sata_highbank.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653
  1. /*
  2. * Calxeda Highbank AHCI SATA platform driver
  3. * Copyright 2012 Calxeda, Inc.
  4. *
  5. * based on the AHCI SATA platform driver by Jeff Garzik and Anton Vorontsov
  6. *
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms and conditions of the GNU General Public License,
  9. * version 2, as published by the Free Software Foundation.
  10. *
  11. * This program is distributed in the hope it will be useful, but WITHOUT
  12. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  14. * more details.
  15. *
  16. * You should have received a copy of the GNU General Public License along with
  17. * this program. If not, see <http://www.gnu.org/licenses/>.
  18. */
  19. #include <linux/kernel.h>
  20. #include <linux/gfp.h>
  21. #include <linux/module.h>
  22. #include <linux/init.h>
  23. #include <linux/types.h>
  24. #include <linux/err.h>
  25. #include <linux/io.h>
  26. #include <linux/spinlock.h>
  27. #include <linux/device.h>
  28. #include <linux/of_device.h>
  29. #include <linux/of_address.h>
  30. #include <linux/platform_device.h>
  31. #include <linux/libata.h>
  32. #include <linux/ahci_platform.h>
  33. #include <linux/interrupt.h>
  34. #include <linux/delay.h>
  35. #include <linux/export.h>
  36. #include <linux/gpio.h>
  37. #include <linux/of_gpio.h>
  38. #include "ahci.h"
  39. #define CPHY_MAP(dev, addr) ((((dev) & 0x1f) << 7) | (((addr) >> 9) & 0x7f))
  40. #define CPHY_ADDR(addr) (((addr) & 0x1ff) << 2)
  41. #define SERDES_CR_CTL 0x80a0
  42. #define SERDES_CR_ADDR 0x80a1
  43. #define SERDES_CR_DATA 0x80a2
  44. #define CR_BUSY 0x0001
  45. #define CR_START 0x0001
  46. #define CR_WR_RDN 0x0002
  47. #define CPHY_TX_INPUT_STS 0x2001
  48. #define CPHY_RX_INPUT_STS 0x2002
  49. #define CPHY_SATA_TX_OVERRIDE 0x8000
  50. #define CPHY_SATA_RX_OVERRIDE 0x4000
  51. #define CPHY_TX_OVERRIDE 0x2004
  52. #define CPHY_RX_OVERRIDE 0x2005
  53. #define SPHY_LANE 0x100
  54. #define SPHY_HALF_RATE 0x0001
  55. #define CPHY_SATA_DPLL_MODE 0x0700
  56. #define CPHY_SATA_DPLL_SHIFT 8
  57. #define CPHY_SATA_DPLL_RESET (1 << 11)
  58. #define CPHY_SATA_TX_ATTEN 0x1c00
  59. #define CPHY_SATA_TX_ATTEN_SHIFT 10
  60. #define CPHY_PHY_COUNT 6
  61. #define CPHY_LANE_COUNT 4
  62. #define CPHY_PORT_COUNT (CPHY_PHY_COUNT * CPHY_LANE_COUNT)
  63. static DEFINE_SPINLOCK(cphy_lock);
  64. /* Each of the 6 phys can have up to 4 sata ports attached to i. Map 0-based
  65. * sata ports to their phys and then to their lanes within the phys
  66. */
  67. struct phy_lane_info {
  68. void __iomem *phy_base;
  69. u8 lane_mapping;
  70. u8 phy_devs;
  71. u8 tx_atten;
  72. };
  73. static struct phy_lane_info port_data[CPHY_PORT_COUNT];
  74. static DEFINE_SPINLOCK(sgpio_lock);
  75. #define SCLOCK 0
  76. #define SLOAD 1
  77. #define SDATA 2
  78. #define SGPIO_PINS 3
  79. #define SGPIO_PORTS 8
  80. struct ecx_plat_data {
  81. u32 n_ports;
  82. /* number of extra clocks that the SGPIO PIC controller expects */
  83. u32 pre_clocks;
  84. u32 post_clocks;
  85. unsigned sgpio_gpio[SGPIO_PINS];
  86. u32 sgpio_pattern;
  87. u32 port_to_sgpio[SGPIO_PORTS];
  88. };
  89. #define SGPIO_SIGNALS 3
  90. #define ECX_ACTIVITY_BITS 0x300000
  91. #define ECX_ACTIVITY_SHIFT 0
  92. #define ECX_LOCATE_BITS 0x80000
  93. #define ECX_LOCATE_SHIFT 1
  94. #define ECX_FAULT_BITS 0x400000
  95. #define ECX_FAULT_SHIFT 2
  96. static inline int sgpio_bit_shift(struct ecx_plat_data *pdata, u32 port,
  97. u32 shift)
  98. {
  99. return 1 << (3 * pdata->port_to_sgpio[port] + shift);
  100. }
  101. static void ecx_parse_sgpio(struct ecx_plat_data *pdata, u32 port, u32 state)
  102. {
  103. if (state & ECX_ACTIVITY_BITS)
  104. pdata->sgpio_pattern |= sgpio_bit_shift(pdata, port,
  105. ECX_ACTIVITY_SHIFT);
  106. else
  107. pdata->sgpio_pattern &= ~sgpio_bit_shift(pdata, port,
  108. ECX_ACTIVITY_SHIFT);
  109. if (state & ECX_LOCATE_BITS)
  110. pdata->sgpio_pattern |= sgpio_bit_shift(pdata, port,
  111. ECX_LOCATE_SHIFT);
  112. else
  113. pdata->sgpio_pattern &= ~sgpio_bit_shift(pdata, port,
  114. ECX_LOCATE_SHIFT);
  115. if (state & ECX_FAULT_BITS)
  116. pdata->sgpio_pattern |= sgpio_bit_shift(pdata, port,
  117. ECX_FAULT_SHIFT);
  118. else
  119. pdata->sgpio_pattern &= ~sgpio_bit_shift(pdata, port,
  120. ECX_FAULT_SHIFT);
  121. }
  122. /*
  123. * Tell the LED controller that the signal has changed by raising the clock
  124. * line for 50 uS and then lowering it for 50 uS.
  125. */
  126. static void ecx_led_cycle_clock(struct ecx_plat_data *pdata)
  127. {
  128. gpio_set_value(pdata->sgpio_gpio[SCLOCK], 1);
  129. udelay(50);
  130. gpio_set_value(pdata->sgpio_gpio[SCLOCK], 0);
  131. udelay(50);
  132. }
  133. static ssize_t ecx_transmit_led_message(struct ata_port *ap, u32 state,
  134. ssize_t size)
  135. {
  136. struct ahci_host_priv *hpriv = ap->host->private_data;
  137. struct ecx_plat_data *pdata = (struct ecx_plat_data *) hpriv->plat_data;
  138. struct ahci_port_priv *pp = ap->private_data;
  139. unsigned long flags;
  140. int pmp, i;
  141. struct ahci_em_priv *emp;
  142. u32 sgpio_out;
  143. /* get the slot number from the message */
  144. pmp = (state & EM_MSG_LED_PMP_SLOT) >> 8;
  145. if (pmp < EM_MAX_SLOTS)
  146. emp = &pp->em_priv[pmp];
  147. else
  148. return -EINVAL;
  149. if (!(hpriv->em_msg_type & EM_MSG_TYPE_LED))
  150. return size;
  151. spin_lock_irqsave(&sgpio_lock, flags);
  152. ecx_parse_sgpio(pdata, ap->port_no, state);
  153. sgpio_out = pdata->sgpio_pattern;
  154. for (i = 0; i < pdata->pre_clocks; i++)
  155. ecx_led_cycle_clock(pdata);
  156. gpio_set_value(pdata->sgpio_gpio[SLOAD], 1);
  157. ecx_led_cycle_clock(pdata);
  158. gpio_set_value(pdata->sgpio_gpio[SLOAD], 0);
  159. /*
  160. * bit-bang out the SGPIO pattern, by consuming a bit and then
  161. * clocking it out.
  162. */
  163. for (i = 0; i < (SGPIO_SIGNALS * pdata->n_ports); i++) {
  164. gpio_set_value(pdata->sgpio_gpio[SDATA], sgpio_out & 1);
  165. sgpio_out >>= 1;
  166. ecx_led_cycle_clock(pdata);
  167. }
  168. for (i = 0; i < pdata->post_clocks; i++)
  169. ecx_led_cycle_clock(pdata);
  170. /* save off new led state for port/slot */
  171. emp->led_state = state;
  172. spin_unlock_irqrestore(&sgpio_lock, flags);
  173. return size;
  174. }
  175. static void highbank_set_em_messages(struct device *dev,
  176. struct ahci_host_priv *hpriv,
  177. struct ata_port_info *pi)
  178. {
  179. struct device_node *np = dev->of_node;
  180. struct ecx_plat_data *pdata = hpriv->plat_data;
  181. int i;
  182. int err;
  183. for (i = 0; i < SGPIO_PINS; i++) {
  184. err = of_get_named_gpio(np, "calxeda,sgpio-gpio", i);
  185. if (IS_ERR_VALUE(err))
  186. return;
  187. pdata->sgpio_gpio[i] = err;
  188. err = gpio_request(pdata->sgpio_gpio[i], "CX SGPIO");
  189. if (err) {
  190. pr_err("sata_highbank gpio_request %d failed: %d\n",
  191. i, err);
  192. return;
  193. }
  194. gpio_direction_output(pdata->sgpio_gpio[i], 1);
  195. }
  196. of_property_read_u32_array(np, "calxeda,led-order",
  197. pdata->port_to_sgpio,
  198. pdata->n_ports);
  199. if (of_property_read_u32(np, "calxeda,pre-clocks", &pdata->pre_clocks))
  200. pdata->pre_clocks = 0;
  201. if (of_property_read_u32(np, "calxeda,post-clocks",
  202. &pdata->post_clocks))
  203. pdata->post_clocks = 0;
  204. /* store em_loc */
  205. hpriv->em_loc = 0;
  206. hpriv->em_buf_sz = 4;
  207. hpriv->em_msg_type = EM_MSG_TYPE_LED;
  208. pi->flags |= ATA_FLAG_EM | ATA_FLAG_SW_ACTIVITY;
  209. }
  210. static u32 __combo_phy_reg_read(u8 sata_port, u32 addr)
  211. {
  212. u32 data;
  213. u8 dev = port_data[sata_port].phy_devs;
  214. spin_lock(&cphy_lock);
  215. writel(CPHY_MAP(dev, addr), port_data[sata_port].phy_base + 0x800);
  216. data = readl(port_data[sata_port].phy_base + CPHY_ADDR(addr));
  217. spin_unlock(&cphy_lock);
  218. return data;
  219. }
  220. static void __combo_phy_reg_write(u8 sata_port, u32 addr, u32 data)
  221. {
  222. u8 dev = port_data[sata_port].phy_devs;
  223. spin_lock(&cphy_lock);
  224. writel(CPHY_MAP(dev, addr), port_data[sata_port].phy_base + 0x800);
  225. writel(data, port_data[sata_port].phy_base + CPHY_ADDR(addr));
  226. spin_unlock(&cphy_lock);
  227. }
  228. static void combo_phy_wait_for_ready(u8 sata_port)
  229. {
  230. while (__combo_phy_reg_read(sata_port, SERDES_CR_CTL) & CR_BUSY)
  231. udelay(5);
  232. }
  233. static u32 combo_phy_read(u8 sata_port, u32 addr)
  234. {
  235. combo_phy_wait_for_ready(sata_port);
  236. __combo_phy_reg_write(sata_port, SERDES_CR_ADDR, addr);
  237. __combo_phy_reg_write(sata_port, SERDES_CR_CTL, CR_START);
  238. combo_phy_wait_for_ready(sata_port);
  239. return __combo_phy_reg_read(sata_port, SERDES_CR_DATA);
  240. }
  241. static void combo_phy_write(u8 sata_port, u32 addr, u32 data)
  242. {
  243. combo_phy_wait_for_ready(sata_port);
  244. __combo_phy_reg_write(sata_port, SERDES_CR_ADDR, addr);
  245. __combo_phy_reg_write(sata_port, SERDES_CR_DATA, data);
  246. __combo_phy_reg_write(sata_port, SERDES_CR_CTL, CR_WR_RDN | CR_START);
  247. }
  248. static void highbank_cphy_disable_overrides(u8 sata_port)
  249. {
  250. u8 lane = port_data[sata_port].lane_mapping;
  251. u32 tmp;
  252. if (unlikely(port_data[sata_port].phy_base == NULL))
  253. return;
  254. tmp = combo_phy_read(sata_port, CPHY_RX_INPUT_STS + lane * SPHY_LANE);
  255. tmp &= ~CPHY_SATA_RX_OVERRIDE;
  256. combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp);
  257. }
  258. static void cphy_override_tx_attenuation(u8 sata_port, u32 val)
  259. {
  260. u8 lane = port_data[sata_port].lane_mapping;
  261. u32 tmp;
  262. if (val & 0x8)
  263. return;
  264. tmp = combo_phy_read(sata_port, CPHY_TX_INPUT_STS + lane * SPHY_LANE);
  265. tmp &= ~CPHY_SATA_TX_OVERRIDE;
  266. combo_phy_write(sata_port, CPHY_TX_OVERRIDE + lane * SPHY_LANE, tmp);
  267. tmp |= CPHY_SATA_TX_OVERRIDE;
  268. combo_phy_write(sata_port, CPHY_TX_OVERRIDE + lane * SPHY_LANE, tmp);
  269. tmp |= (val << CPHY_SATA_TX_ATTEN_SHIFT) & CPHY_SATA_TX_ATTEN;
  270. combo_phy_write(sata_port, CPHY_TX_OVERRIDE + lane * SPHY_LANE, tmp);
  271. }
  272. static void cphy_override_rx_mode(u8 sata_port, u32 val)
  273. {
  274. u8 lane = port_data[sata_port].lane_mapping;
  275. u32 tmp;
  276. tmp = combo_phy_read(sata_port, CPHY_RX_INPUT_STS + lane * SPHY_LANE);
  277. tmp &= ~CPHY_SATA_RX_OVERRIDE;
  278. combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp);
  279. tmp |= CPHY_SATA_RX_OVERRIDE;
  280. combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp);
  281. tmp &= ~CPHY_SATA_DPLL_MODE;
  282. tmp |= val << CPHY_SATA_DPLL_SHIFT;
  283. combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp);
  284. tmp |= CPHY_SATA_DPLL_RESET;
  285. combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp);
  286. tmp &= ~CPHY_SATA_DPLL_RESET;
  287. combo_phy_write(sata_port, CPHY_RX_OVERRIDE + lane * SPHY_LANE, tmp);
  288. msleep(15);
  289. }
  290. static void highbank_cphy_override_lane(u8 sata_port)
  291. {
  292. u8 lane = port_data[sata_port].lane_mapping;
  293. u32 tmp, k = 0;
  294. if (unlikely(port_data[sata_port].phy_base == NULL))
  295. return;
  296. do {
  297. tmp = combo_phy_read(sata_port, CPHY_RX_INPUT_STS +
  298. lane * SPHY_LANE);
  299. } while ((tmp & SPHY_HALF_RATE) && (k++ < 1000));
  300. cphy_override_rx_mode(sata_port, 3);
  301. cphy_override_tx_attenuation(sata_port, port_data[sata_port].tx_atten);
  302. }
  303. static int highbank_initialize_phys(struct device *dev, void __iomem *addr)
  304. {
  305. struct device_node *sata_node = dev->of_node;
  306. int phy_count = 0, phy, port = 0, i;
  307. void __iomem *cphy_base[CPHY_PHY_COUNT];
  308. struct device_node *phy_nodes[CPHY_PHY_COUNT];
  309. u32 tx_atten[CPHY_PORT_COUNT];
  310. memset(port_data, 0, sizeof(struct phy_lane_info) * CPHY_PORT_COUNT);
  311. memset(phy_nodes, 0, sizeof(struct device_node*) * CPHY_PHY_COUNT);
  312. memset(tx_atten, 0xff, CPHY_PORT_COUNT);
  313. do {
  314. u32 tmp;
  315. struct of_phandle_args phy_data;
  316. if (of_parse_phandle_with_args(sata_node,
  317. "calxeda,port-phys", "#phy-cells",
  318. port, &phy_data))
  319. break;
  320. for (phy = 0; phy < phy_count; phy++) {
  321. if (phy_nodes[phy] == phy_data.np)
  322. break;
  323. }
  324. if (phy_nodes[phy] == NULL) {
  325. phy_nodes[phy] = phy_data.np;
  326. cphy_base[phy] = of_iomap(phy_nodes[phy], 0);
  327. if (cphy_base[phy] == NULL) {
  328. return 0;
  329. }
  330. phy_count += 1;
  331. }
  332. port_data[port].lane_mapping = phy_data.args[0];
  333. of_property_read_u32(phy_nodes[phy], "phydev", &tmp);
  334. port_data[port].phy_devs = tmp;
  335. port_data[port].phy_base = cphy_base[phy];
  336. of_node_put(phy_data.np);
  337. port += 1;
  338. } while (port < CPHY_PORT_COUNT);
  339. of_property_read_u32_array(sata_node, "calxeda,tx-atten",
  340. tx_atten, port);
  341. for (i = 0; i < port; i++)
  342. port_data[i].tx_atten = (u8) tx_atten[i];
  343. return 0;
  344. }
  345. /*
  346. * The Calxeda SATA phy intermittently fails to bring up a link with Gen3
  347. * Retrying the phy hard reset can work around the issue, but the drive
  348. * may fail again. In less than 150 out of 15000 test runs, it took more
  349. * than 10 tries for the link to be established (but never more than 35).
  350. * Triple the maximum observed retry count to provide plenty of margin for
  351. * rare events and to guarantee that the link is established.
  352. *
  353. * Also, the default 2 second time-out on a failed drive is too long in
  354. * this situation. The uboot implementation of the same driver function
  355. * uses a much shorter time-out period and never experiences a time out
  356. * issue. Reducing the time-out to 500ms improves the responsiveness.
  357. * The other timing constants were kept the same as the stock AHCI driver.
  358. * This change was also tested 15000 times on 24 drives and none of them
  359. * experienced a time out.
  360. */
  361. static int ahci_highbank_hardreset(struct ata_link *link, unsigned int *class,
  362. unsigned long deadline)
  363. {
  364. static const unsigned long timing[] = { 5, 100, 500};
  365. struct ata_port *ap = link->ap;
  366. struct ahci_port_priv *pp = ap->private_data;
  367. u8 *d2h_fis = pp->rx_fis + RX_FIS_D2H_REG;
  368. struct ata_taskfile tf;
  369. bool online;
  370. u32 sstatus;
  371. int rc;
  372. int retry = 100;
  373. ahci_stop_engine(ap);
  374. /* clear D2H reception area to properly wait for D2H FIS */
  375. ata_tf_init(link->device, &tf);
  376. tf.command = ATA_BUSY;
  377. ata_tf_to_fis(&tf, 0, 0, d2h_fis);
  378. do {
  379. highbank_cphy_disable_overrides(link->ap->port_no);
  380. rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
  381. highbank_cphy_override_lane(link->ap->port_no);
  382. /* If the status is 1, we are connected, but the link did not
  383. * come up. So retry resetting the link again.
  384. */
  385. if (sata_scr_read(link, SCR_STATUS, &sstatus))
  386. break;
  387. if (!(sstatus & 0x3))
  388. break;
  389. } while (!online && retry--);
  390. ahci_start_engine(ap);
  391. if (online)
  392. *class = ahci_dev_classify(ap);
  393. return rc;
  394. }
  395. static struct ata_port_operations ahci_highbank_ops = {
  396. .inherits = &ahci_ops,
  397. .hardreset = ahci_highbank_hardreset,
  398. .transmit_led_message = ecx_transmit_led_message,
  399. };
  400. static const struct ata_port_info ahci_highbank_port_info = {
  401. .flags = AHCI_FLAG_COMMON,
  402. .pio_mask = ATA_PIO4,
  403. .udma_mask = ATA_UDMA6,
  404. .port_ops = &ahci_highbank_ops,
  405. };
  406. static struct scsi_host_template ahci_highbank_platform_sht = {
  407. AHCI_SHT("sata_highbank"),
  408. };
  409. static const struct of_device_id ahci_of_match[] = {
  410. { .compatible = "calxeda,hb-ahci" },
  411. {},
  412. };
  413. MODULE_DEVICE_TABLE(of, ahci_of_match);
  414. static int ahci_highbank_probe(struct platform_device *pdev)
  415. {
  416. struct device *dev = &pdev->dev;
  417. struct ahci_host_priv *hpriv;
  418. struct ecx_plat_data *pdata;
  419. struct ata_host *host;
  420. struct resource *mem;
  421. int irq;
  422. int i;
  423. int rc;
  424. u32 n_ports;
  425. struct ata_port_info pi = ahci_highbank_port_info;
  426. const struct ata_port_info *ppi[] = { &pi, NULL };
  427. mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  428. if (!mem) {
  429. dev_err(dev, "no mmio space\n");
  430. return -EINVAL;
  431. }
  432. irq = platform_get_irq(pdev, 0);
  433. if (irq <= 0) {
  434. dev_err(dev, "no irq\n");
  435. return -EINVAL;
  436. }
  437. hpriv = devm_kzalloc(dev, sizeof(*hpriv), GFP_KERNEL);
  438. if (!hpriv) {
  439. dev_err(dev, "can't alloc ahci_host_priv\n");
  440. return -ENOMEM;
  441. }
  442. pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
  443. if (!pdata) {
  444. dev_err(dev, "can't alloc ecx_plat_data\n");
  445. return -ENOMEM;
  446. }
  447. hpriv->flags |= (unsigned long)pi.private_data;
  448. hpriv->mmio = devm_ioremap(dev, mem->start, resource_size(mem));
  449. if (!hpriv->mmio) {
  450. dev_err(dev, "can't map %pR\n", mem);
  451. return -ENOMEM;
  452. }
  453. rc = highbank_initialize_phys(dev, hpriv->mmio);
  454. if (rc)
  455. return rc;
  456. ahci_save_initial_config(dev, hpriv, 0, 0);
  457. /* prepare host */
  458. if (hpriv->cap & HOST_CAP_NCQ)
  459. pi.flags |= ATA_FLAG_NCQ;
  460. if (hpriv->cap & HOST_CAP_PMP)
  461. pi.flags |= ATA_FLAG_PMP;
  462. if (hpriv->cap & HOST_CAP_64)
  463. dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
  464. /* CAP.NP sometimes indicate the index of the last enabled
  465. * port, at other times, that of the last possible port, so
  466. * determining the maximum port number requires looking at
  467. * both CAP.NP and port_map.
  468. */
  469. n_ports = max(ahci_nr_ports(hpriv->cap), fls(hpriv->port_map));
  470. pdata->n_ports = n_ports;
  471. hpriv->plat_data = pdata;
  472. highbank_set_em_messages(dev, hpriv, &pi);
  473. host = ata_host_alloc_pinfo(dev, ppi, n_ports);
  474. if (!host) {
  475. rc = -ENOMEM;
  476. goto err0;
  477. }
  478. host->private_data = hpriv;
  479. if (!(hpriv->cap & HOST_CAP_SSS) || ahci_ignore_sss)
  480. host->flags |= ATA_HOST_PARALLEL_SCAN;
  481. for (i = 0; i < host->n_ports; i++) {
  482. struct ata_port *ap = host->ports[i];
  483. ata_port_desc(ap, "mmio %pR", mem);
  484. ata_port_desc(ap, "port 0x%x", 0x100 + ap->port_no * 0x80);
  485. /* set enclosure management message type */
  486. if (ap->flags & ATA_FLAG_EM)
  487. ap->em_message_type = hpriv->em_msg_type;
  488. /* disabled/not-implemented port */
  489. if (!(hpriv->port_map & (1 << i)))
  490. ap->ops = &ata_dummy_port_ops;
  491. }
  492. rc = ahci_reset_controller(host);
  493. if (rc)
  494. goto err0;
  495. ahci_init_controller(host);
  496. ahci_print_info(host, "platform");
  497. rc = ata_host_activate(host, irq, ahci_interrupt, 0,
  498. &ahci_highbank_platform_sht);
  499. if (rc)
  500. goto err0;
  501. return 0;
  502. err0:
  503. return rc;
  504. }
  505. #ifdef CONFIG_PM_SLEEP
  506. static int ahci_highbank_suspend(struct device *dev)
  507. {
  508. struct ata_host *host = dev_get_drvdata(dev);
  509. struct ahci_host_priv *hpriv = host->private_data;
  510. void __iomem *mmio = hpriv->mmio;
  511. u32 ctl;
  512. int rc;
  513. if (hpriv->flags & AHCI_HFLAG_NO_SUSPEND) {
  514. dev_err(dev, "firmware update required for suspend/resume\n");
  515. return -EIO;
  516. }
  517. /*
  518. * AHCI spec rev1.1 section 8.3.3:
  519. * Software must disable interrupts prior to requesting a
  520. * transition of the HBA to D3 state.
  521. */
  522. ctl = readl(mmio + HOST_CTL);
  523. ctl &= ~HOST_IRQ_EN;
  524. writel(ctl, mmio + HOST_CTL);
  525. readl(mmio + HOST_CTL); /* flush */
  526. rc = ata_host_suspend(host, PMSG_SUSPEND);
  527. if (rc)
  528. return rc;
  529. return 0;
  530. }
  531. static int ahci_highbank_resume(struct device *dev)
  532. {
  533. struct ata_host *host = dev_get_drvdata(dev);
  534. int rc;
  535. if (dev->power.power_state.event == PM_EVENT_SUSPEND) {
  536. rc = ahci_reset_controller(host);
  537. if (rc)
  538. return rc;
  539. ahci_init_controller(host);
  540. }
  541. ata_host_resume(host);
  542. return 0;
  543. }
  544. #endif
  545. static SIMPLE_DEV_PM_OPS(ahci_highbank_pm_ops,
  546. ahci_highbank_suspend, ahci_highbank_resume);
  547. static struct platform_driver ahci_highbank_driver = {
  548. .remove = ata_platform_remove_one,
  549. .driver = {
  550. .name = "highbank-ahci",
  551. .owner = THIS_MODULE,
  552. .of_match_table = ahci_of_match,
  553. .pm = &ahci_highbank_pm_ops,
  554. },
  555. .probe = ahci_highbank_probe,
  556. };
  557. module_platform_driver(ahci_highbank_driver);
  558. MODULE_DESCRIPTION("Calxeda Highbank AHCI SATA platform driver");
  559. MODULE_AUTHOR("Mark Langsdorf <mark.langsdorf@calxeda.com>");
  560. MODULE_LICENSE("GPL");
  561. MODULE_ALIAS("sata:highbank");