,
  1779. &KEY(KEY_INODE(&b->key),
  1780. KEY_OFFSET(&b->key), 0));
  1781. break;
  1782. }
  1783. ret = b->level
  1784. ? btree(search_recurse, k, b, op)
  1785. : submit_partial_cache_hit(b, op, k);
  1786. } while (!ret &&
  1787. !op->lookup_done);
  1788. return ret;
  1789. }
  1790. /* Keybuf code */
  1791. static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r)
  1792. {
  1793. /* Overlapping keys compare equal */
  1794. if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0)
  1795. return -1;
  1796. if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0)
  1797. return 1;
  1798. return 0;
  1799. }
  1800. static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l,
  1801. struct keybuf_key *r)
  1802. {
  1803. return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1);
  1804. }
  1805. static int bch_btree_refill_keybuf(struct btree *b, struct btree_op *op,
  1806. struct keybuf *buf, struct bkey *end,
  1807. keybuf_pred_fn *pred)
  1808. {
  1809. struct btree_iter iter;
  1810. bch_btree_iter_init(b, &iter, &buf->last_scanned);
  1811. while (!array_freelist_empty(&buf->freelist)) {
  1812. struct bkey *k = bch_btree_iter_next_filter(&iter, b,
  1813. bch_ptr_bad);
  1814. if (!b->level) {
  1815. if (!k) {
  1816. buf->last_scanned = b->key;
  1817. break;
  1818. }
  1819. buf->last_scanned = *k;
  1820. if (bkey_cmp(&buf->last_scanned, end) >= 0)
  1821. break;
  1822. if (pred(buf, k)) {
  1823. struct keybuf_key *w;
  1824. spin_lock(&buf->lock);
  1825. w = array_alloc(&buf->freelist);
  1826. w->private = NULL;
  1827. bkey_copy(&w->key, k);
  1828. if (RB_INSERT(&buf->keys, w, node, keybuf_cmp))
  1829. array_free(&buf->freelist, w);
  1830. spin_unlock(&buf->lock);
  1831. }
  1832. } else {
  1833. if (!k)
  1834. break;
  1835. btree(refill_keybuf, k, b, op, buf, end, pred);
  1836. /*
  1837. * Might get an error here, but can't really do anything
  1838. * and it'll get logged elsewhere. Just read what we
  1839. * can.
  1840. */
  1841. if (bkey_cmp(&buf->last_scanned, end) >= 0)
  1842. break;
  1843. cond_resched();
  1844. }
  1845. }
  1846. return 0;
  1847. }
  1848. void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf,
  1849. struct bkey *end, keybuf_pred_fn *pred)
  1850. {
  1851. struct bkey start = buf->last_scanned;
  1852. struct btree_op op;
  1853. bch_btree_op_init_stack(&op);
  1854. cond_resched();
  1855. btree_root(refill_keybuf, c, &op, buf, end, pred);
  1856. closure_sync(&op.cl);
  1857. pr_debug("found %s keys from %llu:%llu to %llu:%llu",
  1858. RB_EMPTY_ROOT(&buf->keys) ? "no" :
  1859. array_freelist_empty(&buf->freelist) ? "some" : "a few",
  1860. KEY_INODE(&start), KEY_OFFSET(&start),
  1861. KEY_INODE(&buf->last_scanned), KEY_OFFSET(&buf->last_scanned));
  1862. spin_lock(&buf->lock);
  1863. if (!RB_EMPTY_ROOT(&buf->keys)) {
  1864. struct keybuf_key *w;
  1865. w = RB_FIRST(&buf->keys, struct keybuf_key, node);
  1866. buf->start = START_KEY(&w->key);
  1867. w = RB_LAST(&buf->keys, struct keybuf_key, node);
  1868. buf->end = w->key;
  1869. } else {
  1870. buf->start = MAX_KEY;
  1871. buf->end = MAX_KEY;
  1872. }
  1873. spin_unlock(&buf->lock);
  1874. }
  1875. static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
  1876. {
  1877. rb_erase(&w->node, &buf->keys);
  1878. array_free(&buf->freelist, w);
  1879. }
  1880. void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w)
  1881. {
  1882. spin_lock(&buf->lock);
  1883. __bch_keybuf_del(buf, w);
  1884. spin_unlock(&buf->lock);
  1885. }
  1886. bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start,
  1887. struct bkey *end)
  1888. {
  1889. bool ret = false;
  1890. struct keybuf_key *p, *w, s;
  1891. s.key = *start;
  1892. if (bkey_cmp(end, &buf->start) <= 0 ||
  1893. bkey_cmp(start, &buf->end) >= 0)
  1894. return false;
  1895. spin_lock(&buf->lock);
  1896. w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp);
  1897. while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) {
  1898. p = w;
  1899. w = RB_NEXT(w, node);
  1900. if (p->private)
  1901. ret = true;
  1902. else
  1903. __bch_keybuf_del(buf, p);
  1904. }
  1905. spin_unlock(&buf->lock);
  1906. return ret;
  1907. }
  1908. struct keybuf_key *bch_keybuf_next(struct keybuf *buf)
  1909. {
  1910. struct keybuf_key *w;
  1911. spin_lock(&buf->lock);
  1912. w = RB_FIRST(&buf->keys, struct keybuf_key, node);
  1913. while (w && w->private)
  1914. w = RB_NEXT(w, node);
  1915. if (w)
  1916. w->private = ERR_PTR(-EINTR);
  1917. spin_unlock(&buf->lock);
  1918. return w;
  1919. }
  1920. struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c,
  1921. struct keybuf *buf,
  1922. struct bkey *end,
  1923. keybuf_pred_fn *pred)
  1924. {
  1925. struct keybuf_key *ret;
  1926. while (1) {
  1927. ret = bch_keybuf_next(buf);
  1928. if (ret)
  1929. break;
  1930. if (bkey_cmp(&buf->last_scanned, end) >= 0) {
  1931. pr_debug("scan finished");
  1932. break;
  1933. }
  1934. bch_refill_keybuf(c, buf, end, pred);
  1935. }
  1936. return ret;
  1937. }
  1938. void bch_keybuf_init(struct keybuf *buf)
  1939. {
  1940. buf->last_scanned = MAX_KEY;
  1941. buf->keys = RB_ROOT;
  1942. spin_lock_init(&buf->lock);
  1943. array_allocator_init(&buf->freelist);
  1944. }
  1945. void bch_btree_exit(void)
  1946. {
  1947. if (btree_io_wq)
  1948. destroy_workqueue(btree_io_wq);
  1949. if (bch_gc_wq)
  1950. destroy_workqueue(bch_gc_wq);
  1951. }
  1952. int __init bch_btree_init(void)
  1953. {
  1954. if (!(bch_gc_wq = create_singlethread_workqueue("bch_btree_gc")) ||
  1955. !(btree_io_wq = create_singlethread_workqueue("bch_btree_io")))
  1956. return -ENOMEM;
  1957. return 0;
  1958. }