ide-dma.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571
  1. /*
  2. * IDE DMA support (including IDE PCI BM-DMA).
  3. *
  4. * Copyright (C) 1995-1998 Mark Lord
  5. * Copyright (C) 1999-2000 Andre Hedrick <andre@linux-ide.org>
  6. * Copyright (C) 2004, 2007 Bartlomiej Zolnierkiewicz
  7. *
  8. * May be copied or modified under the terms of the GNU General Public License
  9. *
  10. * DMA is supported for all IDE devices (disk drives, cdroms, tapes, floppies).
  11. */
  12. /*
  13. * Special Thanks to Mark for his Six years of work.
  14. */
  15. /*
  16. * Thanks to "Christopher J. Reimer" <reimer@doe.carleton.ca> for
  17. * fixing the problem with the BIOS on some Acer motherboards.
  18. *
  19. * Thanks to "Benoit Poulot-Cazajous" <poulot@chorus.fr> for testing
  20. * "TX" chipset compatibility and for providing patches for the "TX" chipset.
  21. *
  22. * Thanks to Christian Brunner <chb@muc.de> for taking a good first crack
  23. * at generic DMA -- his patches were referred to when preparing this code.
  24. *
  25. * Most importantly, thanks to Robert Bringman <rob@mars.trion.com>
  26. * for supplying a Promise UDMA board & WD UDMA drive for this work!
  27. */
  28. #include <linux/types.h>
  29. #include <linux/kernel.h>
  30. #include <linux/ide.h>
  31. #include <linux/scatterlist.h>
  32. #include <linux/dma-mapping.h>
  33. static const struct drive_list_entry drive_whitelist[] = {
  34. { "Micropolis 2112A" , NULL },
  35. { "CONNER CTMA 4000" , NULL },
  36. { "CONNER CTT8000-A" , NULL },
  37. { "ST34342A" , NULL },
  38. { NULL , NULL }
  39. };
  40. static const struct drive_list_entry drive_blacklist[] = {
  41. { "WDC AC11000H" , NULL },
  42. { "WDC AC22100H" , NULL },
  43. { "WDC AC32500H" , NULL },
  44. { "WDC AC33100H" , NULL },
  45. { "WDC AC31600H" , NULL },
  46. { "WDC AC32100H" , "24.09P07" },
  47. { "WDC AC23200L" , "21.10N21" },
  48. { "Compaq CRD-8241B" , NULL },
  49. { "CRD-8400B" , NULL },
  50. { "CRD-8480B", NULL },
  51. { "CRD-8482B", NULL },
  52. { "CRD-84" , NULL },
  53. { "SanDisk SDP3B" , NULL },
  54. { "SanDisk SDP3B-64" , NULL },
  55. { "SANYO CD-ROM CRD" , NULL },
  56. { "HITACHI CDR-8" , NULL },
  57. { "HITACHI CDR-8335" , NULL },
  58. { "HITACHI CDR-8435" , NULL },
  59. { "Toshiba CD-ROM XM-6202B" , NULL },
  60. { "TOSHIBA CD-ROM XM-1702BC", NULL },
  61. { "CD-532E-A" , NULL },
  62. { "E-IDE CD-ROM CR-840", NULL },
  63. { "CD-ROM Drive/F5A", NULL },
  64. { "WPI CDD-820", NULL },
  65. { "SAMSUNG CD-ROM SC-148C", NULL },
  66. { "SAMSUNG CD-ROM SC", NULL },
  67. { "ATAPI CD-ROM DRIVE 40X MAXIMUM", NULL },
  68. { "_NEC DV5800A", NULL },
  69. { "SAMSUNG CD-ROM SN-124", "N001" },
  70. { "Seagate STT20000A", NULL },
  71. { "CD-ROM CDR_U200", "1.09" },
  72. { NULL , NULL }
  73. };
  74. /**
  75. * ide_dma_intr - IDE DMA interrupt handler
  76. * @drive: the drive the interrupt is for
  77. *
  78. * Handle an interrupt completing a read/write DMA transfer on an
  79. * IDE device
  80. */
  81. ide_startstop_t ide_dma_intr(ide_drive_t *drive)
  82. {
  83. ide_hwif_t *hwif = drive->hwif;
  84. u8 stat = 0, dma_stat = 0;
  85. dma_stat = hwif->dma_ops->dma_end(drive);
  86. stat = hwif->tp_ops->read_status(hwif);
  87. if (OK_STAT(stat, DRIVE_READY, drive->bad_wstat | ATA_DRQ)) {
  88. if (!dma_stat) {
  89. struct ide_cmd *cmd = &hwif->cmd;
  90. if ((cmd->tf_flags & IDE_TFLAG_FS) == 0)
  91. ide_finish_cmd(drive, cmd, stat);
  92. else
  93. ide_complete_rq(drive, 0,
  94. cmd->rq->nr_sectors << 9);
  95. return ide_stopped;
  96. }
  97. printk(KERN_ERR "%s: %s: bad DMA status (0x%02x)\n",
  98. drive->name, __func__, dma_stat);
  99. }
  100. return ide_error(drive, "dma_intr", stat);
  101. }
  102. int ide_dma_good_drive(ide_drive_t *drive)
  103. {
  104. return ide_in_drive_list(drive->id, drive_whitelist);
  105. }
  106. /**
  107. * ide_build_sglist - map IDE scatter gather for DMA I/O
  108. * @drive: the drive to build the DMA table for
  109. * @cmd: command
  110. *
  111. * Perform the DMA mapping magic necessary to access the source or
  112. * target buffers of a request via DMA. The lower layers of the
  113. * kernel provide the necessary cache management so that we can
  114. * operate in a portable fashion.
  115. */
  116. int ide_build_sglist(ide_drive_t *drive, struct ide_cmd *cmd)
  117. {
  118. ide_hwif_t *hwif = drive->hwif;
  119. struct scatterlist *sg = hwif->sg_table;
  120. int i;
  121. ide_map_sg(drive, cmd);
  122. if (cmd->tf_flags & IDE_TFLAG_WRITE)
  123. cmd->sg_dma_direction = DMA_TO_DEVICE;
  124. else
  125. cmd->sg_dma_direction = DMA_FROM_DEVICE;
  126. i = dma_map_sg(hwif->dev, sg, cmd->sg_nents, cmd->sg_dma_direction);
  127. if (i == 0)
  128. ide_map_sg(drive, cmd);
  129. else {
  130. cmd->orig_sg_nents = cmd->sg_nents;
  131. cmd->sg_nents = i;
  132. }
  133. return i;
  134. }
  135. /**
  136. * ide_destroy_dmatable - clean up DMA mapping
  137. * @drive: The drive to unmap
  138. *
  139. * Teardown mappings after DMA has completed. This must be called
  140. * after the completion of each use of ide_build_dmatable and before
  141. * the next use of ide_build_dmatable. Failure to do so will cause
  142. * an oops as only one mapping can be live for each target at a given
  143. * time.
  144. */
  145. void ide_destroy_dmatable(ide_drive_t *drive)
  146. {
  147. ide_hwif_t *hwif = drive->hwif;
  148. struct ide_cmd *cmd = &hwif->cmd;
  149. dma_unmap_sg(hwif->dev, hwif->sg_table, cmd->orig_sg_nents,
  150. cmd->sg_dma_direction);
  151. }
  152. EXPORT_SYMBOL_GPL(ide_destroy_dmatable);
  153. /**
  154. * ide_dma_off_quietly - Generic DMA kill
  155. * @drive: drive to control
  156. *
  157. * Turn off the current DMA on this IDE controller.
  158. */
  159. void ide_dma_off_quietly(ide_drive_t *drive)
  160. {
  161. drive->dev_flags &= ~IDE_DFLAG_USING_DMA;
  162. ide_toggle_bounce(drive, 0);
  163. drive->hwif->dma_ops->dma_host_set(drive, 0);
  164. }
  165. EXPORT_SYMBOL(ide_dma_off_quietly);
  166. /**
  167. * ide_dma_off - disable DMA on a device
  168. * @drive: drive to disable DMA on
  169. *
  170. * Disable IDE DMA for a device on this IDE controller.
  171. * Inform the user that DMA has been disabled.
  172. */
  173. void ide_dma_off(ide_drive_t *drive)
  174. {
  175. printk(KERN_INFO "%s: DMA disabled\n", drive->name);
  176. ide_dma_off_quietly(drive);
  177. }
  178. EXPORT_SYMBOL(ide_dma_off);
  179. /**
  180. * ide_dma_on - Enable DMA on a device
  181. * @drive: drive to enable DMA on
  182. *
  183. * Enable IDE DMA for a device on this IDE controller.
  184. */
  185. void ide_dma_on(ide_drive_t *drive)
  186. {
  187. drive->dev_flags |= IDE_DFLAG_USING_DMA;
  188. ide_toggle_bounce(drive, 1);
  189. drive->hwif->dma_ops->dma_host_set(drive, 1);
  190. }
  191. int __ide_dma_bad_drive(ide_drive_t *drive)
  192. {
  193. u16 *id = drive->id;
  194. int blacklist = ide_in_drive_list(id, drive_blacklist);
  195. if (blacklist) {
  196. printk(KERN_WARNING "%s: Disabling (U)DMA for %s (blacklisted)\n",
  197. drive->name, (char *)&id[ATA_ID_PROD]);
  198. return blacklist;
  199. }
  200. return 0;
  201. }
  202. EXPORT_SYMBOL(__ide_dma_bad_drive);
  203. static const u8 xfer_mode_bases[] = {
  204. XFER_UDMA_0,
  205. XFER_MW_DMA_0,
  206. XFER_SW_DMA_0,
  207. };
  208. static unsigned int ide_get_mode_mask(ide_drive_t *drive, u8 base, u8 req_mode)
  209. {
  210. u16 *id = drive->id;
  211. ide_hwif_t *hwif = drive->hwif;
  212. const struct ide_port_ops *port_ops = hwif->port_ops;
  213. unsigned int mask = 0;
  214. switch (base) {
  215. case XFER_UDMA_0:
  216. if ((id[ATA_ID_FIELD_VALID] & 4) == 0)
  217. break;
  218. if (port_ops && port_ops->udma_filter)
  219. mask = port_ops->udma_filter(drive);
  220. else
  221. mask = hwif->ultra_mask;
  222. mask &= id[ATA_ID_UDMA_MODES];
  223. /*
  224. * avoid false cable warning from eighty_ninty_three()
  225. */
  226. if (req_mode > XFER_UDMA_2) {
  227. if ((mask & 0x78) && (eighty_ninty_three(drive) == 0))
  228. mask &= 0x07;
  229. }
  230. break;
  231. case XFER_MW_DMA_0:
  232. if ((id[ATA_ID_FIELD_VALID] & 2) == 0)
  233. break;
  234. if (port_ops && port_ops->mdma_filter)
  235. mask = port_ops->mdma_filter(drive);
  236. else
  237. mask = hwif->mwdma_mask;
  238. mask &= id[ATA_ID_MWDMA_MODES];
  239. break;
  240. case XFER_SW_DMA_0:
  241. if (id[ATA_ID_FIELD_VALID] & 2) {
  242. mask = id[ATA_ID_SWDMA_MODES] & hwif->swdma_mask;
  243. } else if (id[ATA_ID_OLD_DMA_MODES] >> 8) {
  244. u8 mode = id[ATA_ID_OLD_DMA_MODES] >> 8;
  245. /*
  246. * if the mode is valid convert it to the mask
  247. * (the maximum allowed mode is XFER_SW_DMA_2)
  248. */
  249. if (mode <= 2)
  250. mask = ((2 << mode) - 1) & hwif->swdma_mask;
  251. }
  252. break;
  253. default:
  254. BUG();
  255. break;
  256. }
  257. return mask;
  258. }
  259. /**
  260. * ide_find_dma_mode - compute DMA speed
  261. * @drive: IDE device
  262. * @req_mode: requested mode
  263. *
  264. * Checks the drive/host capabilities and finds the speed to use for
  265. * the DMA transfer. The speed is then limited by the requested mode.
  266. *
  267. * Returns 0 if the drive/host combination is incapable of DMA transfers
  268. * or if the requested mode is not a DMA mode.
  269. */
  270. u8 ide_find_dma_mode(ide_drive_t *drive, u8 req_mode)
  271. {
  272. ide_hwif_t *hwif = drive->hwif;
  273. unsigned int mask;
  274. int x, i;
  275. u8 mode = 0;
  276. if (drive->media != ide_disk) {
  277. if (hwif->host_flags & IDE_HFLAG_NO_ATAPI_DMA)
  278. return 0;
  279. }
  280. for (i = 0; i < ARRAY_SIZE(xfer_mode_bases); i++) {
  281. if (req_mode < xfer_mode_bases[i])
  282. continue;
  283. mask = ide_get_mode_mask(drive, xfer_mode_bases[i], req_mode);
  284. x = fls(mask) - 1;
  285. if (x >= 0) {
  286. mode = xfer_mode_bases[i] + x;
  287. break;
  288. }
  289. }
  290. if (hwif->chipset == ide_acorn && mode == 0) {
  291. /*
  292. * is this correct?
  293. */
  294. if (ide_dma_good_drive(drive) &&
  295. drive->id[ATA_ID_EIDE_DMA_TIME] < 150)
  296. mode = XFER_MW_DMA_1;
  297. }
  298. mode = min(mode, req_mode);
  299. printk(KERN_INFO "%s: %s mode selected\n", drive->name,
  300. mode ? ide_xfer_verbose(mode) : "no DMA");
  301. return mode;
  302. }
  303. EXPORT_SYMBOL_GPL(ide_find_dma_mode);
  304. static int ide_tune_dma(ide_drive_t *drive)
  305. {
  306. ide_hwif_t *hwif = drive->hwif;
  307. u8 speed;
  308. if (ata_id_has_dma(drive->id) == 0 ||
  309. (drive->dev_flags & IDE_DFLAG_NODMA))
  310. return 0;
  311. /* consult the list of known "bad" drives */
  312. if (__ide_dma_bad_drive(drive))
  313. return 0;
  314. if (ide_id_dma_bug(drive))
  315. return 0;
  316. if (hwif->host_flags & IDE_HFLAG_TRUST_BIOS_FOR_DMA)
  317. return config_drive_for_dma(drive);
  318. speed = ide_max_dma_mode(drive);
  319. if (!speed)
  320. return 0;
  321. if (ide_set_dma_mode(drive, speed))
  322. return 0;
  323. return 1;
  324. }
  325. static int ide_dma_check(ide_drive_t *drive)
  326. {
  327. ide_hwif_t *hwif = drive->hwif;
  328. if (ide_tune_dma(drive))
  329. return 0;
  330. /* TODO: always do PIO fallback */
  331. if (hwif->host_flags & IDE_HFLAG_TRUST_BIOS_FOR_DMA)
  332. return -1;
  333. ide_set_max_pio(drive);
  334. return -1;
  335. }
  336. int ide_id_dma_bug(ide_drive_t *drive)
  337. {
  338. u16 *id = drive->id;
  339. if (id[ATA_ID_FIELD_VALID] & 4) {
  340. if ((id[ATA_ID_UDMA_MODES] >> 8) &&
  341. (id[ATA_ID_MWDMA_MODES] >> 8))
  342. goto err_out;
  343. } else if (id[ATA_ID_FIELD_VALID] & 2) {
  344. if ((id[ATA_ID_MWDMA_MODES] >> 8) &&
  345. (id[ATA_ID_SWDMA_MODES] >> 8))
  346. goto err_out;
  347. }
  348. return 0;
  349. err_out:
  350. printk(KERN_ERR "%s: bad DMA info in identify block\n", drive->name);
  351. return 1;
  352. }
  353. int ide_set_dma(ide_drive_t *drive)
  354. {
  355. int rc;
  356. /*
  357. * Force DMAing for the beginning of the check.
  358. * Some chipsets appear to do interesting
  359. * things, if not checked and cleared.
  360. * PARANOIA!!!
  361. */
  362. ide_dma_off_quietly(drive);
  363. rc = ide_dma_check(drive);
  364. if (rc)
  365. return rc;
  366. ide_dma_on(drive);
  367. return 0;
  368. }
  369. void ide_check_dma_crc(ide_drive_t *drive)
  370. {
  371. u8 mode;
  372. ide_dma_off_quietly(drive);
  373. drive->crc_count = 0;
  374. mode = drive->current_speed;
  375. /*
  376. * Don't try non Ultra-DMA modes without iCRC's. Force the
  377. * device to PIO and make the user enable SWDMA/MWDMA modes.
  378. */
  379. if (mode > XFER_UDMA_0 && mode <= XFER_UDMA_7)
  380. mode--;
  381. else
  382. mode = XFER_PIO_4;
  383. ide_set_xfer_rate(drive, mode);
  384. if (drive->current_speed >= XFER_SW_DMA_0)
  385. ide_dma_on(drive);
  386. }
  387. void ide_dma_lost_irq(ide_drive_t *drive)
  388. {
  389. printk(KERN_ERR "%s: DMA interrupt recovery\n", drive->name);
  390. }
  391. EXPORT_SYMBOL_GPL(ide_dma_lost_irq);
  392. static void ide_dma_timeout(ide_drive_t *drive)
  393. {
  394. ide_hwif_t *hwif = drive->hwif;
  395. printk(KERN_ERR "%s: timeout waiting for DMA\n", drive->name);
  396. if (hwif->dma_ops->dma_test_irq(drive))
  397. return;
  398. ide_dump_status(drive, "DMA timeout", hwif->tp_ops->read_status(hwif));
  399. hwif->dma_ops->dma_end(drive);
  400. }
  401. /*
  402. * un-busy the port etc, and clear any pending DMA status. we want to
  403. * retry the current request in pio mode instead of risking tossing it
  404. * all away
  405. */
  406. ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
  407. {
  408. ide_hwif_t *hwif = drive->hwif;
  409. const struct ide_dma_ops *dma_ops = hwif->dma_ops;
  410. struct request *rq;
  411. ide_startstop_t ret = ide_stopped;
  412. /*
  413. * end current dma transaction
  414. */
  415. if (error < 0) {
  416. printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
  417. (void)dma_ops->dma_end(drive);
  418. ret = ide_error(drive, "dma timeout error",
  419. hwif->tp_ops->read_status(hwif));
  420. } else {
  421. printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
  422. if (dma_ops->dma_clear)
  423. dma_ops->dma_clear(drive);
  424. ide_dma_timeout(drive);
  425. }
  426. /*
  427. * disable dma for now, but remember that we did so because of
  428. * a timeout -- we'll reenable after we finish this next request
  429. * (or rather the first chunk of it) in pio.
  430. */
  431. drive->dev_flags |= IDE_DFLAG_DMA_PIO_RETRY;
  432. drive->retry_pio++;
  433. ide_dma_off_quietly(drive);
  434. /*
  435. * un-busy drive etc and make sure request is sane
  436. */
  437. rq = hwif->rq;
  438. if (!rq)
  439. goto out;
  440. hwif->rq = NULL;
  441. rq->errors = 0;
  442. if (!rq->bio)
  443. goto out;
  444. rq->sector = rq->bio->bi_sector;
  445. rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
  446. rq->hard_cur_sectors = rq->current_nr_sectors;
  447. rq->buffer = bio_data(rq->bio);
  448. out:
  449. return ret;
  450. }
  451. void ide_release_dma_engine(ide_hwif_t *hwif)
  452. {
  453. if (hwif->dmatable_cpu) {
  454. int prd_size = hwif->prd_max_nents * hwif->prd_ent_size;
  455. dma_free_coherent(hwif->dev, prd_size,
  456. hwif->dmatable_cpu, hwif->dmatable_dma);
  457. hwif->dmatable_cpu = NULL;
  458. }
  459. }
  460. EXPORT_SYMBOL_GPL(ide_release_dma_engine);
  461. int ide_allocate_dma_engine(ide_hwif_t *hwif)
  462. {
  463. int prd_size;
  464. if (hwif->prd_max_nents == 0)
  465. hwif->prd_max_nents = PRD_ENTRIES;
  466. if (hwif->prd_ent_size == 0)
  467. hwif->prd_ent_size = PRD_BYTES;
  468. prd_size = hwif->prd_max_nents * hwif->prd_ent_size;
  469. hwif->dmatable_cpu = dma_alloc_coherent(hwif->dev, prd_size,
  470. &hwif->dmatable_dma,
  471. GFP_ATOMIC);
  472. if (hwif->dmatable_cpu == NULL) {
  473. printk(KERN_ERR "%s: unable to allocate PRD table\n",
  474. hwif->name);
  475. return -ENOMEM;
  476. }
  477. return 0;
  478. }
  479. EXPORT_SYMBOL_GPL(ide_allocate_dma_engine);