ll_rw_blk.c 94 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725
  1. /*
  2. * Copyright (C) 1991, 1992 Linus Torvalds
  3. * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
  4. * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
  5. * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
  6. * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au> - July2000
  7. * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
  8. */
  9. /*
  10. * This handles all read/write requests to block devices
  11. */
  12. #include <linux/config.h>
  13. #include <linux/kernel.h>
  14. #include <linux/module.h>
  15. #include <linux/backing-dev.h>
  16. #include <linux/bio.h>
  17. #include <linux/blkdev.h>
  18. #include <linux/highmem.h>
  19. #include <linux/mm.h>
  20. #include <linux/kernel_stat.h>
  21. #include <linux/string.h>
  22. #include <linux/init.h>
  23. #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
  24. #include <linux/completion.h>
  25. #include <linux/slab.h>
  26. #include <linux/swap.h>
  27. #include <linux/writeback.h>
  28. /*
  29. * for max sense size
  30. */
  31. #include <scsi/scsi_cmnd.h>
  32. static void blk_unplug_work(void *data);
  33. static void blk_unplug_timeout(unsigned long data);
  34. static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io);
  35. static void init_request_from_bio(struct request *req, struct bio *bio);
  36. static int __make_request(request_queue_t *q, struct bio *bio);
  37. /*
  38. * For the allocated request tables
  39. */
  40. static kmem_cache_t *request_cachep;
  41. /*
  42. * For queue allocation
  43. */
  44. static kmem_cache_t *requestq_cachep;
  45. /*
  46. * For io context allocations
  47. */
  48. static kmem_cache_t *iocontext_cachep;
  49. static wait_queue_head_t congestion_wqh[2] = {
  50. __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[0]),
  51. __WAIT_QUEUE_HEAD_INITIALIZER(congestion_wqh[1])
  52. };
  53. /*
  54. * Controlling structure to kblockd
  55. */
  56. static struct workqueue_struct *kblockd_workqueue;
  57. unsigned long blk_max_low_pfn, blk_max_pfn;
  58. EXPORT_SYMBOL(blk_max_low_pfn);
  59. EXPORT_SYMBOL(blk_max_pfn);
  60. /* Amount of time in which a process may batch requests */
  61. #define BLK_BATCH_TIME (HZ/50UL)
  62. /* Number of requests a "batching" process may submit */
  63. #define BLK_BATCH_REQ 32
  64. /*
  65. * Return the threshold (number of used requests) at which the queue is
  66. * considered to be congested. It include a little hysteresis to keep the
  67. * context switch rate down.
  68. */
  69. static inline int queue_congestion_on_threshold(struct request_queue *q)
  70. {
  71. return q->nr_congestion_on;
  72. }
  73. /*
  74. * The threshold at which a queue is considered to be uncongested
  75. */
  76. static inline int queue_congestion_off_threshold(struct request_queue *q)
  77. {
  78. return q->nr_congestion_off;
  79. }
  80. static void blk_queue_congestion_threshold(struct request_queue *q)
  81. {
  82. int nr;
  83. nr = q->nr_requests - (q->nr_requests / 8) + 1;
  84. if (nr > q->nr_requests)
  85. nr = q->nr_requests;
  86. q->nr_congestion_on = nr;
  87. nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
  88. if (nr < 1)
  89. nr = 1;
  90. q->nr_congestion_off = nr;
  91. }
  92. /*
  93. * A queue has just exitted congestion. Note this in the global counter of
  94. * congested queues, and wake up anyone who was waiting for requests to be
  95. * put back.
  96. */
  97. static void clear_queue_congested(request_queue_t *q, int rw)
  98. {
  99. enum bdi_state bit;
  100. wait_queue_head_t *wqh = &congestion_wqh[rw];
  101. bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
  102. clear_bit(bit, &q->backing_dev_info.state);
  103. smp_mb__after_clear_bit();
  104. if (waitqueue_active(wqh))
  105. wake_up(wqh);
  106. }
  107. /*
  108. * A queue has just entered congestion. Flag that in the queue's VM-visible
  109. * state flags and increment the global gounter of congested queues.
  110. */
  111. static void set_queue_congested(request_queue_t *q, int rw)
  112. {
  113. enum bdi_state bit;
  114. bit = (rw == WRITE) ? BDI_write_congested : BDI_read_congested;
  115. set_bit(bit, &q->backing_dev_info.state);
  116. }
  117. /**
  118. * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
  119. * @bdev: device
  120. *
  121. * Locates the passed device's request queue and returns the address of its
  122. * backing_dev_info
  123. *
  124. * Will return NULL if the request queue cannot be located.
  125. */
  126. struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
  127. {
  128. struct backing_dev_info *ret = NULL;
  129. request_queue_t *q = bdev_get_queue(bdev);
  130. if (q)
  131. ret = &q->backing_dev_info;
  132. return ret;
  133. }
  134. EXPORT_SYMBOL(blk_get_backing_dev_info);
  135. void blk_queue_activity_fn(request_queue_t *q, activity_fn *fn, void *data)
  136. {
  137. q->activity_fn = fn;
  138. q->activity_data = data;
  139. }
  140. EXPORT_SYMBOL(blk_queue_activity_fn);
  141. /**
  142. * blk_queue_prep_rq - set a prepare_request function for queue
  143. * @q: queue
  144. * @pfn: prepare_request function
  145. *
  146. * It's possible for a queue to register a prepare_request callback which
  147. * is invoked before the request is handed to the request_fn. The goal of
  148. * the function is to prepare a request for I/O, it can be used to build a
  149. * cdb from the request data for instance.
  150. *
  151. */
  152. void blk_queue_prep_rq(request_queue_t *q, prep_rq_fn *pfn)
  153. {
  154. q->prep_rq_fn = pfn;
  155. }
  156. EXPORT_SYMBOL(blk_queue_prep_rq);
  157. /**
  158. * blk_queue_merge_bvec - set a merge_bvec function for queue
  159. * @q: queue
  160. * @mbfn: merge_bvec_fn
  161. *
  162. * Usually queues have static limitations on the max sectors or segments that
  163. * we can put in a request. Stacking drivers may have some settings that
  164. * are dynamic, and thus we have to query the queue whether it is ok to
  165. * add a new bio_vec to a bio at a given offset or not. If the block device
  166. * has such limitations, it needs to register a merge_bvec_fn to control
  167. * the size of bio's sent to it. Note that a block device *must* allow a
  168. * single page to be added to an empty bio. The block device driver may want
  169. * to use the bio_split() function to deal with these bio's. By default
  170. * no merge_bvec_fn is defined for a queue, and only the fixed limits are
  171. * honored.
  172. */
  173. void blk_queue_merge_bvec(request_queue_t *q, merge_bvec_fn *mbfn)
  174. {
  175. q->merge_bvec_fn = mbfn;
  176. }
  177. EXPORT_SYMBOL(blk_queue_merge_bvec);
  178. /**
  179. * blk_queue_make_request - define an alternate make_request function for a device
  180. * @q: the request queue for the device to be affected
  181. * @mfn: the alternate make_request function
  182. *
  183. * Description:
  184. * The normal way for &struct bios to be passed to a device
  185. * driver is for them to be collected into requests on a request
  186. * queue, and then to allow the device driver to select requests
  187. * off that queue when it is ready. This works well for many block
  188. * devices. However some block devices (typically virtual devices
  189. * such as md or lvm) do not benefit from the processing on the
  190. * request queue, and are served best by having the requests passed
  191. * directly to them. This can be achieved by providing a function
  192. * to blk_queue_make_request().
  193. *
  194. * Caveat:
  195. * The driver that does this *must* be able to deal appropriately
  196. * with buffers in "highmemory". This can be accomplished by either calling
  197. * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
  198. * blk_queue_bounce() to create a buffer in normal memory.
  199. **/
  200. void blk_queue_make_request(request_queue_t * q, make_request_fn * mfn)
  201. {
  202. /*
  203. * set defaults
  204. */
  205. q->nr_requests = BLKDEV_MAX_RQ;
  206. blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
  207. blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
  208. q->make_request_fn = mfn;
  209. q->backing_dev_info.ra_pages = (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
  210. q->backing_dev_info.state = 0;
  211. q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
  212. blk_queue_max_sectors(q, SAFE_MAX_SECTORS);
  213. blk_queue_hardsect_size(q, 512);
  214. blk_queue_dma_alignment(q, 511);
  215. blk_queue_congestion_threshold(q);
  216. q->nr_batching = BLK_BATCH_REQ;
  217. q->unplug_thresh = 4; /* hmm */
  218. q->unplug_delay = (3 * HZ) / 1000; /* 3 milliseconds */
  219. if (q->unplug_delay == 0)
  220. q->unplug_delay = 1;
  221. INIT_WORK(&q->unplug_work, blk_unplug_work, q);
  222. q->unplug_timer.function = blk_unplug_timeout;
  223. q->unplug_timer.data = (unsigned long)q;
  224. /*
  225. * by default assume old behaviour and bounce for any highmem page
  226. */
  227. blk_queue_bounce_limit(q, BLK_BOUNCE_HIGH);
  228. blk_queue_activity_fn(q, NULL, NULL);
  229. }
  230. EXPORT_SYMBOL(blk_queue_make_request);
  231. static inline void rq_init(request_queue_t *q, struct request *rq)
  232. {
  233. INIT_LIST_HEAD(&rq->queuelist);
  234. rq->errors = 0;
  235. rq->rq_status = RQ_ACTIVE;
  236. rq->bio = rq->biotail = NULL;
  237. rq->ioprio = 0;
  238. rq->buffer = NULL;
  239. rq->ref_count = 1;
  240. rq->q = q;
  241. rq->waiting = NULL;
  242. rq->special = NULL;
  243. rq->data_len = 0;
  244. rq->data = NULL;
  245. rq->nr_phys_segments = 0;
  246. rq->sense = NULL;
  247. rq->end_io = NULL;
  248. rq->end_io_data = NULL;
  249. }
  250. /**
  251. * blk_queue_ordered - does this queue support ordered writes
  252. * @q: the request queue
  253. * @ordered: one of QUEUE_ORDERED_*
  254. *
  255. * Description:
  256. * For journalled file systems, doing ordered writes on a commit
  257. * block instead of explicitly doing wait_on_buffer (which is bad
  258. * for performance) can be a big win. Block drivers supporting this
  259. * feature should call this function and indicate so.
  260. *
  261. **/
  262. int blk_queue_ordered(request_queue_t *q, unsigned ordered,
  263. prepare_flush_fn *prepare_flush_fn)
  264. {
  265. if (ordered & (QUEUE_ORDERED_PREFLUSH | QUEUE_ORDERED_POSTFLUSH) &&
  266. prepare_flush_fn == NULL) {
  267. printk(KERN_ERR "blk_queue_ordered: prepare_flush_fn required\n");
  268. return -EINVAL;
  269. }
  270. if (ordered != QUEUE_ORDERED_NONE &&
  271. ordered != QUEUE_ORDERED_DRAIN &&
  272. ordered != QUEUE_ORDERED_DRAIN_FLUSH &&
  273. ordered != QUEUE_ORDERED_DRAIN_FUA &&
  274. ordered != QUEUE_ORDERED_TAG &&
  275. ordered != QUEUE_ORDERED_TAG_FLUSH &&
  276. ordered != QUEUE_ORDERED_TAG_FUA) {
  277. printk(KERN_ERR "blk_queue_ordered: bad value %d\n", ordered);
  278. return -EINVAL;
  279. }
  280. q->next_ordered = ordered;
  281. q->prepare_flush_fn = prepare_flush_fn;
  282. return 0;
  283. }
  284. EXPORT_SYMBOL(blk_queue_ordered);
  285. /**
  286. * blk_queue_issue_flush_fn - set function for issuing a flush
  287. * @q: the request queue
  288. * @iff: the function to be called issuing the flush
  289. *
  290. * Description:
  291. * If a driver supports issuing a flush command, the support is notified
  292. * to the block layer by defining it through this call.
  293. *
  294. **/
  295. void blk_queue_issue_flush_fn(request_queue_t *q, issue_flush_fn *iff)
  296. {
  297. q->issue_flush_fn = iff;
  298. }
  299. EXPORT_SYMBOL(blk_queue_issue_flush_fn);
  300. /*
  301. * Cache flushing for ordered writes handling
  302. */
  303. inline unsigned blk_ordered_cur_seq(request_queue_t *q)
  304. {
  305. if (!q->ordseq)
  306. return 0;
  307. return 1 << ffz(q->ordseq);
  308. }
  309. unsigned blk_ordered_req_seq(struct request *rq)
  310. {
  311. request_queue_t *q = rq->q;
  312. BUG_ON(q->ordseq == 0);
  313. if (rq == &q->pre_flush_rq)
  314. return QUEUE_ORDSEQ_PREFLUSH;
  315. if (rq == &q->bar_rq)
  316. return QUEUE_ORDSEQ_BAR;
  317. if (rq == &q->post_flush_rq)
  318. return QUEUE_ORDSEQ_POSTFLUSH;
  319. if ((rq->flags & REQ_ORDERED_COLOR) ==
  320. (q->orig_bar_rq->flags & REQ_ORDERED_COLOR))
  321. return QUEUE_ORDSEQ_DRAIN;
  322. else
  323. return QUEUE_ORDSEQ_DONE;
  324. }
  325. void blk_ordered_complete_seq(request_queue_t *q, unsigned seq, int error)
  326. {
  327. struct request *rq;
  328. int uptodate;
  329. if (error && !q->orderr)
  330. q->orderr = error;
  331. BUG_ON(q->ordseq & seq);
  332. q->ordseq |= seq;
  333. if (blk_ordered_cur_seq(q) != QUEUE_ORDSEQ_DONE)
  334. return;
  335. /*
  336. * Okay, sequence complete.
  337. */
  338. rq = q->orig_bar_rq;
  339. uptodate = q->orderr ? q->orderr : 1;
  340. q->ordseq = 0;
  341. end_that_request_first(rq, uptodate, rq->hard_nr_sectors);
  342. end_that_request_last(rq, uptodate);
  343. }
  344. static void pre_flush_end_io(struct request *rq, int error)
  345. {
  346. elv_completed_request(rq->q, rq);
  347. blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_PREFLUSH, error);
  348. }
  349. static void bar_end_io(struct request *rq, int error)
  350. {
  351. elv_completed_request(rq->q, rq);
  352. blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_BAR, error);
  353. }
  354. static void post_flush_end_io(struct request *rq, int error)
  355. {
  356. elv_completed_request(rq->q, rq);
  357. blk_ordered_complete_seq(rq->q, QUEUE_ORDSEQ_POSTFLUSH, error);
  358. }
  359. static void queue_flush(request_queue_t *q, unsigned which)
  360. {
  361. struct request *rq;
  362. rq_end_io_fn *end_io;
  363. if (which == QUEUE_ORDERED_PREFLUSH) {
  364. rq = &q->pre_flush_rq;
  365. end_io = pre_flush_end_io;
  366. } else {
  367. rq = &q->post_flush_rq;
  368. end_io = post_flush_end_io;
  369. }
  370. rq_init(q, rq);
  371. rq->flags = REQ_HARDBARRIER;
  372. rq->elevator_private = NULL;
  373. rq->rq_disk = q->bar_rq.rq_disk;
  374. rq->rl = NULL;
  375. rq->end_io = end_io;
  376. q->prepare_flush_fn(q, rq);
  377. __elv_add_request(q, rq, ELEVATOR_INSERT_FRONT, 0);
  378. }
  379. static inline struct request *start_ordered(request_queue_t *q,
  380. struct request *rq)
  381. {
  382. q->bi_size = 0;
  383. q->orderr = 0;
  384. q->ordered = q->next_ordered;
  385. q->ordseq |= QUEUE_ORDSEQ_STARTED;
  386. /*
  387. * Prep proxy barrier request.
  388. */
  389. blkdev_dequeue_request(rq);
  390. q->orig_bar_rq = rq;
  391. rq = &q->bar_rq;
  392. rq_init(q, rq);
  393. rq->flags = bio_data_dir(q->orig_bar_rq->bio);
  394. rq->flags |= q->ordered & QUEUE_ORDERED_FUA ? REQ_FUA : 0;
  395. rq->elevator_private = NULL;
  396. rq->rl = NULL;
  397. init_request_from_bio(rq, q->orig_bar_rq->bio);
  398. rq->end_io = bar_end_io;
  399. /*
  400. * Queue ordered sequence. As we stack them at the head, we
  401. * need to queue in reverse order. Note that we rely on that
  402. * no fs request uses ELEVATOR_INSERT_FRONT and thus no fs
  403. * request gets inbetween ordered sequence.
  404. */
  405. if (q->ordered & QUEUE_ORDERED_POSTFLUSH)
  406. queue_flush(q, QUEUE_ORDERED_POSTFLUSH);
  407. else
  408. q->ordseq |= QUEUE_ORDSEQ_POSTFLUSH;
  409. __elv_add_request(q, rq, ELEVATOR_INSERT_FRONT, 0);
  410. if (q->ordered & QUEUE_ORDERED_PREFLUSH) {
  411. queue_flush(q, QUEUE_ORDERED_PREFLUSH);
  412. rq = &q->pre_flush_rq;
  413. } else
  414. q->ordseq |= QUEUE_ORDSEQ_PREFLUSH;
  415. if ((q->ordered & QUEUE_ORDERED_TAG) || q->in_flight == 0)
  416. q->ordseq |= QUEUE_ORDSEQ_DRAIN;
  417. else
  418. rq = NULL;
  419. return rq;
  420. }
  421. int blk_do_ordered(request_queue_t *q, struct request **rqp)
  422. {
  423. struct request *rq = *rqp, *allowed_rq;
  424. int is_barrier = blk_fs_request(rq) && blk_barrier_rq(rq);
  425. if (!q->ordseq) {
  426. if (!is_barrier)
  427. return 1;
  428. if (q->next_ordered != QUEUE_ORDERED_NONE) {
  429. *rqp = start_ordered(q, rq);
  430. return 1;
  431. } else {
  432. /*
  433. * This can happen when the queue switches to
  434. * ORDERED_NONE while this request is on it.
  435. */
  436. blkdev_dequeue_request(rq);
  437. end_that_request_first(rq, -EOPNOTSUPP,
  438. rq->hard_nr_sectors);
  439. end_that_request_last(rq, -EOPNOTSUPP);
  440. *rqp = NULL;
  441. return 0;
  442. }
  443. }
  444. if (q->ordered & QUEUE_ORDERED_TAG) {
  445. if (is_barrier && rq != &q->bar_rq)
  446. *rqp = NULL;
  447. return 1;
  448. }
  449. switch (blk_ordered_cur_seq(q)) {
  450. case QUEUE_ORDSEQ_PREFLUSH:
  451. allowed_rq = &q->pre_flush_rq;
  452. break;
  453. case QUEUE_ORDSEQ_BAR:
  454. allowed_rq = &q->bar_rq;
  455. break;
  456. case QUEUE_ORDSEQ_POSTFLUSH:
  457. allowed_rq = &q->post_flush_rq;
  458. break;
  459. default:
  460. allowed_rq = NULL;
  461. break;
  462. }
  463. if (rq != allowed_rq &&
  464. (blk_fs_request(rq) || rq == &q->pre_flush_rq ||
  465. rq == &q->post_flush_rq))
  466. *rqp = NULL;
  467. return 1;
  468. }
  469. static int flush_dry_bio_endio(struct bio *bio, unsigned int bytes, int error)
  470. {
  471. request_queue_t *q = bio->bi_private;
  472. struct bio_vec *bvec;
  473. int i;
  474. /*
  475. * This is dry run, restore bio_sector and size. We'll finish
  476. * this request again with the original bi_end_io after an
  477. * error occurs or post flush is complete.
  478. */
  479. q->bi_size += bytes;
  480. if (bio->bi_size)
  481. return 1;
  482. /* Rewind bvec's */
  483. bio->bi_idx = 0;
  484. bio_for_each_segment(bvec, bio, i) {
  485. bvec->bv_len += bvec->bv_offset;
  486. bvec->bv_offset = 0;
  487. }
  488. /* Reset bio */
  489. set_bit(BIO_UPTODATE, &bio->bi_flags);
  490. bio->bi_size = q->bi_size;
  491. bio->bi_sector -= (q->bi_size >> 9);
  492. q->bi_size = 0;
  493. return 0;
  494. }
  495. static inline int ordered_bio_endio(struct request *rq, struct bio *bio,
  496. unsigned int nbytes, int error)
  497. {
  498. request_queue_t *q = rq->q;
  499. bio_end_io_t *endio;
  500. void *private;
  501. if (&q->bar_rq != rq)
  502. return 0;
  503. /*
  504. * Okay, this is the barrier request in progress, dry finish it.
  505. */
  506. if (error && !q->orderr)
  507. q->orderr = error;
  508. endio = bio->bi_end_io;
  509. private = bio->bi_private;
  510. bio->bi_end_io = flush_dry_bio_endio;
  511. bio->bi_private = q;
  512. bio_endio(bio, nbytes, error);
  513. bio->bi_end_io = endio;
  514. bio->bi_private = private;
  515. return 1;
  516. }
  517. /**
  518. * blk_queue_bounce_limit - set bounce buffer limit for queue
  519. * @q: the request queue for the device
  520. * @dma_addr: bus address limit
  521. *
  522. * Description:
  523. * Different hardware can have different requirements as to what pages
  524. * it can do I/O directly to. A low level driver can call
  525. * blk_queue_bounce_limit to have lower memory pages allocated as bounce
  526. * buffers for doing I/O to pages residing above @page. By default
  527. * the block layer sets this to the highest numbered "low" memory page.
  528. **/
  529. void blk_queue_bounce_limit(request_queue_t *q, u64 dma_addr)
  530. {
  531. unsigned long bounce_pfn = dma_addr >> PAGE_SHIFT;
  532. /*
  533. * set appropriate bounce gfp mask -- unfortunately we don't have a
  534. * full 4GB zone, so we have to resort to low memory for any bounces.
  535. * ISA has its own < 16MB zone.
  536. */
  537. if (bounce_pfn < blk_max_low_pfn) {
  538. BUG_ON(dma_addr < BLK_BOUNCE_ISA);
  539. init_emergency_isa_pool();
  540. q->bounce_gfp = GFP_NOIO | GFP_DMA;
  541. } else
  542. q->bounce_gfp = GFP_NOIO;
  543. q->bounce_pfn = bounce_pfn;
  544. }
  545. EXPORT_SYMBOL(blk_queue_bounce_limit);
  546. /**
  547. * blk_queue_max_sectors - set max sectors for a request for this queue
  548. * @q: the request queue for the device
  549. * @max_sectors: max sectors in the usual 512b unit
  550. *
  551. * Description:
  552. * Enables a low level driver to set an upper limit on the size of
  553. * received requests.
  554. **/
  555. void blk_queue_max_sectors(request_queue_t *q, unsigned short max_sectors)
  556. {
  557. if ((max_sectors << 9) < PAGE_CACHE_SIZE) {
  558. max_sectors = 1 << (PAGE_CACHE_SHIFT - 9);
  559. printk("%s: set to minimum %d\n", __FUNCTION__, max_sectors);
  560. }
  561. if (BLK_DEF_MAX_SECTORS > max_sectors)
  562. q->max_hw_sectors = q->max_sectors = max_sectors;
  563. else {
  564. q->max_sectors = BLK_DEF_MAX_SECTORS;
  565. q->max_hw_sectors = max_sectors;
  566. }
  567. }
  568. EXPORT_SYMBOL(blk_queue_max_sectors);
  569. /**
  570. * blk_queue_max_phys_segments - set max phys segments for a request for this queue
  571. * @q: the request queue for the device
  572. * @max_segments: max number of segments
  573. *
  574. * Description:
  575. * Enables a low level driver to set an upper limit on the number of
  576. * physical data segments in a request. This would be the largest sized
  577. * scatter list the driver could handle.
  578. **/
  579. void blk_queue_max_phys_segments(request_queue_t *q, unsigned short max_segments)
  580. {
  581. if (!max_segments) {
  582. max_segments = 1;
  583. printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
  584. }
  585. q->max_phys_segments = max_segments;
  586. }
  587. EXPORT_SYMBOL(blk_queue_max_phys_segments);
  588. /**
  589. * blk_queue_max_hw_segments - set max hw segments for a request for this queue
  590. * @q: the request queue for the device
  591. * @max_segments: max number of segments
  592. *
  593. * Description:
  594. * Enables a low level driver to set an upper limit on the number of
  595. * hw data segments in a request. This would be the largest number of
  596. * address/length pairs the host adapter can actually give as once
  597. * to the device.
  598. **/
  599. void blk_queue_max_hw_segments(request_queue_t *q, unsigned short max_segments)
  600. {
  601. if (!max_segments) {
  602. max_segments = 1;
  603. printk("%s: set to minimum %d\n", __FUNCTION__, max_segments);
  604. }
  605. q->max_hw_segments = max_segments;
  606. }
  607. EXPORT_SYMBOL(blk_queue_max_hw_segments);
  608. /**
  609. * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
  610. * @q: the request queue for the device
  611. * @max_size: max size of segment in bytes
  612. *
  613. * Description:
  614. * Enables a low level driver to set an upper limit on the size of a
  615. * coalesced segment
  616. **/
  617. void blk_queue_max_segment_size(request_queue_t *q, unsigned int max_size)
  618. {
  619. if (max_size < PAGE_CACHE_SIZE) {
  620. max_size = PAGE_CACHE_SIZE;
  621. printk("%s: set to minimum %d\n", __FUNCTION__, max_size);
  622. }
  623. q->max_segment_size = max_size;
  624. }
  625. EXPORT_SYMBOL(blk_queue_max_segment_size);
  626. /**
  627. * blk_queue_hardsect_size - set hardware sector size for the queue
  628. * @q: the request queue for the device
  629. * @size: the hardware sector size, in bytes
  630. *
  631. * Description:
  632. * This should typically be set to the lowest possible sector size
  633. * that the hardware can operate on (possible without reverting to
  634. * even internal read-modify-write operations). Usually the default
  635. * of 512 covers most hardware.
  636. **/
  637. void blk_queue_hardsect_size(request_queue_t *q, unsigned short size)
  638. {
  639. q->hardsect_size = size;
  640. }
  641. EXPORT_SYMBOL(blk_queue_hardsect_size);
  642. /*
  643. * Returns the minimum that is _not_ zero, unless both are zero.
  644. */
  645. #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
  646. /**
  647. * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
  648. * @t: the stacking driver (top)
  649. * @b: the underlying device (bottom)
  650. **/
  651. void blk_queue_stack_limits(request_queue_t *t, request_queue_t *b)
  652. {
  653. /* zero is "infinity" */
  654. t->max_sectors = min_not_zero(t->max_sectors,b->max_sectors);
  655. t->max_hw_sectors = min_not_zero(t->max_hw_sectors,b->max_hw_sectors);
  656. t->max_phys_segments = min(t->max_phys_segments,b->max_phys_segments);
  657. t->max_hw_segments = min(t->max_hw_segments,b->max_hw_segments);
  658. t->max_segment_size = min(t->max_segment_size,b->max_segment_size);
  659. t->hardsect_size = max(t->hardsect_size,b->hardsect_size);
  660. }
  661. EXPORT_SYMBOL(blk_queue_stack_limits);
  662. /**
  663. * blk_queue_segment_boundary - set boundary rules for segment merging
  664. * @q: the request queue for the device
  665. * @mask: the memory boundary mask
  666. **/
  667. void blk_queue_segment_boundary(request_queue_t *q, unsigned long mask)
  668. {
  669. if (mask < PAGE_CACHE_SIZE - 1) {
  670. mask = PAGE_CACHE_SIZE - 1;
  671. printk("%s: set to minimum %lx\n", __FUNCTION__, mask);
  672. }
  673. q->seg_boundary_mask = mask;
  674. }
  675. EXPORT_SYMBOL(blk_queue_segment_boundary);
  676. /**
  677. * blk_queue_dma_alignment - set dma length and memory alignment
  678. * @q: the request queue for the device
  679. * @mask: alignment mask
  680. *
  681. * description:
  682. * set required memory and length aligment for direct dma transactions.
  683. * this is used when buiding direct io requests for the queue.
  684. *
  685. **/
  686. void blk_queue_dma_alignment(request_queue_t *q, int mask)
  687. {
  688. q->dma_alignment = mask;
  689. }
  690. EXPORT_SYMBOL(blk_queue_dma_alignment);
  691. /**
  692. * blk_queue_find_tag - find a request by its tag and queue
  693. * @q: The request queue for the device
  694. * @tag: The tag of the request
  695. *
  696. * Notes:
  697. * Should be used when a device returns a tag and you want to match
  698. * it with a request.
  699. *
  700. * no locks need be held.
  701. **/
  702. struct request *blk_queue_find_tag(request_queue_t *q, int tag)
  703. {
  704. struct blk_queue_tag *bqt = q->queue_tags;
  705. if (unlikely(bqt == NULL || tag >= bqt->real_max_depth))
  706. return NULL;
  707. return bqt->tag_index[tag];
  708. }
  709. EXPORT_SYMBOL(blk_queue_find_tag);
  710. /**
  711. * __blk_queue_free_tags - release tag maintenance info
  712. * @q: the request queue for the device
  713. *
  714. * Notes:
  715. * blk_cleanup_queue() will take care of calling this function, if tagging
  716. * has been used. So there's no need to call this directly.
  717. **/
  718. static void __blk_queue_free_tags(request_queue_t *q)
  719. {
  720. struct blk_queue_tag *bqt = q->queue_tags;
  721. if (!bqt)
  722. return;
  723. if (atomic_dec_and_test(&bqt->refcnt)) {
  724. BUG_ON(bqt->busy);
  725. BUG_ON(!list_empty(&bqt->busy_list));
  726. kfree(bqt->tag_index);
  727. bqt->tag_index = NULL;
  728. kfree(bqt->tag_map);
  729. bqt->tag_map = NULL;
  730. kfree(bqt);
  731. }
  732. q->queue_tags = NULL;
  733. q->queue_flags &= ~(1 << QUEUE_FLAG_QUEUED);
  734. }
  735. /**
  736. * blk_queue_free_tags - release tag maintenance info
  737. * @q: the request queue for the device
  738. *
  739. * Notes:
  740. * This is used to disabled tagged queuing to a device, yet leave
  741. * queue in function.
  742. **/
  743. void blk_queue_free_tags(request_queue_t *q)
  744. {
  745. clear_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
  746. }
  747. EXPORT_SYMBOL(blk_queue_free_tags);
  748. static int
  749. init_tag_map(request_queue_t *q, struct blk_queue_tag *tags, int depth)
  750. {
  751. struct request **tag_index;
  752. unsigned long *tag_map;
  753. int nr_ulongs;
  754. if (depth > q->nr_requests * 2) {
  755. depth = q->nr_requests * 2;
  756. printk(KERN_ERR "%s: adjusted depth to %d\n",
  757. __FUNCTION__, depth);
  758. }
  759. tag_index = kmalloc(depth * sizeof(struct request *), GFP_ATOMIC);
  760. if (!tag_index)
  761. goto fail;
  762. nr_ulongs = ALIGN(depth, BITS_PER_LONG) / BITS_PER_LONG;
  763. tag_map = kmalloc(nr_ulongs * sizeof(unsigned long), GFP_ATOMIC);
  764. if (!tag_map)
  765. goto fail;
  766. memset(tag_index, 0, depth * sizeof(struct request *));
  767. memset(tag_map, 0, nr_ulongs * sizeof(unsigned long));
  768. tags->real_max_depth = depth;
  769. tags->max_depth = depth;
  770. tags->tag_index = tag_index;
  771. tags->tag_map = tag_map;
  772. return 0;
  773. fail:
  774. kfree(tag_index);
  775. return -ENOMEM;
  776. }
  777. /**
  778. * blk_queue_init_tags - initialize the queue tag info
  779. * @q: the request queue for the device
  780. * @depth: the maximum queue depth supported
  781. * @tags: the tag to use
  782. **/
  783. int blk_queue_init_tags(request_queue_t *q, int depth,
  784. struct blk_queue_tag *tags)
  785. {
  786. int rc;
  787. BUG_ON(tags && q->queue_tags && tags != q->queue_tags);
  788. if (!tags && !q->queue_tags) {
  789. tags = kmalloc(sizeof(struct blk_queue_tag), GFP_ATOMIC);
  790. if (!tags)
  791. goto fail;
  792. if (init_tag_map(q, tags, depth))
  793. goto fail;
  794. INIT_LIST_HEAD(&tags->busy_list);
  795. tags->busy = 0;
  796. atomic_set(&tags->refcnt, 1);
  797. } else if (q->queue_tags) {
  798. if ((rc = blk_queue_resize_tags(q, depth)))
  799. return rc;
  800. set_bit(QUEUE_FLAG_QUEUED, &q->queue_flags);
  801. return 0;
  802. } else
  803. atomic_inc(&tags->refcnt);
  804. /*
  805. * assign it, all done
  806. */
  807. q->queue_tags = tags;
  808. q->queue_flags |= (1 << QUEUE_FLAG_QUEUED);
  809. return 0;
  810. fail:
  811. kfree(tags);
  812. return -ENOMEM;
  813. }
  814. EXPORT_SYMBOL(blk_queue_init_tags);
  815. /**
  816. * blk_queue_resize_tags - change the queueing depth
  817. * @q: the request queue for the device
  818. * @new_depth: the new max command queueing depth
  819. *
  820. * Notes:
  821. * Must be called with the queue lock held.
  822. **/
  823. int blk_queue_resize_tags(request_queue_t *q, int new_depth)
  824. {
  825. struct blk_queue_tag *bqt = q->queue_tags;
  826. struct request **tag_index;
  827. unsigned long *tag_map;
  828. int max_depth, nr_ulongs;
  829. if (!bqt)
  830. return -ENXIO;
  831. /*
  832. * if we already have large enough real_max_depth. just
  833. * adjust max_depth. *NOTE* as requests with tag value
  834. * between new_depth and real_max_depth can be in-flight, tag
  835. * map can not be shrunk blindly here.
  836. */
  837. if (new_depth <= bqt->real_max_depth) {
  838. bqt->max_depth = new_depth;
  839. return 0;
  840. }
  841. /*
  842. * save the old state info, so we can copy it back
  843. */
  844. tag_index = bqt->tag_index;
  845. tag_map = bqt->tag_map;
  846. max_depth = bqt->real_max_depth;
  847. if (init_tag_map(q, bqt, new_depth))
  848. return -ENOMEM;
  849. memcpy(bqt->tag_index, tag_index, max_depth * sizeof(struct request *));
  850. nr_ulongs = ALIGN(max_depth, BITS_PER_LONG) / BITS_PER_LONG;
  851. memcpy(bqt->tag_map, tag_map, nr_ulongs * sizeof(unsigned long));
  852. kfree(tag_index);
  853. kfree(tag_map);
  854. return 0;
  855. }
  856. EXPORT_SYMBOL(blk_queue_resize_tags);
  857. /**
  858. * blk_queue_end_tag - end tag operations for a request
  859. * @q: the request queue for the device
  860. * @rq: the request that has completed
  861. *
  862. * Description:
  863. * Typically called when end_that_request_first() returns 0, meaning
  864. * all transfers have been done for a request. It's important to call
  865. * this function before end_that_request_last(), as that will put the
  866. * request back on the free list thus corrupting the internal tag list.
  867. *
  868. * Notes:
  869. * queue lock must be held.
  870. **/
  871. void blk_queue_end_tag(request_queue_t *q, struct request *rq)
  872. {
  873. struct blk_queue_tag *bqt = q->queue_tags;
  874. int tag = rq->tag;
  875. BUG_ON(tag == -1);
  876. if (unlikely(tag >= bqt->real_max_depth))
  877. /*
  878. * This can happen after tag depth has been reduced.
  879. * FIXME: how about a warning or info message here?
  880. */
  881. return;
  882. if (unlikely(!__test_and_clear_bit(tag, bqt->tag_map))) {
  883. printk(KERN_ERR "%s: attempt to clear non-busy tag (%d)\n",
  884. __FUNCTION__, tag);
  885. return;
  886. }
  887. list_del_init(&rq->queuelist);
  888. rq->flags &= ~REQ_QUEUED;
  889. rq->tag = -1;
  890. if (unlikely(bqt->tag_index[tag] == NULL))
  891. printk(KERN_ERR "%s: tag %d is missing\n",
  892. __FUNCTION__, tag);
  893. bqt->tag_index[tag] = NULL;
  894. bqt->busy--;
  895. }
  896. EXPORT_SYMBOL(blk_queue_end_tag);
  897. /**
  898. * blk_queue_start_tag - find a free tag and assign it
  899. * @q: the request queue for the device
  900. * @rq: the block request that needs tagging
  901. *
  902. * Description:
  903. * This can either be used as a stand-alone helper, or possibly be
  904. * assigned as the queue &prep_rq_fn (in which case &struct request
  905. * automagically gets a tag assigned). Note that this function
  906. * assumes that any type of request can be queued! if this is not
  907. * true for your device, you must check the request type before
  908. * calling this function. The request will also be removed from
  909. * the request queue, so it's the drivers responsibility to readd
  910. * it if it should need to be restarted for some reason.
  911. *
  912. * Notes:
  913. * queue lock must be held.
  914. **/
  915. int blk_queue_start_tag(request_queue_t *q, struct request *rq)
  916. {
  917. struct blk_queue_tag *bqt = q->queue_tags;
  918. int tag;
  919. if (unlikely((rq->flags & REQ_QUEUED))) {
  920. printk(KERN_ERR
  921. "%s: request %p for device [%s] already tagged %d",
  922. __FUNCTION__, rq,
  923. rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->tag);
  924. BUG();
  925. }
  926. tag = find_first_zero_bit(bqt->tag_map, bqt->max_depth);
  927. if (tag >= bqt->max_depth)
  928. return 1;
  929. __set_bit(tag, bqt->tag_map);
  930. rq->flags |= REQ_QUEUED;
  931. rq->tag = tag;
  932. bqt->tag_index[tag] = rq;
  933. blkdev_dequeue_request(rq);
  934. list_add(&rq->queuelist, &bqt->busy_list);
  935. bqt->busy++;
  936. return 0;
  937. }
  938. EXPORT_SYMBOL(blk_queue_start_tag);
  939. /**
  940. * blk_queue_invalidate_tags - invalidate all pending tags
  941. * @q: the request queue for the device
  942. *
  943. * Description:
  944. * Hardware conditions may dictate a need to stop all pending requests.
  945. * In this case, we will safely clear the block side of the tag queue and
  946. * readd all requests to the request queue in the right order.
  947. *
  948. * Notes:
  949. * queue lock must be held.
  950. **/
  951. void blk_queue_invalidate_tags(request_queue_t *q)
  952. {
  953. struct blk_queue_tag *bqt = q->queue_tags;
  954. struct list_head *tmp, *n;
  955. struct request *rq;
  956. list_for_each_safe(tmp, n, &bqt->busy_list) {
  957. rq = list_entry_rq(tmp);
  958. if (rq->tag == -1) {
  959. printk(KERN_ERR
  960. "%s: bad tag found on list\n", __FUNCTION__);
  961. list_del_init(&rq->queuelist);
  962. rq->flags &= ~REQ_QUEUED;
  963. } else
  964. blk_queue_end_tag(q, rq);
  965. rq->flags &= ~REQ_STARTED;
  966. __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
  967. }
  968. }
  969. EXPORT_SYMBOL(blk_queue_invalidate_tags);
  970. static const char * const rq_flags[] = {
  971. "REQ_RW",
  972. "REQ_FAILFAST",
  973. "REQ_SORTED",
  974. "REQ_SOFTBARRIER",
  975. "REQ_HARDBARRIER",
  976. "REQ_FUA",
  977. "REQ_CMD",
  978. "REQ_NOMERGE",
  979. "REQ_STARTED",
  980. "REQ_DONTPREP",
  981. "REQ_QUEUED",
  982. "REQ_ELVPRIV",
  983. "REQ_PC",
  984. "REQ_BLOCK_PC",
  985. "REQ_SENSE",
  986. "REQ_FAILED",
  987. "REQ_QUIET",
  988. "REQ_SPECIAL",
  989. "REQ_DRIVE_CMD",
  990. "REQ_DRIVE_TASK",
  991. "REQ_DRIVE_TASKFILE",
  992. "REQ_PREEMPT",
  993. "REQ_PM_SUSPEND",
  994. "REQ_PM_RESUME",
  995. "REQ_PM_SHUTDOWN",
  996. "REQ_ORDERED_COLOR",
  997. };
  998. void blk_dump_rq_flags(struct request *rq, char *msg)
  999. {
  1000. int bit;
  1001. printk("%s: dev %s: flags = ", msg,
  1002. rq->rq_disk ? rq->rq_disk->disk_name : "?");
  1003. bit = 0;
  1004. do {
  1005. if (rq->flags & (1 << bit))
  1006. printk("%s ", rq_flags[bit]);
  1007. bit++;
  1008. } while (bit < __REQ_NR_BITS);
  1009. printk("\nsector %llu, nr/cnr %lu/%u\n", (unsigned long long)rq->sector,
  1010. rq->nr_sectors,
  1011. rq->current_nr_sectors);
  1012. printk("bio %p, biotail %p, buffer %p, data %p, len %u\n", rq->bio, rq->biotail, rq->buffer, rq->data, rq->data_len);
  1013. if (rq->flags & (REQ_BLOCK_PC | REQ_PC)) {
  1014. printk("cdb: ");
  1015. for (bit = 0; bit < sizeof(rq->cmd); bit++)
  1016. printk("%02x ", rq->cmd[bit]);
  1017. printk("\n");
  1018. }
  1019. }
  1020. EXPORT_SYMBOL(blk_dump_rq_flags);
  1021. void blk_recount_segments(request_queue_t *q, struct bio *bio)
  1022. {
  1023. struct bio_vec *bv, *bvprv = NULL;
  1024. int i, nr_phys_segs, nr_hw_segs, seg_size, hw_seg_size, cluster;
  1025. int high, highprv = 1;
  1026. if (unlikely(!bio->bi_io_vec))
  1027. return;
  1028. cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
  1029. hw_seg_size = seg_size = nr_phys_segs = nr_hw_segs = 0;
  1030. bio_for_each_segment(bv, bio, i) {
  1031. /*
  1032. * the trick here is making sure that a high page is never
  1033. * considered part of another segment, since that might
  1034. * change with the bounce page.
  1035. */
  1036. high = page_to_pfn(bv->bv_page) >= q->bounce_pfn;
  1037. if (high || highprv)
  1038. goto new_hw_segment;
  1039. if (cluster) {
  1040. if (seg_size + bv->bv_len > q->max_segment_size)
  1041. goto new_segment;
  1042. if (!BIOVEC_PHYS_MERGEABLE(bvprv, bv))
  1043. goto new_segment;
  1044. if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bv))
  1045. goto new_segment;
  1046. if (BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len))
  1047. goto new_hw_segment;
  1048. seg_size += bv->bv_len;
  1049. hw_seg_size += bv->bv_len;
  1050. bvprv = bv;
  1051. continue;
  1052. }
  1053. new_segment:
  1054. if (BIOVEC_VIRT_MERGEABLE(bvprv, bv) &&
  1055. !BIOVEC_VIRT_OVERSIZE(hw_seg_size + bv->bv_len)) {
  1056. hw_seg_size += bv->bv_len;
  1057. } else {
  1058. new_hw_segment:
  1059. if (hw_seg_size > bio->bi_hw_front_size)
  1060. bio->bi_hw_front_size = hw_seg_size;
  1061. hw_seg_size = BIOVEC_VIRT_START_SIZE(bv) + bv->bv_len;
  1062. nr_hw_segs++;
  1063. }
  1064. nr_phys_segs++;
  1065. bvprv = bv;
  1066. seg_size = bv->bv_len;
  1067. highprv = high;
  1068. }
  1069. if (hw_seg_size > bio->bi_hw_back_size)
  1070. bio->bi_hw_back_size = hw_seg_size;
  1071. if (nr_hw_segs == 1 && hw_seg_size > bio->bi_hw_front_size)
  1072. bio->bi_hw_front_size = hw_seg_size;
  1073. bio->bi_phys_segments = nr_phys_segs;
  1074. bio->bi_hw_segments = nr_hw_segs;
  1075. bio->bi_flags |= (1 << BIO_SEG_VALID);
  1076. }
  1077. static int blk_phys_contig_segment(request_queue_t *q, struct bio *bio,
  1078. struct bio *nxt)
  1079. {
  1080. if (!(q->queue_flags & (1 << QUEUE_FLAG_CLUSTER)))
  1081. return 0;
  1082. if (!BIOVEC_PHYS_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)))
  1083. return 0;
  1084. if (bio->bi_size + nxt->bi_size > q->max_segment_size)
  1085. return 0;
  1086. /*
  1087. * bio and nxt are contigous in memory, check if the queue allows
  1088. * these two to be merged into one
  1089. */
  1090. if (BIO_SEG_BOUNDARY(q, bio, nxt))
  1091. return 1;
  1092. return 0;
  1093. }
  1094. static int blk_hw_contig_segment(request_queue_t *q, struct bio *bio,
  1095. struct bio *nxt)
  1096. {
  1097. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1098. blk_recount_segments(q, bio);
  1099. if (unlikely(!bio_flagged(nxt, BIO_SEG_VALID)))
  1100. blk_recount_segments(q, nxt);
  1101. if (!BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(nxt)) ||
  1102. BIOVEC_VIRT_OVERSIZE(bio->bi_hw_front_size + bio->bi_hw_back_size))
  1103. return 0;
  1104. if (bio->bi_size + nxt->bi_size > q->max_segment_size)
  1105. return 0;
  1106. return 1;
  1107. }
  1108. /*
  1109. * map a request to scatterlist, return number of sg entries setup. Caller
  1110. * must make sure sg can hold rq->nr_phys_segments entries
  1111. */
  1112. int blk_rq_map_sg(request_queue_t *q, struct request *rq, struct scatterlist *sg)
  1113. {
  1114. struct bio_vec *bvec, *bvprv;
  1115. struct bio *bio;
  1116. int nsegs, i, cluster;
  1117. nsegs = 0;
  1118. cluster = q->queue_flags & (1 << QUEUE_FLAG_CLUSTER);
  1119. /*
  1120. * for each bio in rq
  1121. */
  1122. bvprv = NULL;
  1123. rq_for_each_bio(bio, rq) {
  1124. /*
  1125. * for each segment in bio
  1126. */
  1127. bio_for_each_segment(bvec, bio, i) {
  1128. int nbytes = bvec->bv_len;
  1129. if (bvprv && cluster) {
  1130. if (sg[nsegs - 1].length + nbytes > q->max_segment_size)
  1131. goto new_segment;
  1132. if (!BIOVEC_PHYS_MERGEABLE(bvprv, bvec))
  1133. goto new_segment;
  1134. if (!BIOVEC_SEG_BOUNDARY(q, bvprv, bvec))
  1135. goto new_segment;
  1136. sg[nsegs - 1].length += nbytes;
  1137. } else {
  1138. new_segment:
  1139. memset(&sg[nsegs],0,sizeof(struct scatterlist));
  1140. sg[nsegs].page = bvec->bv_page;
  1141. sg[nsegs].length = nbytes;
  1142. sg[nsegs].offset = bvec->bv_offset;
  1143. nsegs++;
  1144. }
  1145. bvprv = bvec;
  1146. } /* segments in bio */
  1147. } /* bios in rq */
  1148. return nsegs;
  1149. }
  1150. EXPORT_SYMBOL(blk_rq_map_sg);
  1151. /*
  1152. * the standard queue merge functions, can be overridden with device
  1153. * specific ones if so desired
  1154. */
  1155. static inline int ll_new_mergeable(request_queue_t *q,
  1156. struct request *req,
  1157. struct bio *bio)
  1158. {
  1159. int nr_phys_segs = bio_phys_segments(q, bio);
  1160. if (req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
  1161. req->flags |= REQ_NOMERGE;
  1162. if (req == q->last_merge)
  1163. q->last_merge = NULL;
  1164. return 0;
  1165. }
  1166. /*
  1167. * A hw segment is just getting larger, bump just the phys
  1168. * counter.
  1169. */
  1170. req->nr_phys_segments += nr_phys_segs;
  1171. return 1;
  1172. }
  1173. static inline int ll_new_hw_segment(request_queue_t *q,
  1174. struct request *req,
  1175. struct bio *bio)
  1176. {
  1177. int nr_hw_segs = bio_hw_segments(q, bio);
  1178. int nr_phys_segs = bio_phys_segments(q, bio);
  1179. if (req->nr_hw_segments + nr_hw_segs > q->max_hw_segments
  1180. || req->nr_phys_segments + nr_phys_segs > q->max_phys_segments) {
  1181. req->flags |= REQ_NOMERGE;
  1182. if (req == q->last_merge)
  1183. q->last_merge = NULL;
  1184. return 0;
  1185. }
  1186. /*
  1187. * This will form the start of a new hw segment. Bump both
  1188. * counters.
  1189. */
  1190. req->nr_hw_segments += nr_hw_segs;
  1191. req->nr_phys_segments += nr_phys_segs;
  1192. return 1;
  1193. }
  1194. static int ll_back_merge_fn(request_queue_t *q, struct request *req,
  1195. struct bio *bio)
  1196. {
  1197. unsigned short max_sectors;
  1198. int len;
  1199. if (unlikely(blk_pc_request(req)))
  1200. max_sectors = q->max_hw_sectors;
  1201. else
  1202. max_sectors = q->max_sectors;
  1203. if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
  1204. req->flags |= REQ_NOMERGE;
  1205. if (req == q->last_merge)
  1206. q->last_merge = NULL;
  1207. return 0;
  1208. }
  1209. if (unlikely(!bio_flagged(req->biotail, BIO_SEG_VALID)))
  1210. blk_recount_segments(q, req->biotail);
  1211. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1212. blk_recount_segments(q, bio);
  1213. len = req->biotail->bi_hw_back_size + bio->bi_hw_front_size;
  1214. if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(req->biotail), __BVEC_START(bio)) &&
  1215. !BIOVEC_VIRT_OVERSIZE(len)) {
  1216. int mergeable = ll_new_mergeable(q, req, bio);
  1217. if (mergeable) {
  1218. if (req->nr_hw_segments == 1)
  1219. req->bio->bi_hw_front_size = len;
  1220. if (bio->bi_hw_segments == 1)
  1221. bio->bi_hw_back_size = len;
  1222. }
  1223. return mergeable;
  1224. }
  1225. return ll_new_hw_segment(q, req, bio);
  1226. }
  1227. static int ll_front_merge_fn(request_queue_t *q, struct request *req,
  1228. struct bio *bio)
  1229. {
  1230. unsigned short max_sectors;
  1231. int len;
  1232. if (unlikely(blk_pc_request(req)))
  1233. max_sectors = q->max_hw_sectors;
  1234. else
  1235. max_sectors = q->max_sectors;
  1236. if (req->nr_sectors + bio_sectors(bio) > max_sectors) {
  1237. req->flags |= REQ_NOMERGE;
  1238. if (req == q->last_merge)
  1239. q->last_merge = NULL;
  1240. return 0;
  1241. }
  1242. len = bio->bi_hw_back_size + req->bio->bi_hw_front_size;
  1243. if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
  1244. blk_recount_segments(q, bio);
  1245. if (unlikely(!bio_flagged(req->bio, BIO_SEG_VALID)))
  1246. blk_recount_segments(q, req->bio);
  1247. if (BIOVEC_VIRT_MERGEABLE(__BVEC_END(bio), __BVEC_START(req->bio)) &&
  1248. !BIOVEC_VIRT_OVERSIZE(len)) {
  1249. int mergeable = ll_new_mergeable(q, req, bio);
  1250. if (mergeable) {
  1251. if (bio->bi_hw_segments == 1)
  1252. bio->bi_hw_front_size = len;
  1253. if (req->nr_hw_segments == 1)
  1254. req->biotail->bi_hw_back_size = len;
  1255. }
  1256. return mergeable;
  1257. }
  1258. return ll_new_hw_segment(q, req, bio);
  1259. }
  1260. static int ll_merge_requests_fn(request_queue_t *q, struct request *req,
  1261. struct request *next)
  1262. {
  1263. int total_phys_segments;
  1264. int total_hw_segments;
  1265. /*
  1266. * First check if the either of the requests are re-queued
  1267. * requests. Can't merge them if they are.
  1268. */
  1269. if (req->special || next->special)
  1270. return 0;
  1271. /*
  1272. * Will it become too large?
  1273. */
  1274. if ((req->nr_sectors + next->nr_sectors) > q->max_sectors)
  1275. return 0;
  1276. total_phys_segments = req->nr_phys_segments + next->nr_phys_segments;
  1277. if (blk_phys_contig_segment(q, req->biotail, next->bio))
  1278. total_phys_segments--;
  1279. if (total_phys_segments > q->max_phys_segments)
  1280. return 0;
  1281. total_hw_segments = req->nr_hw_segments + next->nr_hw_segments;
  1282. if (blk_hw_contig_segment(q, req->biotail, next->bio)) {
  1283. int len = req->biotail->bi_hw_back_size + next->bio->bi_hw_front_size;
  1284. /*
  1285. * propagate the combined length to the end of the requests
  1286. */
  1287. if (req->nr_hw_segments == 1)
  1288. req->bio->bi_hw_front_size = len;
  1289. if (next->nr_hw_segments == 1)
  1290. next->biotail->bi_hw_back_size = len;
  1291. total_hw_segments--;
  1292. }
  1293. if (total_hw_segments > q->max_hw_segments)
  1294. return 0;
  1295. /* Merge is OK... */
  1296. req->nr_phys_segments = total_phys_segments;
  1297. req->nr_hw_segments = total_hw_segments;
  1298. return 1;
  1299. }
  1300. /*
  1301. * "plug" the device if there are no outstanding requests: this will
  1302. * force the transfer to start only after we have put all the requests
  1303. * on the list.
  1304. *
  1305. * This is called with interrupts off and no requests on the queue and
  1306. * with the queue lock held.
  1307. */
  1308. void blk_plug_device(request_queue_t *q)
  1309. {
  1310. WARN_ON(!irqs_disabled());
  1311. /*
  1312. * don't plug a stopped queue, it must be paired with blk_start_queue()
  1313. * which will restart the queueing
  1314. */
  1315. if (test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags))
  1316. return;
  1317. if (!test_and_set_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
  1318. mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
  1319. }
  1320. EXPORT_SYMBOL(blk_plug_device);
  1321. /*
  1322. * remove the queue from the plugged list, if present. called with
  1323. * queue lock held and interrupts disabled.
  1324. */
  1325. int blk_remove_plug(request_queue_t *q)
  1326. {
  1327. WARN_ON(!irqs_disabled());
  1328. if (!test_and_clear_bit(QUEUE_FLAG_PLUGGED, &q->queue_flags))
  1329. return 0;
  1330. del_timer(&q->unplug_timer);
  1331. return 1;
  1332. }
  1333. EXPORT_SYMBOL(blk_remove_plug);
  1334. /*
  1335. * remove the plug and let it rip..
  1336. */
  1337. void __generic_unplug_device(request_queue_t *q)
  1338. {
  1339. if (unlikely(test_bit(QUEUE_FLAG_STOPPED, &q->queue_flags)))
  1340. return;
  1341. if (!blk_remove_plug(q))
  1342. return;
  1343. q->request_fn(q);
  1344. }
  1345. EXPORT_SYMBOL(__generic_unplug_device);
  1346. /**
  1347. * generic_unplug_device - fire a request queue
  1348. * @q: The &request_queue_t in question
  1349. *
  1350. * Description:
  1351. * Linux uses plugging to build bigger requests queues before letting
  1352. * the device have at them. If a queue is plugged, the I/O scheduler
  1353. * is still adding and merging requests on the queue. Once the queue
  1354. * gets unplugged, the request_fn defined for the queue is invoked and
  1355. * transfers started.
  1356. **/
  1357. void generic_unplug_device(request_queue_t *q)
  1358. {
  1359. spin_lock_irq(q->queue_lock);
  1360. __generic_unplug_device(q);
  1361. spin_unlock_irq(q->queue_lock);
  1362. }
  1363. EXPORT_SYMBOL(generic_unplug_device);
  1364. static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
  1365. struct page *page)
  1366. {
  1367. request_queue_t *q = bdi->unplug_io_data;
  1368. /*
  1369. * devices don't necessarily have an ->unplug_fn defined
  1370. */
  1371. if (q->unplug_fn)
  1372. q->unplug_fn(q);
  1373. }
  1374. static void blk_unplug_work(void *data)
  1375. {
  1376. request_queue_t *q = data;
  1377. q->unplug_fn(q);
  1378. }
  1379. static void blk_unplug_timeout(unsigned long data)
  1380. {
  1381. request_queue_t *q = (request_queue_t *)data;
  1382. kblockd_schedule_work(&q->unplug_work);
  1383. }
  1384. /**
  1385. * blk_start_queue - restart a previously stopped queue
  1386. * @q: The &request_queue_t in question
  1387. *
  1388. * Description:
  1389. * blk_start_queue() will clear the stop flag on the queue, and call
  1390. * the request_fn for the queue if it was in a stopped state when
  1391. * entered. Also see blk_stop_queue(). Queue lock must be held.
  1392. **/
  1393. void blk_start_queue(request_queue_t *q)
  1394. {
  1395. clear_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
  1396. /*
  1397. * one level of recursion is ok and is much faster than kicking
  1398. * the unplug handling
  1399. */
  1400. if (!test_and_set_bit(QUEUE_FLAG_REENTER, &q->queue_flags)) {
  1401. q->request_fn(q);
  1402. clear_bit(QUEUE_FLAG_REENTER, &q->queue_flags);
  1403. } else {
  1404. blk_plug_device(q);
  1405. kblockd_schedule_work(&q->unplug_work);
  1406. }
  1407. }
  1408. EXPORT_SYMBOL(blk_start_queue);
  1409. /**
  1410. * blk_stop_queue - stop a queue
  1411. * @q: The &request_queue_t in question
  1412. *
  1413. * Description:
  1414. * The Linux block layer assumes that a block driver will consume all
  1415. * entries on the request queue when the request_fn strategy is called.
  1416. * Often this will not happen, because of hardware limitations (queue
  1417. * depth settings). If a device driver gets a 'queue full' response,
  1418. * or if it simply chooses not to queue more I/O at one point, it can
  1419. * call this function to prevent the request_fn from being called until
  1420. * the driver has signalled it's ready to go again. This happens by calling
  1421. * blk_start_queue() to restart queue operations. Queue lock must be held.
  1422. **/
  1423. void blk_stop_queue(request_queue_t *q)
  1424. {
  1425. blk_remove_plug(q);
  1426. set_bit(QUEUE_FLAG_STOPPED, &q->queue_flags);
  1427. }
  1428. EXPORT_SYMBOL(blk_stop_queue);
  1429. /**
  1430. * blk_sync_queue - cancel any pending callbacks on a queue
  1431. * @q: the queue
  1432. *
  1433. * Description:
  1434. * The block layer may perform asynchronous callback activity
  1435. * on a queue, such as calling the unplug function after a timeout.
  1436. * A block device may call blk_sync_queue to ensure that any
  1437. * such activity is cancelled, thus allowing it to release resources
  1438. * the the callbacks might use. The caller must already have made sure
  1439. * that its ->make_request_fn will not re-add plugging prior to calling
  1440. * this function.
  1441. *
  1442. */
  1443. void blk_sync_queue(struct request_queue *q)
  1444. {
  1445. del_timer_sync(&q->unplug_timer);
  1446. kblockd_flush();
  1447. }
  1448. EXPORT_SYMBOL(blk_sync_queue);
  1449. /**
  1450. * blk_run_queue - run a single device queue
  1451. * @q: The queue to run
  1452. */
  1453. void blk_run_queue(struct request_queue *q)
  1454. {
  1455. unsigned long flags;
  1456. spin_lock_irqsave(q->queue_lock, flags);
  1457. blk_remove_plug(q);
  1458. if (!elv_queue_empty(q))
  1459. q->request_fn(q);
  1460. spin_unlock_irqrestore(q->queue_lock, flags);
  1461. }
  1462. EXPORT_SYMBOL(blk_run_queue);
  1463. /**
  1464. * blk_cleanup_queue: - release a &request_queue_t when it is no longer needed
  1465. * @q: the request queue to be released
  1466. *
  1467. * Description:
  1468. * blk_cleanup_queue is the pair to blk_init_queue() or
  1469. * blk_queue_make_request(). It should be called when a request queue is
  1470. * being released; typically when a block device is being de-registered.
  1471. * Currently, its primary task it to free all the &struct request
  1472. * structures that were allocated to the queue and the queue itself.
  1473. *
  1474. * Caveat:
  1475. * Hopefully the low level driver will have finished any
  1476. * outstanding requests first...
  1477. **/
  1478. void blk_cleanup_queue(request_queue_t * q)
  1479. {
  1480. struct request_list *rl = &q->rq;
  1481. if (!atomic_dec_and_test(&q->refcnt))
  1482. return;
  1483. if (q->elevator)
  1484. elevator_exit(q->elevator);
  1485. blk_sync_queue(q);
  1486. if (rl->rq_pool)
  1487. mempool_destroy(rl->rq_pool);
  1488. if (q->queue_tags)
  1489. __blk_queue_free_tags(q);
  1490. kmem_cache_free(requestq_cachep, q);
  1491. }
  1492. EXPORT_SYMBOL(blk_cleanup_queue);
  1493. static int blk_init_free_list(request_queue_t *q)
  1494. {
  1495. struct request_list *rl = &q->rq;
  1496. rl->count[READ] = rl->count[WRITE] = 0;
  1497. rl->starved[READ] = rl->starved[WRITE] = 0;
  1498. rl->elvpriv = 0;
  1499. init_waitqueue_head(&rl->wait[READ]);
  1500. init_waitqueue_head(&rl->wait[WRITE]);
  1501. rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
  1502. mempool_free_slab, request_cachep, q->node);
  1503. if (!rl->rq_pool)
  1504. return -ENOMEM;
  1505. return 0;
  1506. }
  1507. request_queue_t *blk_alloc_queue(gfp_t gfp_mask)
  1508. {
  1509. return blk_alloc_queue_node(gfp_mask, -1);
  1510. }
  1511. EXPORT_SYMBOL(blk_alloc_queue);
  1512. request_queue_t *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
  1513. {
  1514. request_queue_t *q;
  1515. q = kmem_cache_alloc_node(requestq_cachep, gfp_mask, node_id);
  1516. if (!q)
  1517. return NULL;
  1518. memset(q, 0, sizeof(*q));
  1519. init_timer(&q->unplug_timer);
  1520. atomic_set(&q->refcnt, 1);
  1521. q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
  1522. q->backing_dev_info.unplug_io_data = q;
  1523. return q;
  1524. }
  1525. EXPORT_SYMBOL(blk_alloc_queue_node);
  1526. /**
  1527. * blk_init_queue - prepare a request queue for use with a block device
  1528. * @rfn: The function to be called to process requests that have been
  1529. * placed on the queue.
  1530. * @lock: Request queue spin lock
  1531. *
  1532. * Description:
  1533. * If a block device wishes to use the standard request handling procedures,
  1534. * which sorts requests and coalesces adjacent requests, then it must
  1535. * call blk_init_queue(). The function @rfn will be called when there
  1536. * are requests on the queue that need to be processed. If the device
  1537. * supports plugging, then @rfn may not be called immediately when requests
  1538. * are available on the queue, but may be called at some time later instead.
  1539. * Plugged queues are generally unplugged when a buffer belonging to one
  1540. * of the requests on the queue is needed, or due to memory pressure.
  1541. *
  1542. * @rfn is not required, or even expected, to remove all requests off the
  1543. * queue, but only as many as it can handle at a time. If it does leave
  1544. * requests on the queue, it is responsible for arranging that the requests
  1545. * get dealt with eventually.
  1546. *
  1547. * The queue spin lock must be held while manipulating the requests on the
  1548. * request queue.
  1549. *
  1550. * Function returns a pointer to the initialized request queue, or NULL if
  1551. * it didn't succeed.
  1552. *
  1553. * Note:
  1554. * blk_init_queue() must be paired with a blk_cleanup_queue() call
  1555. * when the block device is deactivated (such as at module unload).
  1556. **/
  1557. request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
  1558. {
  1559. return blk_init_queue_node(rfn, lock, -1);
  1560. }
  1561. EXPORT_SYMBOL(blk_init_queue);
  1562. request_queue_t *
  1563. blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
  1564. {
  1565. request_queue_t *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
  1566. if (!q)
  1567. return NULL;
  1568. q->node = node_id;
  1569. if (blk_init_free_list(q))
  1570. goto out_init;
  1571. /*
  1572. * if caller didn't supply a lock, they get per-queue locking with
  1573. * our embedded lock
  1574. */
  1575. if (!lock) {
  1576. spin_lock_init(&q->__queue_lock);
  1577. lock = &q->__queue_lock;
  1578. }
  1579. q->request_fn = rfn;
  1580. q->back_merge_fn = ll_back_merge_fn;
  1581. q->front_merge_fn = ll_front_merge_fn;
  1582. q->merge_requests_fn = ll_merge_requests_fn;
  1583. q->prep_rq_fn = NULL;
  1584. q->unplug_fn = generic_unplug_device;
  1585. q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
  1586. q->queue_lock = lock;
  1587. blk_queue_segment_boundary(q, 0xffffffff);
  1588. blk_queue_make_request(q, __make_request);
  1589. blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
  1590. blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
  1591. blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
  1592. /*
  1593. * all done
  1594. */
  1595. if (!elevator_init(q, NULL)) {
  1596. blk_queue_congestion_threshold(q);
  1597. return q;
  1598. }
  1599. blk_cleanup_queue(q);
  1600. out_init:
  1601. kmem_cache_free(requestq_cachep, q);
  1602. return NULL;
  1603. }
  1604. EXPORT_SYMBOL(blk_init_queue_node);
  1605. int blk_get_queue(request_queue_t *q)
  1606. {
  1607. if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
  1608. atomic_inc(&q->refcnt);
  1609. return 0;
  1610. }
  1611. return 1;
  1612. }
  1613. EXPORT_SYMBOL(blk_get_queue);
  1614. static inline void blk_free_request(request_queue_t *q, struct request *rq)
  1615. {
  1616. if (rq->flags & REQ_ELVPRIV)
  1617. elv_put_request(q, rq);
  1618. mempool_free(rq, q->rq.rq_pool);
  1619. }
  1620. static inline struct request *
  1621. blk_alloc_request(request_queue_t *q, int rw, struct bio *bio,
  1622. int priv, gfp_t gfp_mask)
  1623. {
  1624. struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
  1625. if (!rq)
  1626. return NULL;
  1627. /*
  1628. * first three bits are identical in rq->flags and bio->bi_rw,
  1629. * see bio.h and blkdev.h
  1630. */
  1631. rq->flags = rw;
  1632. if (priv) {
  1633. if (unlikely(elv_set_request(q, rq, bio, gfp_mask))) {
  1634. mempool_free(rq, q->rq.rq_pool);
  1635. return NULL;
  1636. }
  1637. rq->flags |= REQ_ELVPRIV;
  1638. }
  1639. return rq;
  1640. }
  1641. /*
  1642. * ioc_batching returns true if the ioc is a valid batching request and
  1643. * should be given priority access to a request.
  1644. */
  1645. static inline int ioc_batching(request_queue_t *q, struct io_context *ioc)
  1646. {
  1647. if (!ioc)
  1648. return 0;
  1649. /*
  1650. * Make sure the process is able to allocate at least 1 request
  1651. * even if the batch times out, otherwise we could theoretically
  1652. * lose wakeups.
  1653. */
  1654. return ioc->nr_batch_requests == q->nr_batching ||
  1655. (ioc->nr_batch_requests > 0
  1656. && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
  1657. }
  1658. /*
  1659. * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
  1660. * will cause the process to be a "batcher" on all queues in the system. This
  1661. * is the behaviour we want though - once it gets a wakeup it should be given
  1662. * a nice run.
  1663. */
  1664. static void ioc_set_batching(request_queue_t *q, struct io_context *ioc)
  1665. {
  1666. if (!ioc || ioc_batching(q, ioc))
  1667. return;
  1668. ioc->nr_batch_requests = q->nr_batching;
  1669. ioc->last_waited = jiffies;
  1670. }
  1671. static void __freed_request(request_queue_t *q, int rw)
  1672. {
  1673. struct request_list *rl = &q->rq;
  1674. if (rl->count[rw] < queue_congestion_off_threshold(q))
  1675. clear_queue_congested(q, rw);
  1676. if (rl->count[rw] + 1 <= q->nr_requests) {
  1677. if (waitqueue_active(&rl->wait[rw]))
  1678. wake_up(&rl->wait[rw]);
  1679. blk_clear_queue_full(q, rw);
  1680. }
  1681. }
  1682. /*
  1683. * A request has just been released. Account for it, update the full and
  1684. * congestion status, wake up any waiters. Called under q->queue_lock.
  1685. */
  1686. static void freed_request(request_queue_t *q, int rw, int priv)
  1687. {
  1688. struct request_list *rl = &q->rq;
  1689. rl->count[rw]--;
  1690. if (priv)
  1691. rl->elvpriv--;
  1692. __freed_request(q, rw);
  1693. if (unlikely(rl->starved[rw ^ 1]))
  1694. __freed_request(q, rw ^ 1);
  1695. }
  1696. #define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
  1697. /*
  1698. * Get a free request, queue_lock must be held.
  1699. * Returns NULL on failure, with queue_lock held.
  1700. * Returns !NULL on success, with queue_lock *not held*.
  1701. */
  1702. static struct request *get_request(request_queue_t *q, int rw, struct bio *bio,
  1703. gfp_t gfp_mask)
  1704. {
  1705. struct request *rq = NULL;
  1706. struct request_list *rl = &q->rq;
  1707. struct io_context *ioc = NULL;
  1708. int may_queue, priv;
  1709. may_queue = elv_may_queue(q, rw, bio);
  1710. if (may_queue == ELV_MQUEUE_NO)
  1711. goto rq_starved;
  1712. if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
  1713. if (rl->count[rw]+1 >= q->nr_requests) {
  1714. ioc = current_io_context(GFP_ATOMIC);
  1715. /*
  1716. * The queue will fill after this allocation, so set
  1717. * it as full, and mark this process as "batching".
  1718. * This process will be allowed to complete a batch of
  1719. * requests, others will be blocked.
  1720. */
  1721. if (!blk_queue_full(q, rw)) {
  1722. ioc_set_batching(q, ioc);
  1723. blk_set_queue_full(q, rw);
  1724. } else {
  1725. if (may_queue != ELV_MQUEUE_MUST
  1726. && !ioc_batching(q, ioc)) {
  1727. /*
  1728. * The queue is full and the allocating
  1729. * process is not a "batcher", and not
  1730. * exempted by the IO scheduler
  1731. */
  1732. goto out;
  1733. }
  1734. }
  1735. }
  1736. set_queue_congested(q, rw);
  1737. }
  1738. /*
  1739. * Only allow batching queuers to allocate up to 50% over the defined
  1740. * limit of requests, otherwise we could have thousands of requests
  1741. * allocated with any setting of ->nr_requests
  1742. */
  1743. if (rl->count[rw] >= (3 * q->nr_requests / 2))
  1744. goto out;
  1745. rl->count[rw]++;
  1746. rl->starved[rw] = 0;
  1747. priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
  1748. if (priv)
  1749. rl->elvpriv++;
  1750. spin_unlock_irq(q->queue_lock);
  1751. rq = blk_alloc_request(q, rw, bio, priv, gfp_mask);
  1752. if (unlikely(!rq)) {
  1753. /*
  1754. * Allocation failed presumably due to memory. Undo anything
  1755. * we might have messed up.
  1756. *
  1757. * Allocating task should really be put onto the front of the
  1758. * wait queue, but this is pretty rare.
  1759. */
  1760. spin_lock_irq(q->queue_lock);
  1761. freed_request(q, rw, priv);
  1762. /*
  1763. * in the very unlikely event that allocation failed and no
  1764. * requests for this direction was pending, mark us starved
  1765. * so that freeing of a request in the other direction will
  1766. * notice us. another possible fix would be to split the
  1767. * rq mempool into READ and WRITE
  1768. */
  1769. rq_starved:
  1770. if (unlikely(rl->count[rw] == 0))
  1771. rl->starved[rw] = 1;
  1772. goto out;
  1773. }
  1774. /*
  1775. * ioc may be NULL here, and ioc_batching will be false. That's
  1776. * OK, if the queue is under the request limit then requests need
  1777. * not count toward the nr_batch_requests limit. There will always
  1778. * be some limit enforced by BLK_BATCH_TIME.
  1779. */
  1780. if (ioc_batching(q, ioc))
  1781. ioc->nr_batch_requests--;
  1782. rq_init(q, rq);
  1783. rq->rl = rl;
  1784. out:
  1785. return rq;
  1786. }
  1787. /*
  1788. * No available requests for this queue, unplug the device and wait for some
  1789. * requests to become available.
  1790. *
  1791. * Called with q->queue_lock held, and returns with it unlocked.
  1792. */
  1793. static struct request *get_request_wait(request_queue_t *q, int rw,
  1794. struct bio *bio)
  1795. {
  1796. struct request *rq;
  1797. rq = get_request(q, rw, bio, GFP_NOIO);
  1798. while (!rq) {
  1799. DEFINE_WAIT(wait);
  1800. struct request_list *rl = &q->rq;
  1801. prepare_to_wait_exclusive(&rl->wait[rw], &wait,
  1802. TASK_UNINTERRUPTIBLE);
  1803. rq = get_request(q, rw, bio, GFP_NOIO);
  1804. if (!rq) {
  1805. struct io_context *ioc;
  1806. __generic_unplug_device(q);
  1807. spin_unlock_irq(q->queue_lock);
  1808. io_schedule();
  1809. /*
  1810. * After sleeping, we become a "batching" process and
  1811. * will be able to allocate at least one request, and
  1812. * up to a big batch of them for a small period time.
  1813. * See ioc_batching, ioc_set_batching
  1814. */
  1815. ioc = current_io_context(GFP_NOIO);
  1816. ioc_set_batching(q, ioc);
  1817. spin_lock_irq(q->queue_lock);
  1818. }
  1819. finish_wait(&rl->wait[rw], &wait);
  1820. }
  1821. return rq;
  1822. }
  1823. struct request *blk_get_request(request_queue_t *q, int rw, gfp_t gfp_mask)
  1824. {
  1825. struct request *rq;
  1826. BUG_ON(rw != READ && rw != WRITE);
  1827. spin_lock_irq(q->queue_lock);
  1828. if (gfp_mask & __GFP_WAIT) {
  1829. rq = get_request_wait(q, rw, NULL);
  1830. } else {
  1831. rq = get_request(q, rw, NULL, gfp_mask);
  1832. if (!rq)
  1833. spin_unlock_irq(q->queue_lock);
  1834. }
  1835. /* q->queue_lock is unlocked at this point */
  1836. return rq;
  1837. }
  1838. EXPORT_SYMBOL(blk_get_request);
  1839. /**
  1840. * blk_requeue_request - put a request back on queue
  1841. * @q: request queue where request should be inserted
  1842. * @rq: request to be inserted
  1843. *
  1844. * Description:
  1845. * Drivers often keep queueing requests until the hardware cannot accept
  1846. * more, when that condition happens we need to put the request back
  1847. * on the queue. Must be called with queue lock held.
  1848. */
  1849. void blk_requeue_request(request_queue_t *q, struct request *rq)
  1850. {
  1851. if (blk_rq_tagged(rq))
  1852. blk_queue_end_tag(q, rq);
  1853. elv_requeue_request(q, rq);
  1854. }
  1855. EXPORT_SYMBOL(blk_requeue_request);
  1856. /**
  1857. * blk_insert_request - insert a special request in to a request queue
  1858. * @q: request queue where request should be inserted
  1859. * @rq: request to be inserted
  1860. * @at_head: insert request at head or tail of queue
  1861. * @data: private data
  1862. *
  1863. * Description:
  1864. * Many block devices need to execute commands asynchronously, so they don't
  1865. * block the whole kernel from preemption during request execution. This is
  1866. * accomplished normally by inserting aritficial requests tagged as
  1867. * REQ_SPECIAL in to the corresponding request queue, and letting them be
  1868. * scheduled for actual execution by the request queue.
  1869. *
  1870. * We have the option of inserting the head or the tail of the queue.
  1871. * Typically we use the tail for new ioctls and so forth. We use the head
  1872. * of the queue for things like a QUEUE_FULL message from a device, or a
  1873. * host that is unable to accept a particular command.
  1874. */
  1875. void blk_insert_request(request_queue_t *q, struct request *rq,
  1876. int at_head, void *data)
  1877. {
  1878. int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
  1879. unsigned long flags;
  1880. /*
  1881. * tell I/O scheduler that this isn't a regular read/write (ie it
  1882. * must not attempt merges on this) and that it acts as a soft
  1883. * barrier
  1884. */
  1885. rq->flags |= REQ_SPECIAL | REQ_SOFTBARRIER;
  1886. rq->special = data;
  1887. spin_lock_irqsave(q->queue_lock, flags);
  1888. /*
  1889. * If command is tagged, release the tag
  1890. */
  1891. if (blk_rq_tagged(rq))
  1892. blk_queue_end_tag(q, rq);
  1893. drive_stat_acct(rq, rq->nr_sectors, 1);
  1894. __elv_add_request(q, rq, where, 0);
  1895. if (blk_queue_plugged(q))
  1896. __generic_unplug_device(q);
  1897. else
  1898. q->request_fn(q);
  1899. spin_unlock_irqrestore(q->queue_lock, flags);
  1900. }
  1901. EXPORT_SYMBOL(blk_insert_request);
  1902. /**
  1903. * blk_rq_map_user - map user data to a request, for REQ_BLOCK_PC usage
  1904. * @q: request queue where request should be inserted
  1905. * @rq: request structure to fill
  1906. * @ubuf: the user buffer
  1907. * @len: length of user data
  1908. *
  1909. * Description:
  1910. * Data will be mapped directly for zero copy io, if possible. Otherwise
  1911. * a kernel bounce buffer is used.
  1912. *
  1913. * A matching blk_rq_unmap_user() must be issued at the end of io, while
  1914. * still in process context.
  1915. *
  1916. * Note: The mapped bio may need to be bounced through blk_queue_bounce()
  1917. * before being submitted to the device, as pages mapped may be out of
  1918. * reach. It's the callers responsibility to make sure this happens. The
  1919. * original bio must be passed back in to blk_rq_unmap_user() for proper
  1920. * unmapping.
  1921. */
  1922. int blk_rq_map_user(request_queue_t *q, struct request *rq, void __user *ubuf,
  1923. unsigned int len)
  1924. {
  1925. unsigned long uaddr;
  1926. struct bio *bio;
  1927. int reading;
  1928. if (len > (q->max_hw_sectors << 9))
  1929. return -EINVAL;
  1930. if (!len || !ubuf)
  1931. return -EINVAL;
  1932. reading = rq_data_dir(rq) == READ;
  1933. /*
  1934. * if alignment requirement is satisfied, map in user pages for
  1935. * direct dma. else, set up kernel bounce buffers
  1936. */
  1937. uaddr = (unsigned long) ubuf;
  1938. if (!(uaddr & queue_dma_alignment(q)) && !(len & queue_dma_alignment(q)))
  1939. bio = bio_map_user(q, NULL, uaddr, len, reading);
  1940. else
  1941. bio = bio_copy_user(q, uaddr, len, reading);
  1942. if (!IS_ERR(bio)) {
  1943. rq->bio = rq->biotail = bio;
  1944. blk_rq_bio_prep(q, rq, bio);
  1945. rq->buffer = rq->data = NULL;
  1946. rq->data_len = len;
  1947. return 0;
  1948. }
  1949. /*
  1950. * bio is the err-ptr
  1951. */
  1952. return PTR_ERR(bio);
  1953. }
  1954. EXPORT_SYMBOL(blk_rq_map_user);
  1955. /**
  1956. * blk_rq_map_user_iov - map user data to a request, for REQ_BLOCK_PC usage
  1957. * @q: request queue where request should be inserted
  1958. * @rq: request to map data to
  1959. * @iov: pointer to the iovec
  1960. * @iov_count: number of elements in the iovec
  1961. *
  1962. * Description:
  1963. * Data will be mapped directly for zero copy io, if possible. Otherwise
  1964. * a kernel bounce buffer is used.
  1965. *
  1966. * A matching blk_rq_unmap_user() must be issued at the end of io, while
  1967. * still in process context.
  1968. *
  1969. * Note: The mapped bio may need to be bounced through blk_queue_bounce()
  1970. * before being submitted to the device, as pages mapped may be out of
  1971. * reach. It's the callers responsibility to make sure this happens. The
  1972. * original bio must be passed back in to blk_rq_unmap_user() for proper
  1973. * unmapping.
  1974. */
  1975. int blk_rq_map_user_iov(request_queue_t *q, struct request *rq,
  1976. struct sg_iovec *iov, int iov_count)
  1977. {
  1978. struct bio *bio;
  1979. if (!iov || iov_count <= 0)
  1980. return -EINVAL;
  1981. /* we don't allow misaligned data like bio_map_user() does. If the
  1982. * user is using sg, they're expected to know the alignment constraints
  1983. * and respect them accordingly */
  1984. bio = bio_map_user_iov(q, NULL, iov, iov_count, rq_data_dir(rq)== READ);
  1985. if (IS_ERR(bio))
  1986. return PTR_ERR(bio);
  1987. rq->bio = rq->biotail = bio;
  1988. blk_rq_bio_prep(q, rq, bio);
  1989. rq->buffer = rq->data = NULL;
  1990. rq->data_len = bio->bi_size;
  1991. return 0;
  1992. }
  1993. EXPORT_SYMBOL(blk_rq_map_user_iov);
  1994. /**
  1995. * blk_rq_unmap_user - unmap a request with user data
  1996. * @bio: bio to be unmapped
  1997. * @ulen: length of user buffer
  1998. *
  1999. * Description:
  2000. * Unmap a bio previously mapped by blk_rq_map_user().
  2001. */
  2002. int blk_rq_unmap_user(struct bio *bio, unsigned int ulen)
  2003. {
  2004. int ret = 0;
  2005. if (bio) {
  2006. if (bio_flagged(bio, BIO_USER_MAPPED))
  2007. bio_unmap_user(bio);
  2008. else
  2009. ret = bio_uncopy_user(bio);
  2010. }
  2011. return 0;
  2012. }
  2013. EXPORT_SYMBOL(blk_rq_unmap_user);
  2014. /**
  2015. * blk_rq_map_kern - map kernel data to a request, for REQ_BLOCK_PC usage
  2016. * @q: request queue where request should be inserted
  2017. * @rq: request to fill
  2018. * @kbuf: the kernel buffer
  2019. * @len: length of user data
  2020. * @gfp_mask: memory allocation flags
  2021. */
  2022. int blk_rq_map_kern(request_queue_t *q, struct request *rq, void *kbuf,
  2023. unsigned int len, gfp_t gfp_mask)
  2024. {
  2025. struct bio *bio;
  2026. if (len > (q->max_hw_sectors << 9))
  2027. return -EINVAL;
  2028. if (!len || !kbuf)
  2029. return -EINVAL;
  2030. bio = bio_map_kern(q, kbuf, len, gfp_mask);
  2031. if (IS_ERR(bio))
  2032. return PTR_ERR(bio);
  2033. if (rq_data_dir(rq) == WRITE)
  2034. bio->bi_rw |= (1 << BIO_RW);
  2035. rq->bio = rq->biotail = bio;
  2036. blk_rq_bio_prep(q, rq, bio);
  2037. rq->buffer = rq->data = NULL;
  2038. rq->data_len = len;
  2039. return 0;
  2040. }
  2041. EXPORT_SYMBOL(blk_rq_map_kern);
  2042. /**
  2043. * blk_execute_rq_nowait - insert a request into queue for execution
  2044. * @q: queue to insert the request in
  2045. * @bd_disk: matching gendisk
  2046. * @rq: request to insert
  2047. * @at_head: insert request at head or tail of queue
  2048. * @done: I/O completion handler
  2049. *
  2050. * Description:
  2051. * Insert a fully prepared request at the back of the io scheduler queue
  2052. * for execution. Don't wait for completion.
  2053. */
  2054. void blk_execute_rq_nowait(request_queue_t *q, struct gendisk *bd_disk,
  2055. struct request *rq, int at_head,
  2056. rq_end_io_fn *done)
  2057. {
  2058. int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
  2059. rq->rq_disk = bd_disk;
  2060. rq->flags |= REQ_NOMERGE;
  2061. rq->end_io = done;
  2062. elv_add_request(q, rq, where, 1);
  2063. generic_unplug_device(q);
  2064. }
  2065. EXPORT_SYMBOL_GPL(blk_execute_rq_nowait);
  2066. /**
  2067. * blk_execute_rq - insert a request into queue for execution
  2068. * @q: queue to insert the request in
  2069. * @bd_disk: matching gendisk
  2070. * @rq: request to insert
  2071. * @at_head: insert request at head or tail of queue
  2072. *
  2073. * Description:
  2074. * Insert a fully prepared request at the back of the io scheduler queue
  2075. * for execution and wait for completion.
  2076. */
  2077. int blk_execute_rq(request_queue_t *q, struct gendisk *bd_disk,
  2078. struct request *rq, int at_head)
  2079. {
  2080. DECLARE_COMPLETION(wait);
  2081. char sense[SCSI_SENSE_BUFFERSIZE];
  2082. int err = 0;
  2083. /*
  2084. * we need an extra reference to the request, so we can look at
  2085. * it after io completion
  2086. */
  2087. rq->ref_count++;
  2088. if (!rq->sense) {
  2089. memset(sense, 0, sizeof(sense));
  2090. rq->sense = sense;
  2091. rq->sense_len = 0;
  2092. }
  2093. rq->waiting = &wait;
  2094. blk_execute_rq_nowait(q, bd_disk, rq, at_head, blk_end_sync_rq);
  2095. wait_for_completion(&wait);
  2096. rq->waiting = NULL;
  2097. if (rq->errors)
  2098. err = -EIO;
  2099. return err;
  2100. }
  2101. EXPORT_SYMBOL(blk_execute_rq);
  2102. /**
  2103. * blkdev_issue_flush - queue a flush
  2104. * @bdev: blockdev to issue flush for
  2105. * @error_sector: error sector
  2106. *
  2107. * Description:
  2108. * Issue a flush for the block device in question. Caller can supply
  2109. * room for storing the error offset in case of a flush error, if they
  2110. * wish to. Caller must run wait_for_completion() on its own.
  2111. */
  2112. int blkdev_issue_flush(struct block_device *bdev, sector_t *error_sector)
  2113. {
  2114. request_queue_t *q;
  2115. if (bdev->bd_disk == NULL)
  2116. return -ENXIO;
  2117. q = bdev_get_queue(bdev);
  2118. if (!q)
  2119. return -ENXIO;
  2120. if (!q->issue_flush_fn)
  2121. return -EOPNOTSUPP;
  2122. return q->issue_flush_fn(q, bdev->bd_disk, error_sector);
  2123. }
  2124. EXPORT_SYMBOL(blkdev_issue_flush);
  2125. static void drive_stat_acct(struct request *rq, int nr_sectors, int new_io)
  2126. {
  2127. int rw = rq_data_dir(rq);
  2128. if (!blk_fs_request(rq) || !rq->rq_disk)
  2129. return;
  2130. if (!new_io) {
  2131. __disk_stat_inc(rq->rq_disk, merges[rw]);
  2132. } else {
  2133. disk_round_stats(rq->rq_disk);
  2134. rq->rq_disk->in_flight++;
  2135. }
  2136. }
  2137. /*
  2138. * add-request adds a request to the linked list.
  2139. * queue lock is held and interrupts disabled, as we muck with the
  2140. * request queue list.
  2141. */
  2142. static inline void add_request(request_queue_t * q, struct request * req)
  2143. {
  2144. drive_stat_acct(req, req->nr_sectors, 1);
  2145. if (q->activity_fn)
  2146. q->activity_fn(q->activity_data, rq_data_dir(req));
  2147. /*
  2148. * elevator indicated where it wants this request to be
  2149. * inserted at elevator_merge time
  2150. */
  2151. __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
  2152. }
  2153. /*
  2154. * disk_round_stats() - Round off the performance stats on a struct
  2155. * disk_stats.
  2156. *
  2157. * The average IO queue length and utilisation statistics are maintained
  2158. * by observing the current state of the queue length and the amount of
  2159. * time it has been in this state for.
  2160. *
  2161. * Normally, that accounting is done on IO completion, but that can result
  2162. * in more than a second's worth of IO being accounted for within any one
  2163. * second, leading to >100% utilisation. To deal with that, we call this
  2164. * function to do a round-off before returning the results when reading
  2165. * /proc/diskstats. This accounts immediately for all queue usage up to
  2166. * the current jiffies and restarts the counters again.
  2167. */
  2168. void disk_round_stats(struct gendisk *disk)
  2169. {
  2170. unsigned long now = jiffies;
  2171. if (now == disk->stamp)
  2172. return;
  2173. if (disk->in_flight) {
  2174. __disk_stat_add(disk, time_in_queue,
  2175. disk->in_flight * (now - disk->stamp));
  2176. __disk_stat_add(disk, io_ticks, (now - disk->stamp));
  2177. }
  2178. disk->stamp = now;
  2179. }
  2180. /*
  2181. * queue lock must be held
  2182. */
  2183. void __blk_put_request(request_queue_t *q, struct request *req)
  2184. {
  2185. struct request_list *rl = req->rl;
  2186. if (unlikely(!q))
  2187. return;
  2188. if (unlikely(--req->ref_count))
  2189. return;
  2190. elv_completed_request(q, req);
  2191. req->rq_status = RQ_INACTIVE;
  2192. req->rl = NULL;
  2193. /*
  2194. * Request may not have originated from ll_rw_blk. if not,
  2195. * it didn't come out of our reserved rq pools
  2196. */
  2197. if (rl) {
  2198. int rw = rq_data_dir(req);
  2199. int priv = req->flags & REQ_ELVPRIV;
  2200. BUG_ON(!list_empty(&req->queuelist));
  2201. blk_free_request(q, req);
  2202. freed_request(q, rw, priv);
  2203. }
  2204. }
  2205. EXPORT_SYMBOL_GPL(__blk_put_request);
  2206. void blk_put_request(struct request *req)
  2207. {
  2208. unsigned long flags;
  2209. request_queue_t *q = req->q;
  2210. /*
  2211. * Gee, IDE calls in w/ NULL q. Fix IDE and remove the
  2212. * following if (q) test.
  2213. */
  2214. if (q) {
  2215. spin_lock_irqsave(q->queue_lock, flags);
  2216. __blk_put_request(q, req);
  2217. spin_unlock_irqrestore(q->queue_lock, flags);
  2218. }
  2219. }
  2220. EXPORT_SYMBOL(blk_put_request);
  2221. /**
  2222. * blk_end_sync_rq - executes a completion event on a request
  2223. * @rq: request to complete
  2224. */
  2225. void blk_end_sync_rq(struct request *rq, int error)
  2226. {
  2227. struct completion *waiting = rq->waiting;
  2228. rq->waiting = NULL;
  2229. __blk_put_request(rq->q, rq);
  2230. /*
  2231. * complete last, if this is a stack request the process (and thus
  2232. * the rq pointer) could be invalid right after this complete()
  2233. */
  2234. complete(waiting);
  2235. }
  2236. EXPORT_SYMBOL(blk_end_sync_rq);
  2237. /**
  2238. * blk_congestion_wait - wait for a queue to become uncongested
  2239. * @rw: READ or WRITE
  2240. * @timeout: timeout in jiffies
  2241. *
  2242. * Waits for up to @timeout jiffies for a queue (any queue) to exit congestion.
  2243. * If no queues are congested then just wait for the next request to be
  2244. * returned.
  2245. */
  2246. long blk_congestion_wait(int rw, long timeout)
  2247. {
  2248. long ret;
  2249. DEFINE_WAIT(wait);
  2250. wait_queue_head_t *wqh = &congestion_wqh[rw];
  2251. prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
  2252. ret = io_schedule_timeout(timeout);
  2253. finish_wait(wqh, &wait);
  2254. return ret;
  2255. }
  2256. EXPORT_SYMBOL(blk_congestion_wait);
  2257. /*
  2258. * Has to be called with the request spinlock acquired
  2259. */
  2260. static int attempt_merge(request_queue_t *q, struct request *req,
  2261. struct request *next)
  2262. {
  2263. if (!rq_mergeable(req) || !rq_mergeable(next))
  2264. return 0;
  2265. /*
  2266. * not contigious
  2267. */
  2268. if (req->sector + req->nr_sectors != next->sector)
  2269. return 0;
  2270. if (rq_data_dir(req) != rq_data_dir(next)
  2271. || req->rq_disk != next->rq_disk
  2272. || next->waiting || next->special)
  2273. return 0;
  2274. /*
  2275. * If we are allowed to merge, then append bio list
  2276. * from next to rq and release next. merge_requests_fn
  2277. * will have updated segment counts, update sector
  2278. * counts here.
  2279. */
  2280. if (!q->merge_requests_fn(q, req, next))
  2281. return 0;
  2282. /*
  2283. * At this point we have either done a back merge
  2284. * or front merge. We need the smaller start_time of
  2285. * the merged requests to be the current request
  2286. * for accounting purposes.
  2287. */
  2288. if (time_after(req->start_time, next->start_time))
  2289. req->start_time = next->start_time;
  2290. req->biotail->bi_next = next->bio;
  2291. req->biotail = next->biotail;
  2292. req->nr_sectors = req->hard_nr_sectors += next->hard_nr_sectors;
  2293. elv_merge_requests(q, req, next);
  2294. if (req->rq_disk) {
  2295. disk_round_stats(req->rq_disk);
  2296. req->rq_disk->in_flight--;
  2297. }
  2298. req->ioprio = ioprio_best(req->ioprio, next->ioprio);
  2299. __blk_put_request(q, next);
  2300. return 1;
  2301. }
  2302. static inline int attempt_back_merge(request_queue_t *q, struct request *rq)
  2303. {
  2304. struct request *next = elv_latter_request(q, rq);
  2305. if (next)
  2306. return attempt_merge(q, rq, next);
  2307. return 0;
  2308. }
  2309. static inline int attempt_front_merge(request_queue_t *q, struct request *rq)
  2310. {
  2311. struct request *prev = elv_former_request(q, rq);
  2312. if (prev)
  2313. return attempt_merge(q, prev, rq);
  2314. return 0;
  2315. }
  2316. static void init_request_from_bio(struct request *req, struct bio *bio)
  2317. {
  2318. req->flags |= REQ_CMD;
  2319. /*
  2320. * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
  2321. */
  2322. if (bio_rw_ahead(bio) || bio_failfast(bio))
  2323. req->flags |= REQ_FAILFAST;
  2324. /*
  2325. * REQ_BARRIER implies no merging, but lets make it explicit
  2326. */
  2327. if (unlikely(bio_barrier(bio)))
  2328. req->flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
  2329. req->errors = 0;
  2330. req->hard_sector = req->sector = bio->bi_sector;
  2331. req->hard_nr_sectors = req->nr_sectors = bio_sectors(bio);
  2332. req->current_nr_sectors = req->hard_cur_sectors = bio_cur_sectors(bio);
  2333. req->nr_phys_segments = bio_phys_segments(req->q, bio);
  2334. req->nr_hw_segments = bio_hw_segments(req->q, bio);
  2335. req->buffer = bio_data(bio); /* see ->buffer comment above */
  2336. req->waiting = NULL;
  2337. req->bio = req->biotail = bio;
  2338. req->ioprio = bio_prio(bio);
  2339. req->rq_disk = bio->bi_bdev->bd_disk;
  2340. req->start_time = jiffies;
  2341. }
  2342. static int __make_request(request_queue_t *q, struct bio *bio)
  2343. {
  2344. struct request *req;
  2345. int el_ret, rw, nr_sectors, cur_nr_sectors, barrier, err, sync;
  2346. unsigned short prio;
  2347. sector_t sector;
  2348. sector = bio->bi_sector;
  2349. nr_sectors = bio_sectors(bio);
  2350. cur_nr_sectors = bio_cur_sectors(bio);
  2351. prio = bio_prio(bio);
  2352. rw = bio_data_dir(bio);
  2353. sync = bio_sync(bio);
  2354. /*
  2355. * low level driver can indicate that it wants pages above a
  2356. * certain limit bounced to low memory (ie for highmem, or even
  2357. * ISA dma in theory)
  2358. */
  2359. blk_queue_bounce(q, &bio);
  2360. spin_lock_prefetch(q->queue_lock);
  2361. barrier = bio_barrier(bio);
  2362. if (unlikely(barrier) && (q->next_ordered == QUEUE_ORDERED_NONE)) {
  2363. err = -EOPNOTSUPP;
  2364. goto end_io;
  2365. }
  2366. spin_lock_irq(q->queue_lock);
  2367. if (unlikely(barrier) || elv_queue_empty(q))
  2368. goto get_rq;
  2369. el_ret = elv_merge(q, &req, bio);
  2370. switch (el_ret) {
  2371. case ELEVATOR_BACK_MERGE:
  2372. BUG_ON(!rq_mergeable(req));
  2373. if (!q->back_merge_fn(q, req, bio))
  2374. break;
  2375. req->biotail->bi_next = bio;
  2376. req->biotail = bio;
  2377. req->nr_sectors = req->hard_nr_sectors += nr_sectors;
  2378. req->ioprio = ioprio_best(req->ioprio, prio);
  2379. drive_stat_acct(req, nr_sectors, 0);
  2380. if (!attempt_back_merge(q, req))
  2381. elv_merged_request(q, req);
  2382. goto out;
  2383. case ELEVATOR_FRONT_MERGE:
  2384. BUG_ON(!rq_mergeable(req));
  2385. if (!q->front_merge_fn(q, req, bio))
  2386. break;
  2387. bio->bi_next = req->bio;
  2388. req->bio = bio;
  2389. /*
  2390. * may not be valid. if the low level driver said
  2391. * it didn't need a bounce buffer then it better
  2392. * not touch req->buffer either...
  2393. */
  2394. req->buffer = bio_data(bio);
  2395. req->current_nr_sectors = cur_nr_sectors;
  2396. req->hard_cur_sectors = cur_nr_sectors;
  2397. req->sector = req->hard_sector = sector;
  2398. req->nr_sectors = req->hard_nr_sectors += nr_sectors;
  2399. req->ioprio = ioprio_best(req->ioprio, prio);
  2400. drive_stat_acct(req, nr_sectors, 0);
  2401. if (!attempt_front_merge(q, req))
  2402. elv_merged_request(q, req);
  2403. goto out;
  2404. /* ELV_NO_MERGE: elevator says don't/can't merge. */
  2405. default:
  2406. ;
  2407. }
  2408. get_rq:
  2409. /*
  2410. * Grab a free request. This is might sleep but can not fail.
  2411. * Returns with the queue unlocked.
  2412. */
  2413. req = get_request_wait(q, rw, bio);
  2414. /*
  2415. * After dropping the lock and possibly sleeping here, our request
  2416. * may now be mergeable after it had proven unmergeable (above).
  2417. * We don't worry about that case for efficiency. It won't happen
  2418. * often, and the elevators are able to handle it.
  2419. */
  2420. init_request_from_bio(req, bio);
  2421. spin_lock_irq(q->queue_lock);
  2422. if (elv_queue_empty(q))
  2423. blk_plug_device(q);
  2424. add_request(q, req);
  2425. out:
  2426. if (sync)
  2427. __generic_unplug_device(q);
  2428. spin_unlock_irq(q->queue_lock);
  2429. return 0;
  2430. end_io:
  2431. bio_endio(bio, nr_sectors << 9, err);
  2432. return 0;
  2433. }
  2434. /*
  2435. * If bio->bi_dev is a partition, remap the location
  2436. */
  2437. static inline void blk_partition_remap(struct bio *bio)
  2438. {
  2439. struct block_device *bdev = bio->bi_bdev;
  2440. if (bdev != bdev->bd_contains) {
  2441. struct hd_struct *p = bdev->bd_part;
  2442. const int rw = bio_data_dir(bio);
  2443. p->sectors[rw] += bio_sectors(bio);
  2444. p->ios[rw]++;
  2445. bio->bi_sector += p->start_sect;
  2446. bio->bi_bdev = bdev->bd_contains;
  2447. }
  2448. }
  2449. static void handle_bad_sector(struct bio *bio)
  2450. {
  2451. char b[BDEVNAME_SIZE];
  2452. printk(KERN_INFO "attempt to access beyond end of device\n");
  2453. printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
  2454. bdevname(bio->bi_bdev, b),
  2455. bio->bi_rw,
  2456. (unsigned long long)bio->bi_sector + bio_sectors(bio),
  2457. (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
  2458. set_bit(BIO_EOF, &bio->bi_flags);
  2459. }
  2460. /**
  2461. * generic_make_request: hand a buffer to its device driver for I/O
  2462. * @bio: The bio describing the location in memory and on the device.
  2463. *
  2464. * generic_make_request() is used to make I/O requests of block
  2465. * devices. It is passed a &struct bio, which describes the I/O that needs
  2466. * to be done.
  2467. *
  2468. * generic_make_request() does not return any status. The
  2469. * success/failure status of the request, along with notification of
  2470. * completion, is delivered asynchronously through the bio->bi_end_io
  2471. * function described (one day) else where.
  2472. *
  2473. * The caller of generic_make_request must make sure that bi_io_vec
  2474. * are set to describe the memory buffer, and that bi_dev and bi_sector are
  2475. * set to describe the device address, and the
  2476. * bi_end_io and optionally bi_private are set to describe how
  2477. * completion notification should be signaled.
  2478. *
  2479. * generic_make_request and the drivers it calls may use bi_next if this
  2480. * bio happens to be merged with someone else, and may change bi_dev and
  2481. * bi_sector for remaps as it sees fit. So the values of these fields
  2482. * should NOT be depended on after the call to generic_make_request.
  2483. */
  2484. void generic_make_request(struct bio *bio)
  2485. {
  2486. request_queue_t *q;
  2487. sector_t maxsector;
  2488. int ret, nr_sectors = bio_sectors(bio);
  2489. might_sleep();
  2490. /* Test device or partition size, when known. */
  2491. maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
  2492. if (maxsector) {
  2493. sector_t sector = bio->bi_sector;
  2494. if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
  2495. /*
  2496. * This may well happen - the kernel calls bread()
  2497. * without checking the size of the device, e.g., when
  2498. * mounting a device.
  2499. */
  2500. handle_bad_sector(bio);
  2501. goto end_io;
  2502. }
  2503. }
  2504. /*
  2505. * Resolve the mapping until finished. (drivers are
  2506. * still free to implement/resolve their own stacking
  2507. * by explicitly returning 0)
  2508. *
  2509. * NOTE: we don't repeat the blk_size check for each new device.
  2510. * Stacking drivers are expected to know what they are doing.
  2511. */
  2512. do {
  2513. char b[BDEVNAME_SIZE];
  2514. q = bdev_get_queue(bio->bi_bdev);
  2515. if (!q) {
  2516. printk(KERN_ERR
  2517. "generic_make_request: Trying to access "
  2518. "nonexistent block-device %s (%Lu)\n",
  2519. bdevname(bio->bi_bdev, b),
  2520. (long long) bio->bi_sector);
  2521. end_io:
  2522. bio_endio(bio, bio->bi_size, -EIO);
  2523. break;
  2524. }
  2525. if (unlikely(bio_sectors(bio) > q->max_hw_sectors)) {
  2526. printk("bio too big device %s (%u > %u)\n",
  2527. bdevname(bio->bi_bdev, b),
  2528. bio_sectors(bio),
  2529. q->max_hw_sectors);
  2530. goto end_io;
  2531. }
  2532. if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
  2533. goto end_io;
  2534. /*
  2535. * If this device has partitions, remap block n
  2536. * of partition p to block n+start(p) of the disk.
  2537. */
  2538. blk_partition_remap(bio);
  2539. ret = q->make_request_fn(q, bio);
  2540. } while (ret);
  2541. }
  2542. EXPORT_SYMBOL(generic_make_request);
  2543. /**
  2544. * submit_bio: submit a bio to the block device layer for I/O
  2545. * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
  2546. * @bio: The &struct bio which describes the I/O
  2547. *
  2548. * submit_bio() is very similar in purpose to generic_make_request(), and
  2549. * uses that function to do most of the work. Both are fairly rough
  2550. * interfaces, @bio must be presetup and ready for I/O.
  2551. *
  2552. */
  2553. void submit_bio(int rw, struct bio *bio)
  2554. {
  2555. int count = bio_sectors(bio);
  2556. BIO_BUG_ON(!bio->bi_size);
  2557. BIO_BUG_ON(!bio->bi_io_vec);
  2558. bio->bi_rw |= rw;
  2559. if (rw & WRITE)
  2560. mod_page_state(pgpgout, count);
  2561. else
  2562. mod_page_state(pgpgin, count);
  2563. if (unlikely(block_dump)) {
  2564. char b[BDEVNAME_SIZE];
  2565. printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
  2566. current->comm, current->pid,
  2567. (rw & WRITE) ? "WRITE" : "READ",
  2568. (unsigned long long)bio->bi_sector,
  2569. bdevname(bio->bi_bdev,b));
  2570. }
  2571. generic_make_request(bio);
  2572. }
  2573. EXPORT_SYMBOL(submit_bio);
  2574. static void blk_recalc_rq_segments(struct request *rq)
  2575. {
  2576. struct bio *bio, *prevbio = NULL;
  2577. int nr_phys_segs, nr_hw_segs;
  2578. unsigned int phys_size, hw_size;
  2579. request_queue_t *q = rq->q;
  2580. if (!rq->bio)
  2581. return;
  2582. phys_size = hw_size = nr_phys_segs = nr_hw_segs = 0;
  2583. rq_for_each_bio(bio, rq) {
  2584. /* Force bio hw/phys segs to be recalculated. */
  2585. bio->bi_flags &= ~(1 << BIO_SEG_VALID);
  2586. nr_phys_segs += bio_phys_segments(q, bio);
  2587. nr_hw_segs += bio_hw_segments(q, bio);
  2588. if (prevbio) {
  2589. int pseg = phys_size + prevbio->bi_size + bio->bi_size;
  2590. int hseg = hw_size + prevbio->bi_size + bio->bi_size;
  2591. if (blk_phys_contig_segment(q, prevbio, bio) &&
  2592. pseg <= q->max_segment_size) {
  2593. nr_phys_segs--;
  2594. phys_size += prevbio->bi_size + bio->bi_size;
  2595. } else
  2596. phys_size = 0;
  2597. if (blk_hw_contig_segment(q, prevbio, bio) &&
  2598. hseg <= q->max_segment_size) {
  2599. nr_hw_segs--;
  2600. hw_size += prevbio->bi_size + bio->bi_size;
  2601. } else
  2602. hw_size = 0;
  2603. }
  2604. prevbio = bio;
  2605. }
  2606. rq->nr_phys_segments = nr_phys_segs;
  2607. rq->nr_hw_segments = nr_hw_segs;
  2608. }
  2609. static void blk_recalc_rq_sectors(struct request *rq, int nsect)
  2610. {
  2611. if (blk_fs_request(rq)) {
  2612. rq->hard_sector += nsect;
  2613. rq->hard_nr_sectors -= nsect;
  2614. /*
  2615. * Move the I/O submission pointers ahead if required.
  2616. */
  2617. if ((rq->nr_sectors >= rq->hard_nr_sectors) &&
  2618. (rq->sector <= rq->hard_sector)) {
  2619. rq->sector = rq->hard_sector;
  2620. rq->nr_sectors = rq->hard_nr_sectors;
  2621. rq->hard_cur_sectors = bio_cur_sectors(rq->bio);
  2622. rq->current_nr_sectors = rq->hard_cur_sectors;
  2623. rq->buffer = bio_data(rq->bio);
  2624. }
  2625. /*
  2626. * if total number of sectors is less than the first segment
  2627. * size, something has gone terribly wrong
  2628. */
  2629. if (rq->nr_sectors < rq->current_nr_sectors) {
  2630. printk("blk: request botched\n");
  2631. rq->nr_sectors = rq->current_nr_sectors;
  2632. }
  2633. }
  2634. }
  2635. static int __end_that_request_first(struct request *req, int uptodate,
  2636. int nr_bytes)
  2637. {
  2638. int total_bytes, bio_nbytes, error, next_idx = 0;
  2639. struct bio *bio;
  2640. /*
  2641. * extend uptodate bool to allow < 0 value to be direct io error
  2642. */
  2643. error = 0;
  2644. if (end_io_error(uptodate))
  2645. error = !uptodate ? -EIO : uptodate;
  2646. /*
  2647. * for a REQ_BLOCK_PC request, we want to carry any eventual
  2648. * sense key with us all the way through
  2649. */
  2650. if (!blk_pc_request(req))
  2651. req->errors = 0;
  2652. if (!uptodate) {
  2653. if (blk_fs_request(req) && !(req->flags & REQ_QUIET))
  2654. printk("end_request: I/O error, dev %s, sector %llu\n",
  2655. req->rq_disk ? req->rq_disk->disk_name : "?",
  2656. (unsigned long long)req->sector);
  2657. }
  2658. if (blk_fs_request(req) && req->rq_disk) {
  2659. const int rw = rq_data_dir(req);
  2660. __disk_stat_add(req->rq_disk, sectors[rw], nr_bytes >> 9);
  2661. }
  2662. total_bytes = bio_nbytes = 0;
  2663. while ((bio = req->bio) != NULL) {
  2664. int nbytes;
  2665. if (nr_bytes >= bio->bi_size) {
  2666. req->bio = bio->bi_next;
  2667. nbytes = bio->bi_size;
  2668. if (!ordered_bio_endio(req, bio, nbytes, error))
  2669. bio_endio(bio, nbytes, error);
  2670. next_idx = 0;
  2671. bio_nbytes = 0;
  2672. } else {
  2673. int idx = bio->bi_idx + next_idx;
  2674. if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
  2675. blk_dump_rq_flags(req, "__end_that");
  2676. printk("%s: bio idx %d >= vcnt %d\n",
  2677. __FUNCTION__,
  2678. bio->bi_idx, bio->bi_vcnt);
  2679. break;
  2680. }
  2681. nbytes = bio_iovec_idx(bio, idx)->bv_len;
  2682. BIO_BUG_ON(nbytes > bio->bi_size);
  2683. /*
  2684. * not a complete bvec done
  2685. */
  2686. if (unlikely(nbytes > nr_bytes)) {
  2687. bio_nbytes += nr_bytes;
  2688. total_bytes += nr_bytes;
  2689. break;
  2690. }
  2691. /*
  2692. * advance to the next vector
  2693. */
  2694. next_idx++;
  2695. bio_nbytes += nbytes;
  2696. }
  2697. total_bytes += nbytes;
  2698. nr_bytes -= nbytes;
  2699. if ((bio = req->bio)) {
  2700. /*
  2701. * end more in this run, or just return 'not-done'
  2702. */
  2703. if (unlikely(nr_bytes <= 0))
  2704. break;
  2705. }
  2706. }
  2707. /*
  2708. * completely done
  2709. */
  2710. if (!req->bio)
  2711. return 0;
  2712. /*
  2713. * if the request wasn't completed, update state
  2714. */
  2715. if (bio_nbytes) {
  2716. if (!ordered_bio_endio(req, bio, bio_nbytes, error))
  2717. bio_endio(bio, bio_nbytes, error);
  2718. bio->bi_idx += next_idx;
  2719. bio_iovec(bio)->bv_offset += nr_bytes;
  2720. bio_iovec(bio)->bv_len -= nr_bytes;
  2721. }
  2722. blk_recalc_rq_sectors(req, total_bytes >> 9);
  2723. blk_recalc_rq_segments(req);
  2724. return 1;
  2725. }
  2726. /**
  2727. * end_that_request_first - end I/O on a request
  2728. * @req: the request being processed
  2729. * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
  2730. * @nr_sectors: number of sectors to end I/O on
  2731. *
  2732. * Description:
  2733. * Ends I/O on a number of sectors attached to @req, and sets it up
  2734. * for the next range of segments (if any) in the cluster.
  2735. *
  2736. * Return:
  2737. * 0 - we are done with this request, call end_that_request_last()
  2738. * 1 - still buffers pending for this request
  2739. **/
  2740. int end_that_request_first(struct request *req, int uptodate, int nr_sectors)
  2741. {
  2742. return __end_that_request_first(req, uptodate, nr_sectors << 9);
  2743. }
  2744. EXPORT_SYMBOL(end_that_request_first);
  2745. /**
  2746. * end_that_request_chunk - end I/O on a request
  2747. * @req: the request being processed
  2748. * @uptodate: 1 for success, 0 for I/O error, < 0 for specific error
  2749. * @nr_bytes: number of bytes to complete
  2750. *
  2751. * Description:
  2752. * Ends I/O on a number of bytes attached to @req, and sets it up
  2753. * for the next range of segments (if any). Like end_that_request_first(),
  2754. * but deals with bytes instead of sectors.
  2755. *
  2756. * Return:
  2757. * 0 - we are done with this request, call end_that_request_last()
  2758. * 1 - still buffers pending for this request
  2759. **/
  2760. int end_that_request_chunk(struct request *req, int uptodate, int nr_bytes)
  2761. {
  2762. return __end_that_request_first(req, uptodate, nr_bytes);
  2763. }
  2764. EXPORT_SYMBOL(end_that_request_chunk);
  2765. /*
  2766. * queue lock must be held
  2767. */
  2768. void end_that_request_last(struct request *req, int uptodate)
  2769. {
  2770. struct gendisk *disk = req->rq_disk;
  2771. int error;
  2772. /*
  2773. * extend uptodate bool to allow < 0 value to be direct io error
  2774. */
  2775. error = 0;
  2776. if (end_io_error(uptodate))
  2777. error = !uptodate ? -EIO : uptodate;
  2778. if (unlikely(laptop_mode) && blk_fs_request(req))
  2779. laptop_io_completion();
  2780. if (disk && blk_fs_request(req)) {
  2781. unsigned long duration = jiffies - req->start_time;
  2782. const int rw = rq_data_dir(req);
  2783. __disk_stat_inc(disk, ios[rw]);
  2784. __disk_stat_add(disk, ticks[rw], duration);
  2785. disk_round_stats(disk);
  2786. disk->in_flight--;
  2787. }
  2788. if (req->end_io)
  2789. req->end_io(req, error);
  2790. else
  2791. __blk_put_request(req->q, req);
  2792. }
  2793. EXPORT_SYMBOL(end_that_request_last);
  2794. void end_request(struct request *req, int uptodate)
  2795. {
  2796. if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
  2797. add_disk_randomness(req->rq_disk);
  2798. blkdev_dequeue_request(req);
  2799. end_that_request_last(req, uptodate);
  2800. }
  2801. }
  2802. EXPORT_SYMBOL(end_request);
  2803. void blk_rq_bio_prep(request_queue_t *q, struct request *rq, struct bio *bio)
  2804. {
  2805. /* first three bits are identical in rq->flags and bio->bi_rw */
  2806. rq->flags |= (bio->bi_rw & 7);
  2807. rq->nr_phys_segments = bio_phys_segments(q, bio);
  2808. rq->nr_hw_segments = bio_hw_segments(q, bio);
  2809. rq->current_nr_sectors = bio_cur_sectors(bio);
  2810. rq->hard_cur_sectors = rq->current_nr_sectors;
  2811. rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
  2812. rq->buffer = bio_data(bio);
  2813. rq->bio = rq->biotail = bio;
  2814. }
  2815. EXPORT_SYMBOL(blk_rq_bio_prep);
  2816. int kblockd_schedule_work(struct work_struct *work)
  2817. {
  2818. return queue_work(kblockd_workqueue, work);
  2819. }
  2820. EXPORT_SYMBOL(kblockd_schedule_work);
  2821. void kblockd_flush(void)
  2822. {
  2823. flush_workqueue(kblockd_workqueue);
  2824. }
  2825. EXPORT_SYMBOL(kblockd_flush);
  2826. int __init blk_dev_init(void)
  2827. {
  2828. kblockd_workqueue = create_workqueue("kblockd");
  2829. if (!kblockd_workqueue)
  2830. panic("Failed to create kblockd\n");
  2831. request_cachep = kmem_cache_create("blkdev_requests",
  2832. sizeof(struct request), 0, SLAB_PANIC, NULL, NULL);
  2833. requestq_cachep = kmem_cache_create("blkdev_queue",
  2834. sizeof(request_queue_t), 0, SLAB_PANIC, NULL, NULL);
  2835. iocontext_cachep = kmem_cache_create("blkdev_ioc",
  2836. sizeof(struct io_context), 0, SLAB_PANIC, NULL, NULL);
  2837. blk_max_low_pfn = max_low_pfn;
  2838. blk_max_pfn = max_pfn;
  2839. return 0;
  2840. }
  2841. /*
  2842. * IO Context helper functions
  2843. */
  2844. void put_io_context(struct io_context *ioc)
  2845. {
  2846. if (ioc == NULL)
  2847. return;
  2848. BUG_ON(atomic_read(&ioc->refcount) == 0);
  2849. if (atomic_dec_and_test(&ioc->refcount)) {
  2850. if (ioc->aic && ioc->aic->dtor)
  2851. ioc->aic->dtor(ioc->aic);
  2852. if (ioc->cic && ioc->cic->dtor)
  2853. ioc->cic->dtor(ioc->cic);
  2854. kmem_cache_free(iocontext_cachep, ioc);
  2855. }
  2856. }
  2857. EXPORT_SYMBOL(put_io_context);
  2858. /* Called by the exitting task */
  2859. void exit_io_context(void)
  2860. {
  2861. unsigned long flags;
  2862. struct io_context *ioc;
  2863. local_irq_save(flags);
  2864. task_lock(current);
  2865. ioc = current->io_context;
  2866. current->io_context = NULL;
  2867. ioc->task = NULL;
  2868. task_unlock(current);
  2869. local_irq_restore(flags);
  2870. if (ioc->aic && ioc->aic->exit)
  2871. ioc->aic->exit(ioc->aic);
  2872. if (ioc->cic && ioc->cic->exit)
  2873. ioc->cic->exit(ioc->cic);
  2874. put_io_context(ioc);
  2875. }
  2876. /*
  2877. * If the current task has no IO context then create one and initialise it.
  2878. * Otherwise, return its existing IO context.
  2879. *
  2880. * This returned IO context doesn't have a specifically elevated refcount,
  2881. * but since the current task itself holds a reference, the context can be
  2882. * used in general code, so long as it stays within `current` context.
  2883. */
  2884. struct io_context *current_io_context(gfp_t gfp_flags)
  2885. {
  2886. struct task_struct *tsk = current;
  2887. struct io_context *ret;
  2888. ret = tsk->io_context;
  2889. if (likely(ret))
  2890. return ret;
  2891. ret = kmem_cache_alloc(iocontext_cachep, gfp_flags);
  2892. if (ret) {
  2893. atomic_set(&ret->refcount, 1);
  2894. ret->task = current;
  2895. ret->set_ioprio = NULL;
  2896. ret->last_waited = jiffies; /* doesn't matter... */
  2897. ret->nr_batch_requests = 0; /* because this is 0 */
  2898. ret->aic = NULL;
  2899. ret->cic = NULL;
  2900. tsk->io_context = ret;
  2901. }
  2902. return ret;
  2903. }
  2904. EXPORT_SYMBOL(current_io_context);
  2905. /*
  2906. * If the current task has no IO context then create one and initialise it.
  2907. * If it does have a context, take a ref on it.
  2908. *
  2909. * This is always called in the context of the task which submitted the I/O.
  2910. */
  2911. struct io_context *get_io_context(gfp_t gfp_flags)
  2912. {
  2913. struct io_context *ret;
  2914. ret = current_io_context(gfp_flags);
  2915. if (likely(ret))
  2916. atomic_inc(&ret->refcount);
  2917. return ret;
  2918. }
  2919. EXPORT_SYMBOL(get_io_context);
  2920. void copy_io_context(struct io_context **pdst, struct io_context **psrc)
  2921. {
  2922. struct io_context *src = *psrc;
  2923. struct io_context *dst = *pdst;
  2924. if (src) {
  2925. BUG_ON(atomic_read(&src->refcount) == 0);
  2926. atomic_inc(&src->refcount);
  2927. put_io_context(dst);
  2928. *pdst = src;
  2929. }
  2930. }
  2931. EXPORT_SYMBOL(copy_io_context);
  2932. void swap_io_context(struct io_context **ioc1, struct io_context **ioc2)
  2933. {
  2934. struct io_context *temp;
  2935. temp = *ioc1;
  2936. *ioc1 = *ioc2;
  2937. *ioc2 = temp;
  2938. }
  2939. EXPORT_SYMBOL(swap_io_context);
  2940. /*
  2941. * sysfs parts below
  2942. */
  2943. struct queue_sysfs_entry {
  2944. struct attribute attr;
  2945. ssize_t (*show)(struct request_queue *, char *);
  2946. ssize_t (*store)(struct request_queue *, const char *, size_t);
  2947. };
  2948. static ssize_t
  2949. queue_var_show(unsigned int var, char *page)
  2950. {
  2951. return sprintf(page, "%d\n", var);
  2952. }
  2953. static ssize_t
  2954. queue_var_store(unsigned long *var, const char *page, size_t count)
  2955. {
  2956. char *p = (char *) page;
  2957. *var = simple_strtoul(p, &p, 10);
  2958. return count;
  2959. }
  2960. static ssize_t queue_requests_show(struct request_queue *q, char *page)
  2961. {
  2962. return queue_var_show(q->nr_requests, (page));
  2963. }
  2964. static ssize_t
  2965. queue_requests_store(struct request_queue *q, const char *page, size_t count)
  2966. {
  2967. struct request_list *rl = &q->rq;
  2968. int ret = queue_var_store(&q->nr_requests, page, count);
  2969. if (q->nr_requests < BLKDEV_MIN_RQ)
  2970. q->nr_requests = BLKDEV_MIN_RQ;
  2971. blk_queue_congestion_threshold(q);
  2972. if (rl->count[READ] >= queue_congestion_on_threshold(q))
  2973. set_queue_congested(q, READ);
  2974. else if (rl->count[READ] < queue_congestion_off_threshold(q))
  2975. clear_queue_congested(q, READ);
  2976. if (rl->count[WRITE] >= queue_congestion_on_threshold(q))
  2977. set_queue_congested(q, WRITE);
  2978. else if (rl->count[WRITE] < queue_congestion_off_threshold(q))
  2979. clear_queue_congested(q, WRITE);
  2980. if (rl->count[READ] >= q->nr_requests) {
  2981. blk_set_queue_full(q, READ);
  2982. } else if (rl->count[READ]+1 <= q->nr_requests) {
  2983. blk_clear_queue_full(q, READ);
  2984. wake_up(&rl->wait[READ]);
  2985. }
  2986. if (rl->count[WRITE] >= q->nr_requests) {
  2987. blk_set_queue_full(q, WRITE);
  2988. } else if (rl->count[WRITE]+1 <= q->nr_requests) {
  2989. blk_clear_queue_full(q, WRITE);
  2990. wake_up(&rl->wait[WRITE]);
  2991. }
  2992. return ret;
  2993. }
  2994. static ssize_t queue_ra_show(struct request_queue *q, char *page)
  2995. {
  2996. int ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
  2997. return queue_var_show(ra_kb, (page));
  2998. }
  2999. static ssize_t
  3000. queue_ra_store(struct request_queue *q, const char *page, size_t count)
  3001. {
  3002. unsigned long ra_kb;
  3003. ssize_t ret = queue_var_store(&ra_kb, page, count);
  3004. spin_lock_irq(q->queue_lock);
  3005. if (ra_kb > (q->max_sectors >> 1))
  3006. ra_kb = (q->max_sectors >> 1);
  3007. q->backing_dev_info.ra_pages = ra_kb >> (PAGE_CACHE_SHIFT - 10);
  3008. spin_unlock_irq(q->queue_lock);
  3009. return ret;
  3010. }
  3011. static ssize_t queue_max_sectors_show(struct request_queue *q, char *page)
  3012. {
  3013. int max_sectors_kb = q->max_sectors >> 1;
  3014. return queue_var_show(max_sectors_kb, (page));
  3015. }
  3016. static ssize_t
  3017. queue_max_sectors_store(struct request_queue *q, const char *page, size_t count)
  3018. {
  3019. unsigned long max_sectors_kb,
  3020. max_hw_sectors_kb = q->max_hw_sectors >> 1,
  3021. page_kb = 1 << (PAGE_CACHE_SHIFT - 10);
  3022. ssize_t ret = queue_var_store(&max_sectors_kb, page, count);
  3023. int ra_kb;
  3024. if (max_sectors_kb > max_hw_sectors_kb || max_sectors_kb < page_kb)
  3025. return -EINVAL;
  3026. /*
  3027. * Take the queue lock to update the readahead and max_sectors
  3028. * values synchronously:
  3029. */
  3030. spin_lock_irq(q->queue_lock);
  3031. /*
  3032. * Trim readahead window as well, if necessary:
  3033. */
  3034. ra_kb = q->backing_dev_info.ra_pages << (PAGE_CACHE_SHIFT - 10);
  3035. if (ra_kb > max_sectors_kb)
  3036. q->backing_dev_info.ra_pages =
  3037. max_sectors_kb >> (PAGE_CACHE_SHIFT - 10);
  3038. q->max_sectors = max_sectors_kb << 1;
  3039. spin_unlock_irq(q->queue_lock);
  3040. return ret;
  3041. }
  3042. static ssize_t queue_max_hw_sectors_show(struct request_queue *q, char *page)
  3043. {
  3044. int max_hw_sectors_kb = q->max_hw_sectors >> 1;
  3045. return queue_var_show(max_hw_sectors_kb, (page));
  3046. }
  3047. static struct queue_sysfs_entry queue_requests_entry = {
  3048. .attr = {.name = "nr_requests", .mode = S_IRUGO | S_IWUSR },
  3049. .show = queue_requests_show,
  3050. .store = queue_requests_store,
  3051. };
  3052. static struct queue_sysfs_entry queue_ra_entry = {
  3053. .attr = {.name = "read_ahead_kb", .mode = S_IRUGO | S_IWUSR },
  3054. .show = queue_ra_show,
  3055. .store = queue_ra_store,
  3056. };
  3057. static struct queue_sysfs_entry queue_max_sectors_entry = {
  3058. .attr = {.name = "max_sectors_kb", .mode = S_IRUGO | S_IWUSR },
  3059. .show = queue_max_sectors_show,
  3060. .store = queue_max_sectors_store,
  3061. };
  3062. static struct queue_sysfs_entry queue_max_hw_sectors_entry = {
  3063. .attr = {.name = "max_hw_sectors_kb", .mode = S_IRUGO },
  3064. .show = queue_max_hw_sectors_show,
  3065. };
  3066. static struct queue_sysfs_entry queue_iosched_entry = {
  3067. .attr = {.name = "scheduler", .mode = S_IRUGO | S_IWUSR },
  3068. .show = elv_iosched_show,
  3069. .store = elv_iosched_store,
  3070. };
  3071. static struct attribute *default_attrs[] = {
  3072. &queue_requests_entry.attr,
  3073. &queue_ra_entry.attr,
  3074. &queue_max_hw_sectors_entry.attr,
  3075. &queue_max_sectors_entry.attr,
  3076. &queue_iosched_entry.attr,
  3077. NULL,
  3078. };
  3079. #define to_queue(atr) container_of((atr), struct queue_sysfs_entry, attr)
  3080. static ssize_t
  3081. queue_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  3082. {
  3083. struct queue_sysfs_entry *entry = to_queue(attr);
  3084. struct request_queue *q;
  3085. q = container_of(kobj, struct request_queue, kobj);
  3086. if (!entry->show)
  3087. return -EIO;
  3088. return entry->show(q, page);
  3089. }
  3090. static ssize_t
  3091. queue_attr_store(struct kobject *kobj, struct attribute *attr,
  3092. const char *page, size_t length)
  3093. {
  3094. struct queue_sysfs_entry *entry = to_queue(attr);
  3095. struct request_queue *q;
  3096. q = container_of(kobj, struct request_queue, kobj);
  3097. if (!entry->store)
  3098. return -EIO;
  3099. return entry->store(q, page, length);
  3100. }
  3101. static struct sysfs_ops queue_sysfs_ops = {
  3102. .show = queue_attr_show,
  3103. .store = queue_attr_store,
  3104. };
  3105. static struct kobj_type queue_ktype = {
  3106. .sysfs_ops = &queue_sysfs_ops,
  3107. .default_attrs = default_attrs,
  3108. };
  3109. int blk_register_queue(struct gendisk *disk)
  3110. {
  3111. int ret;
  3112. request_queue_t *q = disk->queue;
  3113. if (!q || !q->request_fn)
  3114. return -ENXIO;
  3115. q->kobj.parent = kobject_get(&disk->kobj);
  3116. if (!q->kobj.parent)
  3117. return -EBUSY;
  3118. snprintf(q->kobj.name, KOBJ_NAME_LEN, "%s", "queue");
  3119. q->kobj.ktype = &queue_ktype;
  3120. ret = kobject_register(&q->kobj);
  3121. if (ret < 0)
  3122. return ret;
  3123. ret = elv_register_queue(q);
  3124. if (ret) {
  3125. kobject_unregister(&q->kobj);
  3126. return ret;
  3127. }
  3128. return 0;
  3129. }
  3130. void blk_unregister_queue(struct gendisk *disk)
  3131. {
  3132. request_queue_t *q = disk->queue;
  3133. if (q && q->request_fn) {
  3134. elv_unregister_queue(q);
  3135. kobject_unregister(&q->kobj);
  3136. kobject_put(&disk->kobj);
  3137. }
  3138. }