node.c 42 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797
  1. /*
  2. * fs/f2fs/node.c
  3. *
  4. * Copyright (c) 2012 Samsung Electronics Co., Ltd.
  5. * http://www.samsung.com/
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License version 2 as
  9. * published by the Free Software Foundation.
  10. */
  11. #include <linux/fs.h>
  12. #include <linux/f2fs_fs.h>
  13. #include <linux/mpage.h>
  14. #include <linux/backing-dev.h>
  15. #include <linux/blkdev.h>
  16. #include <linux/pagevec.h>
  17. #include <linux/swap.h>
  18. #include "f2fs.h"
  19. #include "node.h"
  20. #include "segment.h"
  21. #include <trace/events/f2fs.h>
  22. static struct kmem_cache *nat_entry_slab;
  23. static struct kmem_cache *free_nid_slab;
  24. static void clear_node_page_dirty(struct page *page)
  25. {
  26. struct address_space *mapping = page->mapping;
  27. struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
  28. unsigned int long flags;
  29. if (PageDirty(page)) {
  30. spin_lock_irqsave(&mapping->tree_lock, flags);
  31. radix_tree_tag_clear(&mapping->page_tree,
  32. page_index(page),
  33. PAGECACHE_TAG_DIRTY);
  34. spin_unlock_irqrestore(&mapping->tree_lock, flags);
  35. clear_page_dirty_for_io(page);
  36. dec_page_count(sbi, F2FS_DIRTY_NODES);
  37. }
  38. ClearPageUptodate(page);
  39. }
  40. static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  41. {
  42. pgoff_t index = current_nat_addr(sbi, nid);
  43. return get_meta_page(sbi, index);
  44. }
  45. static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  46. {
  47. struct page *src_page;
  48. struct page *dst_page;
  49. pgoff_t src_off;
  50. pgoff_t dst_off;
  51. void *src_addr;
  52. void *dst_addr;
  53. struct f2fs_nm_info *nm_i = NM_I(sbi);
  54. src_off = current_nat_addr(sbi, nid);
  55. dst_off = next_nat_addr(sbi, src_off);
  56. /* get current nat block page with lock */
  57. src_page = get_meta_page(sbi, src_off);
  58. /* Dirty src_page means that it is already the new target NAT page. */
  59. if (PageDirty(src_page))
  60. return src_page;
  61. dst_page = grab_meta_page(sbi, dst_off);
  62. src_addr = page_address(src_page);
  63. dst_addr = page_address(dst_page);
  64. memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
  65. set_page_dirty(dst_page);
  66. f2fs_put_page(src_page, 1);
  67. set_to_next_nat(nm_i, nid);
  68. return dst_page;
  69. }
  70. /*
  71. * Readahead NAT pages
  72. */
  73. static void ra_nat_pages(struct f2fs_sb_info *sbi, int nid)
  74. {
  75. struct address_space *mapping = sbi->meta_inode->i_mapping;
  76. struct f2fs_nm_info *nm_i = NM_I(sbi);
  77. struct blk_plug plug;
  78. struct page *page;
  79. pgoff_t index;
  80. int i;
  81. blk_start_plug(&plug);
  82. for (i = 0; i < FREE_NID_PAGES; i++, nid += NAT_ENTRY_PER_BLOCK) {
  83. if (nid >= nm_i->max_nid)
  84. nid = 0;
  85. index = current_nat_addr(sbi, nid);
  86. page = grab_cache_page(mapping, index);
  87. if (!page)
  88. continue;
  89. if (PageUptodate(page)) {
  90. f2fs_put_page(page, 1);
  91. continue;
  92. }
  93. if (f2fs_readpage(sbi, page, index, READ))
  94. continue;
  95. f2fs_put_page(page, 0);
  96. }
  97. blk_finish_plug(&plug);
  98. }
  99. static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
  100. {
  101. return radix_tree_lookup(&nm_i->nat_root, n);
  102. }
  103. static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
  104. nid_t start, unsigned int nr, struct nat_entry **ep)
  105. {
  106. return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
  107. }
  108. static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
  109. {
  110. list_del(&e->list);
  111. radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
  112. nm_i->nat_cnt--;
  113. kmem_cache_free(nat_entry_slab, e);
  114. }
  115. int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
  116. {
  117. struct f2fs_nm_info *nm_i = NM_I(sbi);
  118. struct nat_entry *e;
  119. int is_cp = 1;
  120. read_lock(&nm_i->nat_tree_lock);
  121. e = __lookup_nat_cache(nm_i, nid);
  122. if (e && !e->checkpointed)
  123. is_cp = 0;
  124. read_unlock(&nm_i->nat_tree_lock);
  125. return is_cp;
  126. }
  127. static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
  128. {
  129. struct nat_entry *new;
  130. new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
  131. if (!new)
  132. return NULL;
  133. if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
  134. kmem_cache_free(nat_entry_slab, new);
  135. return NULL;
  136. }
  137. memset(new, 0, sizeof(struct nat_entry));
  138. nat_set_nid(new, nid);
  139. list_add_tail(&new->list, &nm_i->nat_entries);
  140. nm_i->nat_cnt++;
  141. return new;
  142. }
  143. static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
  144. struct f2fs_nat_entry *ne)
  145. {
  146. struct nat_entry *e;
  147. retry:
  148. write_lock(&nm_i->nat_tree_lock);
  149. e = __lookup_nat_cache(nm_i, nid);
  150. if (!e) {
  151. e = grab_nat_entry(nm_i, nid);
  152. if (!e) {
  153. write_unlock(&nm_i->nat_tree_lock);
  154. goto retry;
  155. }
  156. nat_set_blkaddr(e, le32_to_cpu(ne->block_addr));
  157. nat_set_ino(e, le32_to_cpu(ne->ino));
  158. nat_set_version(e, ne->version);
  159. e->checkpointed = true;
  160. }
  161. write_unlock(&nm_i->nat_tree_lock);
  162. }
  163. static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
  164. block_t new_blkaddr)
  165. {
  166. struct f2fs_nm_info *nm_i = NM_I(sbi);
  167. struct nat_entry *e;
  168. retry:
  169. write_lock(&nm_i->nat_tree_lock);
  170. e = __lookup_nat_cache(nm_i, ni->nid);
  171. if (!e) {
  172. e = grab_nat_entry(nm_i, ni->nid);
  173. if (!e) {
  174. write_unlock(&nm_i->nat_tree_lock);
  175. goto retry;
  176. }
  177. e->ni = *ni;
  178. e->checkpointed = true;
  179. BUG_ON(ni->blk_addr == NEW_ADDR);
  180. } else if (new_blkaddr == NEW_ADDR) {
  181. /*
  182. * when nid is reallocated,
  183. * previous nat entry can be remained in nat cache.
  184. * So, reinitialize it with new information.
  185. */
  186. e->ni = *ni;
  187. BUG_ON(ni->blk_addr != NULL_ADDR);
  188. }
  189. if (new_blkaddr == NEW_ADDR)
  190. e->checkpointed = false;
  191. /* sanity check */
  192. BUG_ON(nat_get_blkaddr(e) != ni->blk_addr);
  193. BUG_ON(nat_get_blkaddr(e) == NULL_ADDR &&
  194. new_blkaddr == NULL_ADDR);
  195. BUG_ON(nat_get_blkaddr(e) == NEW_ADDR &&
  196. new_blkaddr == NEW_ADDR);
  197. BUG_ON(nat_get_blkaddr(e) != NEW_ADDR &&
  198. nat_get_blkaddr(e) != NULL_ADDR &&
  199. new_blkaddr == NEW_ADDR);
  200. /* increament version no as node is removed */
  201. if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
  202. unsigned char version = nat_get_version(e);
  203. nat_set_version(e, inc_node_version(version));
  204. }
  205. /* change address */
  206. nat_set_blkaddr(e, new_blkaddr);
  207. __set_nat_cache_dirty(nm_i, e);
  208. write_unlock(&nm_i->nat_tree_lock);
  209. }
  210. static int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
  211. {
  212. struct f2fs_nm_info *nm_i = NM_I(sbi);
  213. if (nm_i->nat_cnt <= NM_WOUT_THRESHOLD)
  214. return 0;
  215. write_lock(&nm_i->nat_tree_lock);
  216. while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
  217. struct nat_entry *ne;
  218. ne = list_first_entry(&nm_i->nat_entries,
  219. struct nat_entry, list);
  220. __del_from_nat_cache(nm_i, ne);
  221. nr_shrink--;
  222. }
  223. write_unlock(&nm_i->nat_tree_lock);
  224. return nr_shrink;
  225. }
  226. /*
  227. * This function returns always success
  228. */
  229. void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
  230. {
  231. struct f2fs_nm_info *nm_i = NM_I(sbi);
  232. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  233. struct f2fs_summary_block *sum = curseg->sum_blk;
  234. nid_t start_nid = START_NID(nid);
  235. struct f2fs_nat_block *nat_blk;
  236. struct page *page = NULL;
  237. struct f2fs_nat_entry ne;
  238. struct nat_entry *e;
  239. int i;
  240. memset(&ne, 0, sizeof(struct f2fs_nat_entry));
  241. ni->nid = nid;
  242. /* Check nat cache */
  243. read_lock(&nm_i->nat_tree_lock);
  244. e = __lookup_nat_cache(nm_i, nid);
  245. if (e) {
  246. ni->ino = nat_get_ino(e);
  247. ni->blk_addr = nat_get_blkaddr(e);
  248. ni->version = nat_get_version(e);
  249. }
  250. read_unlock(&nm_i->nat_tree_lock);
  251. if (e)
  252. return;
  253. /* Check current segment summary */
  254. mutex_lock(&curseg->curseg_mutex);
  255. i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
  256. if (i >= 0) {
  257. ne = nat_in_journal(sum, i);
  258. node_info_from_raw_nat(ni, &ne);
  259. }
  260. mutex_unlock(&curseg->curseg_mutex);
  261. if (i >= 0)
  262. goto cache;
  263. /* Fill node_info from nat page */
  264. page = get_current_nat_page(sbi, start_nid);
  265. nat_blk = (struct f2fs_nat_block *)page_address(page);
  266. ne = nat_blk->entries[nid - start_nid];
  267. node_info_from_raw_nat(ni, &ne);
  268. f2fs_put_page(page, 1);
  269. cache:
  270. /* cache nat entry */
  271. cache_nat_entry(NM_I(sbi), nid, &ne);
  272. }
  273. /*
  274. * The maximum depth is four.
  275. * Offset[0] will have raw inode offset.
  276. */
  277. static int get_node_path(long block, int offset[4], unsigned int noffset[4])
  278. {
  279. const long direct_index = ADDRS_PER_INODE;
  280. const long direct_blks = ADDRS_PER_BLOCK;
  281. const long dptrs_per_blk = NIDS_PER_BLOCK;
  282. const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
  283. const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
  284. int n = 0;
  285. int level = 0;
  286. noffset[0] = 0;
  287. if (block < direct_index) {
  288. offset[n] = block;
  289. goto got;
  290. }
  291. block -= direct_index;
  292. if (block < direct_blks) {
  293. offset[n++] = NODE_DIR1_BLOCK;
  294. noffset[n] = 1;
  295. offset[n] = block;
  296. level = 1;
  297. goto got;
  298. }
  299. block -= direct_blks;
  300. if (block < direct_blks) {
  301. offset[n++] = NODE_DIR2_BLOCK;
  302. noffset[n] = 2;
  303. offset[n] = block;
  304. level = 1;
  305. goto got;
  306. }
  307. block -= direct_blks;
  308. if (block < indirect_blks) {
  309. offset[n++] = NODE_IND1_BLOCK;
  310. noffset[n] = 3;
  311. offset[n++] = block / direct_blks;
  312. noffset[n] = 4 + offset[n - 1];
  313. offset[n] = block % direct_blks;
  314. level = 2;
  315. goto got;
  316. }
  317. block -= indirect_blks;
  318. if (block < indirect_blks) {
  319. offset[n++] = NODE_IND2_BLOCK;
  320. noffset[n] = 4 + dptrs_per_blk;
  321. offset[n++] = block / direct_blks;
  322. noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
  323. offset[n] = block % direct_blks;
  324. level = 2;
  325. goto got;
  326. }
  327. block -= indirect_blks;
  328. if (block < dindirect_blks) {
  329. offset[n++] = NODE_DIND_BLOCK;
  330. noffset[n] = 5 + (dptrs_per_blk * 2);
  331. offset[n++] = block / indirect_blks;
  332. noffset[n] = 6 + (dptrs_per_blk * 2) +
  333. offset[n - 1] * (dptrs_per_blk + 1);
  334. offset[n++] = (block / direct_blks) % dptrs_per_blk;
  335. noffset[n] = 7 + (dptrs_per_blk * 2) +
  336. offset[n - 2] * (dptrs_per_blk + 1) +
  337. offset[n - 1];
  338. offset[n] = block % direct_blks;
  339. level = 3;
  340. goto got;
  341. } else {
  342. BUG();
  343. }
  344. got:
  345. return level;
  346. }
  347. /*
  348. * Caller should call f2fs_put_dnode(dn).
  349. * Also, it should grab and release a mutex by calling mutex_lock_op() and
  350. * mutex_unlock_op() only if ro is not set RDONLY_NODE.
  351. * In the case of RDONLY_NODE, we don't need to care about mutex.
  352. */
  353. int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
  354. {
  355. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  356. struct page *npage[4];
  357. struct page *parent;
  358. int offset[4];
  359. unsigned int noffset[4];
  360. nid_t nids[4];
  361. int level, i;
  362. int err = 0;
  363. level = get_node_path(index, offset, noffset);
  364. nids[0] = dn->inode->i_ino;
  365. npage[0] = dn->inode_page;
  366. if (!npage[0]) {
  367. npage[0] = get_node_page(sbi, nids[0]);
  368. if (IS_ERR(npage[0]))
  369. return PTR_ERR(npage[0]);
  370. }
  371. parent = npage[0];
  372. if (level != 0)
  373. nids[1] = get_nid(parent, offset[0], true);
  374. dn->inode_page = npage[0];
  375. dn->inode_page_locked = true;
  376. /* get indirect or direct nodes */
  377. for (i = 1; i <= level; i++) {
  378. bool done = false;
  379. if (!nids[i] && mode == ALLOC_NODE) {
  380. /* alloc new node */
  381. if (!alloc_nid(sbi, &(nids[i]))) {
  382. err = -ENOSPC;
  383. goto release_pages;
  384. }
  385. dn->nid = nids[i];
  386. npage[i] = new_node_page(dn, noffset[i]);
  387. if (IS_ERR(npage[i])) {
  388. alloc_nid_failed(sbi, nids[i]);
  389. err = PTR_ERR(npage[i]);
  390. goto release_pages;
  391. }
  392. set_nid(parent, offset[i - 1], nids[i], i == 1);
  393. alloc_nid_done(sbi, nids[i]);
  394. done = true;
  395. } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
  396. npage[i] = get_node_page_ra(parent, offset[i - 1]);
  397. if (IS_ERR(npage[i])) {
  398. err = PTR_ERR(npage[i]);
  399. goto release_pages;
  400. }
  401. done = true;
  402. }
  403. if (i == 1) {
  404. dn->inode_page_locked = false;
  405. unlock_page(parent);
  406. } else {
  407. f2fs_put_page(parent, 1);
  408. }
  409. if (!done) {
  410. npage[i] = get_node_page(sbi, nids[i]);
  411. if (IS_ERR(npage[i])) {
  412. err = PTR_ERR(npage[i]);
  413. f2fs_put_page(npage[0], 0);
  414. goto release_out;
  415. }
  416. }
  417. if (i < level) {
  418. parent = npage[i];
  419. nids[i + 1] = get_nid(parent, offset[i], false);
  420. }
  421. }
  422. dn->nid = nids[level];
  423. dn->ofs_in_node = offset[level];
  424. dn->node_page = npage[level];
  425. dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
  426. return 0;
  427. release_pages:
  428. f2fs_put_page(parent, 1);
  429. if (i > 1)
  430. f2fs_put_page(npage[0], 0);
  431. release_out:
  432. dn->inode_page = NULL;
  433. dn->node_page = NULL;
  434. return err;
  435. }
  436. static void truncate_node(struct dnode_of_data *dn)
  437. {
  438. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  439. struct node_info ni;
  440. get_node_info(sbi, dn->nid, &ni);
  441. if (dn->inode->i_blocks == 0) {
  442. BUG_ON(ni.blk_addr != NULL_ADDR);
  443. goto invalidate;
  444. }
  445. BUG_ON(ni.blk_addr == NULL_ADDR);
  446. /* Deallocate node address */
  447. invalidate_blocks(sbi, ni.blk_addr);
  448. dec_valid_node_count(sbi, dn->inode, 1);
  449. set_node_addr(sbi, &ni, NULL_ADDR);
  450. if (dn->nid == dn->inode->i_ino) {
  451. remove_orphan_inode(sbi, dn->nid);
  452. dec_valid_inode_count(sbi);
  453. } else {
  454. sync_inode_page(dn);
  455. }
  456. invalidate:
  457. clear_node_page_dirty(dn->node_page);
  458. F2FS_SET_SB_DIRT(sbi);
  459. f2fs_put_page(dn->node_page, 1);
  460. dn->node_page = NULL;
  461. trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
  462. }
  463. static int truncate_dnode(struct dnode_of_data *dn)
  464. {
  465. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  466. struct page *page;
  467. if (dn->nid == 0)
  468. return 1;
  469. /* get direct node */
  470. page = get_node_page(sbi, dn->nid);
  471. if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
  472. return 1;
  473. else if (IS_ERR(page))
  474. return PTR_ERR(page);
  475. /* Make dnode_of_data for parameter */
  476. dn->node_page = page;
  477. dn->ofs_in_node = 0;
  478. truncate_data_blocks(dn);
  479. truncate_node(dn);
  480. return 1;
  481. }
  482. static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
  483. int ofs, int depth)
  484. {
  485. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  486. struct dnode_of_data rdn = *dn;
  487. struct page *page;
  488. struct f2fs_node *rn;
  489. nid_t child_nid;
  490. unsigned int child_nofs;
  491. int freed = 0;
  492. int i, ret;
  493. if (dn->nid == 0)
  494. return NIDS_PER_BLOCK + 1;
  495. trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
  496. page = get_node_page(sbi, dn->nid);
  497. if (IS_ERR(page)) {
  498. trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
  499. return PTR_ERR(page);
  500. }
  501. rn = (struct f2fs_node *)page_address(page);
  502. if (depth < 3) {
  503. for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
  504. child_nid = le32_to_cpu(rn->in.nid[i]);
  505. if (child_nid == 0)
  506. continue;
  507. rdn.nid = child_nid;
  508. ret = truncate_dnode(&rdn);
  509. if (ret < 0)
  510. goto out_err;
  511. set_nid(page, i, 0, false);
  512. }
  513. } else {
  514. child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
  515. for (i = ofs; i < NIDS_PER_BLOCK; i++) {
  516. child_nid = le32_to_cpu(rn->in.nid[i]);
  517. if (child_nid == 0) {
  518. child_nofs += NIDS_PER_BLOCK + 1;
  519. continue;
  520. }
  521. rdn.nid = child_nid;
  522. ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
  523. if (ret == (NIDS_PER_BLOCK + 1)) {
  524. set_nid(page, i, 0, false);
  525. child_nofs += ret;
  526. } else if (ret < 0 && ret != -ENOENT) {
  527. goto out_err;
  528. }
  529. }
  530. freed = child_nofs;
  531. }
  532. if (!ofs) {
  533. /* remove current indirect node */
  534. dn->node_page = page;
  535. truncate_node(dn);
  536. freed++;
  537. } else {
  538. f2fs_put_page(page, 1);
  539. }
  540. trace_f2fs_truncate_nodes_exit(dn->inode, freed);
  541. return freed;
  542. out_err:
  543. f2fs_put_page(page, 1);
  544. trace_f2fs_truncate_nodes_exit(dn->inode, ret);
  545. return ret;
  546. }
  547. static int truncate_partial_nodes(struct dnode_of_data *dn,
  548. struct f2fs_inode *ri, int *offset, int depth)
  549. {
  550. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  551. struct page *pages[2];
  552. nid_t nid[3];
  553. nid_t child_nid;
  554. int err = 0;
  555. int i;
  556. int idx = depth - 2;
  557. nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
  558. if (!nid[0])
  559. return 0;
  560. /* get indirect nodes in the path */
  561. for (i = 0; i < depth - 1; i++) {
  562. /* refernece count'll be increased */
  563. pages[i] = get_node_page(sbi, nid[i]);
  564. if (IS_ERR(pages[i])) {
  565. depth = i + 1;
  566. err = PTR_ERR(pages[i]);
  567. goto fail;
  568. }
  569. nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
  570. }
  571. /* free direct nodes linked to a partial indirect node */
  572. for (i = offset[depth - 1]; i < NIDS_PER_BLOCK; i++) {
  573. child_nid = get_nid(pages[idx], i, false);
  574. if (!child_nid)
  575. continue;
  576. dn->nid = child_nid;
  577. err = truncate_dnode(dn);
  578. if (err < 0)
  579. goto fail;
  580. set_nid(pages[idx], i, 0, false);
  581. }
  582. if (offset[depth - 1] == 0) {
  583. dn->node_page = pages[idx];
  584. dn->nid = nid[idx];
  585. truncate_node(dn);
  586. } else {
  587. f2fs_put_page(pages[idx], 1);
  588. }
  589. offset[idx]++;
  590. offset[depth - 1] = 0;
  591. fail:
  592. for (i = depth - 3; i >= 0; i--)
  593. f2fs_put_page(pages[i], 1);
  594. trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
  595. return err;
  596. }
  597. /*
  598. * All the block addresses of data and nodes should be nullified.
  599. */
  600. int truncate_inode_blocks(struct inode *inode, pgoff_t from)
  601. {
  602. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  603. struct address_space *node_mapping = sbi->node_inode->i_mapping;
  604. int err = 0, cont = 1;
  605. int level, offset[4], noffset[4];
  606. unsigned int nofs = 0;
  607. struct f2fs_node *rn;
  608. struct dnode_of_data dn;
  609. struct page *page;
  610. trace_f2fs_truncate_inode_blocks_enter(inode, from);
  611. level = get_node_path(from, offset, noffset);
  612. restart:
  613. page = get_node_page(sbi, inode->i_ino);
  614. if (IS_ERR(page)) {
  615. trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
  616. return PTR_ERR(page);
  617. }
  618. set_new_dnode(&dn, inode, page, NULL, 0);
  619. unlock_page(page);
  620. rn = page_address(page);
  621. switch (level) {
  622. case 0:
  623. case 1:
  624. nofs = noffset[1];
  625. break;
  626. case 2:
  627. nofs = noffset[1];
  628. if (!offset[level - 1])
  629. goto skip_partial;
  630. err = truncate_partial_nodes(&dn, &rn->i, offset, level);
  631. if (err < 0 && err != -ENOENT)
  632. goto fail;
  633. nofs += 1 + NIDS_PER_BLOCK;
  634. break;
  635. case 3:
  636. nofs = 5 + 2 * NIDS_PER_BLOCK;
  637. if (!offset[level - 1])
  638. goto skip_partial;
  639. err = truncate_partial_nodes(&dn, &rn->i, offset, level);
  640. if (err < 0 && err != -ENOENT)
  641. goto fail;
  642. break;
  643. default:
  644. BUG();
  645. }
  646. skip_partial:
  647. while (cont) {
  648. dn.nid = le32_to_cpu(rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]);
  649. switch (offset[0]) {
  650. case NODE_DIR1_BLOCK:
  651. case NODE_DIR2_BLOCK:
  652. err = truncate_dnode(&dn);
  653. break;
  654. case NODE_IND1_BLOCK:
  655. case NODE_IND2_BLOCK:
  656. err = truncate_nodes(&dn, nofs, offset[1], 2);
  657. break;
  658. case NODE_DIND_BLOCK:
  659. err = truncate_nodes(&dn, nofs, offset[1], 3);
  660. cont = 0;
  661. break;
  662. default:
  663. BUG();
  664. }
  665. if (err < 0 && err != -ENOENT)
  666. goto fail;
  667. if (offset[1] == 0 &&
  668. rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK]) {
  669. lock_page(page);
  670. if (page->mapping != node_mapping) {
  671. f2fs_put_page(page, 1);
  672. goto restart;
  673. }
  674. wait_on_page_writeback(page);
  675. rn->i.i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
  676. set_page_dirty(page);
  677. unlock_page(page);
  678. }
  679. offset[1] = 0;
  680. offset[0]++;
  681. nofs += err;
  682. }
  683. fail:
  684. f2fs_put_page(page, 0);
  685. trace_f2fs_truncate_inode_blocks_exit(inode, err);
  686. return err > 0 ? 0 : err;
  687. }
  688. /*
  689. * Caller should grab and release a mutex by calling mutex_lock_op() and
  690. * mutex_unlock_op().
  691. */
  692. int remove_inode_page(struct inode *inode)
  693. {
  694. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  695. struct page *page;
  696. nid_t ino = inode->i_ino;
  697. struct dnode_of_data dn;
  698. page = get_node_page(sbi, ino);
  699. if (IS_ERR(page))
  700. return PTR_ERR(page);
  701. if (F2FS_I(inode)->i_xattr_nid) {
  702. nid_t nid = F2FS_I(inode)->i_xattr_nid;
  703. struct page *npage = get_node_page(sbi, nid);
  704. if (IS_ERR(npage))
  705. return PTR_ERR(npage);
  706. F2FS_I(inode)->i_xattr_nid = 0;
  707. set_new_dnode(&dn, inode, page, npage, nid);
  708. dn.inode_page_locked = 1;
  709. truncate_node(&dn);
  710. }
  711. /* 0 is possible, after f2fs_new_inode() is failed */
  712. BUG_ON(inode->i_blocks != 0 && inode->i_blocks != 1);
  713. set_new_dnode(&dn, inode, page, page, ino);
  714. truncate_node(&dn);
  715. return 0;
  716. }
  717. struct page *new_inode_page(struct inode *inode, const struct qstr *name)
  718. {
  719. struct dnode_of_data dn;
  720. /* allocate inode page for new inode */
  721. set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
  722. /* caller should f2fs_put_page(page, 1); */
  723. return new_node_page(&dn, 0);
  724. }
  725. struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs)
  726. {
  727. struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
  728. struct address_space *mapping = sbi->node_inode->i_mapping;
  729. struct node_info old_ni, new_ni;
  730. struct page *page;
  731. int err;
  732. if (is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC))
  733. return ERR_PTR(-EPERM);
  734. page = grab_cache_page(mapping, dn->nid);
  735. if (!page)
  736. return ERR_PTR(-ENOMEM);
  737. get_node_info(sbi, dn->nid, &old_ni);
  738. SetPageUptodate(page);
  739. fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
  740. /* Reinitialize old_ni with new node page */
  741. BUG_ON(old_ni.blk_addr != NULL_ADDR);
  742. new_ni = old_ni;
  743. new_ni.ino = dn->inode->i_ino;
  744. if (!inc_valid_node_count(sbi, dn->inode, 1)) {
  745. err = -ENOSPC;
  746. goto fail;
  747. }
  748. set_node_addr(sbi, &new_ni, NEW_ADDR);
  749. set_cold_node(dn->inode, page);
  750. dn->node_page = page;
  751. sync_inode_page(dn);
  752. set_page_dirty(page);
  753. if (ofs == 0)
  754. inc_valid_inode_count(sbi);
  755. return page;
  756. fail:
  757. clear_node_page_dirty(page);
  758. f2fs_put_page(page, 1);
  759. return ERR_PTR(err);
  760. }
  761. /*
  762. * Caller should do after getting the following values.
  763. * 0: f2fs_put_page(page, 0)
  764. * LOCKED_PAGE: f2fs_put_page(page, 1)
  765. * error: nothing
  766. */
  767. static int read_node_page(struct page *page, int type)
  768. {
  769. struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
  770. struct node_info ni;
  771. get_node_info(sbi, page->index, &ni);
  772. if (ni.blk_addr == NULL_ADDR) {
  773. f2fs_put_page(page, 1);
  774. return -ENOENT;
  775. }
  776. if (PageUptodate(page))
  777. return LOCKED_PAGE;
  778. return f2fs_readpage(sbi, page, ni.blk_addr, type);
  779. }
  780. /*
  781. * Readahead a node page
  782. */
  783. void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
  784. {
  785. struct address_space *mapping = sbi->node_inode->i_mapping;
  786. struct page *apage;
  787. int err;
  788. apage = find_get_page(mapping, nid);
  789. if (apage && PageUptodate(apage)) {
  790. f2fs_put_page(apage, 0);
  791. return;
  792. }
  793. f2fs_put_page(apage, 0);
  794. apage = grab_cache_page(mapping, nid);
  795. if (!apage)
  796. return;
  797. err = read_node_page(apage, READA);
  798. if (err == 0)
  799. f2fs_put_page(apage, 0);
  800. else if (err == LOCKED_PAGE)
  801. f2fs_put_page(apage, 1);
  802. return;
  803. }
  804. struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
  805. {
  806. struct address_space *mapping = sbi->node_inode->i_mapping;
  807. struct page *page;
  808. int err;
  809. repeat:
  810. page = grab_cache_page(mapping, nid);
  811. if (!page)
  812. return ERR_PTR(-ENOMEM);
  813. err = read_node_page(page, READ_SYNC);
  814. if (err < 0)
  815. return ERR_PTR(err);
  816. else if (err == LOCKED_PAGE)
  817. goto got_it;
  818. lock_page(page);
  819. if (!PageUptodate(page)) {
  820. f2fs_put_page(page, 1);
  821. return ERR_PTR(-EIO);
  822. }
  823. if (page->mapping != mapping) {
  824. f2fs_put_page(page, 1);
  825. goto repeat;
  826. }
  827. got_it:
  828. BUG_ON(nid != nid_of_node(page));
  829. mark_page_accessed(page);
  830. return page;
  831. }
  832. /*
  833. * Return a locked page for the desired node page.
  834. * And, readahead MAX_RA_NODE number of node pages.
  835. */
  836. struct page *get_node_page_ra(struct page *parent, int start)
  837. {
  838. struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
  839. struct address_space *mapping = sbi->node_inode->i_mapping;
  840. struct blk_plug plug;
  841. struct page *page;
  842. int err, i, end;
  843. nid_t nid;
  844. /* First, try getting the desired direct node. */
  845. nid = get_nid(parent, start, false);
  846. if (!nid)
  847. return ERR_PTR(-ENOENT);
  848. repeat:
  849. page = grab_cache_page(mapping, nid);
  850. if (!page)
  851. return ERR_PTR(-ENOMEM);
  852. err = read_node_page(page, READ_SYNC);
  853. if (err < 0)
  854. return ERR_PTR(err);
  855. else if (err == LOCKED_PAGE)
  856. goto page_hit;
  857. blk_start_plug(&plug);
  858. /* Then, try readahead for siblings of the desired node */
  859. end = start + MAX_RA_NODE;
  860. end = min(end, NIDS_PER_BLOCK);
  861. for (i = start + 1; i < end; i++) {
  862. nid = get_nid(parent, i, false);
  863. if (!nid)
  864. continue;
  865. ra_node_page(sbi, nid);
  866. }
  867. blk_finish_plug(&plug);
  868. lock_page(page);
  869. if (page->mapping != mapping) {
  870. f2fs_put_page(page, 1);
  871. goto repeat;
  872. }
  873. page_hit:
  874. if (!PageUptodate(page)) {
  875. f2fs_put_page(page, 1);
  876. return ERR_PTR(-EIO);
  877. }
  878. mark_page_accessed(page);
  879. return page;
  880. }
  881. void sync_inode_page(struct dnode_of_data *dn)
  882. {
  883. if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
  884. update_inode(dn->inode, dn->node_page);
  885. } else if (dn->inode_page) {
  886. if (!dn->inode_page_locked)
  887. lock_page(dn->inode_page);
  888. update_inode(dn->inode, dn->inode_page);
  889. if (!dn->inode_page_locked)
  890. unlock_page(dn->inode_page);
  891. } else {
  892. update_inode_page(dn->inode);
  893. }
  894. }
  895. int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
  896. struct writeback_control *wbc)
  897. {
  898. struct address_space *mapping = sbi->node_inode->i_mapping;
  899. pgoff_t index, end;
  900. struct pagevec pvec;
  901. int step = ino ? 2 : 0;
  902. int nwritten = 0, wrote = 0;
  903. pagevec_init(&pvec, 0);
  904. next_step:
  905. index = 0;
  906. end = LONG_MAX;
  907. while (index <= end) {
  908. int i, nr_pages;
  909. nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
  910. PAGECACHE_TAG_DIRTY,
  911. min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
  912. if (nr_pages == 0)
  913. break;
  914. for (i = 0; i < nr_pages; i++) {
  915. struct page *page = pvec.pages[i];
  916. /*
  917. * flushing sequence with step:
  918. * 0. indirect nodes
  919. * 1. dentry dnodes
  920. * 2. file dnodes
  921. */
  922. if (step == 0 && IS_DNODE(page))
  923. continue;
  924. if (step == 1 && (!IS_DNODE(page) ||
  925. is_cold_node(page)))
  926. continue;
  927. if (step == 2 && (!IS_DNODE(page) ||
  928. !is_cold_node(page)))
  929. continue;
  930. /*
  931. * If an fsync mode,
  932. * we should not skip writing node pages.
  933. */
  934. if (ino && ino_of_node(page) == ino)
  935. lock_page(page);
  936. else if (!trylock_page(page))
  937. continue;
  938. if (unlikely(page->mapping != mapping)) {
  939. continue_unlock:
  940. unlock_page(page);
  941. continue;
  942. }
  943. if (ino && ino_of_node(page) != ino)
  944. goto continue_unlock;
  945. if (!PageDirty(page)) {
  946. /* someone wrote it for us */
  947. goto continue_unlock;
  948. }
  949. if (!clear_page_dirty_for_io(page))
  950. goto continue_unlock;
  951. /* called by fsync() */
  952. if (ino && IS_DNODE(page)) {
  953. int mark = !is_checkpointed_node(sbi, ino);
  954. set_fsync_mark(page, 1);
  955. if (IS_INODE(page))
  956. set_dentry_mark(page, mark);
  957. nwritten++;
  958. } else {
  959. set_fsync_mark(page, 0);
  960. set_dentry_mark(page, 0);
  961. }
  962. mapping->a_ops->writepage(page, wbc);
  963. wrote++;
  964. if (--wbc->nr_to_write == 0)
  965. break;
  966. }
  967. pagevec_release(&pvec);
  968. cond_resched();
  969. if (wbc->nr_to_write == 0) {
  970. step = 2;
  971. break;
  972. }
  973. }
  974. if (step < 2) {
  975. step++;
  976. goto next_step;
  977. }
  978. if (wrote)
  979. f2fs_submit_bio(sbi, NODE, wbc->sync_mode == WB_SYNC_ALL);
  980. return nwritten;
  981. }
  982. static int f2fs_write_node_page(struct page *page,
  983. struct writeback_control *wbc)
  984. {
  985. struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
  986. nid_t nid;
  987. block_t new_addr;
  988. struct node_info ni;
  989. wait_on_page_writeback(page);
  990. /* get old block addr of this node page */
  991. nid = nid_of_node(page);
  992. BUG_ON(page->index != nid);
  993. get_node_info(sbi, nid, &ni);
  994. /* This page is already truncated */
  995. if (ni.blk_addr == NULL_ADDR) {
  996. dec_page_count(sbi, F2FS_DIRTY_NODES);
  997. unlock_page(page);
  998. return 0;
  999. }
  1000. if (wbc->for_reclaim) {
  1001. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1002. wbc->pages_skipped++;
  1003. set_page_dirty(page);
  1004. return AOP_WRITEPAGE_ACTIVATE;
  1005. }
  1006. mutex_lock(&sbi->node_write);
  1007. set_page_writeback(page);
  1008. write_node_page(sbi, page, nid, ni.blk_addr, &new_addr);
  1009. set_node_addr(sbi, &ni, new_addr);
  1010. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1011. mutex_unlock(&sbi->node_write);
  1012. unlock_page(page);
  1013. return 0;
  1014. }
  1015. /*
  1016. * It is very important to gather dirty pages and write at once, so that we can
  1017. * submit a big bio without interfering other data writes.
  1018. * Be default, 512 pages (2MB), a segment size, is quite reasonable.
  1019. */
  1020. #define COLLECT_DIRTY_NODES 512
  1021. static int f2fs_write_node_pages(struct address_space *mapping,
  1022. struct writeback_control *wbc)
  1023. {
  1024. struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
  1025. long nr_to_write = wbc->nr_to_write;
  1026. /* First check balancing cached NAT entries */
  1027. if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK)) {
  1028. f2fs_sync_fs(sbi->sb, true);
  1029. return 0;
  1030. }
  1031. /* collect a number of dirty node pages and write together */
  1032. if (get_pages(sbi, F2FS_DIRTY_NODES) < COLLECT_DIRTY_NODES)
  1033. return 0;
  1034. /* if mounting is failed, skip writing node pages */
  1035. wbc->nr_to_write = max_hw_blocks(sbi);
  1036. sync_node_pages(sbi, 0, wbc);
  1037. wbc->nr_to_write = nr_to_write - (max_hw_blocks(sbi) - wbc->nr_to_write);
  1038. return 0;
  1039. }
  1040. static int f2fs_set_node_page_dirty(struct page *page)
  1041. {
  1042. struct address_space *mapping = page->mapping;
  1043. struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
  1044. SetPageUptodate(page);
  1045. if (!PageDirty(page)) {
  1046. __set_page_dirty_nobuffers(page);
  1047. inc_page_count(sbi, F2FS_DIRTY_NODES);
  1048. SetPagePrivate(page);
  1049. return 1;
  1050. }
  1051. return 0;
  1052. }
  1053. static void f2fs_invalidate_node_page(struct page *page, unsigned long offset)
  1054. {
  1055. struct inode *inode = page->mapping->host;
  1056. struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
  1057. if (PageDirty(page))
  1058. dec_page_count(sbi, F2FS_DIRTY_NODES);
  1059. ClearPagePrivate(page);
  1060. }
  1061. static int f2fs_release_node_page(struct page *page, gfp_t wait)
  1062. {
  1063. ClearPagePrivate(page);
  1064. return 1;
  1065. }
  1066. /*
  1067. * Structure of the f2fs node operations
  1068. */
  1069. const struct address_space_operations f2fs_node_aops = {
  1070. .writepage = f2fs_write_node_page,
  1071. .writepages = f2fs_write_node_pages,
  1072. .set_page_dirty = f2fs_set_node_page_dirty,
  1073. .invalidatepage = f2fs_invalidate_node_page,
  1074. .releasepage = f2fs_release_node_page,
  1075. };
  1076. static struct free_nid *__lookup_free_nid_list(nid_t n, struct list_head *head)
  1077. {
  1078. struct list_head *this;
  1079. struct free_nid *i;
  1080. list_for_each(this, head) {
  1081. i = list_entry(this, struct free_nid, list);
  1082. if (i->nid == n)
  1083. return i;
  1084. }
  1085. return NULL;
  1086. }
  1087. static void __del_from_free_nid_list(struct free_nid *i)
  1088. {
  1089. list_del(&i->list);
  1090. kmem_cache_free(free_nid_slab, i);
  1091. }
  1092. static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid, bool build)
  1093. {
  1094. struct free_nid *i;
  1095. struct nat_entry *ne;
  1096. bool allocated = false;
  1097. if (nm_i->fcnt > 2 * MAX_FREE_NIDS)
  1098. return -1;
  1099. /* 0 nid should not be used */
  1100. if (nid == 0)
  1101. return 0;
  1102. if (!build)
  1103. goto retry;
  1104. /* do not add allocated nids */
  1105. read_lock(&nm_i->nat_tree_lock);
  1106. ne = __lookup_nat_cache(nm_i, nid);
  1107. if (ne && nat_get_blkaddr(ne) != NULL_ADDR)
  1108. allocated = true;
  1109. read_unlock(&nm_i->nat_tree_lock);
  1110. if (allocated)
  1111. return 0;
  1112. retry:
  1113. i = kmem_cache_alloc(free_nid_slab, GFP_NOFS);
  1114. if (!i) {
  1115. cond_resched();
  1116. goto retry;
  1117. }
  1118. i->nid = nid;
  1119. i->state = NID_NEW;
  1120. spin_lock(&nm_i->free_nid_list_lock);
  1121. if (__lookup_free_nid_list(nid, &nm_i->free_nid_list)) {
  1122. spin_unlock(&nm_i->free_nid_list_lock);
  1123. kmem_cache_free(free_nid_slab, i);
  1124. return 0;
  1125. }
  1126. list_add_tail(&i->list, &nm_i->free_nid_list);
  1127. nm_i->fcnt++;
  1128. spin_unlock(&nm_i->free_nid_list_lock);
  1129. return 1;
  1130. }
  1131. static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
  1132. {
  1133. struct free_nid *i;
  1134. spin_lock(&nm_i->free_nid_list_lock);
  1135. i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
  1136. if (i && i->state == NID_NEW) {
  1137. __del_from_free_nid_list(i);
  1138. nm_i->fcnt--;
  1139. }
  1140. spin_unlock(&nm_i->free_nid_list_lock);
  1141. }
  1142. static void scan_nat_page(struct f2fs_nm_info *nm_i,
  1143. struct page *nat_page, nid_t start_nid)
  1144. {
  1145. struct f2fs_nat_block *nat_blk = page_address(nat_page);
  1146. block_t blk_addr;
  1147. int i;
  1148. i = start_nid % NAT_ENTRY_PER_BLOCK;
  1149. for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
  1150. if (start_nid >= nm_i->max_nid)
  1151. break;
  1152. blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
  1153. BUG_ON(blk_addr == NEW_ADDR);
  1154. if (blk_addr == NULL_ADDR) {
  1155. if (add_free_nid(nm_i, start_nid, true) < 0)
  1156. break;
  1157. }
  1158. }
  1159. }
  1160. static void build_free_nids(struct f2fs_sb_info *sbi)
  1161. {
  1162. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1163. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1164. struct f2fs_summary_block *sum = curseg->sum_blk;
  1165. int i = 0;
  1166. nid_t nid = nm_i->next_scan_nid;
  1167. /* Enough entries */
  1168. if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
  1169. return;
  1170. /* readahead nat pages to be scanned */
  1171. ra_nat_pages(sbi, nid);
  1172. while (1) {
  1173. struct page *page = get_current_nat_page(sbi, nid);
  1174. scan_nat_page(nm_i, page, nid);
  1175. f2fs_put_page(page, 1);
  1176. nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
  1177. if (nid >= nm_i->max_nid)
  1178. nid = 0;
  1179. if (i++ == FREE_NID_PAGES)
  1180. break;
  1181. }
  1182. /* go to the next free nat pages to find free nids abundantly */
  1183. nm_i->next_scan_nid = nid;
  1184. /* find free nids from current sum_pages */
  1185. mutex_lock(&curseg->curseg_mutex);
  1186. for (i = 0; i < nats_in_cursum(sum); i++) {
  1187. block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
  1188. nid = le32_to_cpu(nid_in_journal(sum, i));
  1189. if (addr == NULL_ADDR)
  1190. add_free_nid(nm_i, nid, true);
  1191. else
  1192. remove_free_nid(nm_i, nid);
  1193. }
  1194. mutex_unlock(&curseg->curseg_mutex);
  1195. }
  1196. /*
  1197. * If this function returns success, caller can obtain a new nid
  1198. * from second parameter of this function.
  1199. * The returned nid could be used ino as well as nid when inode is created.
  1200. */
  1201. bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
  1202. {
  1203. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1204. struct free_nid *i = NULL;
  1205. struct list_head *this;
  1206. retry:
  1207. if (sbi->total_valid_node_count + 1 >= nm_i->max_nid)
  1208. return false;
  1209. spin_lock(&nm_i->free_nid_list_lock);
  1210. /* We should not use stale free nids created by build_free_nids */
  1211. if (nm_i->fcnt && !sbi->on_build_free_nids) {
  1212. BUG_ON(list_empty(&nm_i->free_nid_list));
  1213. list_for_each(this, &nm_i->free_nid_list) {
  1214. i = list_entry(this, struct free_nid, list);
  1215. if (i->state == NID_NEW)
  1216. break;
  1217. }
  1218. BUG_ON(i->state != NID_NEW);
  1219. *nid = i->nid;
  1220. i->state = NID_ALLOC;
  1221. nm_i->fcnt--;
  1222. spin_unlock(&nm_i->free_nid_list_lock);
  1223. return true;
  1224. }
  1225. spin_unlock(&nm_i->free_nid_list_lock);
  1226. /* Let's scan nat pages and its caches to get free nids */
  1227. mutex_lock(&nm_i->build_lock);
  1228. sbi->on_build_free_nids = 1;
  1229. build_free_nids(sbi);
  1230. sbi->on_build_free_nids = 0;
  1231. mutex_unlock(&nm_i->build_lock);
  1232. goto retry;
  1233. }
  1234. /*
  1235. * alloc_nid() should be called prior to this function.
  1236. */
  1237. void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
  1238. {
  1239. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1240. struct free_nid *i;
  1241. spin_lock(&nm_i->free_nid_list_lock);
  1242. i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
  1243. BUG_ON(!i || i->state != NID_ALLOC);
  1244. __del_from_free_nid_list(i);
  1245. spin_unlock(&nm_i->free_nid_list_lock);
  1246. }
  1247. /*
  1248. * alloc_nid() should be called prior to this function.
  1249. */
  1250. void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
  1251. {
  1252. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1253. struct free_nid *i;
  1254. spin_lock(&nm_i->free_nid_list_lock);
  1255. i = __lookup_free_nid_list(nid, &nm_i->free_nid_list);
  1256. BUG_ON(!i || i->state != NID_ALLOC);
  1257. if (nm_i->fcnt > 2 * MAX_FREE_NIDS) {
  1258. __del_from_free_nid_list(i);
  1259. } else {
  1260. i->state = NID_NEW;
  1261. nm_i->fcnt++;
  1262. }
  1263. spin_unlock(&nm_i->free_nid_list_lock);
  1264. }
  1265. void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
  1266. struct f2fs_summary *sum, struct node_info *ni,
  1267. block_t new_blkaddr)
  1268. {
  1269. rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
  1270. set_node_addr(sbi, ni, new_blkaddr);
  1271. clear_node_page_dirty(page);
  1272. }
  1273. int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
  1274. {
  1275. struct address_space *mapping = sbi->node_inode->i_mapping;
  1276. struct f2fs_node *src, *dst;
  1277. nid_t ino = ino_of_node(page);
  1278. struct node_info old_ni, new_ni;
  1279. struct page *ipage;
  1280. ipage = grab_cache_page(mapping, ino);
  1281. if (!ipage)
  1282. return -ENOMEM;
  1283. /* Should not use this inode from free nid list */
  1284. remove_free_nid(NM_I(sbi), ino);
  1285. get_node_info(sbi, ino, &old_ni);
  1286. SetPageUptodate(ipage);
  1287. fill_node_footer(ipage, ino, ino, 0, true);
  1288. src = (struct f2fs_node *)page_address(page);
  1289. dst = (struct f2fs_node *)page_address(ipage);
  1290. memcpy(dst, src, (unsigned long)&src->i.i_ext - (unsigned long)&src->i);
  1291. dst->i.i_size = 0;
  1292. dst->i.i_blocks = cpu_to_le64(1);
  1293. dst->i.i_links = cpu_to_le32(1);
  1294. dst->i.i_xattr_nid = 0;
  1295. new_ni = old_ni;
  1296. new_ni.ino = ino;
  1297. if (!inc_valid_node_count(sbi, NULL, 1))
  1298. WARN_ON(1);
  1299. set_node_addr(sbi, &new_ni, NEW_ADDR);
  1300. inc_valid_inode_count(sbi);
  1301. f2fs_put_page(ipage, 1);
  1302. return 0;
  1303. }
  1304. int restore_node_summary(struct f2fs_sb_info *sbi,
  1305. unsigned int segno, struct f2fs_summary_block *sum)
  1306. {
  1307. struct f2fs_node *rn;
  1308. struct f2fs_summary *sum_entry;
  1309. struct page *page;
  1310. block_t addr;
  1311. int i, last_offset;
  1312. /* alloc temporal page for read node */
  1313. page = alloc_page(GFP_NOFS | __GFP_ZERO);
  1314. if (IS_ERR(page))
  1315. return PTR_ERR(page);
  1316. lock_page(page);
  1317. /* scan the node segment */
  1318. last_offset = sbi->blocks_per_seg;
  1319. addr = START_BLOCK(sbi, segno);
  1320. sum_entry = &sum->entries[0];
  1321. for (i = 0; i < last_offset; i++, sum_entry++) {
  1322. /*
  1323. * In order to read next node page,
  1324. * we must clear PageUptodate flag.
  1325. */
  1326. ClearPageUptodate(page);
  1327. if (f2fs_readpage(sbi, page, addr, READ_SYNC))
  1328. goto out;
  1329. lock_page(page);
  1330. rn = (struct f2fs_node *)page_address(page);
  1331. sum_entry->nid = rn->footer.nid;
  1332. sum_entry->version = 0;
  1333. sum_entry->ofs_in_node = 0;
  1334. addr++;
  1335. }
  1336. unlock_page(page);
  1337. out:
  1338. __free_pages(page, 0);
  1339. return 0;
  1340. }
  1341. static bool flush_nats_in_journal(struct f2fs_sb_info *sbi)
  1342. {
  1343. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1344. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1345. struct f2fs_summary_block *sum = curseg->sum_blk;
  1346. int i;
  1347. mutex_lock(&curseg->curseg_mutex);
  1348. if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) {
  1349. mutex_unlock(&curseg->curseg_mutex);
  1350. return false;
  1351. }
  1352. for (i = 0; i < nats_in_cursum(sum); i++) {
  1353. struct nat_entry *ne;
  1354. struct f2fs_nat_entry raw_ne;
  1355. nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
  1356. raw_ne = nat_in_journal(sum, i);
  1357. retry:
  1358. write_lock(&nm_i->nat_tree_lock);
  1359. ne = __lookup_nat_cache(nm_i, nid);
  1360. if (ne) {
  1361. __set_nat_cache_dirty(nm_i, ne);
  1362. write_unlock(&nm_i->nat_tree_lock);
  1363. continue;
  1364. }
  1365. ne = grab_nat_entry(nm_i, nid);
  1366. if (!ne) {
  1367. write_unlock(&nm_i->nat_tree_lock);
  1368. goto retry;
  1369. }
  1370. nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr));
  1371. nat_set_ino(ne, le32_to_cpu(raw_ne.ino));
  1372. nat_set_version(ne, raw_ne.version);
  1373. __set_nat_cache_dirty(nm_i, ne);
  1374. write_unlock(&nm_i->nat_tree_lock);
  1375. }
  1376. update_nats_in_cursum(sum, -i);
  1377. mutex_unlock(&curseg->curseg_mutex);
  1378. return true;
  1379. }
  1380. /*
  1381. * This function is called during the checkpointing process.
  1382. */
  1383. void flush_nat_entries(struct f2fs_sb_info *sbi)
  1384. {
  1385. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1386. struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
  1387. struct f2fs_summary_block *sum = curseg->sum_blk;
  1388. struct list_head *cur, *n;
  1389. struct page *page = NULL;
  1390. struct f2fs_nat_block *nat_blk = NULL;
  1391. nid_t start_nid = 0, end_nid = 0;
  1392. bool flushed;
  1393. flushed = flush_nats_in_journal(sbi);
  1394. if (!flushed)
  1395. mutex_lock(&curseg->curseg_mutex);
  1396. /* 1) flush dirty nat caches */
  1397. list_for_each_safe(cur, n, &nm_i->dirty_nat_entries) {
  1398. struct nat_entry *ne;
  1399. nid_t nid;
  1400. struct f2fs_nat_entry raw_ne;
  1401. int offset = -1;
  1402. block_t new_blkaddr;
  1403. ne = list_entry(cur, struct nat_entry, list);
  1404. nid = nat_get_nid(ne);
  1405. if (nat_get_blkaddr(ne) == NEW_ADDR)
  1406. continue;
  1407. if (flushed)
  1408. goto to_nat_page;
  1409. /* if there is room for nat enries in curseg->sumpage */
  1410. offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1);
  1411. if (offset >= 0) {
  1412. raw_ne = nat_in_journal(sum, offset);
  1413. goto flush_now;
  1414. }
  1415. to_nat_page:
  1416. if (!page || (start_nid > nid || nid > end_nid)) {
  1417. if (page) {
  1418. f2fs_put_page(page, 1);
  1419. page = NULL;
  1420. }
  1421. start_nid = START_NID(nid);
  1422. end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1;
  1423. /*
  1424. * get nat block with dirty flag, increased reference
  1425. * count, mapped and lock
  1426. */
  1427. page = get_next_nat_page(sbi, start_nid);
  1428. nat_blk = page_address(page);
  1429. }
  1430. BUG_ON(!nat_blk);
  1431. raw_ne = nat_blk->entries[nid - start_nid];
  1432. flush_now:
  1433. new_blkaddr = nat_get_blkaddr(ne);
  1434. raw_ne.ino = cpu_to_le32(nat_get_ino(ne));
  1435. raw_ne.block_addr = cpu_to_le32(new_blkaddr);
  1436. raw_ne.version = nat_get_version(ne);
  1437. if (offset < 0) {
  1438. nat_blk->entries[nid - start_nid] = raw_ne;
  1439. } else {
  1440. nat_in_journal(sum, offset) = raw_ne;
  1441. nid_in_journal(sum, offset) = cpu_to_le32(nid);
  1442. }
  1443. if (nat_get_blkaddr(ne) == NULL_ADDR &&
  1444. add_free_nid(NM_I(sbi), nid, false) <= 0) {
  1445. write_lock(&nm_i->nat_tree_lock);
  1446. __del_from_nat_cache(nm_i, ne);
  1447. write_unlock(&nm_i->nat_tree_lock);
  1448. } else {
  1449. write_lock(&nm_i->nat_tree_lock);
  1450. __clear_nat_cache_dirty(nm_i, ne);
  1451. ne->checkpointed = true;
  1452. write_unlock(&nm_i->nat_tree_lock);
  1453. }
  1454. }
  1455. if (!flushed)
  1456. mutex_unlock(&curseg->curseg_mutex);
  1457. f2fs_put_page(page, 1);
  1458. /* 2) shrink nat caches if necessary */
  1459. try_to_free_nats(sbi, nm_i->nat_cnt - NM_WOUT_THRESHOLD);
  1460. }
  1461. static int init_node_manager(struct f2fs_sb_info *sbi)
  1462. {
  1463. struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
  1464. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1465. unsigned char *version_bitmap;
  1466. unsigned int nat_segs, nat_blocks;
  1467. nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
  1468. /* segment_count_nat includes pair segment so divide to 2. */
  1469. nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
  1470. nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
  1471. nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
  1472. nm_i->fcnt = 0;
  1473. nm_i->nat_cnt = 0;
  1474. INIT_LIST_HEAD(&nm_i->free_nid_list);
  1475. INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
  1476. INIT_LIST_HEAD(&nm_i->nat_entries);
  1477. INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
  1478. mutex_init(&nm_i->build_lock);
  1479. spin_lock_init(&nm_i->free_nid_list_lock);
  1480. rwlock_init(&nm_i->nat_tree_lock);
  1481. nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
  1482. nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
  1483. version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
  1484. if (!version_bitmap)
  1485. return -EFAULT;
  1486. nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
  1487. GFP_KERNEL);
  1488. if (!nm_i->nat_bitmap)
  1489. return -ENOMEM;
  1490. return 0;
  1491. }
  1492. int build_node_manager(struct f2fs_sb_info *sbi)
  1493. {
  1494. int err;
  1495. sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
  1496. if (!sbi->nm_info)
  1497. return -ENOMEM;
  1498. err = init_node_manager(sbi);
  1499. if (err)
  1500. return err;
  1501. build_free_nids(sbi);
  1502. return 0;
  1503. }
  1504. void destroy_node_manager(struct f2fs_sb_info *sbi)
  1505. {
  1506. struct f2fs_nm_info *nm_i = NM_I(sbi);
  1507. struct free_nid *i, *next_i;
  1508. struct nat_entry *natvec[NATVEC_SIZE];
  1509. nid_t nid = 0;
  1510. unsigned int found;
  1511. if (!nm_i)
  1512. return;
  1513. /* destroy free nid list */
  1514. spin_lock(&nm_i->free_nid_list_lock);
  1515. list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
  1516. BUG_ON(i->state == NID_ALLOC);
  1517. __del_from_free_nid_list(i);
  1518. nm_i->fcnt--;
  1519. }
  1520. BUG_ON(nm_i->fcnt);
  1521. spin_unlock(&nm_i->free_nid_list_lock);
  1522. /* destroy nat cache */
  1523. write_lock(&nm_i->nat_tree_lock);
  1524. while ((found = __gang_lookup_nat_cache(nm_i,
  1525. nid, NATVEC_SIZE, natvec))) {
  1526. unsigned idx;
  1527. for (idx = 0; idx < found; idx++) {
  1528. struct nat_entry *e = natvec[idx];
  1529. nid = nat_get_nid(e) + 1;
  1530. __del_from_nat_cache(nm_i, e);
  1531. }
  1532. }
  1533. BUG_ON(nm_i->nat_cnt);
  1534. write_unlock(&nm_i->nat_tree_lock);
  1535. kfree(nm_i->nat_bitmap);
  1536. sbi->nm_info = NULL;
  1537. kfree(nm_i);
  1538. }
  1539. int __init create_node_manager_caches(void)
  1540. {
  1541. nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
  1542. sizeof(struct nat_entry), NULL);
  1543. if (!nat_entry_slab)
  1544. return -ENOMEM;
  1545. free_nid_slab = f2fs_kmem_cache_create("free_nid",
  1546. sizeof(struct free_nid), NULL);
  1547. if (!free_nid_slab) {
  1548. kmem_cache_destroy(nat_entry_slab);
  1549. return -ENOMEM;
  1550. }
  1551. return 0;
  1552. }
  1553. void destroy_node_manager_caches(void)
  1554. {
  1555. kmem_cache_destroy(free_nid_slab);
  1556. kmem_cache_destroy(nat_entry_slab);
  1557. }