delayed-inode.c 43 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710
  1. /*
  2. * Copyright (C) 2011 Fujitsu. All rights reserved.
  3. * Written by Miao Xie <miaox@cn.fujitsu.com>
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public
  7. * License v2 as published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  12. * General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public
  15. * License along with this program; if not, write to the
  16. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  17. * Boston, MA 021110-1307, USA.
  18. */
  19. #include <linux/slab.h>
  20. #include "delayed-inode.h"
  21. #include "disk-io.h"
  22. #include "transaction.h"
  23. #define BTRFS_DELAYED_WRITEBACK 400
  24. #define BTRFS_DELAYED_BACKGROUND 100
  25. static struct kmem_cache *delayed_node_cache;
  26. int __init btrfs_delayed_inode_init(void)
  27. {
  28. delayed_node_cache = kmem_cache_create("delayed_node",
  29. sizeof(struct btrfs_delayed_node),
  30. 0,
  31. SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
  32. NULL);
  33. if (!delayed_node_cache)
  34. return -ENOMEM;
  35. return 0;
  36. }
  37. void btrfs_delayed_inode_exit(void)
  38. {
  39. if (delayed_node_cache)
  40. kmem_cache_destroy(delayed_node_cache);
  41. }
  42. static inline void btrfs_init_delayed_node(
  43. struct btrfs_delayed_node *delayed_node,
  44. struct btrfs_root *root, u64 inode_id)
  45. {
  46. delayed_node->root = root;
  47. delayed_node->inode_id = inode_id;
  48. atomic_set(&delayed_node->refs, 0);
  49. delayed_node->count = 0;
  50. delayed_node->in_list = 0;
  51. delayed_node->inode_dirty = 0;
  52. delayed_node->ins_root = RB_ROOT;
  53. delayed_node->del_root = RB_ROOT;
  54. mutex_init(&delayed_node->mutex);
  55. delayed_node->index_cnt = 0;
  56. INIT_LIST_HEAD(&delayed_node->n_list);
  57. INIT_LIST_HEAD(&delayed_node->p_list);
  58. delayed_node->bytes_reserved = 0;
  59. }
  60. static inline int btrfs_is_continuous_delayed_item(
  61. struct btrfs_delayed_item *item1,
  62. struct btrfs_delayed_item *item2)
  63. {
  64. if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
  65. item1->key.objectid == item2->key.objectid &&
  66. item1->key.type == item2->key.type &&
  67. item1->key.offset + 1 == item2->key.offset)
  68. return 1;
  69. return 0;
  70. }
  71. static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
  72. struct btrfs_root *root)
  73. {
  74. return root->fs_info->delayed_root;
  75. }
  76. static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
  77. struct inode *inode)
  78. {
  79. struct btrfs_delayed_node *node;
  80. struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  81. struct btrfs_root *root = btrfs_inode->root;
  82. u64 ino = btrfs_ino(inode);
  83. int ret;
  84. again:
  85. node = ACCESS_ONCE(btrfs_inode->delayed_node);
  86. if (node) {
  87. atomic_inc(&node->refs); /* can be accessed */
  88. return node;
  89. }
  90. spin_lock(&root->inode_lock);
  91. node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
  92. if (node) {
  93. if (btrfs_inode->delayed_node) {
  94. spin_unlock(&root->inode_lock);
  95. goto again;
  96. }
  97. btrfs_inode->delayed_node = node;
  98. atomic_inc(&node->refs); /* can be accessed */
  99. atomic_inc(&node->refs); /* cached in the inode */
  100. spin_unlock(&root->inode_lock);
  101. return node;
  102. }
  103. spin_unlock(&root->inode_lock);
  104. node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
  105. if (!node)
  106. return ERR_PTR(-ENOMEM);
  107. btrfs_init_delayed_node(node, root, ino);
  108. atomic_inc(&node->refs); /* cached in the btrfs inode */
  109. atomic_inc(&node->refs); /* can be accessed */
  110. ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
  111. if (ret) {
  112. kmem_cache_free(delayed_node_cache, node);
  113. return ERR_PTR(ret);
  114. }
  115. spin_lock(&root->inode_lock);
  116. ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
  117. if (ret == -EEXIST) {
  118. kmem_cache_free(delayed_node_cache, node);
  119. spin_unlock(&root->inode_lock);
  120. radix_tree_preload_end();
  121. goto again;
  122. }
  123. btrfs_inode->delayed_node = node;
  124. spin_unlock(&root->inode_lock);
  125. radix_tree_preload_end();
  126. return node;
  127. }
  128. /*
  129. * Call it when holding delayed_node->mutex
  130. *
  131. * If mod = 1, add this node into the prepared list.
  132. */
  133. static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
  134. struct btrfs_delayed_node *node,
  135. int mod)
  136. {
  137. spin_lock(&root->lock);
  138. if (node->in_list) {
  139. if (!list_empty(&node->p_list))
  140. list_move_tail(&node->p_list, &root->prepare_list);
  141. else if (mod)
  142. list_add_tail(&node->p_list, &root->prepare_list);
  143. } else {
  144. list_add_tail(&node->n_list, &root->node_list);
  145. list_add_tail(&node->p_list, &root->prepare_list);
  146. atomic_inc(&node->refs); /* inserted into list */
  147. root->nodes++;
  148. node->in_list = 1;
  149. }
  150. spin_unlock(&root->lock);
  151. }
  152. /* Call it when holding delayed_node->mutex */
  153. static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
  154. struct btrfs_delayed_node *node)
  155. {
  156. spin_lock(&root->lock);
  157. if (node->in_list) {
  158. root->nodes--;
  159. atomic_dec(&node->refs); /* not in the list */
  160. list_del_init(&node->n_list);
  161. if (!list_empty(&node->p_list))
  162. list_del_init(&node->p_list);
  163. node->in_list = 0;
  164. }
  165. spin_unlock(&root->lock);
  166. }
  167. struct btrfs_delayed_node *btrfs_first_delayed_node(
  168. struct btrfs_delayed_root *delayed_root)
  169. {
  170. struct list_head *p;
  171. struct btrfs_delayed_node *node = NULL;
  172. spin_lock(&delayed_root->lock);
  173. if (list_empty(&delayed_root->node_list))
  174. goto out;
  175. p = delayed_root->node_list.next;
  176. node = list_entry(p, struct btrfs_delayed_node, n_list);
  177. atomic_inc(&node->refs);
  178. out:
  179. spin_unlock(&delayed_root->lock);
  180. return node;
  181. }
  182. struct btrfs_delayed_node *btrfs_next_delayed_node(
  183. struct btrfs_delayed_node *node)
  184. {
  185. struct btrfs_delayed_root *delayed_root;
  186. struct list_head *p;
  187. struct btrfs_delayed_node *next = NULL;
  188. delayed_root = node->root->fs_info->delayed_root;
  189. spin_lock(&delayed_root->lock);
  190. if (!node->in_list) { /* not in the list */
  191. if (list_empty(&delayed_root->node_list))
  192. goto out;
  193. p = delayed_root->node_list.next;
  194. } else if (list_is_last(&node->n_list, &delayed_root->node_list))
  195. goto out;
  196. else
  197. p = node->n_list.next;
  198. next = list_entry(p, struct btrfs_delayed_node, n_list);
  199. atomic_inc(&next->refs);
  200. out:
  201. spin_unlock(&delayed_root->lock);
  202. return next;
  203. }
  204. static void __btrfs_release_delayed_node(
  205. struct btrfs_delayed_node *delayed_node,
  206. int mod)
  207. {
  208. struct btrfs_delayed_root *delayed_root;
  209. if (!delayed_node)
  210. return;
  211. delayed_root = delayed_node->root->fs_info->delayed_root;
  212. mutex_lock(&delayed_node->mutex);
  213. if (delayed_node->count)
  214. btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
  215. else
  216. btrfs_dequeue_delayed_node(delayed_root, delayed_node);
  217. mutex_unlock(&delayed_node->mutex);
  218. if (atomic_dec_and_test(&delayed_node->refs)) {
  219. struct btrfs_root *root = delayed_node->root;
  220. spin_lock(&root->inode_lock);
  221. if (atomic_read(&delayed_node->refs) == 0) {
  222. radix_tree_delete(&root->delayed_nodes_tree,
  223. delayed_node->inode_id);
  224. kmem_cache_free(delayed_node_cache, delayed_node);
  225. }
  226. spin_unlock(&root->inode_lock);
  227. }
  228. }
  229. static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
  230. {
  231. __btrfs_release_delayed_node(node, 0);
  232. }
  233. struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
  234. struct btrfs_delayed_root *delayed_root)
  235. {
  236. struct list_head *p;
  237. struct btrfs_delayed_node *node = NULL;
  238. spin_lock(&delayed_root->lock);
  239. if (list_empty(&delayed_root->prepare_list))
  240. goto out;
  241. p = delayed_root->prepare_list.next;
  242. list_del_init(p);
  243. node = list_entry(p, struct btrfs_delayed_node, p_list);
  244. atomic_inc(&node->refs);
  245. out:
  246. spin_unlock(&delayed_root->lock);
  247. return node;
  248. }
  249. static inline void btrfs_release_prepared_delayed_node(
  250. struct btrfs_delayed_node *node)
  251. {
  252. __btrfs_release_delayed_node(node, 1);
  253. }
  254. struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
  255. {
  256. struct btrfs_delayed_item *item;
  257. item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
  258. if (item) {
  259. item->data_len = data_len;
  260. item->ins_or_del = 0;
  261. item->bytes_reserved = 0;
  262. item->delayed_node = NULL;
  263. atomic_set(&item->refs, 1);
  264. }
  265. return item;
  266. }
  267. /*
  268. * __btrfs_lookup_delayed_item - look up the delayed item by key
  269. * @delayed_node: pointer to the delayed node
  270. * @key: the key to look up
  271. * @prev: used to store the prev item if the right item isn't found
  272. * @next: used to store the next item if the right item isn't found
  273. *
  274. * Note: if we don't find the right item, we will return the prev item and
  275. * the next item.
  276. */
  277. static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
  278. struct rb_root *root,
  279. struct btrfs_key *key,
  280. struct btrfs_delayed_item **prev,
  281. struct btrfs_delayed_item **next)
  282. {
  283. struct rb_node *node, *prev_node = NULL;
  284. struct btrfs_delayed_item *delayed_item = NULL;
  285. int ret = 0;
  286. node = root->rb_node;
  287. while (node) {
  288. delayed_item = rb_entry(node, struct btrfs_delayed_item,
  289. rb_node);
  290. prev_node = node;
  291. ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
  292. if (ret < 0)
  293. node = node->rb_right;
  294. else if (ret > 0)
  295. node = node->rb_left;
  296. else
  297. return delayed_item;
  298. }
  299. if (prev) {
  300. if (!prev_node)
  301. *prev = NULL;
  302. else if (ret < 0)
  303. *prev = delayed_item;
  304. else if ((node = rb_prev(prev_node)) != NULL) {
  305. *prev = rb_entry(node, struct btrfs_delayed_item,
  306. rb_node);
  307. } else
  308. *prev = NULL;
  309. }
  310. if (next) {
  311. if (!prev_node)
  312. *next = NULL;
  313. else if (ret > 0)
  314. *next = delayed_item;
  315. else if ((node = rb_next(prev_node)) != NULL) {
  316. *next = rb_entry(node, struct btrfs_delayed_item,
  317. rb_node);
  318. } else
  319. *next = NULL;
  320. }
  321. return NULL;
  322. }
  323. struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
  324. struct btrfs_delayed_node *delayed_node,
  325. struct btrfs_key *key)
  326. {
  327. struct btrfs_delayed_item *item;
  328. item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
  329. NULL, NULL);
  330. return item;
  331. }
  332. struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item(
  333. struct btrfs_delayed_node *delayed_node,
  334. struct btrfs_key *key)
  335. {
  336. struct btrfs_delayed_item *item;
  337. item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
  338. NULL, NULL);
  339. return item;
  340. }
  341. struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item(
  342. struct btrfs_delayed_node *delayed_node,
  343. struct btrfs_key *key)
  344. {
  345. struct btrfs_delayed_item *item, *next;
  346. item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
  347. NULL, &next);
  348. if (!item)
  349. item = next;
  350. return item;
  351. }
  352. struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item(
  353. struct btrfs_delayed_node *delayed_node,
  354. struct btrfs_key *key)
  355. {
  356. struct btrfs_delayed_item *item, *next;
  357. item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
  358. NULL, &next);
  359. if (!item)
  360. item = next;
  361. return item;
  362. }
  363. static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
  364. struct btrfs_delayed_item *ins,
  365. int action)
  366. {
  367. struct rb_node **p, *node;
  368. struct rb_node *parent_node = NULL;
  369. struct rb_root *root;
  370. struct btrfs_delayed_item *item;
  371. int cmp;
  372. if (action == BTRFS_DELAYED_INSERTION_ITEM)
  373. root = &delayed_node->ins_root;
  374. else if (action == BTRFS_DELAYED_DELETION_ITEM)
  375. root = &delayed_node->del_root;
  376. else
  377. BUG();
  378. p = &root->rb_node;
  379. node = &ins->rb_node;
  380. while (*p) {
  381. parent_node = *p;
  382. item = rb_entry(parent_node, struct btrfs_delayed_item,
  383. rb_node);
  384. cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
  385. if (cmp < 0)
  386. p = &(*p)->rb_right;
  387. else if (cmp > 0)
  388. p = &(*p)->rb_left;
  389. else
  390. return -EEXIST;
  391. }
  392. rb_link_node(node, parent_node, p);
  393. rb_insert_color(node, root);
  394. ins->delayed_node = delayed_node;
  395. ins->ins_or_del = action;
  396. if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
  397. action == BTRFS_DELAYED_INSERTION_ITEM &&
  398. ins->key.offset >= delayed_node->index_cnt)
  399. delayed_node->index_cnt = ins->key.offset + 1;
  400. delayed_node->count++;
  401. atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
  402. return 0;
  403. }
  404. static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
  405. struct btrfs_delayed_item *item)
  406. {
  407. return __btrfs_add_delayed_item(node, item,
  408. BTRFS_DELAYED_INSERTION_ITEM);
  409. }
  410. static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
  411. struct btrfs_delayed_item *item)
  412. {
  413. return __btrfs_add_delayed_item(node, item,
  414. BTRFS_DELAYED_DELETION_ITEM);
  415. }
  416. static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
  417. {
  418. struct rb_root *root;
  419. struct btrfs_delayed_root *delayed_root;
  420. delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
  421. BUG_ON(!delayed_root);
  422. BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
  423. delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
  424. if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
  425. root = &delayed_item->delayed_node->ins_root;
  426. else
  427. root = &delayed_item->delayed_node->del_root;
  428. rb_erase(&delayed_item->rb_node, root);
  429. delayed_item->delayed_node->count--;
  430. atomic_dec(&delayed_root->items);
  431. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND &&
  432. waitqueue_active(&delayed_root->wait))
  433. wake_up(&delayed_root->wait);
  434. }
  435. static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
  436. {
  437. if (item) {
  438. __btrfs_remove_delayed_item(item);
  439. if (atomic_dec_and_test(&item->refs))
  440. kfree(item);
  441. }
  442. }
  443. struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
  444. struct btrfs_delayed_node *delayed_node)
  445. {
  446. struct rb_node *p;
  447. struct btrfs_delayed_item *item = NULL;
  448. p = rb_first(&delayed_node->ins_root);
  449. if (p)
  450. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  451. return item;
  452. }
  453. struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
  454. struct btrfs_delayed_node *delayed_node)
  455. {
  456. struct rb_node *p;
  457. struct btrfs_delayed_item *item = NULL;
  458. p = rb_first(&delayed_node->del_root);
  459. if (p)
  460. item = rb_entry(p, struct btrfs_delayed_item, rb_node);
  461. return item;
  462. }
  463. struct btrfs_delayed_item *__btrfs_next_delayed_item(
  464. struct btrfs_delayed_item *item)
  465. {
  466. struct rb_node *p;
  467. struct btrfs_delayed_item *next = NULL;
  468. p = rb_next(&item->rb_node);
  469. if (p)
  470. next = rb_entry(p, struct btrfs_delayed_item, rb_node);
  471. return next;
  472. }
  473. static inline struct btrfs_delayed_node *btrfs_get_delayed_node(
  474. struct inode *inode)
  475. {
  476. struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
  477. struct btrfs_delayed_node *delayed_node;
  478. delayed_node = btrfs_inode->delayed_node;
  479. if (delayed_node)
  480. atomic_inc(&delayed_node->refs);
  481. return delayed_node;
  482. }
  483. static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
  484. u64 root_id)
  485. {
  486. struct btrfs_key root_key;
  487. if (root->objectid == root_id)
  488. return root;
  489. root_key.objectid = root_id;
  490. root_key.type = BTRFS_ROOT_ITEM_KEY;
  491. root_key.offset = (u64)-1;
  492. return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
  493. }
  494. static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
  495. struct btrfs_root *root,
  496. struct btrfs_delayed_item *item)
  497. {
  498. struct btrfs_block_rsv *src_rsv;
  499. struct btrfs_block_rsv *dst_rsv;
  500. u64 num_bytes;
  501. int ret;
  502. if (!trans->bytes_reserved)
  503. return 0;
  504. src_rsv = trans->block_rsv;
  505. dst_rsv = &root->fs_info->global_block_rsv;
  506. num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  507. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  508. if (!ret)
  509. item->bytes_reserved = num_bytes;
  510. return ret;
  511. }
  512. static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
  513. struct btrfs_delayed_item *item)
  514. {
  515. struct btrfs_block_rsv *rsv;
  516. if (!item->bytes_reserved)
  517. return;
  518. rsv = &root->fs_info->global_block_rsv;
  519. btrfs_block_rsv_release(root, rsv,
  520. item->bytes_reserved);
  521. }
  522. static int btrfs_delayed_inode_reserve_metadata(
  523. struct btrfs_trans_handle *trans,
  524. struct btrfs_root *root,
  525. struct btrfs_delayed_node *node)
  526. {
  527. struct btrfs_block_rsv *src_rsv;
  528. struct btrfs_block_rsv *dst_rsv;
  529. u64 num_bytes;
  530. int ret;
  531. if (!trans->bytes_reserved)
  532. return 0;
  533. src_rsv = trans->block_rsv;
  534. dst_rsv = &root->fs_info->global_block_rsv;
  535. num_bytes = btrfs_calc_trans_metadata_size(root, 1);
  536. ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
  537. if (!ret)
  538. node->bytes_reserved = num_bytes;
  539. return ret;
  540. }
  541. static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
  542. struct btrfs_delayed_node *node)
  543. {
  544. struct btrfs_block_rsv *rsv;
  545. if (!node->bytes_reserved)
  546. return;
  547. rsv = &root->fs_info->global_block_rsv;
  548. btrfs_block_rsv_release(root, rsv,
  549. node->bytes_reserved);
  550. node->bytes_reserved = 0;
  551. }
  552. /*
  553. * This helper will insert some continuous items into the same leaf according
  554. * to the free space of the leaf.
  555. */
  556. static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans,
  557. struct btrfs_root *root,
  558. struct btrfs_path *path,
  559. struct btrfs_delayed_item *item)
  560. {
  561. struct btrfs_delayed_item *curr, *next;
  562. int free_space;
  563. int total_data_size = 0, total_size = 0;
  564. struct extent_buffer *leaf;
  565. char *data_ptr;
  566. struct btrfs_key *keys;
  567. u32 *data_size;
  568. struct list_head head;
  569. int slot;
  570. int nitems;
  571. int i;
  572. int ret = 0;
  573. BUG_ON(!path->nodes[0]);
  574. leaf = path->nodes[0];
  575. free_space = btrfs_leaf_free_space(root, leaf);
  576. INIT_LIST_HEAD(&head);
  577. next = item;
  578. nitems = 0;
  579. /*
  580. * count the number of the continuous items that we can insert in batch
  581. */
  582. while (total_size + next->data_len + sizeof(struct btrfs_item) <=
  583. free_space) {
  584. total_data_size += next->data_len;
  585. total_size += next->data_len + sizeof(struct btrfs_item);
  586. list_add_tail(&next->tree_list, &head);
  587. nitems++;
  588. curr = next;
  589. next = __btrfs_next_delayed_item(curr);
  590. if (!next)
  591. break;
  592. if (!btrfs_is_continuous_delayed_item(curr, next))
  593. break;
  594. }
  595. if (!nitems) {
  596. ret = 0;
  597. goto out;
  598. }
  599. /*
  600. * we need allocate some memory space, but it might cause the task
  601. * to sleep, so we set all locked nodes in the path to blocking locks
  602. * first.
  603. */
  604. btrfs_set_path_blocking(path);
  605. keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
  606. if (!keys) {
  607. ret = -ENOMEM;
  608. goto out;
  609. }
  610. data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
  611. if (!data_size) {
  612. ret = -ENOMEM;
  613. goto error;
  614. }
  615. /* get keys of all the delayed items */
  616. i = 0;
  617. list_for_each_entry(next, &head, tree_list) {
  618. keys[i] = next->key;
  619. data_size[i] = next->data_len;
  620. i++;
  621. }
  622. /* reset all the locked nodes in the patch to spinning locks. */
  623. btrfs_clear_path_blocking(path, NULL);
  624. /* insert the keys of the items */
  625. ret = setup_items_for_insert(trans, root, path, keys, data_size,
  626. total_data_size, total_size, nitems);
  627. if (ret)
  628. goto error;
  629. /* insert the dir index items */
  630. slot = path->slots[0];
  631. list_for_each_entry_safe(curr, next, &head, tree_list) {
  632. data_ptr = btrfs_item_ptr(leaf, slot, char);
  633. write_extent_buffer(leaf, &curr->data,
  634. (unsigned long)data_ptr,
  635. curr->data_len);
  636. slot++;
  637. btrfs_delayed_item_release_metadata(root, curr);
  638. list_del(&curr->tree_list);
  639. btrfs_release_delayed_item(curr);
  640. }
  641. error:
  642. kfree(data_size);
  643. kfree(keys);
  644. out:
  645. return ret;
  646. }
  647. /*
  648. * This helper can just do simple insertion that needn't extend item for new
  649. * data, such as directory name index insertion, inode insertion.
  650. */
  651. static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
  652. struct btrfs_root *root,
  653. struct btrfs_path *path,
  654. struct btrfs_delayed_item *delayed_item)
  655. {
  656. struct extent_buffer *leaf;
  657. struct btrfs_item *item;
  658. char *ptr;
  659. int ret;
  660. ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
  661. delayed_item->data_len);
  662. if (ret < 0 && ret != -EEXIST)
  663. return ret;
  664. leaf = path->nodes[0];
  665. item = btrfs_item_nr(leaf, path->slots[0]);
  666. ptr = btrfs_item_ptr(leaf, path->slots[0], char);
  667. write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
  668. delayed_item->data_len);
  669. btrfs_mark_buffer_dirty(leaf);
  670. btrfs_delayed_item_release_metadata(root, delayed_item);
  671. return 0;
  672. }
  673. /*
  674. * we insert an item first, then if there are some continuous items, we try
  675. * to insert those items into the same leaf.
  676. */
  677. static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
  678. struct btrfs_path *path,
  679. struct btrfs_root *root,
  680. struct btrfs_delayed_node *node)
  681. {
  682. struct btrfs_delayed_item *curr, *prev;
  683. int ret = 0;
  684. do_again:
  685. mutex_lock(&node->mutex);
  686. curr = __btrfs_first_delayed_insertion_item(node);
  687. if (!curr)
  688. goto insert_end;
  689. ret = btrfs_insert_delayed_item(trans, root, path, curr);
  690. if (ret < 0) {
  691. btrfs_release_path(path);
  692. goto insert_end;
  693. }
  694. prev = curr;
  695. curr = __btrfs_next_delayed_item(prev);
  696. if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
  697. /* insert the continuous items into the same leaf */
  698. path->slots[0]++;
  699. btrfs_batch_insert_items(trans, root, path, curr);
  700. }
  701. btrfs_release_delayed_item(prev);
  702. btrfs_mark_buffer_dirty(path->nodes[0]);
  703. btrfs_release_path(path);
  704. mutex_unlock(&node->mutex);
  705. goto do_again;
  706. insert_end:
  707. mutex_unlock(&node->mutex);
  708. return ret;
  709. }
  710. static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
  711. struct btrfs_root *root,
  712. struct btrfs_path *path,
  713. struct btrfs_delayed_item *item)
  714. {
  715. struct btrfs_delayed_item *curr, *next;
  716. struct extent_buffer *leaf;
  717. struct btrfs_key key;
  718. struct list_head head;
  719. int nitems, i, last_item;
  720. int ret = 0;
  721. BUG_ON(!path->nodes[0]);
  722. leaf = path->nodes[0];
  723. i = path->slots[0];
  724. last_item = btrfs_header_nritems(leaf) - 1;
  725. if (i > last_item)
  726. return -ENOENT; /* FIXME: Is errno suitable? */
  727. next = item;
  728. INIT_LIST_HEAD(&head);
  729. btrfs_item_key_to_cpu(leaf, &key, i);
  730. nitems = 0;
  731. /*
  732. * count the number of the dir index items that we can delete in batch
  733. */
  734. while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
  735. list_add_tail(&next->tree_list, &head);
  736. nitems++;
  737. curr = next;
  738. next = __btrfs_next_delayed_item(curr);
  739. if (!next)
  740. break;
  741. if (!btrfs_is_continuous_delayed_item(curr, next))
  742. break;
  743. i++;
  744. if (i > last_item)
  745. break;
  746. btrfs_item_key_to_cpu(leaf, &key, i);
  747. }
  748. if (!nitems)
  749. return 0;
  750. ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
  751. if (ret)
  752. goto out;
  753. list_for_each_entry_safe(curr, next, &head, tree_list) {
  754. btrfs_delayed_item_release_metadata(root, curr);
  755. list_del(&curr->tree_list);
  756. btrfs_release_delayed_item(curr);
  757. }
  758. out:
  759. return ret;
  760. }
  761. static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
  762. struct btrfs_path *path,
  763. struct btrfs_root *root,
  764. struct btrfs_delayed_node *node)
  765. {
  766. struct btrfs_delayed_item *curr, *prev;
  767. int ret = 0;
  768. do_again:
  769. mutex_lock(&node->mutex);
  770. curr = __btrfs_first_delayed_deletion_item(node);
  771. if (!curr)
  772. goto delete_fail;
  773. ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
  774. if (ret < 0)
  775. goto delete_fail;
  776. else if (ret > 0) {
  777. /*
  778. * can't find the item which the node points to, so this node
  779. * is invalid, just drop it.
  780. */
  781. prev = curr;
  782. curr = __btrfs_next_delayed_item(prev);
  783. btrfs_release_delayed_item(prev);
  784. ret = 0;
  785. btrfs_release_path(path);
  786. if (curr)
  787. goto do_again;
  788. else
  789. goto delete_fail;
  790. }
  791. btrfs_batch_delete_items(trans, root, path, curr);
  792. btrfs_release_path(path);
  793. mutex_unlock(&node->mutex);
  794. goto do_again;
  795. delete_fail:
  796. btrfs_release_path(path);
  797. mutex_unlock(&node->mutex);
  798. return ret;
  799. }
  800. static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
  801. {
  802. struct btrfs_delayed_root *delayed_root;
  803. if (delayed_node && delayed_node->inode_dirty) {
  804. BUG_ON(!delayed_node->root);
  805. delayed_node->inode_dirty = 0;
  806. delayed_node->count--;
  807. delayed_root = delayed_node->root->fs_info->delayed_root;
  808. atomic_dec(&delayed_root->items);
  809. if (atomic_read(&delayed_root->items) <
  810. BTRFS_DELAYED_BACKGROUND &&
  811. waitqueue_active(&delayed_root->wait))
  812. wake_up(&delayed_root->wait);
  813. }
  814. }
  815. static int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
  816. struct btrfs_root *root,
  817. struct btrfs_path *path,
  818. struct btrfs_delayed_node *node)
  819. {
  820. struct btrfs_key key;
  821. struct btrfs_inode_item *inode_item;
  822. struct extent_buffer *leaf;
  823. int ret;
  824. mutex_lock(&node->mutex);
  825. if (!node->inode_dirty) {
  826. mutex_unlock(&node->mutex);
  827. return 0;
  828. }
  829. key.objectid = node->inode_id;
  830. btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
  831. key.offset = 0;
  832. ret = btrfs_lookup_inode(trans, root, path, &key, 1);
  833. if (ret > 0) {
  834. btrfs_release_path(path);
  835. mutex_unlock(&node->mutex);
  836. return -ENOENT;
  837. } else if (ret < 0) {
  838. mutex_unlock(&node->mutex);
  839. return ret;
  840. }
  841. btrfs_unlock_up_safe(path, 1);
  842. leaf = path->nodes[0];
  843. inode_item = btrfs_item_ptr(leaf, path->slots[0],
  844. struct btrfs_inode_item);
  845. write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
  846. sizeof(struct btrfs_inode_item));
  847. btrfs_mark_buffer_dirty(leaf);
  848. btrfs_release_path(path);
  849. btrfs_delayed_inode_release_metadata(root, node);
  850. btrfs_release_delayed_inode(node);
  851. mutex_unlock(&node->mutex);
  852. return 0;
  853. }
  854. /* Called when committing the transaction. */
  855. int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
  856. struct btrfs_root *root)
  857. {
  858. struct btrfs_delayed_root *delayed_root;
  859. struct btrfs_delayed_node *curr_node, *prev_node;
  860. struct btrfs_path *path;
  861. struct btrfs_block_rsv *block_rsv;
  862. int ret = 0;
  863. path = btrfs_alloc_path();
  864. if (!path)
  865. return -ENOMEM;
  866. path->leave_spinning = 1;
  867. block_rsv = trans->block_rsv;
  868. trans->block_rsv = &root->fs_info->global_block_rsv;
  869. delayed_root = btrfs_get_delayed_root(root);
  870. curr_node = btrfs_first_delayed_node(delayed_root);
  871. while (curr_node) {
  872. root = curr_node->root;
  873. ret = btrfs_insert_delayed_items(trans, path, root,
  874. curr_node);
  875. if (!ret)
  876. ret = btrfs_delete_delayed_items(trans, path, root,
  877. curr_node);
  878. if (!ret)
  879. ret = btrfs_update_delayed_inode(trans, root, path,
  880. curr_node);
  881. if (ret) {
  882. btrfs_release_delayed_node(curr_node);
  883. break;
  884. }
  885. prev_node = curr_node;
  886. curr_node = btrfs_next_delayed_node(curr_node);
  887. btrfs_release_delayed_node(prev_node);
  888. }
  889. btrfs_free_path(path);
  890. trans->block_rsv = block_rsv;
  891. return ret;
  892. }
  893. static int __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  894. struct btrfs_delayed_node *node)
  895. {
  896. struct btrfs_path *path;
  897. struct btrfs_block_rsv *block_rsv;
  898. int ret;
  899. path = btrfs_alloc_path();
  900. if (!path)
  901. return -ENOMEM;
  902. path->leave_spinning = 1;
  903. block_rsv = trans->block_rsv;
  904. trans->block_rsv = &node->root->fs_info->global_block_rsv;
  905. ret = btrfs_insert_delayed_items(trans, path, node->root, node);
  906. if (!ret)
  907. ret = btrfs_delete_delayed_items(trans, path, node->root, node);
  908. if (!ret)
  909. ret = btrfs_update_delayed_inode(trans, node->root, path, node);
  910. btrfs_free_path(path);
  911. trans->block_rsv = block_rsv;
  912. return ret;
  913. }
  914. int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
  915. struct inode *inode)
  916. {
  917. struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
  918. int ret;
  919. if (!delayed_node)
  920. return 0;
  921. mutex_lock(&delayed_node->mutex);
  922. if (!delayed_node->count) {
  923. mutex_unlock(&delayed_node->mutex);
  924. btrfs_release_delayed_node(delayed_node);
  925. return 0;
  926. }
  927. mutex_unlock(&delayed_node->mutex);
  928. ret = __btrfs_commit_inode_delayed_items(trans, delayed_node);
  929. btrfs_release_delayed_node(delayed_node);
  930. return ret;
  931. }
  932. void btrfs_remove_delayed_node(struct inode *inode)
  933. {
  934. struct btrfs_delayed_node *delayed_node;
  935. delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
  936. if (!delayed_node)
  937. return;
  938. BTRFS_I(inode)->delayed_node = NULL;
  939. btrfs_release_delayed_node(delayed_node);
  940. }
  941. struct btrfs_async_delayed_node {
  942. struct btrfs_root *root;
  943. struct btrfs_delayed_node *delayed_node;
  944. struct btrfs_work work;
  945. };
  946. static void btrfs_async_run_delayed_node_done(struct btrfs_work *work)
  947. {
  948. struct btrfs_async_delayed_node *async_node;
  949. struct btrfs_trans_handle *trans;
  950. struct btrfs_path *path;
  951. struct btrfs_delayed_node *delayed_node = NULL;
  952. struct btrfs_root *root;
  953. struct btrfs_block_rsv *block_rsv;
  954. unsigned long nr = 0;
  955. int need_requeue = 0;
  956. int ret;
  957. async_node = container_of(work, struct btrfs_async_delayed_node, work);
  958. path = btrfs_alloc_path();
  959. if (!path)
  960. goto out;
  961. path->leave_spinning = 1;
  962. delayed_node = async_node->delayed_node;
  963. root = delayed_node->root;
  964. trans = btrfs_join_transaction(root);
  965. if (IS_ERR(trans))
  966. goto free_path;
  967. block_rsv = trans->block_rsv;
  968. trans->block_rsv = &root->fs_info->global_block_rsv;
  969. ret = btrfs_insert_delayed_items(trans, path, root, delayed_node);
  970. if (!ret)
  971. ret = btrfs_delete_delayed_items(trans, path, root,
  972. delayed_node);
  973. if (!ret)
  974. btrfs_update_delayed_inode(trans, root, path, delayed_node);
  975. /*
  976. * Maybe new delayed items have been inserted, so we need requeue
  977. * the work. Besides that, we must dequeue the empty delayed nodes
  978. * to avoid the race between delayed items balance and the worker.
  979. * The race like this:
  980. * Task1 Worker thread
  981. * count == 0, needn't requeue
  982. * also needn't insert the
  983. * delayed node into prepare
  984. * list again.
  985. * add lots of delayed items
  986. * queue the delayed node
  987. * already in the list,
  988. * and not in the prepare
  989. * list, it means the delayed
  990. * node is being dealt with
  991. * by the worker.
  992. * do delayed items balance
  993. * the delayed node is being
  994. * dealt with by the worker
  995. * now, just wait.
  996. * the worker goto idle.
  997. * Task1 will sleep until the transaction is commited.
  998. */
  999. mutex_lock(&delayed_node->mutex);
  1000. if (delayed_node->count)
  1001. need_requeue = 1;
  1002. else
  1003. btrfs_dequeue_delayed_node(root->fs_info->delayed_root,
  1004. delayed_node);
  1005. mutex_unlock(&delayed_node->mutex);
  1006. nr = trans->blocks_used;
  1007. trans->block_rsv = block_rsv;
  1008. btrfs_end_transaction_dmeta(trans, root);
  1009. __btrfs_btree_balance_dirty(root, nr);
  1010. free_path:
  1011. btrfs_free_path(path);
  1012. out:
  1013. if (need_requeue)
  1014. btrfs_requeue_work(&async_node->work);
  1015. else {
  1016. btrfs_release_prepared_delayed_node(delayed_node);
  1017. kfree(async_node);
  1018. }
  1019. }
  1020. static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
  1021. struct btrfs_root *root, int all)
  1022. {
  1023. struct btrfs_async_delayed_node *async_node;
  1024. struct btrfs_delayed_node *curr;
  1025. int count = 0;
  1026. again:
  1027. curr = btrfs_first_prepared_delayed_node(delayed_root);
  1028. if (!curr)
  1029. return 0;
  1030. async_node = kmalloc(sizeof(*async_node), GFP_NOFS);
  1031. if (!async_node) {
  1032. btrfs_release_prepared_delayed_node(curr);
  1033. return -ENOMEM;
  1034. }
  1035. async_node->root = root;
  1036. async_node->delayed_node = curr;
  1037. async_node->work.func = btrfs_async_run_delayed_node_done;
  1038. async_node->work.flags = 0;
  1039. btrfs_queue_worker(&root->fs_info->delayed_workers, &async_node->work);
  1040. count++;
  1041. if (all || count < 4)
  1042. goto again;
  1043. return 0;
  1044. }
  1045. void btrfs_balance_delayed_items(struct btrfs_root *root)
  1046. {
  1047. struct btrfs_delayed_root *delayed_root;
  1048. delayed_root = btrfs_get_delayed_root(root);
  1049. if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
  1050. return;
  1051. if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
  1052. int ret;
  1053. ret = btrfs_wq_run_delayed_node(delayed_root, root, 1);
  1054. if (ret)
  1055. return;
  1056. wait_event_interruptible_timeout(
  1057. delayed_root->wait,
  1058. (atomic_read(&delayed_root->items) <
  1059. BTRFS_DELAYED_BACKGROUND),
  1060. HZ);
  1061. return;
  1062. }
  1063. btrfs_wq_run_delayed_node(delayed_root, root, 0);
  1064. }
  1065. int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
  1066. struct btrfs_root *root, const char *name,
  1067. int name_len, struct inode *dir,
  1068. struct btrfs_disk_key *disk_key, u8 type,
  1069. u64 index)
  1070. {
  1071. struct btrfs_delayed_node *delayed_node;
  1072. struct btrfs_delayed_item *delayed_item;
  1073. struct btrfs_dir_item *dir_item;
  1074. int ret;
  1075. delayed_node = btrfs_get_or_create_delayed_node(dir);
  1076. if (IS_ERR(delayed_node))
  1077. return PTR_ERR(delayed_node);
  1078. delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
  1079. if (!delayed_item) {
  1080. ret = -ENOMEM;
  1081. goto release_node;
  1082. }
  1083. ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
  1084. /*
  1085. * we have reserved enough space when we start a new transaction,
  1086. * so reserving metadata failure is impossible
  1087. */
  1088. BUG_ON(ret);
  1089. delayed_item->key.objectid = btrfs_ino(dir);
  1090. btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
  1091. delayed_item->key.offset = index;
  1092. dir_item = (struct btrfs_dir_item *)delayed_item->data;
  1093. dir_item->location = *disk_key;
  1094. dir_item->transid = cpu_to_le64(trans->transid);
  1095. dir_item->data_len = 0;
  1096. dir_item->name_len = cpu_to_le16(name_len);
  1097. dir_item->type = type;
  1098. memcpy((char *)(dir_item + 1), name, name_len);
  1099. mutex_lock(&delayed_node->mutex);
  1100. ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
  1101. if (unlikely(ret)) {
  1102. printk(KERN_ERR "err add delayed dir index item(name: %s) into "
  1103. "the insertion tree of the delayed node"
  1104. "(root id: %llu, inode id: %llu, errno: %d)\n",
  1105. name,
  1106. (unsigned long long)delayed_node->root->objectid,
  1107. (unsigned long long)delayed_node->inode_id,
  1108. ret);
  1109. BUG();
  1110. }
  1111. mutex_unlock(&delayed_node->mutex);
  1112. release_node:
  1113. btrfs_release_delayed_node(delayed_node);
  1114. return ret;
  1115. }
  1116. static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
  1117. struct btrfs_delayed_node *node,
  1118. struct btrfs_key *key)
  1119. {
  1120. struct btrfs_delayed_item *item;
  1121. mutex_lock(&node->mutex);
  1122. item = __btrfs_lookup_delayed_insertion_item(node, key);
  1123. if (!item) {
  1124. mutex_unlock(&node->mutex);
  1125. return 1;
  1126. }
  1127. btrfs_delayed_item_release_metadata(root, item);
  1128. btrfs_release_delayed_item(item);
  1129. mutex_unlock(&node->mutex);
  1130. return 0;
  1131. }
  1132. int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
  1133. struct btrfs_root *root, struct inode *dir,
  1134. u64 index)
  1135. {
  1136. struct btrfs_delayed_node *node;
  1137. struct btrfs_delayed_item *item;
  1138. struct btrfs_key item_key;
  1139. int ret;
  1140. node = btrfs_get_or_create_delayed_node(dir);
  1141. if (IS_ERR(node))
  1142. return PTR_ERR(node);
  1143. item_key.objectid = btrfs_ino(dir);
  1144. btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
  1145. item_key.offset = index;
  1146. ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
  1147. if (!ret)
  1148. goto end;
  1149. item = btrfs_alloc_delayed_item(0);
  1150. if (!item) {
  1151. ret = -ENOMEM;
  1152. goto end;
  1153. }
  1154. item->key = item_key;
  1155. ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
  1156. /*
  1157. * we have reserved enough space when we start a new transaction,
  1158. * so reserving metadata failure is impossible.
  1159. */
  1160. BUG_ON(ret);
  1161. mutex_lock(&node->mutex);
  1162. ret = __btrfs_add_delayed_deletion_item(node, item);
  1163. if (unlikely(ret)) {
  1164. printk(KERN_ERR "err add delayed dir index item(index: %llu) "
  1165. "into the deletion tree of the delayed node"
  1166. "(root id: %llu, inode id: %llu, errno: %d)\n",
  1167. (unsigned long long)index,
  1168. (unsigned long long)node->root->objectid,
  1169. (unsigned long long)node->inode_id,
  1170. ret);
  1171. BUG();
  1172. }
  1173. mutex_unlock(&node->mutex);
  1174. end:
  1175. btrfs_release_delayed_node(node);
  1176. return ret;
  1177. }
  1178. int btrfs_inode_delayed_dir_index_count(struct inode *inode)
  1179. {
  1180. struct btrfs_delayed_node *delayed_node = BTRFS_I(inode)->delayed_node;
  1181. int ret = 0;
  1182. if (!delayed_node)
  1183. return -ENOENT;
  1184. /*
  1185. * Since we have held i_mutex of this directory, it is impossible that
  1186. * a new directory index is added into the delayed node and index_cnt
  1187. * is updated now. So we needn't lock the delayed node.
  1188. */
  1189. if (!delayed_node->index_cnt)
  1190. return -EINVAL;
  1191. BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
  1192. return ret;
  1193. }
  1194. void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
  1195. struct list_head *del_list)
  1196. {
  1197. struct btrfs_delayed_node *delayed_node;
  1198. struct btrfs_delayed_item *item;
  1199. delayed_node = btrfs_get_delayed_node(inode);
  1200. if (!delayed_node)
  1201. return;
  1202. mutex_lock(&delayed_node->mutex);
  1203. item = __btrfs_first_delayed_insertion_item(delayed_node);
  1204. while (item) {
  1205. atomic_inc(&item->refs);
  1206. list_add_tail(&item->readdir_list, ins_list);
  1207. item = __btrfs_next_delayed_item(item);
  1208. }
  1209. item = __btrfs_first_delayed_deletion_item(delayed_node);
  1210. while (item) {
  1211. atomic_inc(&item->refs);
  1212. list_add_tail(&item->readdir_list, del_list);
  1213. item = __btrfs_next_delayed_item(item);
  1214. }
  1215. mutex_unlock(&delayed_node->mutex);
  1216. /*
  1217. * This delayed node is still cached in the btrfs inode, so refs
  1218. * must be > 1 now, and we needn't check it is going to be freed
  1219. * or not.
  1220. *
  1221. * Besides that, this function is used to read dir, we do not
  1222. * insert/delete delayed items in this period. So we also needn't
  1223. * requeue or dequeue this delayed node.
  1224. */
  1225. atomic_dec(&delayed_node->refs);
  1226. }
  1227. void btrfs_put_delayed_items(struct list_head *ins_list,
  1228. struct list_head *del_list)
  1229. {
  1230. struct btrfs_delayed_item *curr, *next;
  1231. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1232. list_del(&curr->readdir_list);
  1233. if (atomic_dec_and_test(&curr->refs))
  1234. kfree(curr);
  1235. }
  1236. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1237. list_del(&curr->readdir_list);
  1238. if (atomic_dec_and_test(&curr->refs))
  1239. kfree(curr);
  1240. }
  1241. }
  1242. int btrfs_should_delete_dir_index(struct list_head *del_list,
  1243. u64 index)
  1244. {
  1245. struct btrfs_delayed_item *curr, *next;
  1246. int ret;
  1247. if (list_empty(del_list))
  1248. return 0;
  1249. list_for_each_entry_safe(curr, next, del_list, readdir_list) {
  1250. if (curr->key.offset > index)
  1251. break;
  1252. list_del(&curr->readdir_list);
  1253. ret = (curr->key.offset == index);
  1254. if (atomic_dec_and_test(&curr->refs))
  1255. kfree(curr);
  1256. if (ret)
  1257. return 1;
  1258. else
  1259. continue;
  1260. }
  1261. return 0;
  1262. }
  1263. /*
  1264. * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
  1265. *
  1266. */
  1267. int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
  1268. filldir_t filldir,
  1269. struct list_head *ins_list)
  1270. {
  1271. struct btrfs_dir_item *di;
  1272. struct btrfs_delayed_item *curr, *next;
  1273. struct btrfs_key location;
  1274. char *name;
  1275. int name_len;
  1276. int over = 0;
  1277. unsigned char d_type;
  1278. if (list_empty(ins_list))
  1279. return 0;
  1280. /*
  1281. * Changing the data of the delayed item is impossible. So
  1282. * we needn't lock them. And we have held i_mutex of the
  1283. * directory, nobody can delete any directory indexes now.
  1284. */
  1285. list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
  1286. list_del(&curr->readdir_list);
  1287. if (curr->key.offset < filp->f_pos) {
  1288. if (atomic_dec_and_test(&curr->refs))
  1289. kfree(curr);
  1290. continue;
  1291. }
  1292. filp->f_pos = curr->key.offset;
  1293. di = (struct btrfs_dir_item *)curr->data;
  1294. name = (char *)(di + 1);
  1295. name_len = le16_to_cpu(di->name_len);
  1296. d_type = btrfs_filetype_table[di->type];
  1297. btrfs_disk_key_to_cpu(&location, &di->location);
  1298. over = filldir(dirent, name, name_len, curr->key.offset,
  1299. location.objectid, d_type);
  1300. if (atomic_dec_and_test(&curr->refs))
  1301. kfree(curr);
  1302. if (over)
  1303. return 1;
  1304. }
  1305. return 0;
  1306. }
  1307. BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
  1308. generation, 64);
  1309. BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
  1310. sequence, 64);
  1311. BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
  1312. transid, 64);
  1313. BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
  1314. BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
  1315. nbytes, 64);
  1316. BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
  1317. block_group, 64);
  1318. BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
  1319. BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
  1320. BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
  1321. BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
  1322. BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
  1323. BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
  1324. BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
  1325. BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
  1326. static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
  1327. struct btrfs_inode_item *inode_item,
  1328. struct inode *inode)
  1329. {
  1330. btrfs_set_stack_inode_uid(inode_item, inode->i_uid);
  1331. btrfs_set_stack_inode_gid(inode_item, inode->i_gid);
  1332. btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
  1333. btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
  1334. btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
  1335. btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
  1336. btrfs_set_stack_inode_generation(inode_item,
  1337. BTRFS_I(inode)->generation);
  1338. btrfs_set_stack_inode_sequence(inode_item, BTRFS_I(inode)->sequence);
  1339. btrfs_set_stack_inode_transid(inode_item, trans->transid);
  1340. btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
  1341. btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
  1342. btrfs_set_stack_inode_block_group(inode_item, 0);
  1343. btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
  1344. inode->i_atime.tv_sec);
  1345. btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
  1346. inode->i_atime.tv_nsec);
  1347. btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
  1348. inode->i_mtime.tv_sec);
  1349. btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
  1350. inode->i_mtime.tv_nsec);
  1351. btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
  1352. inode->i_ctime.tv_sec);
  1353. btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
  1354. inode->i_ctime.tv_nsec);
  1355. }
  1356. int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
  1357. struct btrfs_root *root, struct inode *inode)
  1358. {
  1359. struct btrfs_delayed_node *delayed_node;
  1360. int ret = 0;
  1361. delayed_node = btrfs_get_or_create_delayed_node(inode);
  1362. if (IS_ERR(delayed_node))
  1363. return PTR_ERR(delayed_node);
  1364. mutex_lock(&delayed_node->mutex);
  1365. if (delayed_node->inode_dirty) {
  1366. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1367. goto release_node;
  1368. }
  1369. ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
  1370. /*
  1371. * we must reserve enough space when we start a new transaction,
  1372. * so reserving metadata failure is impossible
  1373. */
  1374. BUG_ON(ret);
  1375. fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
  1376. delayed_node->inode_dirty = 1;
  1377. delayed_node->count++;
  1378. atomic_inc(&root->fs_info->delayed_root->items);
  1379. release_node:
  1380. mutex_unlock(&delayed_node->mutex);
  1381. btrfs_release_delayed_node(delayed_node);
  1382. return ret;
  1383. }
  1384. static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
  1385. {
  1386. struct btrfs_root *root = delayed_node->root;
  1387. struct btrfs_delayed_item *curr_item, *prev_item;
  1388. mutex_lock(&delayed_node->mutex);
  1389. curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
  1390. while (curr_item) {
  1391. btrfs_delayed_item_release_metadata(root, curr_item);
  1392. prev_item = curr_item;
  1393. curr_item = __btrfs_next_delayed_item(prev_item);
  1394. btrfs_release_delayed_item(prev_item);
  1395. }
  1396. curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
  1397. while (curr_item) {
  1398. btrfs_delayed_item_release_metadata(root, curr_item);
  1399. prev_item = curr_item;
  1400. curr_item = __btrfs_next_delayed_item(prev_item);
  1401. btrfs_release_delayed_item(prev_item);
  1402. }
  1403. if (delayed_node->inode_dirty) {
  1404. btrfs_delayed_inode_release_metadata(root, delayed_node);
  1405. btrfs_release_delayed_inode(delayed_node);
  1406. }
  1407. mutex_unlock(&delayed_node->mutex);
  1408. }
  1409. void btrfs_kill_delayed_inode_items(struct inode *inode)
  1410. {
  1411. struct btrfs_delayed_node *delayed_node;
  1412. delayed_node = btrfs_get_delayed_node(inode);
  1413. if (!delayed_node)
  1414. return;
  1415. __btrfs_kill_delayed_node(delayed_node);
  1416. btrfs_release_delayed_node(delayed_node);
  1417. }
  1418. void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
  1419. {
  1420. u64 inode_id = 0;
  1421. struct btrfs_delayed_node *delayed_nodes[8];
  1422. int i, n;
  1423. while (1) {
  1424. spin_lock(&root->inode_lock);
  1425. n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
  1426. (void **)delayed_nodes, inode_id,
  1427. ARRAY_SIZE(delayed_nodes));
  1428. if (!n) {
  1429. spin_unlock(&root->inode_lock);
  1430. break;
  1431. }
  1432. inode_id = delayed_nodes[n - 1]->inode_id + 1;
  1433. for (i = 0; i < n; i++)
  1434. atomic_inc(&delayed_nodes[i]->refs);
  1435. spin_unlock(&root->inode_lock);
  1436. for (i = 0; i < n; i++) {
  1437. __btrfs_kill_delayed_node(delayed_nodes[i]);
  1438. btrfs_release_delayed_node(delayed_nodes[i]);
  1439. }
  1440. }
  1441. }