x86.c 120 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Amit Shah <amit.shah@qumranet.com>
  14. * Ben-Ami Yassour <benami@il.ibm.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include <linux/kvm_host.h>
  21. #include "irq.h"
  22. #include "mmu.h"
  23. #include "i8254.h"
  24. #include "tss.h"
  25. #include "kvm_cache_regs.h"
  26. #include "x86.h"
  27. #include <linux/clocksource.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/kvm.h>
  30. #include <linux/fs.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/module.h>
  33. #include <linux/mman.h>
  34. #include <linux/highmem.h>
  35. #include <linux/iommu.h>
  36. #include <linux/intel-iommu.h>
  37. #include <linux/cpufreq.h>
  38. #include <trace/events/kvm.h>
  39. #undef TRACE_INCLUDE_FILE
  40. #define CREATE_TRACE_POINTS
  41. #include "trace.h"
  42. #include <asm/uaccess.h>
  43. #include <asm/msr.h>
  44. #include <asm/desc.h>
  45. #include <asm/mtrr.h>
  46. #include <asm/mce.h>
  47. #define MAX_IO_MSRS 256
  48. #define CR0_RESERVED_BITS \
  49. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  50. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  51. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  52. #define CR4_RESERVED_BITS \
  53. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  54. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  55. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  56. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  57. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  58. #define KVM_MAX_MCE_BANKS 32
  59. #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
  60. /* EFER defaults:
  61. * - enable syscall per default because its emulated by KVM
  62. * - enable LME and LMA per default on 64 bit KVM
  63. */
  64. #ifdef CONFIG_X86_64
  65. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  66. #else
  67. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  68. #endif
  69. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  70. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  71. static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  72. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  73. struct kvm_cpuid_entry2 __user *entries);
  74. struct kvm_x86_ops *kvm_x86_ops;
  75. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  76. int ignore_msrs = 0;
  77. module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
  78. struct kvm_stats_debugfs_item debugfs_entries[] = {
  79. { "pf_fixed", VCPU_STAT(pf_fixed) },
  80. { "pf_guest", VCPU_STAT(pf_guest) },
  81. { "tlb_flush", VCPU_STAT(tlb_flush) },
  82. { "invlpg", VCPU_STAT(invlpg) },
  83. { "exits", VCPU_STAT(exits) },
  84. { "io_exits", VCPU_STAT(io_exits) },
  85. { "mmio_exits", VCPU_STAT(mmio_exits) },
  86. { "signal_exits", VCPU_STAT(signal_exits) },
  87. { "irq_window", VCPU_STAT(irq_window_exits) },
  88. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  89. { "halt_exits", VCPU_STAT(halt_exits) },
  90. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  91. { "hypercalls", VCPU_STAT(hypercalls) },
  92. { "request_irq", VCPU_STAT(request_irq_exits) },
  93. { "irq_exits", VCPU_STAT(irq_exits) },
  94. { "host_state_reload", VCPU_STAT(host_state_reload) },
  95. { "efer_reload", VCPU_STAT(efer_reload) },
  96. { "fpu_reload", VCPU_STAT(fpu_reload) },
  97. { "insn_emulation", VCPU_STAT(insn_emulation) },
  98. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  99. { "irq_injections", VCPU_STAT(irq_injections) },
  100. { "nmi_injections", VCPU_STAT(nmi_injections) },
  101. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  102. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  103. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  104. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  105. { "mmu_flooded", VM_STAT(mmu_flooded) },
  106. { "mmu_recycled", VM_STAT(mmu_recycled) },
  107. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  108. { "mmu_unsync", VM_STAT(mmu_unsync) },
  109. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  110. { "largepages", VM_STAT(lpages) },
  111. { NULL }
  112. };
  113. unsigned long segment_base(u16 selector)
  114. {
  115. struct descriptor_table gdt;
  116. struct desc_struct *d;
  117. unsigned long table_base;
  118. unsigned long v;
  119. if (selector == 0)
  120. return 0;
  121. kvm_get_gdt(&gdt);
  122. table_base = gdt.base;
  123. if (selector & 4) { /* from ldt */
  124. u16 ldt_selector = kvm_read_ldt();
  125. table_base = segment_base(ldt_selector);
  126. }
  127. d = (struct desc_struct *)(table_base + (selector & ~7));
  128. v = get_desc_base(d);
  129. #ifdef CONFIG_X86_64
  130. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  131. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  132. #endif
  133. return v;
  134. }
  135. EXPORT_SYMBOL_GPL(segment_base);
  136. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  137. {
  138. if (irqchip_in_kernel(vcpu->kvm))
  139. return vcpu->arch.apic_base;
  140. else
  141. return vcpu->arch.apic_base;
  142. }
  143. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  144. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  145. {
  146. /* TODO: reserve bits check */
  147. if (irqchip_in_kernel(vcpu->kvm))
  148. kvm_lapic_set_base(vcpu, data);
  149. else
  150. vcpu->arch.apic_base = data;
  151. }
  152. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  153. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  154. {
  155. WARN_ON(vcpu->arch.exception.pending);
  156. vcpu->arch.exception.pending = true;
  157. vcpu->arch.exception.has_error_code = false;
  158. vcpu->arch.exception.nr = nr;
  159. }
  160. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  161. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  162. u32 error_code)
  163. {
  164. ++vcpu->stat.pf_guest;
  165. if (vcpu->arch.exception.pending) {
  166. switch(vcpu->arch.exception.nr) {
  167. case DF_VECTOR:
  168. /* triple fault -> shutdown */
  169. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  170. return;
  171. case PF_VECTOR:
  172. vcpu->arch.exception.nr = DF_VECTOR;
  173. vcpu->arch.exception.error_code = 0;
  174. return;
  175. default:
  176. /* replace previous exception with a new one in a hope
  177. that instruction re-execution will regenerate lost
  178. exception */
  179. vcpu->arch.exception.pending = false;
  180. break;
  181. }
  182. }
  183. vcpu->arch.cr2 = addr;
  184. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  185. }
  186. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  187. {
  188. vcpu->arch.nmi_pending = 1;
  189. }
  190. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  191. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  192. {
  193. WARN_ON(vcpu->arch.exception.pending);
  194. vcpu->arch.exception.pending = true;
  195. vcpu->arch.exception.has_error_code = true;
  196. vcpu->arch.exception.nr = nr;
  197. vcpu->arch.exception.error_code = error_code;
  198. }
  199. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  200. /*
  201. * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
  202. * a #GP and return false.
  203. */
  204. bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
  205. {
  206. if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
  207. return true;
  208. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  209. return false;
  210. }
  211. EXPORT_SYMBOL_GPL(kvm_require_cpl);
  212. /*
  213. * Load the pae pdptrs. Return true is they are all valid.
  214. */
  215. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  216. {
  217. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  218. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  219. int i;
  220. int ret;
  221. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  222. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  223. offset * sizeof(u64), sizeof(pdpte));
  224. if (ret < 0) {
  225. ret = 0;
  226. goto out;
  227. }
  228. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  229. if (is_present_gpte(pdpte[i]) &&
  230. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  231. ret = 0;
  232. goto out;
  233. }
  234. }
  235. ret = 1;
  236. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  237. __set_bit(VCPU_EXREG_PDPTR,
  238. (unsigned long *)&vcpu->arch.regs_avail);
  239. __set_bit(VCPU_EXREG_PDPTR,
  240. (unsigned long *)&vcpu->arch.regs_dirty);
  241. out:
  242. return ret;
  243. }
  244. EXPORT_SYMBOL_GPL(load_pdptrs);
  245. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  246. {
  247. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  248. bool changed = true;
  249. int r;
  250. if (is_long_mode(vcpu) || !is_pae(vcpu))
  251. return false;
  252. if (!test_bit(VCPU_EXREG_PDPTR,
  253. (unsigned long *)&vcpu->arch.regs_avail))
  254. return true;
  255. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  256. if (r < 0)
  257. goto out;
  258. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  259. out:
  260. return changed;
  261. }
  262. void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  263. {
  264. if (cr0 & CR0_RESERVED_BITS) {
  265. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  266. cr0, vcpu->arch.cr0);
  267. kvm_inject_gp(vcpu, 0);
  268. return;
  269. }
  270. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  271. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  272. kvm_inject_gp(vcpu, 0);
  273. return;
  274. }
  275. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  276. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  277. "and a clear PE flag\n");
  278. kvm_inject_gp(vcpu, 0);
  279. return;
  280. }
  281. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  282. #ifdef CONFIG_X86_64
  283. if ((vcpu->arch.shadow_efer & EFER_LME)) {
  284. int cs_db, cs_l;
  285. if (!is_pae(vcpu)) {
  286. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  287. "in long mode while PAE is disabled\n");
  288. kvm_inject_gp(vcpu, 0);
  289. return;
  290. }
  291. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  292. if (cs_l) {
  293. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  294. "in long mode while CS.L == 1\n");
  295. kvm_inject_gp(vcpu, 0);
  296. return;
  297. }
  298. } else
  299. #endif
  300. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  301. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  302. "reserved bits\n");
  303. kvm_inject_gp(vcpu, 0);
  304. return;
  305. }
  306. }
  307. kvm_x86_ops->set_cr0(vcpu, cr0);
  308. vcpu->arch.cr0 = cr0;
  309. kvm_mmu_reset_context(vcpu);
  310. return;
  311. }
  312. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  313. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  314. {
  315. kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
  316. }
  317. EXPORT_SYMBOL_GPL(kvm_lmsw);
  318. void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  319. {
  320. unsigned long old_cr4 = vcpu->arch.cr4;
  321. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  322. if (cr4 & CR4_RESERVED_BITS) {
  323. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  324. kvm_inject_gp(vcpu, 0);
  325. return;
  326. }
  327. if (is_long_mode(vcpu)) {
  328. if (!(cr4 & X86_CR4_PAE)) {
  329. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  330. "in long mode\n");
  331. kvm_inject_gp(vcpu, 0);
  332. return;
  333. }
  334. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  335. && ((cr4 ^ old_cr4) & pdptr_bits)
  336. && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  337. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  338. kvm_inject_gp(vcpu, 0);
  339. return;
  340. }
  341. if (cr4 & X86_CR4_VMXE) {
  342. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  343. kvm_inject_gp(vcpu, 0);
  344. return;
  345. }
  346. kvm_x86_ops->set_cr4(vcpu, cr4);
  347. vcpu->arch.cr4 = cr4;
  348. vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
  349. kvm_mmu_reset_context(vcpu);
  350. }
  351. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  352. void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  353. {
  354. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  355. kvm_mmu_sync_roots(vcpu);
  356. kvm_mmu_flush_tlb(vcpu);
  357. return;
  358. }
  359. if (is_long_mode(vcpu)) {
  360. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  361. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  362. kvm_inject_gp(vcpu, 0);
  363. return;
  364. }
  365. } else {
  366. if (is_pae(vcpu)) {
  367. if (cr3 & CR3_PAE_RESERVED_BITS) {
  368. printk(KERN_DEBUG
  369. "set_cr3: #GP, reserved bits\n");
  370. kvm_inject_gp(vcpu, 0);
  371. return;
  372. }
  373. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  374. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  375. "reserved bits\n");
  376. kvm_inject_gp(vcpu, 0);
  377. return;
  378. }
  379. }
  380. /*
  381. * We don't check reserved bits in nonpae mode, because
  382. * this isn't enforced, and VMware depends on this.
  383. */
  384. }
  385. /*
  386. * Does the new cr3 value map to physical memory? (Note, we
  387. * catch an invalid cr3 even in real-mode, because it would
  388. * cause trouble later on when we turn on paging anyway.)
  389. *
  390. * A real CPU would silently accept an invalid cr3 and would
  391. * attempt to use it - with largely undefined (and often hard
  392. * to debug) behavior on the guest side.
  393. */
  394. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  395. kvm_inject_gp(vcpu, 0);
  396. else {
  397. vcpu->arch.cr3 = cr3;
  398. vcpu->arch.mmu.new_cr3(vcpu);
  399. }
  400. }
  401. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  402. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  403. {
  404. if (cr8 & CR8_RESERVED_BITS) {
  405. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  406. kvm_inject_gp(vcpu, 0);
  407. return;
  408. }
  409. if (irqchip_in_kernel(vcpu->kvm))
  410. kvm_lapic_set_tpr(vcpu, cr8);
  411. else
  412. vcpu->arch.cr8 = cr8;
  413. }
  414. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  415. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  416. {
  417. if (irqchip_in_kernel(vcpu->kvm))
  418. return kvm_lapic_get_cr8(vcpu);
  419. else
  420. return vcpu->arch.cr8;
  421. }
  422. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  423. static inline u32 bit(int bitno)
  424. {
  425. return 1 << (bitno & 31);
  426. }
  427. /*
  428. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  429. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  430. *
  431. * This list is modified at module load time to reflect the
  432. * capabilities of the host cpu.
  433. */
  434. static u32 msrs_to_save[] = {
  435. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  436. MSR_K6_STAR,
  437. #ifdef CONFIG_X86_64
  438. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  439. #endif
  440. MSR_IA32_TSC, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  441. MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  442. };
  443. static unsigned num_msrs_to_save;
  444. static u32 emulated_msrs[] = {
  445. MSR_IA32_MISC_ENABLE,
  446. };
  447. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  448. {
  449. if (efer & efer_reserved_bits) {
  450. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  451. efer);
  452. kvm_inject_gp(vcpu, 0);
  453. return;
  454. }
  455. if (is_paging(vcpu)
  456. && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  457. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  458. kvm_inject_gp(vcpu, 0);
  459. return;
  460. }
  461. if (efer & EFER_FFXSR) {
  462. struct kvm_cpuid_entry2 *feat;
  463. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  464. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
  465. printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
  466. kvm_inject_gp(vcpu, 0);
  467. return;
  468. }
  469. }
  470. if (efer & EFER_SVME) {
  471. struct kvm_cpuid_entry2 *feat;
  472. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  473. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
  474. printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
  475. kvm_inject_gp(vcpu, 0);
  476. return;
  477. }
  478. }
  479. kvm_x86_ops->set_efer(vcpu, efer);
  480. efer &= ~EFER_LMA;
  481. efer |= vcpu->arch.shadow_efer & EFER_LMA;
  482. vcpu->arch.shadow_efer = efer;
  483. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  484. kvm_mmu_reset_context(vcpu);
  485. }
  486. void kvm_enable_efer_bits(u64 mask)
  487. {
  488. efer_reserved_bits &= ~mask;
  489. }
  490. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  491. /*
  492. * Writes msr value into into the appropriate "register".
  493. * Returns 0 on success, non-0 otherwise.
  494. * Assumes vcpu_load() was already called.
  495. */
  496. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  497. {
  498. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  499. }
  500. /*
  501. * Adapt set_msr() to msr_io()'s calling convention
  502. */
  503. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  504. {
  505. return kvm_set_msr(vcpu, index, *data);
  506. }
  507. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  508. {
  509. static int version;
  510. struct pvclock_wall_clock wc;
  511. struct timespec now, sys, boot;
  512. if (!wall_clock)
  513. return;
  514. version++;
  515. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  516. /*
  517. * The guest calculates current wall clock time by adding
  518. * system time (updated by kvm_write_guest_time below) to the
  519. * wall clock specified here. guest system time equals host
  520. * system time for us, thus we must fill in host boot time here.
  521. */
  522. now = current_kernel_time();
  523. ktime_get_ts(&sys);
  524. boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
  525. wc.sec = boot.tv_sec;
  526. wc.nsec = boot.tv_nsec;
  527. wc.version = version;
  528. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  529. version++;
  530. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  531. }
  532. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  533. {
  534. uint32_t quotient, remainder;
  535. /* Don't try to replace with do_div(), this one calculates
  536. * "(dividend << 32) / divisor" */
  537. __asm__ ( "divl %4"
  538. : "=a" (quotient), "=d" (remainder)
  539. : "0" (0), "1" (dividend), "r" (divisor) );
  540. return quotient;
  541. }
  542. static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
  543. {
  544. uint64_t nsecs = 1000000000LL;
  545. int32_t shift = 0;
  546. uint64_t tps64;
  547. uint32_t tps32;
  548. tps64 = tsc_khz * 1000LL;
  549. while (tps64 > nsecs*2) {
  550. tps64 >>= 1;
  551. shift--;
  552. }
  553. tps32 = (uint32_t)tps64;
  554. while (tps32 <= (uint32_t)nsecs) {
  555. tps32 <<= 1;
  556. shift++;
  557. }
  558. hv_clock->tsc_shift = shift;
  559. hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
  560. pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
  561. __func__, tsc_khz, hv_clock->tsc_shift,
  562. hv_clock->tsc_to_system_mul);
  563. }
  564. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  565. static void kvm_write_guest_time(struct kvm_vcpu *v)
  566. {
  567. struct timespec ts;
  568. unsigned long flags;
  569. struct kvm_vcpu_arch *vcpu = &v->arch;
  570. void *shared_kaddr;
  571. unsigned long this_tsc_khz;
  572. if ((!vcpu->time_page))
  573. return;
  574. this_tsc_khz = get_cpu_var(cpu_tsc_khz);
  575. if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
  576. kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
  577. vcpu->hv_clock_tsc_khz = this_tsc_khz;
  578. }
  579. put_cpu_var(cpu_tsc_khz);
  580. /* Keep irq disabled to prevent changes to the clock */
  581. local_irq_save(flags);
  582. kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
  583. ktime_get_ts(&ts);
  584. local_irq_restore(flags);
  585. /* With all the info we got, fill in the values */
  586. vcpu->hv_clock.system_time = ts.tv_nsec +
  587. (NSEC_PER_SEC * (u64)ts.tv_sec);
  588. /*
  589. * The interface expects us to write an even number signaling that the
  590. * update is finished. Since the guest won't see the intermediate
  591. * state, we just increase by 2 at the end.
  592. */
  593. vcpu->hv_clock.version += 2;
  594. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  595. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  596. sizeof(vcpu->hv_clock));
  597. kunmap_atomic(shared_kaddr, KM_USER0);
  598. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  599. }
  600. static int kvm_request_guest_time_update(struct kvm_vcpu *v)
  601. {
  602. struct kvm_vcpu_arch *vcpu = &v->arch;
  603. if (!vcpu->time_page)
  604. return 0;
  605. set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
  606. return 1;
  607. }
  608. static bool msr_mtrr_valid(unsigned msr)
  609. {
  610. switch (msr) {
  611. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  612. case MSR_MTRRfix64K_00000:
  613. case MSR_MTRRfix16K_80000:
  614. case MSR_MTRRfix16K_A0000:
  615. case MSR_MTRRfix4K_C0000:
  616. case MSR_MTRRfix4K_C8000:
  617. case MSR_MTRRfix4K_D0000:
  618. case MSR_MTRRfix4K_D8000:
  619. case MSR_MTRRfix4K_E0000:
  620. case MSR_MTRRfix4K_E8000:
  621. case MSR_MTRRfix4K_F0000:
  622. case MSR_MTRRfix4K_F8000:
  623. case MSR_MTRRdefType:
  624. case MSR_IA32_CR_PAT:
  625. return true;
  626. case 0x2f8:
  627. return true;
  628. }
  629. return false;
  630. }
  631. static bool valid_pat_type(unsigned t)
  632. {
  633. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  634. }
  635. static bool valid_mtrr_type(unsigned t)
  636. {
  637. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  638. }
  639. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  640. {
  641. int i;
  642. if (!msr_mtrr_valid(msr))
  643. return false;
  644. if (msr == MSR_IA32_CR_PAT) {
  645. for (i = 0; i < 8; i++)
  646. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  647. return false;
  648. return true;
  649. } else if (msr == MSR_MTRRdefType) {
  650. if (data & ~0xcff)
  651. return false;
  652. return valid_mtrr_type(data & 0xff);
  653. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  654. for (i = 0; i < 8 ; i++)
  655. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  656. return false;
  657. return true;
  658. }
  659. /* variable MTRRs */
  660. return valid_mtrr_type(data & 0xff);
  661. }
  662. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  663. {
  664. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  665. if (!mtrr_valid(vcpu, msr, data))
  666. return 1;
  667. if (msr == MSR_MTRRdefType) {
  668. vcpu->arch.mtrr_state.def_type = data;
  669. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  670. } else if (msr == MSR_MTRRfix64K_00000)
  671. p[0] = data;
  672. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  673. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  674. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  675. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  676. else if (msr == MSR_IA32_CR_PAT)
  677. vcpu->arch.pat = data;
  678. else { /* Variable MTRRs */
  679. int idx, is_mtrr_mask;
  680. u64 *pt;
  681. idx = (msr - 0x200) / 2;
  682. is_mtrr_mask = msr - 0x200 - 2 * idx;
  683. if (!is_mtrr_mask)
  684. pt =
  685. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  686. else
  687. pt =
  688. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  689. *pt = data;
  690. }
  691. kvm_mmu_reset_context(vcpu);
  692. return 0;
  693. }
  694. static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  695. {
  696. u64 mcg_cap = vcpu->arch.mcg_cap;
  697. unsigned bank_num = mcg_cap & 0xff;
  698. switch (msr) {
  699. case MSR_IA32_MCG_STATUS:
  700. vcpu->arch.mcg_status = data;
  701. break;
  702. case MSR_IA32_MCG_CTL:
  703. if (!(mcg_cap & MCG_CTL_P))
  704. return 1;
  705. if (data != 0 && data != ~(u64)0)
  706. return -1;
  707. vcpu->arch.mcg_ctl = data;
  708. break;
  709. default:
  710. if (msr >= MSR_IA32_MC0_CTL &&
  711. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  712. u32 offset = msr - MSR_IA32_MC0_CTL;
  713. /* only 0 or all 1s can be written to IA32_MCi_CTL */
  714. if ((offset & 0x3) == 0 &&
  715. data != 0 && data != ~(u64)0)
  716. return -1;
  717. vcpu->arch.mce_banks[offset] = data;
  718. break;
  719. }
  720. return 1;
  721. }
  722. return 0;
  723. }
  724. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  725. {
  726. switch (msr) {
  727. case MSR_EFER:
  728. set_efer(vcpu, data);
  729. break;
  730. case MSR_K7_HWCR:
  731. data &= ~(u64)0x40; /* ignore flush filter disable */
  732. if (data != 0) {
  733. pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
  734. data);
  735. return 1;
  736. }
  737. break;
  738. case MSR_FAM10H_MMIO_CONF_BASE:
  739. if (data != 0) {
  740. pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
  741. "0x%llx\n", data);
  742. return 1;
  743. }
  744. break;
  745. case MSR_AMD64_NB_CFG:
  746. break;
  747. case MSR_IA32_DEBUGCTLMSR:
  748. if (!data) {
  749. /* We support the non-activated case already */
  750. break;
  751. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  752. /* Values other than LBR and BTF are vendor-specific,
  753. thus reserved and should throw a #GP */
  754. return 1;
  755. }
  756. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  757. __func__, data);
  758. break;
  759. case MSR_IA32_UCODE_REV:
  760. case MSR_IA32_UCODE_WRITE:
  761. case MSR_VM_HSAVE_PA:
  762. case MSR_AMD64_PATCH_LOADER:
  763. break;
  764. case 0x200 ... 0x2ff:
  765. return set_msr_mtrr(vcpu, msr, data);
  766. case MSR_IA32_APICBASE:
  767. kvm_set_apic_base(vcpu, data);
  768. break;
  769. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  770. return kvm_x2apic_msr_write(vcpu, msr, data);
  771. case MSR_IA32_MISC_ENABLE:
  772. vcpu->arch.ia32_misc_enable_msr = data;
  773. break;
  774. case MSR_KVM_WALL_CLOCK:
  775. vcpu->kvm->arch.wall_clock = data;
  776. kvm_write_wall_clock(vcpu->kvm, data);
  777. break;
  778. case MSR_KVM_SYSTEM_TIME: {
  779. if (vcpu->arch.time_page) {
  780. kvm_release_page_dirty(vcpu->arch.time_page);
  781. vcpu->arch.time_page = NULL;
  782. }
  783. vcpu->arch.time = data;
  784. /* we verify if the enable bit is set... */
  785. if (!(data & 1))
  786. break;
  787. /* ...but clean it before doing the actual write */
  788. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  789. vcpu->arch.time_page =
  790. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  791. if (is_error_page(vcpu->arch.time_page)) {
  792. kvm_release_page_clean(vcpu->arch.time_page);
  793. vcpu->arch.time_page = NULL;
  794. }
  795. kvm_request_guest_time_update(vcpu);
  796. break;
  797. }
  798. case MSR_IA32_MCG_CTL:
  799. case MSR_IA32_MCG_STATUS:
  800. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  801. return set_msr_mce(vcpu, msr, data);
  802. /* Performance counters are not protected by a CPUID bit,
  803. * so we should check all of them in the generic path for the sake of
  804. * cross vendor migration.
  805. * Writing a zero into the event select MSRs disables them,
  806. * which we perfectly emulate ;-). Any other value should be at least
  807. * reported, some guests depend on them.
  808. */
  809. case MSR_P6_EVNTSEL0:
  810. case MSR_P6_EVNTSEL1:
  811. case MSR_K7_EVNTSEL0:
  812. case MSR_K7_EVNTSEL1:
  813. case MSR_K7_EVNTSEL2:
  814. case MSR_K7_EVNTSEL3:
  815. if (data != 0)
  816. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  817. "0x%x data 0x%llx\n", msr, data);
  818. break;
  819. /* at least RHEL 4 unconditionally writes to the perfctr registers,
  820. * so we ignore writes to make it happy.
  821. */
  822. case MSR_P6_PERFCTR0:
  823. case MSR_P6_PERFCTR1:
  824. case MSR_K7_PERFCTR0:
  825. case MSR_K7_PERFCTR1:
  826. case MSR_K7_PERFCTR2:
  827. case MSR_K7_PERFCTR3:
  828. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  829. "0x%x data 0x%llx\n", msr, data);
  830. break;
  831. default:
  832. if (!ignore_msrs) {
  833. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
  834. msr, data);
  835. return 1;
  836. } else {
  837. pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
  838. msr, data);
  839. break;
  840. }
  841. }
  842. return 0;
  843. }
  844. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  845. /*
  846. * Reads an msr value (of 'msr_index') into 'pdata'.
  847. * Returns 0 on success, non-0 otherwise.
  848. * Assumes vcpu_load() was already called.
  849. */
  850. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  851. {
  852. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  853. }
  854. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  855. {
  856. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  857. if (!msr_mtrr_valid(msr))
  858. return 1;
  859. if (msr == MSR_MTRRdefType)
  860. *pdata = vcpu->arch.mtrr_state.def_type +
  861. (vcpu->arch.mtrr_state.enabled << 10);
  862. else if (msr == MSR_MTRRfix64K_00000)
  863. *pdata = p[0];
  864. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  865. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  866. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  867. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  868. else if (msr == MSR_IA32_CR_PAT)
  869. *pdata = vcpu->arch.pat;
  870. else { /* Variable MTRRs */
  871. int idx, is_mtrr_mask;
  872. u64 *pt;
  873. idx = (msr - 0x200) / 2;
  874. is_mtrr_mask = msr - 0x200 - 2 * idx;
  875. if (!is_mtrr_mask)
  876. pt =
  877. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  878. else
  879. pt =
  880. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  881. *pdata = *pt;
  882. }
  883. return 0;
  884. }
  885. static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  886. {
  887. u64 data;
  888. u64 mcg_cap = vcpu->arch.mcg_cap;
  889. unsigned bank_num = mcg_cap & 0xff;
  890. switch (msr) {
  891. case MSR_IA32_P5_MC_ADDR:
  892. case MSR_IA32_P5_MC_TYPE:
  893. data = 0;
  894. break;
  895. case MSR_IA32_MCG_CAP:
  896. data = vcpu->arch.mcg_cap;
  897. break;
  898. case MSR_IA32_MCG_CTL:
  899. if (!(mcg_cap & MCG_CTL_P))
  900. return 1;
  901. data = vcpu->arch.mcg_ctl;
  902. break;
  903. case MSR_IA32_MCG_STATUS:
  904. data = vcpu->arch.mcg_status;
  905. break;
  906. default:
  907. if (msr >= MSR_IA32_MC0_CTL &&
  908. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  909. u32 offset = msr - MSR_IA32_MC0_CTL;
  910. data = vcpu->arch.mce_banks[offset];
  911. break;
  912. }
  913. return 1;
  914. }
  915. *pdata = data;
  916. return 0;
  917. }
  918. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  919. {
  920. u64 data;
  921. switch (msr) {
  922. case MSR_IA32_PLATFORM_ID:
  923. case MSR_IA32_UCODE_REV:
  924. case MSR_IA32_EBL_CR_POWERON:
  925. case MSR_IA32_DEBUGCTLMSR:
  926. case MSR_IA32_LASTBRANCHFROMIP:
  927. case MSR_IA32_LASTBRANCHTOIP:
  928. case MSR_IA32_LASTINTFROMIP:
  929. case MSR_IA32_LASTINTTOIP:
  930. case MSR_K8_SYSCFG:
  931. case MSR_K7_HWCR:
  932. case MSR_VM_HSAVE_PA:
  933. case MSR_P6_PERFCTR0:
  934. case MSR_P6_PERFCTR1:
  935. case MSR_P6_EVNTSEL0:
  936. case MSR_P6_EVNTSEL1:
  937. case MSR_K7_EVNTSEL0:
  938. case MSR_K7_PERFCTR0:
  939. case MSR_K8_INT_PENDING_MSG:
  940. case MSR_AMD64_NB_CFG:
  941. case MSR_FAM10H_MMIO_CONF_BASE:
  942. data = 0;
  943. break;
  944. case MSR_MTRRcap:
  945. data = 0x500 | KVM_NR_VAR_MTRR;
  946. break;
  947. case 0x200 ... 0x2ff:
  948. return get_msr_mtrr(vcpu, msr, pdata);
  949. case 0xcd: /* fsb frequency */
  950. data = 3;
  951. break;
  952. case MSR_IA32_APICBASE:
  953. data = kvm_get_apic_base(vcpu);
  954. break;
  955. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  956. return kvm_x2apic_msr_read(vcpu, msr, pdata);
  957. break;
  958. case MSR_IA32_MISC_ENABLE:
  959. data = vcpu->arch.ia32_misc_enable_msr;
  960. break;
  961. case MSR_IA32_PERF_STATUS:
  962. /* TSC increment by tick */
  963. data = 1000ULL;
  964. /* CPU multiplier */
  965. data |= (((uint64_t)4ULL) << 40);
  966. break;
  967. case MSR_EFER:
  968. data = vcpu->arch.shadow_efer;
  969. break;
  970. case MSR_KVM_WALL_CLOCK:
  971. data = vcpu->kvm->arch.wall_clock;
  972. break;
  973. case MSR_KVM_SYSTEM_TIME:
  974. data = vcpu->arch.time;
  975. break;
  976. case MSR_IA32_P5_MC_ADDR:
  977. case MSR_IA32_P5_MC_TYPE:
  978. case MSR_IA32_MCG_CAP:
  979. case MSR_IA32_MCG_CTL:
  980. case MSR_IA32_MCG_STATUS:
  981. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  982. return get_msr_mce(vcpu, msr, pdata);
  983. default:
  984. if (!ignore_msrs) {
  985. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  986. return 1;
  987. } else {
  988. pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
  989. data = 0;
  990. }
  991. break;
  992. }
  993. *pdata = data;
  994. return 0;
  995. }
  996. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  997. /*
  998. * Read or write a bunch of msrs. All parameters are kernel addresses.
  999. *
  1000. * @return number of msrs set successfully.
  1001. */
  1002. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1003. struct kvm_msr_entry *entries,
  1004. int (*do_msr)(struct kvm_vcpu *vcpu,
  1005. unsigned index, u64 *data))
  1006. {
  1007. int i;
  1008. vcpu_load(vcpu);
  1009. down_read(&vcpu->kvm->slots_lock);
  1010. for (i = 0; i < msrs->nmsrs; ++i)
  1011. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1012. break;
  1013. up_read(&vcpu->kvm->slots_lock);
  1014. vcpu_put(vcpu);
  1015. return i;
  1016. }
  1017. /*
  1018. * Read or write a bunch of msrs. Parameters are user addresses.
  1019. *
  1020. * @return number of msrs set successfully.
  1021. */
  1022. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1023. int (*do_msr)(struct kvm_vcpu *vcpu,
  1024. unsigned index, u64 *data),
  1025. int writeback)
  1026. {
  1027. struct kvm_msrs msrs;
  1028. struct kvm_msr_entry *entries;
  1029. int r, n;
  1030. unsigned size;
  1031. r = -EFAULT;
  1032. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1033. goto out;
  1034. r = -E2BIG;
  1035. if (msrs.nmsrs >= MAX_IO_MSRS)
  1036. goto out;
  1037. r = -ENOMEM;
  1038. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1039. entries = vmalloc(size);
  1040. if (!entries)
  1041. goto out;
  1042. r = -EFAULT;
  1043. if (copy_from_user(entries, user_msrs->entries, size))
  1044. goto out_free;
  1045. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1046. if (r < 0)
  1047. goto out_free;
  1048. r = -EFAULT;
  1049. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1050. goto out_free;
  1051. r = n;
  1052. out_free:
  1053. vfree(entries);
  1054. out:
  1055. return r;
  1056. }
  1057. int kvm_dev_ioctl_check_extension(long ext)
  1058. {
  1059. int r;
  1060. switch (ext) {
  1061. case KVM_CAP_IRQCHIP:
  1062. case KVM_CAP_HLT:
  1063. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1064. case KVM_CAP_SET_TSS_ADDR:
  1065. case KVM_CAP_EXT_CPUID:
  1066. case KVM_CAP_CLOCKSOURCE:
  1067. case KVM_CAP_PIT:
  1068. case KVM_CAP_NOP_IO_DELAY:
  1069. case KVM_CAP_MP_STATE:
  1070. case KVM_CAP_SYNC_MMU:
  1071. case KVM_CAP_REINJECT_CONTROL:
  1072. case KVM_CAP_IRQ_INJECT_STATUS:
  1073. case KVM_CAP_ASSIGN_DEV_IRQ:
  1074. case KVM_CAP_IRQFD:
  1075. case KVM_CAP_IOEVENTFD:
  1076. case KVM_CAP_PIT2:
  1077. case KVM_CAP_PIT_STATE2:
  1078. case KVM_CAP_SET_IDENTITY_MAP_ADDR:
  1079. r = 1;
  1080. break;
  1081. case KVM_CAP_COALESCED_MMIO:
  1082. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  1083. break;
  1084. case KVM_CAP_VAPIC:
  1085. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  1086. break;
  1087. case KVM_CAP_NR_VCPUS:
  1088. r = KVM_MAX_VCPUS;
  1089. break;
  1090. case KVM_CAP_NR_MEMSLOTS:
  1091. r = KVM_MEMORY_SLOTS;
  1092. break;
  1093. case KVM_CAP_PV_MMU:
  1094. r = !tdp_enabled;
  1095. break;
  1096. case KVM_CAP_IOMMU:
  1097. r = iommu_found();
  1098. break;
  1099. case KVM_CAP_MCE:
  1100. r = KVM_MAX_MCE_BANKS;
  1101. break;
  1102. default:
  1103. r = 0;
  1104. break;
  1105. }
  1106. return r;
  1107. }
  1108. long kvm_arch_dev_ioctl(struct file *filp,
  1109. unsigned int ioctl, unsigned long arg)
  1110. {
  1111. void __user *argp = (void __user *)arg;
  1112. long r;
  1113. switch (ioctl) {
  1114. case KVM_GET_MSR_INDEX_LIST: {
  1115. struct kvm_msr_list __user *user_msr_list = argp;
  1116. struct kvm_msr_list msr_list;
  1117. unsigned n;
  1118. r = -EFAULT;
  1119. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1120. goto out;
  1121. n = msr_list.nmsrs;
  1122. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1123. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1124. goto out;
  1125. r = -E2BIG;
  1126. if (n < msr_list.nmsrs)
  1127. goto out;
  1128. r = -EFAULT;
  1129. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1130. num_msrs_to_save * sizeof(u32)))
  1131. goto out;
  1132. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  1133. &emulated_msrs,
  1134. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1135. goto out;
  1136. r = 0;
  1137. break;
  1138. }
  1139. case KVM_GET_SUPPORTED_CPUID: {
  1140. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1141. struct kvm_cpuid2 cpuid;
  1142. r = -EFAULT;
  1143. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1144. goto out;
  1145. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  1146. cpuid_arg->entries);
  1147. if (r)
  1148. goto out;
  1149. r = -EFAULT;
  1150. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1151. goto out;
  1152. r = 0;
  1153. break;
  1154. }
  1155. case KVM_X86_GET_MCE_CAP_SUPPORTED: {
  1156. u64 mce_cap;
  1157. mce_cap = KVM_MCE_CAP_SUPPORTED;
  1158. r = -EFAULT;
  1159. if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
  1160. goto out;
  1161. r = 0;
  1162. break;
  1163. }
  1164. default:
  1165. r = -EINVAL;
  1166. }
  1167. out:
  1168. return r;
  1169. }
  1170. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1171. {
  1172. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1173. if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0))
  1174. per_cpu(cpu_tsc_khz, cpu) = cpufreq_quick_get(cpu);
  1175. kvm_request_guest_time_update(vcpu);
  1176. }
  1177. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1178. {
  1179. kvm_x86_ops->vcpu_put(vcpu);
  1180. kvm_put_guest_fpu(vcpu);
  1181. }
  1182. static int is_efer_nx(void)
  1183. {
  1184. unsigned long long efer = 0;
  1185. rdmsrl_safe(MSR_EFER, &efer);
  1186. return efer & EFER_NX;
  1187. }
  1188. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  1189. {
  1190. int i;
  1191. struct kvm_cpuid_entry2 *e, *entry;
  1192. entry = NULL;
  1193. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1194. e = &vcpu->arch.cpuid_entries[i];
  1195. if (e->function == 0x80000001) {
  1196. entry = e;
  1197. break;
  1198. }
  1199. }
  1200. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1201. entry->edx &= ~(1 << 20);
  1202. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1203. }
  1204. }
  1205. /* when an old userspace process fills a new kernel module */
  1206. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1207. struct kvm_cpuid *cpuid,
  1208. struct kvm_cpuid_entry __user *entries)
  1209. {
  1210. int r, i;
  1211. struct kvm_cpuid_entry *cpuid_entries;
  1212. r = -E2BIG;
  1213. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1214. goto out;
  1215. r = -ENOMEM;
  1216. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1217. if (!cpuid_entries)
  1218. goto out;
  1219. r = -EFAULT;
  1220. if (copy_from_user(cpuid_entries, entries,
  1221. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1222. goto out_free;
  1223. for (i = 0; i < cpuid->nent; i++) {
  1224. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1225. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1226. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1227. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1228. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1229. vcpu->arch.cpuid_entries[i].index = 0;
  1230. vcpu->arch.cpuid_entries[i].flags = 0;
  1231. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1232. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1233. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1234. }
  1235. vcpu->arch.cpuid_nent = cpuid->nent;
  1236. cpuid_fix_nx_cap(vcpu);
  1237. r = 0;
  1238. kvm_apic_set_version(vcpu);
  1239. out_free:
  1240. vfree(cpuid_entries);
  1241. out:
  1242. return r;
  1243. }
  1244. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1245. struct kvm_cpuid2 *cpuid,
  1246. struct kvm_cpuid_entry2 __user *entries)
  1247. {
  1248. int r;
  1249. r = -E2BIG;
  1250. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1251. goto out;
  1252. r = -EFAULT;
  1253. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1254. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1255. goto out;
  1256. vcpu->arch.cpuid_nent = cpuid->nent;
  1257. kvm_apic_set_version(vcpu);
  1258. return 0;
  1259. out:
  1260. return r;
  1261. }
  1262. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1263. struct kvm_cpuid2 *cpuid,
  1264. struct kvm_cpuid_entry2 __user *entries)
  1265. {
  1266. int r;
  1267. r = -E2BIG;
  1268. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1269. goto out;
  1270. r = -EFAULT;
  1271. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1272. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1273. goto out;
  1274. return 0;
  1275. out:
  1276. cpuid->nent = vcpu->arch.cpuid_nent;
  1277. return r;
  1278. }
  1279. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1280. u32 index)
  1281. {
  1282. entry->function = function;
  1283. entry->index = index;
  1284. cpuid_count(entry->function, entry->index,
  1285. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  1286. entry->flags = 0;
  1287. }
  1288. #define F(x) bit(X86_FEATURE_##x)
  1289. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1290. u32 index, int *nent, int maxnent)
  1291. {
  1292. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  1293. unsigned f_gbpages = kvm_x86_ops->gb_page_enable() ? F(GBPAGES) : 0;
  1294. #ifdef CONFIG_X86_64
  1295. unsigned f_lm = F(LM);
  1296. #else
  1297. unsigned f_lm = 0;
  1298. #endif
  1299. /* cpuid 1.edx */
  1300. const u32 kvm_supported_word0_x86_features =
  1301. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1302. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1303. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  1304. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1305. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
  1306. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  1307. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  1308. 0 /* HTT, TM, Reserved, PBE */;
  1309. /* cpuid 0x80000001.edx */
  1310. const u32 kvm_supported_word1_x86_features =
  1311. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1312. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1313. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  1314. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1315. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  1316. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  1317. F(FXSR) | F(FXSR_OPT) | f_gbpages | 0 /* RDTSCP */ |
  1318. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  1319. /* cpuid 1.ecx */
  1320. const u32 kvm_supported_word4_x86_features =
  1321. F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
  1322. 0 /* DS-CPL, VMX, SMX, EST */ |
  1323. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  1324. 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
  1325. 0 /* Reserved, DCA */ | F(XMM4_1) |
  1326. F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
  1327. 0 /* Reserved, XSAVE, OSXSAVE */;
  1328. /* cpuid 0x80000001.ecx */
  1329. const u32 kvm_supported_word6_x86_features =
  1330. F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
  1331. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  1332. F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
  1333. 0 /* SKINIT */ | 0 /* WDT */;
  1334. /* all calls to cpuid_count() should be made on the same cpu */
  1335. get_cpu();
  1336. do_cpuid_1_ent(entry, function, index);
  1337. ++*nent;
  1338. switch (function) {
  1339. case 0:
  1340. entry->eax = min(entry->eax, (u32)0xb);
  1341. break;
  1342. case 1:
  1343. entry->edx &= kvm_supported_word0_x86_features;
  1344. entry->ecx &= kvm_supported_word4_x86_features;
  1345. /* we support x2apic emulation even if host does not support
  1346. * it since we emulate x2apic in software */
  1347. entry->ecx |= F(X2APIC);
  1348. break;
  1349. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  1350. * may return different values. This forces us to get_cpu() before
  1351. * issuing the first command, and also to emulate this annoying behavior
  1352. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  1353. case 2: {
  1354. int t, times = entry->eax & 0xff;
  1355. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1356. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  1357. for (t = 1; t < times && *nent < maxnent; ++t) {
  1358. do_cpuid_1_ent(&entry[t], function, 0);
  1359. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1360. ++*nent;
  1361. }
  1362. break;
  1363. }
  1364. /* function 4 and 0xb have additional index. */
  1365. case 4: {
  1366. int i, cache_type;
  1367. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1368. /* read more entries until cache_type is zero */
  1369. for (i = 1; *nent < maxnent; ++i) {
  1370. cache_type = entry[i - 1].eax & 0x1f;
  1371. if (!cache_type)
  1372. break;
  1373. do_cpuid_1_ent(&entry[i], function, i);
  1374. entry[i].flags |=
  1375. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1376. ++*nent;
  1377. }
  1378. break;
  1379. }
  1380. case 0xb: {
  1381. int i, level_type;
  1382. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1383. /* read more entries until level_type is zero */
  1384. for (i = 1; *nent < maxnent; ++i) {
  1385. level_type = entry[i - 1].ecx & 0xff00;
  1386. if (!level_type)
  1387. break;
  1388. do_cpuid_1_ent(&entry[i], function, i);
  1389. entry[i].flags |=
  1390. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1391. ++*nent;
  1392. }
  1393. break;
  1394. }
  1395. case 0x80000000:
  1396. entry->eax = min(entry->eax, 0x8000001a);
  1397. break;
  1398. case 0x80000001:
  1399. entry->edx &= kvm_supported_word1_x86_features;
  1400. entry->ecx &= kvm_supported_word6_x86_features;
  1401. break;
  1402. }
  1403. put_cpu();
  1404. }
  1405. #undef F
  1406. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1407. struct kvm_cpuid_entry2 __user *entries)
  1408. {
  1409. struct kvm_cpuid_entry2 *cpuid_entries;
  1410. int limit, nent = 0, r = -E2BIG;
  1411. u32 func;
  1412. if (cpuid->nent < 1)
  1413. goto out;
  1414. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1415. cpuid->nent = KVM_MAX_CPUID_ENTRIES;
  1416. r = -ENOMEM;
  1417. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1418. if (!cpuid_entries)
  1419. goto out;
  1420. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1421. limit = cpuid_entries[0].eax;
  1422. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1423. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1424. &nent, cpuid->nent);
  1425. r = -E2BIG;
  1426. if (nent >= cpuid->nent)
  1427. goto out_free;
  1428. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1429. limit = cpuid_entries[nent - 1].eax;
  1430. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1431. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1432. &nent, cpuid->nent);
  1433. r = -E2BIG;
  1434. if (nent >= cpuid->nent)
  1435. goto out_free;
  1436. r = -EFAULT;
  1437. if (copy_to_user(entries, cpuid_entries,
  1438. nent * sizeof(struct kvm_cpuid_entry2)))
  1439. goto out_free;
  1440. cpuid->nent = nent;
  1441. r = 0;
  1442. out_free:
  1443. vfree(cpuid_entries);
  1444. out:
  1445. return r;
  1446. }
  1447. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1448. struct kvm_lapic_state *s)
  1449. {
  1450. vcpu_load(vcpu);
  1451. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1452. vcpu_put(vcpu);
  1453. return 0;
  1454. }
  1455. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1456. struct kvm_lapic_state *s)
  1457. {
  1458. vcpu_load(vcpu);
  1459. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1460. kvm_apic_post_state_restore(vcpu);
  1461. update_cr8_intercept(vcpu);
  1462. vcpu_put(vcpu);
  1463. return 0;
  1464. }
  1465. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1466. struct kvm_interrupt *irq)
  1467. {
  1468. if (irq->irq < 0 || irq->irq >= 256)
  1469. return -EINVAL;
  1470. if (irqchip_in_kernel(vcpu->kvm))
  1471. return -ENXIO;
  1472. vcpu_load(vcpu);
  1473. kvm_queue_interrupt(vcpu, irq->irq, false);
  1474. vcpu_put(vcpu);
  1475. return 0;
  1476. }
  1477. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  1478. {
  1479. vcpu_load(vcpu);
  1480. kvm_inject_nmi(vcpu);
  1481. vcpu_put(vcpu);
  1482. return 0;
  1483. }
  1484. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1485. struct kvm_tpr_access_ctl *tac)
  1486. {
  1487. if (tac->flags)
  1488. return -EINVAL;
  1489. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1490. return 0;
  1491. }
  1492. static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
  1493. u64 mcg_cap)
  1494. {
  1495. int r;
  1496. unsigned bank_num = mcg_cap & 0xff, bank;
  1497. r = -EINVAL;
  1498. if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
  1499. goto out;
  1500. if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
  1501. goto out;
  1502. r = 0;
  1503. vcpu->arch.mcg_cap = mcg_cap;
  1504. /* Init IA32_MCG_CTL to all 1s */
  1505. if (mcg_cap & MCG_CTL_P)
  1506. vcpu->arch.mcg_ctl = ~(u64)0;
  1507. /* Init IA32_MCi_CTL to all 1s */
  1508. for (bank = 0; bank < bank_num; bank++)
  1509. vcpu->arch.mce_banks[bank*4] = ~(u64)0;
  1510. out:
  1511. return r;
  1512. }
  1513. static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
  1514. struct kvm_x86_mce *mce)
  1515. {
  1516. u64 mcg_cap = vcpu->arch.mcg_cap;
  1517. unsigned bank_num = mcg_cap & 0xff;
  1518. u64 *banks = vcpu->arch.mce_banks;
  1519. if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
  1520. return -EINVAL;
  1521. /*
  1522. * if IA32_MCG_CTL is not all 1s, the uncorrected error
  1523. * reporting is disabled
  1524. */
  1525. if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
  1526. vcpu->arch.mcg_ctl != ~(u64)0)
  1527. return 0;
  1528. banks += 4 * mce->bank;
  1529. /*
  1530. * if IA32_MCi_CTL is not all 1s, the uncorrected error
  1531. * reporting is disabled for the bank
  1532. */
  1533. if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
  1534. return 0;
  1535. if (mce->status & MCI_STATUS_UC) {
  1536. if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
  1537. !(vcpu->arch.cr4 & X86_CR4_MCE)) {
  1538. printk(KERN_DEBUG "kvm: set_mce: "
  1539. "injects mce exception while "
  1540. "previous one is in progress!\n");
  1541. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  1542. return 0;
  1543. }
  1544. if (banks[1] & MCI_STATUS_VAL)
  1545. mce->status |= MCI_STATUS_OVER;
  1546. banks[2] = mce->addr;
  1547. banks[3] = mce->misc;
  1548. vcpu->arch.mcg_status = mce->mcg_status;
  1549. banks[1] = mce->status;
  1550. kvm_queue_exception(vcpu, MC_VECTOR);
  1551. } else if (!(banks[1] & MCI_STATUS_VAL)
  1552. || !(banks[1] & MCI_STATUS_UC)) {
  1553. if (banks[1] & MCI_STATUS_VAL)
  1554. mce->status |= MCI_STATUS_OVER;
  1555. banks[2] = mce->addr;
  1556. banks[3] = mce->misc;
  1557. banks[1] = mce->status;
  1558. } else
  1559. banks[1] |= MCI_STATUS_OVER;
  1560. return 0;
  1561. }
  1562. long kvm_arch_vcpu_ioctl(struct file *filp,
  1563. unsigned int ioctl, unsigned long arg)
  1564. {
  1565. struct kvm_vcpu *vcpu = filp->private_data;
  1566. void __user *argp = (void __user *)arg;
  1567. int r;
  1568. struct kvm_lapic_state *lapic = NULL;
  1569. switch (ioctl) {
  1570. case KVM_GET_LAPIC: {
  1571. lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1572. r = -ENOMEM;
  1573. if (!lapic)
  1574. goto out;
  1575. r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
  1576. if (r)
  1577. goto out;
  1578. r = -EFAULT;
  1579. if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
  1580. goto out;
  1581. r = 0;
  1582. break;
  1583. }
  1584. case KVM_SET_LAPIC: {
  1585. lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1586. r = -ENOMEM;
  1587. if (!lapic)
  1588. goto out;
  1589. r = -EFAULT;
  1590. if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
  1591. goto out;
  1592. r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
  1593. if (r)
  1594. goto out;
  1595. r = 0;
  1596. break;
  1597. }
  1598. case KVM_INTERRUPT: {
  1599. struct kvm_interrupt irq;
  1600. r = -EFAULT;
  1601. if (copy_from_user(&irq, argp, sizeof irq))
  1602. goto out;
  1603. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1604. if (r)
  1605. goto out;
  1606. r = 0;
  1607. break;
  1608. }
  1609. case KVM_NMI: {
  1610. r = kvm_vcpu_ioctl_nmi(vcpu);
  1611. if (r)
  1612. goto out;
  1613. r = 0;
  1614. break;
  1615. }
  1616. case KVM_SET_CPUID: {
  1617. struct kvm_cpuid __user *cpuid_arg = argp;
  1618. struct kvm_cpuid cpuid;
  1619. r = -EFAULT;
  1620. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1621. goto out;
  1622. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  1623. if (r)
  1624. goto out;
  1625. break;
  1626. }
  1627. case KVM_SET_CPUID2: {
  1628. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1629. struct kvm_cpuid2 cpuid;
  1630. r = -EFAULT;
  1631. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1632. goto out;
  1633. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  1634. cpuid_arg->entries);
  1635. if (r)
  1636. goto out;
  1637. break;
  1638. }
  1639. case KVM_GET_CPUID2: {
  1640. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1641. struct kvm_cpuid2 cpuid;
  1642. r = -EFAULT;
  1643. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1644. goto out;
  1645. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  1646. cpuid_arg->entries);
  1647. if (r)
  1648. goto out;
  1649. r = -EFAULT;
  1650. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1651. goto out;
  1652. r = 0;
  1653. break;
  1654. }
  1655. case KVM_GET_MSRS:
  1656. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  1657. break;
  1658. case KVM_SET_MSRS:
  1659. r = msr_io(vcpu, argp, do_set_msr, 0);
  1660. break;
  1661. case KVM_TPR_ACCESS_REPORTING: {
  1662. struct kvm_tpr_access_ctl tac;
  1663. r = -EFAULT;
  1664. if (copy_from_user(&tac, argp, sizeof tac))
  1665. goto out;
  1666. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  1667. if (r)
  1668. goto out;
  1669. r = -EFAULT;
  1670. if (copy_to_user(argp, &tac, sizeof tac))
  1671. goto out;
  1672. r = 0;
  1673. break;
  1674. };
  1675. case KVM_SET_VAPIC_ADDR: {
  1676. struct kvm_vapic_addr va;
  1677. r = -EINVAL;
  1678. if (!irqchip_in_kernel(vcpu->kvm))
  1679. goto out;
  1680. r = -EFAULT;
  1681. if (copy_from_user(&va, argp, sizeof va))
  1682. goto out;
  1683. r = 0;
  1684. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  1685. break;
  1686. }
  1687. case KVM_X86_SETUP_MCE: {
  1688. u64 mcg_cap;
  1689. r = -EFAULT;
  1690. if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
  1691. goto out;
  1692. r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
  1693. break;
  1694. }
  1695. case KVM_X86_SET_MCE: {
  1696. struct kvm_x86_mce mce;
  1697. r = -EFAULT;
  1698. if (copy_from_user(&mce, argp, sizeof mce))
  1699. goto out;
  1700. r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
  1701. break;
  1702. }
  1703. default:
  1704. r = -EINVAL;
  1705. }
  1706. out:
  1707. kfree(lapic);
  1708. return r;
  1709. }
  1710. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  1711. {
  1712. int ret;
  1713. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  1714. return -1;
  1715. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  1716. return ret;
  1717. }
  1718. static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
  1719. u64 ident_addr)
  1720. {
  1721. kvm->arch.ept_identity_map_addr = ident_addr;
  1722. return 0;
  1723. }
  1724. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  1725. u32 kvm_nr_mmu_pages)
  1726. {
  1727. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  1728. return -EINVAL;
  1729. down_write(&kvm->slots_lock);
  1730. spin_lock(&kvm->mmu_lock);
  1731. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  1732. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  1733. spin_unlock(&kvm->mmu_lock);
  1734. up_write(&kvm->slots_lock);
  1735. return 0;
  1736. }
  1737. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  1738. {
  1739. return kvm->arch.n_alloc_mmu_pages;
  1740. }
  1741. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1742. {
  1743. int i;
  1744. struct kvm_mem_alias *alias;
  1745. for (i = 0; i < kvm->arch.naliases; ++i) {
  1746. alias = &kvm->arch.aliases[i];
  1747. if (gfn >= alias->base_gfn
  1748. && gfn < alias->base_gfn + alias->npages)
  1749. return alias->target_gfn + gfn - alias->base_gfn;
  1750. }
  1751. return gfn;
  1752. }
  1753. /*
  1754. * Set a new alias region. Aliases map a portion of physical memory into
  1755. * another portion. This is useful for memory windows, for example the PC
  1756. * VGA region.
  1757. */
  1758. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  1759. struct kvm_memory_alias *alias)
  1760. {
  1761. int r, n;
  1762. struct kvm_mem_alias *p;
  1763. r = -EINVAL;
  1764. /* General sanity checks */
  1765. if (alias->memory_size & (PAGE_SIZE - 1))
  1766. goto out;
  1767. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  1768. goto out;
  1769. if (alias->slot >= KVM_ALIAS_SLOTS)
  1770. goto out;
  1771. if (alias->guest_phys_addr + alias->memory_size
  1772. < alias->guest_phys_addr)
  1773. goto out;
  1774. if (alias->target_phys_addr + alias->memory_size
  1775. < alias->target_phys_addr)
  1776. goto out;
  1777. down_write(&kvm->slots_lock);
  1778. spin_lock(&kvm->mmu_lock);
  1779. p = &kvm->arch.aliases[alias->slot];
  1780. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  1781. p->npages = alias->memory_size >> PAGE_SHIFT;
  1782. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  1783. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  1784. if (kvm->arch.aliases[n - 1].npages)
  1785. break;
  1786. kvm->arch.naliases = n;
  1787. spin_unlock(&kvm->mmu_lock);
  1788. kvm_mmu_zap_all(kvm);
  1789. up_write(&kvm->slots_lock);
  1790. return 0;
  1791. out:
  1792. return r;
  1793. }
  1794. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1795. {
  1796. int r;
  1797. r = 0;
  1798. switch (chip->chip_id) {
  1799. case KVM_IRQCHIP_PIC_MASTER:
  1800. memcpy(&chip->chip.pic,
  1801. &pic_irqchip(kvm)->pics[0],
  1802. sizeof(struct kvm_pic_state));
  1803. break;
  1804. case KVM_IRQCHIP_PIC_SLAVE:
  1805. memcpy(&chip->chip.pic,
  1806. &pic_irqchip(kvm)->pics[1],
  1807. sizeof(struct kvm_pic_state));
  1808. break;
  1809. case KVM_IRQCHIP_IOAPIC:
  1810. r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
  1811. break;
  1812. default:
  1813. r = -EINVAL;
  1814. break;
  1815. }
  1816. return r;
  1817. }
  1818. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1819. {
  1820. int r;
  1821. r = 0;
  1822. switch (chip->chip_id) {
  1823. case KVM_IRQCHIP_PIC_MASTER:
  1824. spin_lock(&pic_irqchip(kvm)->lock);
  1825. memcpy(&pic_irqchip(kvm)->pics[0],
  1826. &chip->chip.pic,
  1827. sizeof(struct kvm_pic_state));
  1828. spin_unlock(&pic_irqchip(kvm)->lock);
  1829. break;
  1830. case KVM_IRQCHIP_PIC_SLAVE:
  1831. spin_lock(&pic_irqchip(kvm)->lock);
  1832. memcpy(&pic_irqchip(kvm)->pics[1],
  1833. &chip->chip.pic,
  1834. sizeof(struct kvm_pic_state));
  1835. spin_unlock(&pic_irqchip(kvm)->lock);
  1836. break;
  1837. case KVM_IRQCHIP_IOAPIC:
  1838. r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
  1839. break;
  1840. default:
  1841. r = -EINVAL;
  1842. break;
  1843. }
  1844. kvm_pic_update_irq(pic_irqchip(kvm));
  1845. return r;
  1846. }
  1847. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1848. {
  1849. int r = 0;
  1850. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1851. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  1852. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  1853. return r;
  1854. }
  1855. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  1856. {
  1857. int r = 0;
  1858. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1859. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  1860. kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
  1861. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  1862. return r;
  1863. }
  1864. static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  1865. {
  1866. int r = 0;
  1867. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1868. memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
  1869. sizeof(ps->channels));
  1870. ps->flags = kvm->arch.vpit->pit_state.flags;
  1871. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  1872. return r;
  1873. }
  1874. static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  1875. {
  1876. int r = 0, start = 0;
  1877. u32 prev_legacy, cur_legacy;
  1878. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1879. prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
  1880. cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
  1881. if (!prev_legacy && cur_legacy)
  1882. start = 1;
  1883. memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
  1884. sizeof(kvm->arch.vpit->pit_state.channels));
  1885. kvm->arch.vpit->pit_state.flags = ps->flags;
  1886. kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
  1887. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  1888. return r;
  1889. }
  1890. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  1891. struct kvm_reinject_control *control)
  1892. {
  1893. if (!kvm->arch.vpit)
  1894. return -ENXIO;
  1895. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  1896. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  1897. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  1898. return 0;
  1899. }
  1900. /*
  1901. * Get (and clear) the dirty memory log for a memory slot.
  1902. */
  1903. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  1904. struct kvm_dirty_log *log)
  1905. {
  1906. int r;
  1907. int n;
  1908. struct kvm_memory_slot *memslot;
  1909. int is_dirty = 0;
  1910. down_write(&kvm->slots_lock);
  1911. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  1912. if (r)
  1913. goto out;
  1914. /* If nothing is dirty, don't bother messing with page tables. */
  1915. if (is_dirty) {
  1916. spin_lock(&kvm->mmu_lock);
  1917. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  1918. spin_unlock(&kvm->mmu_lock);
  1919. memslot = &kvm->memslots[log->slot];
  1920. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  1921. memset(memslot->dirty_bitmap, 0, n);
  1922. }
  1923. r = 0;
  1924. out:
  1925. up_write(&kvm->slots_lock);
  1926. return r;
  1927. }
  1928. long kvm_arch_vm_ioctl(struct file *filp,
  1929. unsigned int ioctl, unsigned long arg)
  1930. {
  1931. struct kvm *kvm = filp->private_data;
  1932. void __user *argp = (void __user *)arg;
  1933. int r = -ENOTTY;
  1934. /*
  1935. * This union makes it completely explicit to gcc-3.x
  1936. * that these two variables' stack usage should be
  1937. * combined, not added together.
  1938. */
  1939. union {
  1940. struct kvm_pit_state ps;
  1941. struct kvm_pit_state2 ps2;
  1942. struct kvm_memory_alias alias;
  1943. struct kvm_pit_config pit_config;
  1944. } u;
  1945. switch (ioctl) {
  1946. case KVM_SET_TSS_ADDR:
  1947. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  1948. if (r < 0)
  1949. goto out;
  1950. break;
  1951. case KVM_SET_IDENTITY_MAP_ADDR: {
  1952. u64 ident_addr;
  1953. r = -EFAULT;
  1954. if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
  1955. goto out;
  1956. r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
  1957. if (r < 0)
  1958. goto out;
  1959. break;
  1960. }
  1961. case KVM_SET_MEMORY_REGION: {
  1962. struct kvm_memory_region kvm_mem;
  1963. struct kvm_userspace_memory_region kvm_userspace_mem;
  1964. r = -EFAULT;
  1965. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  1966. goto out;
  1967. kvm_userspace_mem.slot = kvm_mem.slot;
  1968. kvm_userspace_mem.flags = kvm_mem.flags;
  1969. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  1970. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  1971. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  1972. if (r)
  1973. goto out;
  1974. break;
  1975. }
  1976. case KVM_SET_NR_MMU_PAGES:
  1977. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  1978. if (r)
  1979. goto out;
  1980. break;
  1981. case KVM_GET_NR_MMU_PAGES:
  1982. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  1983. break;
  1984. case KVM_SET_MEMORY_ALIAS:
  1985. r = -EFAULT;
  1986. if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
  1987. goto out;
  1988. r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
  1989. if (r)
  1990. goto out;
  1991. break;
  1992. case KVM_CREATE_IRQCHIP:
  1993. r = -ENOMEM;
  1994. kvm->arch.vpic = kvm_create_pic(kvm);
  1995. if (kvm->arch.vpic) {
  1996. r = kvm_ioapic_init(kvm);
  1997. if (r) {
  1998. kfree(kvm->arch.vpic);
  1999. kvm->arch.vpic = NULL;
  2000. goto out;
  2001. }
  2002. } else
  2003. goto out;
  2004. r = kvm_setup_default_irq_routing(kvm);
  2005. if (r) {
  2006. kfree(kvm->arch.vpic);
  2007. kfree(kvm->arch.vioapic);
  2008. goto out;
  2009. }
  2010. break;
  2011. case KVM_CREATE_PIT:
  2012. u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
  2013. goto create_pit;
  2014. case KVM_CREATE_PIT2:
  2015. r = -EFAULT;
  2016. if (copy_from_user(&u.pit_config, argp,
  2017. sizeof(struct kvm_pit_config)))
  2018. goto out;
  2019. create_pit:
  2020. down_write(&kvm->slots_lock);
  2021. r = -EEXIST;
  2022. if (kvm->arch.vpit)
  2023. goto create_pit_unlock;
  2024. r = -ENOMEM;
  2025. kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
  2026. if (kvm->arch.vpit)
  2027. r = 0;
  2028. create_pit_unlock:
  2029. up_write(&kvm->slots_lock);
  2030. break;
  2031. case KVM_IRQ_LINE_STATUS:
  2032. case KVM_IRQ_LINE: {
  2033. struct kvm_irq_level irq_event;
  2034. r = -EFAULT;
  2035. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2036. goto out;
  2037. if (irqchip_in_kernel(kvm)) {
  2038. __s32 status;
  2039. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  2040. irq_event.irq, irq_event.level);
  2041. if (ioctl == KVM_IRQ_LINE_STATUS) {
  2042. irq_event.status = status;
  2043. if (copy_to_user(argp, &irq_event,
  2044. sizeof irq_event))
  2045. goto out;
  2046. }
  2047. r = 0;
  2048. }
  2049. break;
  2050. }
  2051. case KVM_GET_IRQCHIP: {
  2052. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2053. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2054. r = -ENOMEM;
  2055. if (!chip)
  2056. goto out;
  2057. r = -EFAULT;
  2058. if (copy_from_user(chip, argp, sizeof *chip))
  2059. goto get_irqchip_out;
  2060. r = -ENXIO;
  2061. if (!irqchip_in_kernel(kvm))
  2062. goto get_irqchip_out;
  2063. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  2064. if (r)
  2065. goto get_irqchip_out;
  2066. r = -EFAULT;
  2067. if (copy_to_user(argp, chip, sizeof *chip))
  2068. goto get_irqchip_out;
  2069. r = 0;
  2070. get_irqchip_out:
  2071. kfree(chip);
  2072. if (r)
  2073. goto out;
  2074. break;
  2075. }
  2076. case KVM_SET_IRQCHIP: {
  2077. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2078. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2079. r = -ENOMEM;
  2080. if (!chip)
  2081. goto out;
  2082. r = -EFAULT;
  2083. if (copy_from_user(chip, argp, sizeof *chip))
  2084. goto set_irqchip_out;
  2085. r = -ENXIO;
  2086. if (!irqchip_in_kernel(kvm))
  2087. goto set_irqchip_out;
  2088. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  2089. if (r)
  2090. goto set_irqchip_out;
  2091. r = 0;
  2092. set_irqchip_out:
  2093. kfree(chip);
  2094. if (r)
  2095. goto out;
  2096. break;
  2097. }
  2098. case KVM_GET_PIT: {
  2099. r = -EFAULT;
  2100. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  2101. goto out;
  2102. r = -ENXIO;
  2103. if (!kvm->arch.vpit)
  2104. goto out;
  2105. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  2106. if (r)
  2107. goto out;
  2108. r = -EFAULT;
  2109. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  2110. goto out;
  2111. r = 0;
  2112. break;
  2113. }
  2114. case KVM_SET_PIT: {
  2115. r = -EFAULT;
  2116. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  2117. goto out;
  2118. r = -ENXIO;
  2119. if (!kvm->arch.vpit)
  2120. goto out;
  2121. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  2122. if (r)
  2123. goto out;
  2124. r = 0;
  2125. break;
  2126. }
  2127. case KVM_GET_PIT2: {
  2128. r = -ENXIO;
  2129. if (!kvm->arch.vpit)
  2130. goto out;
  2131. r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
  2132. if (r)
  2133. goto out;
  2134. r = -EFAULT;
  2135. if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
  2136. goto out;
  2137. r = 0;
  2138. break;
  2139. }
  2140. case KVM_SET_PIT2: {
  2141. r = -EFAULT;
  2142. if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
  2143. goto out;
  2144. r = -ENXIO;
  2145. if (!kvm->arch.vpit)
  2146. goto out;
  2147. r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
  2148. if (r)
  2149. goto out;
  2150. r = 0;
  2151. break;
  2152. }
  2153. case KVM_REINJECT_CONTROL: {
  2154. struct kvm_reinject_control control;
  2155. r = -EFAULT;
  2156. if (copy_from_user(&control, argp, sizeof(control)))
  2157. goto out;
  2158. r = kvm_vm_ioctl_reinject(kvm, &control);
  2159. if (r)
  2160. goto out;
  2161. r = 0;
  2162. break;
  2163. }
  2164. default:
  2165. ;
  2166. }
  2167. out:
  2168. return r;
  2169. }
  2170. static void kvm_init_msr_list(void)
  2171. {
  2172. u32 dummy[2];
  2173. unsigned i, j;
  2174. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  2175. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  2176. continue;
  2177. if (j < i)
  2178. msrs_to_save[j] = msrs_to_save[i];
  2179. j++;
  2180. }
  2181. num_msrs_to_save = j;
  2182. }
  2183. static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
  2184. const void *v)
  2185. {
  2186. if (vcpu->arch.apic &&
  2187. !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
  2188. return 0;
  2189. return kvm_io_bus_write(&vcpu->kvm->mmio_bus, addr, len, v);
  2190. }
  2191. static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
  2192. {
  2193. if (vcpu->arch.apic &&
  2194. !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
  2195. return 0;
  2196. return kvm_io_bus_read(&vcpu->kvm->mmio_bus, addr, len, v);
  2197. }
  2198. static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2199. struct kvm_vcpu *vcpu)
  2200. {
  2201. void *data = val;
  2202. int r = X86EMUL_CONTINUE;
  2203. while (bytes) {
  2204. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2205. unsigned offset = addr & (PAGE_SIZE-1);
  2206. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  2207. int ret;
  2208. if (gpa == UNMAPPED_GVA) {
  2209. r = X86EMUL_PROPAGATE_FAULT;
  2210. goto out;
  2211. }
  2212. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  2213. if (ret < 0) {
  2214. r = X86EMUL_UNHANDLEABLE;
  2215. goto out;
  2216. }
  2217. bytes -= toread;
  2218. data += toread;
  2219. addr += toread;
  2220. }
  2221. out:
  2222. return r;
  2223. }
  2224. static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2225. struct kvm_vcpu *vcpu)
  2226. {
  2227. void *data = val;
  2228. int r = X86EMUL_CONTINUE;
  2229. while (bytes) {
  2230. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2231. unsigned offset = addr & (PAGE_SIZE-1);
  2232. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  2233. int ret;
  2234. if (gpa == UNMAPPED_GVA) {
  2235. r = X86EMUL_PROPAGATE_FAULT;
  2236. goto out;
  2237. }
  2238. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  2239. if (ret < 0) {
  2240. r = X86EMUL_UNHANDLEABLE;
  2241. goto out;
  2242. }
  2243. bytes -= towrite;
  2244. data += towrite;
  2245. addr += towrite;
  2246. }
  2247. out:
  2248. return r;
  2249. }
  2250. static int emulator_read_emulated(unsigned long addr,
  2251. void *val,
  2252. unsigned int bytes,
  2253. struct kvm_vcpu *vcpu)
  2254. {
  2255. gpa_t gpa;
  2256. if (vcpu->mmio_read_completed) {
  2257. memcpy(val, vcpu->mmio_data, bytes);
  2258. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
  2259. vcpu->mmio_phys_addr, *(u64 *)val);
  2260. vcpu->mmio_read_completed = 0;
  2261. return X86EMUL_CONTINUE;
  2262. }
  2263. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2264. /* For APIC access vmexit */
  2265. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2266. goto mmio;
  2267. if (kvm_read_guest_virt(addr, val, bytes, vcpu)
  2268. == X86EMUL_CONTINUE)
  2269. return X86EMUL_CONTINUE;
  2270. if (gpa == UNMAPPED_GVA)
  2271. return X86EMUL_PROPAGATE_FAULT;
  2272. mmio:
  2273. /*
  2274. * Is this MMIO handled locally?
  2275. */
  2276. if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
  2277. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
  2278. return X86EMUL_CONTINUE;
  2279. }
  2280. trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
  2281. vcpu->mmio_needed = 1;
  2282. vcpu->mmio_phys_addr = gpa;
  2283. vcpu->mmio_size = bytes;
  2284. vcpu->mmio_is_write = 0;
  2285. return X86EMUL_UNHANDLEABLE;
  2286. }
  2287. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  2288. const void *val, int bytes)
  2289. {
  2290. int ret;
  2291. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  2292. if (ret < 0)
  2293. return 0;
  2294. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  2295. return 1;
  2296. }
  2297. static int emulator_write_emulated_onepage(unsigned long addr,
  2298. const void *val,
  2299. unsigned int bytes,
  2300. struct kvm_vcpu *vcpu)
  2301. {
  2302. gpa_t gpa;
  2303. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2304. if (gpa == UNMAPPED_GVA) {
  2305. kvm_inject_page_fault(vcpu, addr, 2);
  2306. return X86EMUL_PROPAGATE_FAULT;
  2307. }
  2308. /* For APIC access vmexit */
  2309. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2310. goto mmio;
  2311. if (emulator_write_phys(vcpu, gpa, val, bytes))
  2312. return X86EMUL_CONTINUE;
  2313. mmio:
  2314. trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
  2315. /*
  2316. * Is this MMIO handled locally?
  2317. */
  2318. if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
  2319. return X86EMUL_CONTINUE;
  2320. vcpu->mmio_needed = 1;
  2321. vcpu->mmio_phys_addr = gpa;
  2322. vcpu->mmio_size = bytes;
  2323. vcpu->mmio_is_write = 1;
  2324. memcpy(vcpu->mmio_data, val, bytes);
  2325. return X86EMUL_CONTINUE;
  2326. }
  2327. int emulator_write_emulated(unsigned long addr,
  2328. const void *val,
  2329. unsigned int bytes,
  2330. struct kvm_vcpu *vcpu)
  2331. {
  2332. /* Crossing a page boundary? */
  2333. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  2334. int rc, now;
  2335. now = -addr & ~PAGE_MASK;
  2336. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  2337. if (rc != X86EMUL_CONTINUE)
  2338. return rc;
  2339. addr += now;
  2340. val += now;
  2341. bytes -= now;
  2342. }
  2343. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  2344. }
  2345. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  2346. static int emulator_cmpxchg_emulated(unsigned long addr,
  2347. const void *old,
  2348. const void *new,
  2349. unsigned int bytes,
  2350. struct kvm_vcpu *vcpu)
  2351. {
  2352. printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
  2353. #ifndef CONFIG_X86_64
  2354. /* guests cmpxchg8b have to be emulated atomically */
  2355. if (bytes == 8) {
  2356. gpa_t gpa;
  2357. struct page *page;
  2358. char *kaddr;
  2359. u64 val;
  2360. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2361. if (gpa == UNMAPPED_GVA ||
  2362. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2363. goto emul_write;
  2364. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  2365. goto emul_write;
  2366. val = *(u64 *)new;
  2367. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2368. kaddr = kmap_atomic(page, KM_USER0);
  2369. set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
  2370. kunmap_atomic(kaddr, KM_USER0);
  2371. kvm_release_page_dirty(page);
  2372. }
  2373. emul_write:
  2374. #endif
  2375. return emulator_write_emulated(addr, new, bytes, vcpu);
  2376. }
  2377. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  2378. {
  2379. return kvm_x86_ops->get_segment_base(vcpu, seg);
  2380. }
  2381. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  2382. {
  2383. kvm_mmu_invlpg(vcpu, address);
  2384. return X86EMUL_CONTINUE;
  2385. }
  2386. int emulate_clts(struct kvm_vcpu *vcpu)
  2387. {
  2388. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
  2389. return X86EMUL_CONTINUE;
  2390. }
  2391. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  2392. {
  2393. struct kvm_vcpu *vcpu = ctxt->vcpu;
  2394. switch (dr) {
  2395. case 0 ... 3:
  2396. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  2397. return X86EMUL_CONTINUE;
  2398. default:
  2399. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
  2400. return X86EMUL_UNHANDLEABLE;
  2401. }
  2402. }
  2403. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  2404. {
  2405. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  2406. int exception;
  2407. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  2408. if (exception) {
  2409. /* FIXME: better handling */
  2410. return X86EMUL_UNHANDLEABLE;
  2411. }
  2412. return X86EMUL_CONTINUE;
  2413. }
  2414. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  2415. {
  2416. u8 opcodes[4];
  2417. unsigned long rip = kvm_rip_read(vcpu);
  2418. unsigned long rip_linear;
  2419. if (!printk_ratelimit())
  2420. return;
  2421. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  2422. kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
  2423. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  2424. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  2425. }
  2426. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  2427. static struct x86_emulate_ops emulate_ops = {
  2428. .read_std = kvm_read_guest_virt,
  2429. .read_emulated = emulator_read_emulated,
  2430. .write_emulated = emulator_write_emulated,
  2431. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  2432. };
  2433. static void cache_all_regs(struct kvm_vcpu *vcpu)
  2434. {
  2435. kvm_register_read(vcpu, VCPU_REGS_RAX);
  2436. kvm_register_read(vcpu, VCPU_REGS_RSP);
  2437. kvm_register_read(vcpu, VCPU_REGS_RIP);
  2438. vcpu->arch.regs_dirty = ~0;
  2439. }
  2440. int emulate_instruction(struct kvm_vcpu *vcpu,
  2441. unsigned long cr2,
  2442. u16 error_code,
  2443. int emulation_type)
  2444. {
  2445. int r, shadow_mask;
  2446. struct decode_cache *c;
  2447. struct kvm_run *run = vcpu->run;
  2448. kvm_clear_exception_queue(vcpu);
  2449. vcpu->arch.mmio_fault_cr2 = cr2;
  2450. /*
  2451. * TODO: fix emulate.c to use guest_read/write_register
  2452. * instead of direct ->regs accesses, can save hundred cycles
  2453. * on Intel for instructions that don't read/change RSP, for
  2454. * for example.
  2455. */
  2456. cache_all_regs(vcpu);
  2457. vcpu->mmio_is_write = 0;
  2458. vcpu->arch.pio.string = 0;
  2459. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  2460. int cs_db, cs_l;
  2461. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  2462. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  2463. vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  2464. vcpu->arch.emulate_ctxt.mode =
  2465. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  2466. ? X86EMUL_MODE_REAL : cs_l
  2467. ? X86EMUL_MODE_PROT64 : cs_db
  2468. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  2469. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2470. /* Only allow emulation of specific instructions on #UD
  2471. * (namely VMMCALL, sysenter, sysexit, syscall)*/
  2472. c = &vcpu->arch.emulate_ctxt.decode;
  2473. if (emulation_type & EMULTYPE_TRAP_UD) {
  2474. if (!c->twobyte)
  2475. return EMULATE_FAIL;
  2476. switch (c->b) {
  2477. case 0x01: /* VMMCALL */
  2478. if (c->modrm_mod != 3 || c->modrm_rm != 1)
  2479. return EMULATE_FAIL;
  2480. break;
  2481. case 0x34: /* sysenter */
  2482. case 0x35: /* sysexit */
  2483. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  2484. return EMULATE_FAIL;
  2485. break;
  2486. case 0x05: /* syscall */
  2487. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  2488. return EMULATE_FAIL;
  2489. break;
  2490. default:
  2491. return EMULATE_FAIL;
  2492. }
  2493. if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
  2494. return EMULATE_FAIL;
  2495. }
  2496. ++vcpu->stat.insn_emulation;
  2497. if (r) {
  2498. ++vcpu->stat.insn_emulation_fail;
  2499. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2500. return EMULATE_DONE;
  2501. return EMULATE_FAIL;
  2502. }
  2503. }
  2504. if (emulation_type & EMULTYPE_SKIP) {
  2505. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
  2506. return EMULATE_DONE;
  2507. }
  2508. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2509. shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
  2510. if (r == 0)
  2511. kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
  2512. if (vcpu->arch.pio.string)
  2513. return EMULATE_DO_MMIO;
  2514. if ((r || vcpu->mmio_is_write) && run) {
  2515. run->exit_reason = KVM_EXIT_MMIO;
  2516. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  2517. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  2518. run->mmio.len = vcpu->mmio_size;
  2519. run->mmio.is_write = vcpu->mmio_is_write;
  2520. }
  2521. if (r) {
  2522. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2523. return EMULATE_DONE;
  2524. if (!vcpu->mmio_needed) {
  2525. kvm_report_emulation_failure(vcpu, "mmio");
  2526. return EMULATE_FAIL;
  2527. }
  2528. return EMULATE_DO_MMIO;
  2529. }
  2530. kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  2531. if (vcpu->mmio_is_write) {
  2532. vcpu->mmio_needed = 0;
  2533. return EMULATE_DO_MMIO;
  2534. }
  2535. return EMULATE_DONE;
  2536. }
  2537. EXPORT_SYMBOL_GPL(emulate_instruction);
  2538. static int pio_copy_data(struct kvm_vcpu *vcpu)
  2539. {
  2540. void *p = vcpu->arch.pio_data;
  2541. gva_t q = vcpu->arch.pio.guest_gva;
  2542. unsigned bytes;
  2543. int ret;
  2544. bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
  2545. if (vcpu->arch.pio.in)
  2546. ret = kvm_write_guest_virt(q, p, bytes, vcpu);
  2547. else
  2548. ret = kvm_read_guest_virt(q, p, bytes, vcpu);
  2549. return ret;
  2550. }
  2551. int complete_pio(struct kvm_vcpu *vcpu)
  2552. {
  2553. struct kvm_pio_request *io = &vcpu->arch.pio;
  2554. long delta;
  2555. int r;
  2556. unsigned long val;
  2557. if (!io->string) {
  2558. if (io->in) {
  2559. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2560. memcpy(&val, vcpu->arch.pio_data, io->size);
  2561. kvm_register_write(vcpu, VCPU_REGS_RAX, val);
  2562. }
  2563. } else {
  2564. if (io->in) {
  2565. r = pio_copy_data(vcpu);
  2566. if (r)
  2567. return r;
  2568. }
  2569. delta = 1;
  2570. if (io->rep) {
  2571. delta *= io->cur_count;
  2572. /*
  2573. * The size of the register should really depend on
  2574. * current address size.
  2575. */
  2576. val = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2577. val -= delta;
  2578. kvm_register_write(vcpu, VCPU_REGS_RCX, val);
  2579. }
  2580. if (io->down)
  2581. delta = -delta;
  2582. delta *= io->size;
  2583. if (io->in) {
  2584. val = kvm_register_read(vcpu, VCPU_REGS_RDI);
  2585. val += delta;
  2586. kvm_register_write(vcpu, VCPU_REGS_RDI, val);
  2587. } else {
  2588. val = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2589. val += delta;
  2590. kvm_register_write(vcpu, VCPU_REGS_RSI, val);
  2591. }
  2592. }
  2593. io->count -= io->cur_count;
  2594. io->cur_count = 0;
  2595. return 0;
  2596. }
  2597. static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
  2598. {
  2599. /* TODO: String I/O for in kernel device */
  2600. int r;
  2601. if (vcpu->arch.pio.in)
  2602. r = kvm_io_bus_read(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
  2603. vcpu->arch.pio.size, pd);
  2604. else
  2605. r = kvm_io_bus_write(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
  2606. vcpu->arch.pio.size, pd);
  2607. return r;
  2608. }
  2609. static int pio_string_write(struct kvm_vcpu *vcpu)
  2610. {
  2611. struct kvm_pio_request *io = &vcpu->arch.pio;
  2612. void *pd = vcpu->arch.pio_data;
  2613. int i, r = 0;
  2614. for (i = 0; i < io->cur_count; i++) {
  2615. if (kvm_io_bus_write(&vcpu->kvm->pio_bus,
  2616. io->port, io->size, pd)) {
  2617. r = -EOPNOTSUPP;
  2618. break;
  2619. }
  2620. pd += io->size;
  2621. }
  2622. return r;
  2623. }
  2624. int kvm_emulate_pio(struct kvm_vcpu *vcpu, int in, int size, unsigned port)
  2625. {
  2626. unsigned long val;
  2627. vcpu->run->exit_reason = KVM_EXIT_IO;
  2628. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2629. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2630. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2631. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
  2632. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2633. vcpu->arch.pio.in = in;
  2634. vcpu->arch.pio.string = 0;
  2635. vcpu->arch.pio.down = 0;
  2636. vcpu->arch.pio.rep = 0;
  2637. trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
  2638. size, 1);
  2639. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2640. memcpy(vcpu->arch.pio_data, &val, 4);
  2641. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  2642. complete_pio(vcpu);
  2643. return 1;
  2644. }
  2645. return 0;
  2646. }
  2647. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  2648. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, int in,
  2649. int size, unsigned long count, int down,
  2650. gva_t address, int rep, unsigned port)
  2651. {
  2652. unsigned now, in_page;
  2653. int ret = 0;
  2654. vcpu->run->exit_reason = KVM_EXIT_IO;
  2655. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2656. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2657. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2658. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
  2659. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2660. vcpu->arch.pio.in = in;
  2661. vcpu->arch.pio.string = 1;
  2662. vcpu->arch.pio.down = down;
  2663. vcpu->arch.pio.rep = rep;
  2664. trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
  2665. size, count);
  2666. if (!count) {
  2667. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2668. return 1;
  2669. }
  2670. if (!down)
  2671. in_page = PAGE_SIZE - offset_in_page(address);
  2672. else
  2673. in_page = offset_in_page(address) + size;
  2674. now = min(count, (unsigned long)in_page / size);
  2675. if (!now)
  2676. now = 1;
  2677. if (down) {
  2678. /*
  2679. * String I/O in reverse. Yuck. Kill the guest, fix later.
  2680. */
  2681. pr_unimpl(vcpu, "guest string pio down\n");
  2682. kvm_inject_gp(vcpu, 0);
  2683. return 1;
  2684. }
  2685. vcpu->run->io.count = now;
  2686. vcpu->arch.pio.cur_count = now;
  2687. if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
  2688. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2689. vcpu->arch.pio.guest_gva = address;
  2690. if (!vcpu->arch.pio.in) {
  2691. /* string PIO write */
  2692. ret = pio_copy_data(vcpu);
  2693. if (ret == X86EMUL_PROPAGATE_FAULT) {
  2694. kvm_inject_gp(vcpu, 0);
  2695. return 1;
  2696. }
  2697. if (ret == 0 && !pio_string_write(vcpu)) {
  2698. complete_pio(vcpu);
  2699. if (vcpu->arch.pio.count == 0)
  2700. ret = 1;
  2701. }
  2702. }
  2703. /* no string PIO read support yet */
  2704. return ret;
  2705. }
  2706. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  2707. static void bounce_off(void *info)
  2708. {
  2709. /* nothing */
  2710. }
  2711. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  2712. void *data)
  2713. {
  2714. struct cpufreq_freqs *freq = data;
  2715. struct kvm *kvm;
  2716. struct kvm_vcpu *vcpu;
  2717. int i, send_ipi = 0;
  2718. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  2719. return 0;
  2720. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  2721. return 0;
  2722. per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
  2723. spin_lock(&kvm_lock);
  2724. list_for_each_entry(kvm, &vm_list, vm_list) {
  2725. kvm_for_each_vcpu(i, vcpu, kvm) {
  2726. if (vcpu->cpu != freq->cpu)
  2727. continue;
  2728. if (!kvm_request_guest_time_update(vcpu))
  2729. continue;
  2730. if (vcpu->cpu != smp_processor_id())
  2731. send_ipi++;
  2732. }
  2733. }
  2734. spin_unlock(&kvm_lock);
  2735. if (freq->old < freq->new && send_ipi) {
  2736. /*
  2737. * We upscale the frequency. Must make the guest
  2738. * doesn't see old kvmclock values while running with
  2739. * the new frequency, otherwise we risk the guest sees
  2740. * time go backwards.
  2741. *
  2742. * In case we update the frequency for another cpu
  2743. * (which might be in guest context) send an interrupt
  2744. * to kick the cpu out of guest context. Next time
  2745. * guest context is entered kvmclock will be updated,
  2746. * so the guest will not see stale values.
  2747. */
  2748. smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
  2749. }
  2750. return 0;
  2751. }
  2752. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  2753. .notifier_call = kvmclock_cpufreq_notifier
  2754. };
  2755. static void kvm_timer_init(void)
  2756. {
  2757. int cpu;
  2758. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  2759. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  2760. CPUFREQ_TRANSITION_NOTIFIER);
  2761. for_each_online_cpu(cpu)
  2762. per_cpu(cpu_tsc_khz, cpu) = cpufreq_get(cpu);
  2763. } else {
  2764. for_each_possible_cpu(cpu)
  2765. per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
  2766. }
  2767. }
  2768. int kvm_arch_init(void *opaque)
  2769. {
  2770. int r;
  2771. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  2772. if (kvm_x86_ops) {
  2773. printk(KERN_ERR "kvm: already loaded the other module\n");
  2774. r = -EEXIST;
  2775. goto out;
  2776. }
  2777. if (!ops->cpu_has_kvm_support()) {
  2778. printk(KERN_ERR "kvm: no hardware support\n");
  2779. r = -EOPNOTSUPP;
  2780. goto out;
  2781. }
  2782. if (ops->disabled_by_bios()) {
  2783. printk(KERN_ERR "kvm: disabled by bios\n");
  2784. r = -EOPNOTSUPP;
  2785. goto out;
  2786. }
  2787. r = kvm_mmu_module_init();
  2788. if (r)
  2789. goto out;
  2790. kvm_init_msr_list();
  2791. kvm_x86_ops = ops;
  2792. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  2793. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  2794. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  2795. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  2796. kvm_timer_init();
  2797. return 0;
  2798. out:
  2799. return r;
  2800. }
  2801. void kvm_arch_exit(void)
  2802. {
  2803. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  2804. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  2805. CPUFREQ_TRANSITION_NOTIFIER);
  2806. kvm_x86_ops = NULL;
  2807. kvm_mmu_module_exit();
  2808. }
  2809. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  2810. {
  2811. ++vcpu->stat.halt_exits;
  2812. if (irqchip_in_kernel(vcpu->kvm)) {
  2813. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  2814. return 1;
  2815. } else {
  2816. vcpu->run->exit_reason = KVM_EXIT_HLT;
  2817. return 0;
  2818. }
  2819. }
  2820. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  2821. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  2822. unsigned long a1)
  2823. {
  2824. if (is_long_mode(vcpu))
  2825. return a0;
  2826. else
  2827. return a0 | ((gpa_t)a1 << 32);
  2828. }
  2829. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  2830. {
  2831. unsigned long nr, a0, a1, a2, a3, ret;
  2832. int r = 1;
  2833. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2834. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  2835. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2836. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  2837. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2838. trace_kvm_hypercall(nr, a0, a1, a2, a3);
  2839. if (!is_long_mode(vcpu)) {
  2840. nr &= 0xFFFFFFFF;
  2841. a0 &= 0xFFFFFFFF;
  2842. a1 &= 0xFFFFFFFF;
  2843. a2 &= 0xFFFFFFFF;
  2844. a3 &= 0xFFFFFFFF;
  2845. }
  2846. if (kvm_x86_ops->get_cpl(vcpu) != 0) {
  2847. ret = -KVM_EPERM;
  2848. goto out;
  2849. }
  2850. switch (nr) {
  2851. case KVM_HC_VAPIC_POLL_IRQ:
  2852. ret = 0;
  2853. break;
  2854. case KVM_HC_MMU_OP:
  2855. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  2856. break;
  2857. default:
  2858. ret = -KVM_ENOSYS;
  2859. break;
  2860. }
  2861. out:
  2862. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  2863. ++vcpu->stat.hypercalls;
  2864. return r;
  2865. }
  2866. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  2867. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  2868. {
  2869. char instruction[3];
  2870. int ret = 0;
  2871. unsigned long rip = kvm_rip_read(vcpu);
  2872. /*
  2873. * Blow out the MMU to ensure that no other VCPU has an active mapping
  2874. * to ensure that the updated hypercall appears atomically across all
  2875. * VCPUs.
  2876. */
  2877. kvm_mmu_zap_all(vcpu->kvm);
  2878. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  2879. if (emulator_write_emulated(rip, instruction, 3, vcpu)
  2880. != X86EMUL_CONTINUE)
  2881. ret = -EFAULT;
  2882. return ret;
  2883. }
  2884. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  2885. {
  2886. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  2887. }
  2888. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2889. {
  2890. struct descriptor_table dt = { limit, base };
  2891. kvm_x86_ops->set_gdt(vcpu, &dt);
  2892. }
  2893. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  2894. {
  2895. struct descriptor_table dt = { limit, base };
  2896. kvm_x86_ops->set_idt(vcpu, &dt);
  2897. }
  2898. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  2899. unsigned long *rflags)
  2900. {
  2901. kvm_lmsw(vcpu, msw);
  2902. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2903. }
  2904. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  2905. {
  2906. unsigned long value;
  2907. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  2908. switch (cr) {
  2909. case 0:
  2910. value = vcpu->arch.cr0;
  2911. break;
  2912. case 2:
  2913. value = vcpu->arch.cr2;
  2914. break;
  2915. case 3:
  2916. value = vcpu->arch.cr3;
  2917. break;
  2918. case 4:
  2919. value = vcpu->arch.cr4;
  2920. break;
  2921. case 8:
  2922. value = kvm_get_cr8(vcpu);
  2923. break;
  2924. default:
  2925. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2926. return 0;
  2927. }
  2928. return value;
  2929. }
  2930. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  2931. unsigned long *rflags)
  2932. {
  2933. switch (cr) {
  2934. case 0:
  2935. kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
  2936. *rflags = kvm_x86_ops->get_rflags(vcpu);
  2937. break;
  2938. case 2:
  2939. vcpu->arch.cr2 = val;
  2940. break;
  2941. case 3:
  2942. kvm_set_cr3(vcpu, val);
  2943. break;
  2944. case 4:
  2945. kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
  2946. break;
  2947. case 8:
  2948. kvm_set_cr8(vcpu, val & 0xfUL);
  2949. break;
  2950. default:
  2951. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  2952. }
  2953. }
  2954. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  2955. {
  2956. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  2957. int j, nent = vcpu->arch.cpuid_nent;
  2958. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  2959. /* when no next entry is found, the current entry[i] is reselected */
  2960. for (j = i + 1; ; j = (j + 1) % nent) {
  2961. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  2962. if (ej->function == e->function) {
  2963. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  2964. return j;
  2965. }
  2966. }
  2967. return 0; /* silence gcc, even though control never reaches here */
  2968. }
  2969. /* find an entry with matching function, matching index (if needed), and that
  2970. * should be read next (if it's stateful) */
  2971. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  2972. u32 function, u32 index)
  2973. {
  2974. if (e->function != function)
  2975. return 0;
  2976. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  2977. return 0;
  2978. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  2979. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  2980. return 0;
  2981. return 1;
  2982. }
  2983. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  2984. u32 function, u32 index)
  2985. {
  2986. int i;
  2987. struct kvm_cpuid_entry2 *best = NULL;
  2988. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  2989. struct kvm_cpuid_entry2 *e;
  2990. e = &vcpu->arch.cpuid_entries[i];
  2991. if (is_matching_cpuid_entry(e, function, index)) {
  2992. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  2993. move_to_next_stateful_cpuid_entry(vcpu, i);
  2994. best = e;
  2995. break;
  2996. }
  2997. /*
  2998. * Both basic or both extended?
  2999. */
  3000. if (((e->function ^ function) & 0x80000000) == 0)
  3001. if (!best || e->function > best->function)
  3002. best = e;
  3003. }
  3004. return best;
  3005. }
  3006. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  3007. {
  3008. struct kvm_cpuid_entry2 *best;
  3009. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  3010. if (best)
  3011. return best->eax & 0xff;
  3012. return 36;
  3013. }
  3014. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  3015. {
  3016. u32 function, index;
  3017. struct kvm_cpuid_entry2 *best;
  3018. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3019. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3020. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  3021. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  3022. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  3023. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  3024. best = kvm_find_cpuid_entry(vcpu, function, index);
  3025. if (best) {
  3026. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  3027. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  3028. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  3029. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  3030. }
  3031. kvm_x86_ops->skip_emulated_instruction(vcpu);
  3032. trace_kvm_cpuid(function,
  3033. kvm_register_read(vcpu, VCPU_REGS_RAX),
  3034. kvm_register_read(vcpu, VCPU_REGS_RBX),
  3035. kvm_register_read(vcpu, VCPU_REGS_RCX),
  3036. kvm_register_read(vcpu, VCPU_REGS_RDX));
  3037. }
  3038. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  3039. /*
  3040. * Check if userspace requested an interrupt window, and that the
  3041. * interrupt window is open.
  3042. *
  3043. * No need to exit to userspace if we already have an interrupt queued.
  3044. */
  3045. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
  3046. {
  3047. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  3048. vcpu->run->request_interrupt_window &&
  3049. kvm_arch_interrupt_allowed(vcpu));
  3050. }
  3051. static void post_kvm_run_save(struct kvm_vcpu *vcpu)
  3052. {
  3053. struct kvm_run *kvm_run = vcpu->run;
  3054. kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  3055. kvm_run->cr8 = kvm_get_cr8(vcpu);
  3056. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  3057. if (irqchip_in_kernel(vcpu->kvm))
  3058. kvm_run->ready_for_interrupt_injection = 1;
  3059. else
  3060. kvm_run->ready_for_interrupt_injection =
  3061. kvm_arch_interrupt_allowed(vcpu) &&
  3062. !kvm_cpu_has_interrupt(vcpu) &&
  3063. !kvm_event_needs_reinjection(vcpu);
  3064. }
  3065. static void vapic_enter(struct kvm_vcpu *vcpu)
  3066. {
  3067. struct kvm_lapic *apic = vcpu->arch.apic;
  3068. struct page *page;
  3069. if (!apic || !apic->vapic_addr)
  3070. return;
  3071. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  3072. vcpu->arch.apic->vapic_page = page;
  3073. }
  3074. static void vapic_exit(struct kvm_vcpu *vcpu)
  3075. {
  3076. struct kvm_lapic *apic = vcpu->arch.apic;
  3077. if (!apic || !apic->vapic_addr)
  3078. return;
  3079. down_read(&vcpu->kvm->slots_lock);
  3080. kvm_release_page_dirty(apic->vapic_page);
  3081. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  3082. up_read(&vcpu->kvm->slots_lock);
  3083. }
  3084. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  3085. {
  3086. int max_irr, tpr;
  3087. if (!kvm_x86_ops->update_cr8_intercept)
  3088. return;
  3089. if (!vcpu->arch.apic)
  3090. return;
  3091. if (!vcpu->arch.apic->vapic_addr)
  3092. max_irr = kvm_lapic_find_highest_irr(vcpu);
  3093. else
  3094. max_irr = -1;
  3095. if (max_irr != -1)
  3096. max_irr >>= 4;
  3097. tpr = kvm_lapic_get_cr8(vcpu);
  3098. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  3099. }
  3100. static void inject_pending_event(struct kvm_vcpu *vcpu)
  3101. {
  3102. /* try to reinject previous events if any */
  3103. if (vcpu->arch.exception.pending) {
  3104. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  3105. vcpu->arch.exception.has_error_code,
  3106. vcpu->arch.exception.error_code);
  3107. return;
  3108. }
  3109. if (vcpu->arch.nmi_injected) {
  3110. kvm_x86_ops->set_nmi(vcpu);
  3111. return;
  3112. }
  3113. if (vcpu->arch.interrupt.pending) {
  3114. kvm_x86_ops->set_irq(vcpu);
  3115. return;
  3116. }
  3117. /* try to inject new event if pending */
  3118. if (vcpu->arch.nmi_pending) {
  3119. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  3120. vcpu->arch.nmi_pending = false;
  3121. vcpu->arch.nmi_injected = true;
  3122. kvm_x86_ops->set_nmi(vcpu);
  3123. }
  3124. } else if (kvm_cpu_has_interrupt(vcpu)) {
  3125. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  3126. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  3127. false);
  3128. kvm_x86_ops->set_irq(vcpu);
  3129. }
  3130. }
  3131. }
  3132. static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
  3133. {
  3134. int r;
  3135. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  3136. vcpu->run->request_interrupt_window;
  3137. if (vcpu->requests)
  3138. if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  3139. kvm_mmu_unload(vcpu);
  3140. r = kvm_mmu_reload(vcpu);
  3141. if (unlikely(r))
  3142. goto out;
  3143. if (vcpu->requests) {
  3144. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  3145. __kvm_migrate_timers(vcpu);
  3146. if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
  3147. kvm_write_guest_time(vcpu);
  3148. if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
  3149. kvm_mmu_sync_roots(vcpu);
  3150. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  3151. kvm_x86_ops->tlb_flush(vcpu);
  3152. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  3153. &vcpu->requests)) {
  3154. vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
  3155. r = 0;
  3156. goto out;
  3157. }
  3158. if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
  3159. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  3160. r = 0;
  3161. goto out;
  3162. }
  3163. }
  3164. preempt_disable();
  3165. kvm_x86_ops->prepare_guest_switch(vcpu);
  3166. kvm_load_guest_fpu(vcpu);
  3167. local_irq_disable();
  3168. clear_bit(KVM_REQ_KICK, &vcpu->requests);
  3169. smp_mb__after_clear_bit();
  3170. if (vcpu->requests || need_resched() || signal_pending(current)) {
  3171. set_bit(KVM_REQ_KICK, &vcpu->requests);
  3172. local_irq_enable();
  3173. preempt_enable();
  3174. r = 1;
  3175. goto out;
  3176. }
  3177. inject_pending_event(vcpu);
  3178. /* enable NMI/IRQ window open exits if needed */
  3179. if (vcpu->arch.nmi_pending)
  3180. kvm_x86_ops->enable_nmi_window(vcpu);
  3181. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  3182. kvm_x86_ops->enable_irq_window(vcpu);
  3183. if (kvm_lapic_enabled(vcpu)) {
  3184. update_cr8_intercept(vcpu);
  3185. kvm_lapic_sync_to_vapic(vcpu);
  3186. }
  3187. up_read(&vcpu->kvm->slots_lock);
  3188. kvm_guest_enter();
  3189. if (unlikely(vcpu->arch.switch_db_regs)) {
  3190. set_debugreg(0, 7);
  3191. set_debugreg(vcpu->arch.eff_db[0], 0);
  3192. set_debugreg(vcpu->arch.eff_db[1], 1);
  3193. set_debugreg(vcpu->arch.eff_db[2], 2);
  3194. set_debugreg(vcpu->arch.eff_db[3], 3);
  3195. }
  3196. trace_kvm_entry(vcpu->vcpu_id);
  3197. kvm_x86_ops->run(vcpu);
  3198. if (unlikely(vcpu->arch.switch_db_regs || test_thread_flag(TIF_DEBUG))) {
  3199. set_debugreg(current->thread.debugreg0, 0);
  3200. set_debugreg(current->thread.debugreg1, 1);
  3201. set_debugreg(current->thread.debugreg2, 2);
  3202. set_debugreg(current->thread.debugreg3, 3);
  3203. set_debugreg(current->thread.debugreg6, 6);
  3204. set_debugreg(current->thread.debugreg7, 7);
  3205. }
  3206. set_bit(KVM_REQ_KICK, &vcpu->requests);
  3207. local_irq_enable();
  3208. ++vcpu->stat.exits;
  3209. /*
  3210. * We must have an instruction between local_irq_enable() and
  3211. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  3212. * the interrupt shadow. The stat.exits increment will do nicely.
  3213. * But we need to prevent reordering, hence this barrier():
  3214. */
  3215. barrier();
  3216. kvm_guest_exit();
  3217. preempt_enable();
  3218. down_read(&vcpu->kvm->slots_lock);
  3219. /*
  3220. * Profile KVM exit RIPs:
  3221. */
  3222. if (unlikely(prof_on == KVM_PROFILING)) {
  3223. unsigned long rip = kvm_rip_read(vcpu);
  3224. profile_hit(KVM_PROFILING, (void *)rip);
  3225. }
  3226. kvm_lapic_sync_from_vapic(vcpu);
  3227. r = kvm_x86_ops->handle_exit(vcpu);
  3228. out:
  3229. return r;
  3230. }
  3231. static int __vcpu_run(struct kvm_vcpu *vcpu)
  3232. {
  3233. int r;
  3234. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  3235. pr_debug("vcpu %d received sipi with vector # %x\n",
  3236. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  3237. kvm_lapic_reset(vcpu);
  3238. r = kvm_arch_vcpu_reset(vcpu);
  3239. if (r)
  3240. return r;
  3241. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3242. }
  3243. down_read(&vcpu->kvm->slots_lock);
  3244. vapic_enter(vcpu);
  3245. r = 1;
  3246. while (r > 0) {
  3247. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  3248. r = vcpu_enter_guest(vcpu);
  3249. else {
  3250. up_read(&vcpu->kvm->slots_lock);
  3251. kvm_vcpu_block(vcpu);
  3252. down_read(&vcpu->kvm->slots_lock);
  3253. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
  3254. {
  3255. switch(vcpu->arch.mp_state) {
  3256. case KVM_MP_STATE_HALTED:
  3257. vcpu->arch.mp_state =
  3258. KVM_MP_STATE_RUNNABLE;
  3259. case KVM_MP_STATE_RUNNABLE:
  3260. break;
  3261. case KVM_MP_STATE_SIPI_RECEIVED:
  3262. default:
  3263. r = -EINTR;
  3264. break;
  3265. }
  3266. }
  3267. }
  3268. if (r <= 0)
  3269. break;
  3270. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  3271. if (kvm_cpu_has_pending_timer(vcpu))
  3272. kvm_inject_pending_timer_irqs(vcpu);
  3273. if (dm_request_for_irq_injection(vcpu)) {
  3274. r = -EINTR;
  3275. vcpu->run->exit_reason = KVM_EXIT_INTR;
  3276. ++vcpu->stat.request_irq_exits;
  3277. }
  3278. if (signal_pending(current)) {
  3279. r = -EINTR;
  3280. vcpu->run->exit_reason = KVM_EXIT_INTR;
  3281. ++vcpu->stat.signal_exits;
  3282. }
  3283. if (need_resched()) {
  3284. up_read(&vcpu->kvm->slots_lock);
  3285. kvm_resched(vcpu);
  3286. down_read(&vcpu->kvm->slots_lock);
  3287. }
  3288. }
  3289. up_read(&vcpu->kvm->slots_lock);
  3290. post_kvm_run_save(vcpu);
  3291. vapic_exit(vcpu);
  3292. return r;
  3293. }
  3294. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  3295. {
  3296. int r;
  3297. sigset_t sigsaved;
  3298. vcpu_load(vcpu);
  3299. if (vcpu->sigset_active)
  3300. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  3301. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  3302. kvm_vcpu_block(vcpu);
  3303. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  3304. r = -EAGAIN;
  3305. goto out;
  3306. }
  3307. /* re-sync apic's tpr */
  3308. if (!irqchip_in_kernel(vcpu->kvm))
  3309. kvm_set_cr8(vcpu, kvm_run->cr8);
  3310. if (vcpu->arch.pio.cur_count) {
  3311. r = complete_pio(vcpu);
  3312. if (r)
  3313. goto out;
  3314. }
  3315. #if CONFIG_HAS_IOMEM
  3316. if (vcpu->mmio_needed) {
  3317. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  3318. vcpu->mmio_read_completed = 1;
  3319. vcpu->mmio_needed = 0;
  3320. down_read(&vcpu->kvm->slots_lock);
  3321. r = emulate_instruction(vcpu, vcpu->arch.mmio_fault_cr2, 0,
  3322. EMULTYPE_NO_DECODE);
  3323. up_read(&vcpu->kvm->slots_lock);
  3324. if (r == EMULATE_DO_MMIO) {
  3325. /*
  3326. * Read-modify-write. Back to userspace.
  3327. */
  3328. r = 0;
  3329. goto out;
  3330. }
  3331. }
  3332. #endif
  3333. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  3334. kvm_register_write(vcpu, VCPU_REGS_RAX,
  3335. kvm_run->hypercall.ret);
  3336. r = __vcpu_run(vcpu);
  3337. out:
  3338. if (vcpu->sigset_active)
  3339. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  3340. vcpu_put(vcpu);
  3341. return r;
  3342. }
  3343. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3344. {
  3345. vcpu_load(vcpu);
  3346. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3347. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3348. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3349. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3350. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3351. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3352. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3353. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3354. #ifdef CONFIG_X86_64
  3355. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  3356. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  3357. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  3358. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  3359. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  3360. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  3361. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  3362. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  3363. #endif
  3364. regs->rip = kvm_rip_read(vcpu);
  3365. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  3366. /*
  3367. * Don't leak debug flags in case they were set for guest debugging
  3368. */
  3369. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  3370. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  3371. vcpu_put(vcpu);
  3372. return 0;
  3373. }
  3374. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3375. {
  3376. vcpu_load(vcpu);
  3377. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  3378. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  3379. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  3380. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  3381. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  3382. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  3383. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  3384. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  3385. #ifdef CONFIG_X86_64
  3386. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  3387. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  3388. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  3389. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  3390. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  3391. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  3392. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  3393. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  3394. #endif
  3395. kvm_rip_write(vcpu, regs->rip);
  3396. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  3397. vcpu->arch.exception.pending = false;
  3398. vcpu_put(vcpu);
  3399. return 0;
  3400. }
  3401. void kvm_get_segment(struct kvm_vcpu *vcpu,
  3402. struct kvm_segment *var, int seg)
  3403. {
  3404. kvm_x86_ops->get_segment(vcpu, var, seg);
  3405. }
  3406. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  3407. {
  3408. struct kvm_segment cs;
  3409. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  3410. *db = cs.db;
  3411. *l = cs.l;
  3412. }
  3413. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  3414. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  3415. struct kvm_sregs *sregs)
  3416. {
  3417. struct descriptor_table dt;
  3418. vcpu_load(vcpu);
  3419. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3420. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3421. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3422. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3423. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3424. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3425. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3426. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3427. kvm_x86_ops->get_idt(vcpu, &dt);
  3428. sregs->idt.limit = dt.limit;
  3429. sregs->idt.base = dt.base;
  3430. kvm_x86_ops->get_gdt(vcpu, &dt);
  3431. sregs->gdt.limit = dt.limit;
  3432. sregs->gdt.base = dt.base;
  3433. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3434. sregs->cr0 = vcpu->arch.cr0;
  3435. sregs->cr2 = vcpu->arch.cr2;
  3436. sregs->cr3 = vcpu->arch.cr3;
  3437. sregs->cr4 = vcpu->arch.cr4;
  3438. sregs->cr8 = kvm_get_cr8(vcpu);
  3439. sregs->efer = vcpu->arch.shadow_efer;
  3440. sregs->apic_base = kvm_get_apic_base(vcpu);
  3441. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  3442. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  3443. set_bit(vcpu->arch.interrupt.nr,
  3444. (unsigned long *)sregs->interrupt_bitmap);
  3445. vcpu_put(vcpu);
  3446. return 0;
  3447. }
  3448. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  3449. struct kvm_mp_state *mp_state)
  3450. {
  3451. vcpu_load(vcpu);
  3452. mp_state->mp_state = vcpu->arch.mp_state;
  3453. vcpu_put(vcpu);
  3454. return 0;
  3455. }
  3456. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  3457. struct kvm_mp_state *mp_state)
  3458. {
  3459. vcpu_load(vcpu);
  3460. vcpu->arch.mp_state = mp_state->mp_state;
  3461. vcpu_put(vcpu);
  3462. return 0;
  3463. }
  3464. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  3465. struct kvm_segment *var, int seg)
  3466. {
  3467. kvm_x86_ops->set_segment(vcpu, var, seg);
  3468. }
  3469. static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
  3470. struct kvm_segment *kvm_desct)
  3471. {
  3472. kvm_desct->base = get_desc_base(seg_desc);
  3473. kvm_desct->limit = get_desc_limit(seg_desc);
  3474. if (seg_desc->g) {
  3475. kvm_desct->limit <<= 12;
  3476. kvm_desct->limit |= 0xfff;
  3477. }
  3478. kvm_desct->selector = selector;
  3479. kvm_desct->type = seg_desc->type;
  3480. kvm_desct->present = seg_desc->p;
  3481. kvm_desct->dpl = seg_desc->dpl;
  3482. kvm_desct->db = seg_desc->d;
  3483. kvm_desct->s = seg_desc->s;
  3484. kvm_desct->l = seg_desc->l;
  3485. kvm_desct->g = seg_desc->g;
  3486. kvm_desct->avl = seg_desc->avl;
  3487. if (!selector)
  3488. kvm_desct->unusable = 1;
  3489. else
  3490. kvm_desct->unusable = 0;
  3491. kvm_desct->padding = 0;
  3492. }
  3493. static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
  3494. u16 selector,
  3495. struct descriptor_table *dtable)
  3496. {
  3497. if (selector & 1 << 2) {
  3498. struct kvm_segment kvm_seg;
  3499. kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
  3500. if (kvm_seg.unusable)
  3501. dtable->limit = 0;
  3502. else
  3503. dtable->limit = kvm_seg.limit;
  3504. dtable->base = kvm_seg.base;
  3505. }
  3506. else
  3507. kvm_x86_ops->get_gdt(vcpu, dtable);
  3508. }
  3509. /* allowed just for 8 bytes segments */
  3510. static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3511. struct desc_struct *seg_desc)
  3512. {
  3513. struct descriptor_table dtable;
  3514. u16 index = selector >> 3;
  3515. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3516. if (dtable.limit < index * 8 + 7) {
  3517. kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
  3518. return 1;
  3519. }
  3520. return kvm_read_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
  3521. }
  3522. /* allowed just for 8 bytes segments */
  3523. static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3524. struct desc_struct *seg_desc)
  3525. {
  3526. struct descriptor_table dtable;
  3527. u16 index = selector >> 3;
  3528. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3529. if (dtable.limit < index * 8 + 7)
  3530. return 1;
  3531. return kvm_write_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
  3532. }
  3533. static gpa_t get_tss_base_addr(struct kvm_vcpu *vcpu,
  3534. struct desc_struct *seg_desc)
  3535. {
  3536. u32 base_addr = get_desc_base(seg_desc);
  3537. return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
  3538. }
  3539. static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
  3540. {
  3541. struct kvm_segment kvm_seg;
  3542. kvm_get_segment(vcpu, &kvm_seg, seg);
  3543. return kvm_seg.selector;
  3544. }
  3545. static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
  3546. u16 selector,
  3547. struct kvm_segment *kvm_seg)
  3548. {
  3549. struct desc_struct seg_desc;
  3550. if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
  3551. return 1;
  3552. seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
  3553. return 0;
  3554. }
  3555. static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
  3556. {
  3557. struct kvm_segment segvar = {
  3558. .base = selector << 4,
  3559. .limit = 0xffff,
  3560. .selector = selector,
  3561. .type = 3,
  3562. .present = 1,
  3563. .dpl = 3,
  3564. .db = 0,
  3565. .s = 1,
  3566. .l = 0,
  3567. .g = 0,
  3568. .avl = 0,
  3569. .unusable = 0,
  3570. };
  3571. kvm_x86_ops->set_segment(vcpu, &segvar, seg);
  3572. return 0;
  3573. }
  3574. static int is_vm86_segment(struct kvm_vcpu *vcpu, int seg)
  3575. {
  3576. return (seg != VCPU_SREG_LDTR) &&
  3577. (seg != VCPU_SREG_TR) &&
  3578. (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_VM);
  3579. }
  3580. int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3581. int type_bits, int seg)
  3582. {
  3583. struct kvm_segment kvm_seg;
  3584. if (is_vm86_segment(vcpu, seg) || !(vcpu->arch.cr0 & X86_CR0_PE))
  3585. return kvm_load_realmode_segment(vcpu, selector, seg);
  3586. if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
  3587. return 1;
  3588. kvm_seg.type |= type_bits;
  3589. if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
  3590. seg != VCPU_SREG_LDTR)
  3591. if (!kvm_seg.s)
  3592. kvm_seg.unusable = 1;
  3593. kvm_set_segment(vcpu, &kvm_seg, seg);
  3594. return 0;
  3595. }
  3596. static void save_state_to_tss32(struct kvm_vcpu *vcpu,
  3597. struct tss_segment_32 *tss)
  3598. {
  3599. tss->cr3 = vcpu->arch.cr3;
  3600. tss->eip = kvm_rip_read(vcpu);
  3601. tss->eflags = kvm_x86_ops->get_rflags(vcpu);
  3602. tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3603. tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3604. tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3605. tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3606. tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3607. tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3608. tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3609. tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3610. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3611. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3612. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3613. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3614. tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
  3615. tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
  3616. tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3617. }
  3618. static int load_state_from_tss32(struct kvm_vcpu *vcpu,
  3619. struct tss_segment_32 *tss)
  3620. {
  3621. kvm_set_cr3(vcpu, tss->cr3);
  3622. kvm_rip_write(vcpu, tss->eip);
  3623. kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
  3624. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
  3625. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
  3626. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
  3627. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
  3628. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
  3629. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
  3630. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
  3631. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
  3632. if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
  3633. return 1;
  3634. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3635. return 1;
  3636. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3637. return 1;
  3638. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3639. return 1;
  3640. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3641. return 1;
  3642. if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
  3643. return 1;
  3644. if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
  3645. return 1;
  3646. return 0;
  3647. }
  3648. static void save_state_to_tss16(struct kvm_vcpu *vcpu,
  3649. struct tss_segment_16 *tss)
  3650. {
  3651. tss->ip = kvm_rip_read(vcpu);
  3652. tss->flag = kvm_x86_ops->get_rflags(vcpu);
  3653. tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3654. tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3655. tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3656. tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3657. tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3658. tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3659. tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3660. tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3661. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3662. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3663. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3664. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3665. tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3666. }
  3667. static int load_state_from_tss16(struct kvm_vcpu *vcpu,
  3668. struct tss_segment_16 *tss)
  3669. {
  3670. kvm_rip_write(vcpu, tss->ip);
  3671. kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
  3672. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
  3673. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
  3674. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
  3675. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
  3676. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
  3677. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
  3678. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
  3679. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
  3680. if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
  3681. return 1;
  3682. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3683. return 1;
  3684. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3685. return 1;
  3686. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3687. return 1;
  3688. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3689. return 1;
  3690. return 0;
  3691. }
  3692. static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
  3693. u16 old_tss_sel, u32 old_tss_base,
  3694. struct desc_struct *nseg_desc)
  3695. {
  3696. struct tss_segment_16 tss_segment_16;
  3697. int ret = 0;
  3698. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3699. sizeof tss_segment_16))
  3700. goto out;
  3701. save_state_to_tss16(vcpu, &tss_segment_16);
  3702. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3703. sizeof tss_segment_16))
  3704. goto out;
  3705. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3706. &tss_segment_16, sizeof tss_segment_16))
  3707. goto out;
  3708. if (old_tss_sel != 0xffff) {
  3709. tss_segment_16.prev_task_link = old_tss_sel;
  3710. if (kvm_write_guest(vcpu->kvm,
  3711. get_tss_base_addr(vcpu, nseg_desc),
  3712. &tss_segment_16.prev_task_link,
  3713. sizeof tss_segment_16.prev_task_link))
  3714. goto out;
  3715. }
  3716. if (load_state_from_tss16(vcpu, &tss_segment_16))
  3717. goto out;
  3718. ret = 1;
  3719. out:
  3720. return ret;
  3721. }
  3722. static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
  3723. u16 old_tss_sel, u32 old_tss_base,
  3724. struct desc_struct *nseg_desc)
  3725. {
  3726. struct tss_segment_32 tss_segment_32;
  3727. int ret = 0;
  3728. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3729. sizeof tss_segment_32))
  3730. goto out;
  3731. save_state_to_tss32(vcpu, &tss_segment_32);
  3732. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3733. sizeof tss_segment_32))
  3734. goto out;
  3735. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3736. &tss_segment_32, sizeof tss_segment_32))
  3737. goto out;
  3738. if (old_tss_sel != 0xffff) {
  3739. tss_segment_32.prev_task_link = old_tss_sel;
  3740. if (kvm_write_guest(vcpu->kvm,
  3741. get_tss_base_addr(vcpu, nseg_desc),
  3742. &tss_segment_32.prev_task_link,
  3743. sizeof tss_segment_32.prev_task_link))
  3744. goto out;
  3745. }
  3746. if (load_state_from_tss32(vcpu, &tss_segment_32))
  3747. goto out;
  3748. ret = 1;
  3749. out:
  3750. return ret;
  3751. }
  3752. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
  3753. {
  3754. struct kvm_segment tr_seg;
  3755. struct desc_struct cseg_desc;
  3756. struct desc_struct nseg_desc;
  3757. int ret = 0;
  3758. u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
  3759. u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
  3760. old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
  3761. /* FIXME: Handle errors. Failure to read either TSS or their
  3762. * descriptors should generate a pagefault.
  3763. */
  3764. if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
  3765. goto out;
  3766. if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
  3767. goto out;
  3768. if (reason != TASK_SWITCH_IRET) {
  3769. int cpl;
  3770. cpl = kvm_x86_ops->get_cpl(vcpu);
  3771. if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
  3772. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  3773. return 1;
  3774. }
  3775. }
  3776. if (!nseg_desc.p || get_desc_limit(&nseg_desc) < 0x67) {
  3777. kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
  3778. return 1;
  3779. }
  3780. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  3781. cseg_desc.type &= ~(1 << 1); //clear the B flag
  3782. save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
  3783. }
  3784. if (reason == TASK_SWITCH_IRET) {
  3785. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3786. kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
  3787. }
  3788. /* set back link to prev task only if NT bit is set in eflags
  3789. note that old_tss_sel is not used afetr this point */
  3790. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  3791. old_tss_sel = 0xffff;
  3792. /* set back link to prev task only if NT bit is set in eflags
  3793. note that old_tss_sel is not used afetr this point */
  3794. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  3795. old_tss_sel = 0xffff;
  3796. if (nseg_desc.type & 8)
  3797. ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
  3798. old_tss_base, &nseg_desc);
  3799. else
  3800. ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
  3801. old_tss_base, &nseg_desc);
  3802. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
  3803. u32 eflags = kvm_x86_ops->get_rflags(vcpu);
  3804. kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
  3805. }
  3806. if (reason != TASK_SWITCH_IRET) {
  3807. nseg_desc.type |= (1 << 1);
  3808. save_guest_segment_descriptor(vcpu, tss_selector,
  3809. &nseg_desc);
  3810. }
  3811. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
  3812. seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
  3813. tr_seg.type = 11;
  3814. kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
  3815. out:
  3816. return ret;
  3817. }
  3818. EXPORT_SYMBOL_GPL(kvm_task_switch);
  3819. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  3820. struct kvm_sregs *sregs)
  3821. {
  3822. int mmu_reset_needed = 0;
  3823. int pending_vec, max_bits;
  3824. struct descriptor_table dt;
  3825. vcpu_load(vcpu);
  3826. dt.limit = sregs->idt.limit;
  3827. dt.base = sregs->idt.base;
  3828. kvm_x86_ops->set_idt(vcpu, &dt);
  3829. dt.limit = sregs->gdt.limit;
  3830. dt.base = sregs->gdt.base;
  3831. kvm_x86_ops->set_gdt(vcpu, &dt);
  3832. vcpu->arch.cr2 = sregs->cr2;
  3833. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  3834. vcpu->arch.cr3 = sregs->cr3;
  3835. kvm_set_cr8(vcpu, sregs->cr8);
  3836. mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
  3837. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  3838. kvm_set_apic_base(vcpu, sregs->apic_base);
  3839. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3840. mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
  3841. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  3842. vcpu->arch.cr0 = sregs->cr0;
  3843. mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
  3844. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  3845. if (!is_long_mode(vcpu) && is_pae(vcpu))
  3846. load_pdptrs(vcpu, vcpu->arch.cr3);
  3847. if (mmu_reset_needed)
  3848. kvm_mmu_reset_context(vcpu);
  3849. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  3850. pending_vec = find_first_bit(
  3851. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  3852. if (pending_vec < max_bits) {
  3853. kvm_queue_interrupt(vcpu, pending_vec, false);
  3854. pr_debug("Set back pending irq %d\n", pending_vec);
  3855. if (irqchip_in_kernel(vcpu->kvm))
  3856. kvm_pic_clear_isr_ack(vcpu->kvm);
  3857. }
  3858. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3859. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3860. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3861. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3862. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3863. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3864. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3865. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3866. update_cr8_intercept(vcpu);
  3867. /* Older userspace won't unhalt the vcpu on reset. */
  3868. if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
  3869. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  3870. !(vcpu->arch.cr0 & X86_CR0_PE))
  3871. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3872. vcpu_put(vcpu);
  3873. return 0;
  3874. }
  3875. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  3876. struct kvm_guest_debug *dbg)
  3877. {
  3878. unsigned long rflags;
  3879. int old_debug;
  3880. int i;
  3881. vcpu_load(vcpu);
  3882. old_debug = vcpu->guest_debug;
  3883. vcpu->guest_debug = dbg->control;
  3884. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  3885. vcpu->guest_debug = 0;
  3886. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  3887. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  3888. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  3889. vcpu->arch.switch_db_regs =
  3890. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  3891. } else {
  3892. for (i = 0; i < KVM_NR_DB_REGS; i++)
  3893. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  3894. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  3895. }
  3896. rflags = kvm_x86_ops->get_rflags(vcpu);
  3897. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  3898. rflags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  3899. else if (old_debug & KVM_GUESTDBG_SINGLESTEP)
  3900. rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  3901. kvm_x86_ops->set_rflags(vcpu, rflags);
  3902. kvm_x86_ops->set_guest_debug(vcpu, dbg);
  3903. if (vcpu->guest_debug & KVM_GUESTDBG_INJECT_DB)
  3904. kvm_queue_exception(vcpu, DB_VECTOR);
  3905. else if (vcpu->guest_debug & KVM_GUESTDBG_INJECT_BP)
  3906. kvm_queue_exception(vcpu, BP_VECTOR);
  3907. vcpu_put(vcpu);
  3908. return 0;
  3909. }
  3910. /*
  3911. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  3912. * we have asm/x86/processor.h
  3913. */
  3914. struct fxsave {
  3915. u16 cwd;
  3916. u16 swd;
  3917. u16 twd;
  3918. u16 fop;
  3919. u64 rip;
  3920. u64 rdp;
  3921. u32 mxcsr;
  3922. u32 mxcsr_mask;
  3923. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  3924. #ifdef CONFIG_X86_64
  3925. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  3926. #else
  3927. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  3928. #endif
  3929. };
  3930. /*
  3931. * Translate a guest virtual address to a guest physical address.
  3932. */
  3933. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  3934. struct kvm_translation *tr)
  3935. {
  3936. unsigned long vaddr = tr->linear_address;
  3937. gpa_t gpa;
  3938. vcpu_load(vcpu);
  3939. down_read(&vcpu->kvm->slots_lock);
  3940. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
  3941. up_read(&vcpu->kvm->slots_lock);
  3942. tr->physical_address = gpa;
  3943. tr->valid = gpa != UNMAPPED_GVA;
  3944. tr->writeable = 1;
  3945. tr->usermode = 0;
  3946. vcpu_put(vcpu);
  3947. return 0;
  3948. }
  3949. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3950. {
  3951. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3952. vcpu_load(vcpu);
  3953. memcpy(fpu->fpr, fxsave->st_space, 128);
  3954. fpu->fcw = fxsave->cwd;
  3955. fpu->fsw = fxsave->swd;
  3956. fpu->ftwx = fxsave->twd;
  3957. fpu->last_opcode = fxsave->fop;
  3958. fpu->last_ip = fxsave->rip;
  3959. fpu->last_dp = fxsave->rdp;
  3960. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  3961. vcpu_put(vcpu);
  3962. return 0;
  3963. }
  3964. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  3965. {
  3966. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  3967. vcpu_load(vcpu);
  3968. memcpy(fxsave->st_space, fpu->fpr, 128);
  3969. fxsave->cwd = fpu->fcw;
  3970. fxsave->swd = fpu->fsw;
  3971. fxsave->twd = fpu->ftwx;
  3972. fxsave->fop = fpu->last_opcode;
  3973. fxsave->rip = fpu->last_ip;
  3974. fxsave->rdp = fpu->last_dp;
  3975. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  3976. vcpu_put(vcpu);
  3977. return 0;
  3978. }
  3979. void fx_init(struct kvm_vcpu *vcpu)
  3980. {
  3981. unsigned after_mxcsr_mask;
  3982. /*
  3983. * Touch the fpu the first time in non atomic context as if
  3984. * this is the first fpu instruction the exception handler
  3985. * will fire before the instruction returns and it'll have to
  3986. * allocate ram with GFP_KERNEL.
  3987. */
  3988. if (!used_math())
  3989. kvm_fx_save(&vcpu->arch.host_fx_image);
  3990. /* Initialize guest FPU by resetting ours and saving into guest's */
  3991. preempt_disable();
  3992. kvm_fx_save(&vcpu->arch.host_fx_image);
  3993. kvm_fx_finit();
  3994. kvm_fx_save(&vcpu->arch.guest_fx_image);
  3995. kvm_fx_restore(&vcpu->arch.host_fx_image);
  3996. preempt_enable();
  3997. vcpu->arch.cr0 |= X86_CR0_ET;
  3998. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  3999. vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
  4000. memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
  4001. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  4002. }
  4003. EXPORT_SYMBOL_GPL(fx_init);
  4004. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  4005. {
  4006. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  4007. return;
  4008. vcpu->guest_fpu_loaded = 1;
  4009. kvm_fx_save(&vcpu->arch.host_fx_image);
  4010. kvm_fx_restore(&vcpu->arch.guest_fx_image);
  4011. }
  4012. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  4013. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  4014. {
  4015. if (!vcpu->guest_fpu_loaded)
  4016. return;
  4017. vcpu->guest_fpu_loaded = 0;
  4018. kvm_fx_save(&vcpu->arch.guest_fx_image);
  4019. kvm_fx_restore(&vcpu->arch.host_fx_image);
  4020. ++vcpu->stat.fpu_reload;
  4021. }
  4022. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  4023. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  4024. {
  4025. if (vcpu->arch.time_page) {
  4026. kvm_release_page_dirty(vcpu->arch.time_page);
  4027. vcpu->arch.time_page = NULL;
  4028. }
  4029. kvm_x86_ops->vcpu_free(vcpu);
  4030. }
  4031. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  4032. unsigned int id)
  4033. {
  4034. return kvm_x86_ops->vcpu_create(kvm, id);
  4035. }
  4036. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  4037. {
  4038. int r;
  4039. /* We do fxsave: this must be aligned. */
  4040. BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
  4041. vcpu->arch.mtrr_state.have_fixed = 1;
  4042. vcpu_load(vcpu);
  4043. r = kvm_arch_vcpu_reset(vcpu);
  4044. if (r == 0)
  4045. r = kvm_mmu_setup(vcpu);
  4046. vcpu_put(vcpu);
  4047. if (r < 0)
  4048. goto free_vcpu;
  4049. return 0;
  4050. free_vcpu:
  4051. kvm_x86_ops->vcpu_free(vcpu);
  4052. return r;
  4053. }
  4054. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  4055. {
  4056. vcpu_load(vcpu);
  4057. kvm_mmu_unload(vcpu);
  4058. vcpu_put(vcpu);
  4059. kvm_x86_ops->vcpu_free(vcpu);
  4060. }
  4061. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  4062. {
  4063. vcpu->arch.nmi_pending = false;
  4064. vcpu->arch.nmi_injected = false;
  4065. vcpu->arch.switch_db_regs = 0;
  4066. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  4067. vcpu->arch.dr6 = DR6_FIXED_1;
  4068. vcpu->arch.dr7 = DR7_FIXED_1;
  4069. return kvm_x86_ops->vcpu_reset(vcpu);
  4070. }
  4071. int kvm_arch_hardware_enable(void *garbage)
  4072. {
  4073. /*
  4074. * Since this may be called from a hotplug notifcation,
  4075. * we can't get the CPU frequency directly.
  4076. */
  4077. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  4078. int cpu = raw_smp_processor_id();
  4079. per_cpu(cpu_tsc_khz, cpu) = 0;
  4080. }
  4081. return kvm_x86_ops->hardware_enable(garbage);
  4082. }
  4083. void kvm_arch_hardware_disable(void *garbage)
  4084. {
  4085. kvm_x86_ops->hardware_disable(garbage);
  4086. }
  4087. int kvm_arch_hardware_setup(void)
  4088. {
  4089. return kvm_x86_ops->hardware_setup();
  4090. }
  4091. void kvm_arch_hardware_unsetup(void)
  4092. {
  4093. kvm_x86_ops->hardware_unsetup();
  4094. }
  4095. void kvm_arch_check_processor_compat(void *rtn)
  4096. {
  4097. kvm_x86_ops->check_processor_compatibility(rtn);
  4098. }
  4099. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  4100. {
  4101. struct page *page;
  4102. struct kvm *kvm;
  4103. int r;
  4104. BUG_ON(vcpu->kvm == NULL);
  4105. kvm = vcpu->kvm;
  4106. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  4107. if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
  4108. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4109. else
  4110. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  4111. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  4112. if (!page) {
  4113. r = -ENOMEM;
  4114. goto fail;
  4115. }
  4116. vcpu->arch.pio_data = page_address(page);
  4117. r = kvm_mmu_create(vcpu);
  4118. if (r < 0)
  4119. goto fail_free_pio_data;
  4120. if (irqchip_in_kernel(kvm)) {
  4121. r = kvm_create_lapic(vcpu);
  4122. if (r < 0)
  4123. goto fail_mmu_destroy;
  4124. }
  4125. vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
  4126. GFP_KERNEL);
  4127. if (!vcpu->arch.mce_banks) {
  4128. r = -ENOMEM;
  4129. goto fail_mmu_destroy;
  4130. }
  4131. vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
  4132. return 0;
  4133. fail_mmu_destroy:
  4134. kvm_mmu_destroy(vcpu);
  4135. fail_free_pio_data:
  4136. free_page((unsigned long)vcpu->arch.pio_data);
  4137. fail:
  4138. return r;
  4139. }
  4140. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  4141. {
  4142. kvm_free_lapic(vcpu);
  4143. down_read(&vcpu->kvm->slots_lock);
  4144. kvm_mmu_destroy(vcpu);
  4145. up_read(&vcpu->kvm->slots_lock);
  4146. free_page((unsigned long)vcpu->arch.pio_data);
  4147. }
  4148. struct kvm *kvm_arch_create_vm(void)
  4149. {
  4150. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  4151. if (!kvm)
  4152. return ERR_PTR(-ENOMEM);
  4153. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  4154. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  4155. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  4156. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  4157. rdtscll(kvm->arch.vm_init_tsc);
  4158. return kvm;
  4159. }
  4160. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  4161. {
  4162. vcpu_load(vcpu);
  4163. kvm_mmu_unload(vcpu);
  4164. vcpu_put(vcpu);
  4165. }
  4166. static void kvm_free_vcpus(struct kvm *kvm)
  4167. {
  4168. unsigned int i;
  4169. struct kvm_vcpu *vcpu;
  4170. /*
  4171. * Unpin any mmu pages first.
  4172. */
  4173. kvm_for_each_vcpu(i, vcpu, kvm)
  4174. kvm_unload_vcpu_mmu(vcpu);
  4175. kvm_for_each_vcpu(i, vcpu, kvm)
  4176. kvm_arch_vcpu_free(vcpu);
  4177. mutex_lock(&kvm->lock);
  4178. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  4179. kvm->vcpus[i] = NULL;
  4180. atomic_set(&kvm->online_vcpus, 0);
  4181. mutex_unlock(&kvm->lock);
  4182. }
  4183. void kvm_arch_sync_events(struct kvm *kvm)
  4184. {
  4185. kvm_free_all_assigned_devices(kvm);
  4186. }
  4187. void kvm_arch_destroy_vm(struct kvm *kvm)
  4188. {
  4189. kvm_iommu_unmap_guest(kvm);
  4190. kvm_free_pit(kvm);
  4191. kfree(kvm->arch.vpic);
  4192. kfree(kvm->arch.vioapic);
  4193. kvm_free_vcpus(kvm);
  4194. kvm_free_physmem(kvm);
  4195. if (kvm->arch.apic_access_page)
  4196. put_page(kvm->arch.apic_access_page);
  4197. if (kvm->arch.ept_identity_pagetable)
  4198. put_page(kvm->arch.ept_identity_pagetable);
  4199. kfree(kvm);
  4200. }
  4201. int kvm_arch_set_memory_region(struct kvm *kvm,
  4202. struct kvm_userspace_memory_region *mem,
  4203. struct kvm_memory_slot old,
  4204. int user_alloc)
  4205. {
  4206. int npages = mem->memory_size >> PAGE_SHIFT;
  4207. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  4208. /*To keep backward compatibility with older userspace,
  4209. *x86 needs to hanlde !user_alloc case.
  4210. */
  4211. if (!user_alloc) {
  4212. if (npages && !old.rmap) {
  4213. unsigned long userspace_addr;
  4214. down_write(&current->mm->mmap_sem);
  4215. userspace_addr = do_mmap(NULL, 0,
  4216. npages * PAGE_SIZE,
  4217. PROT_READ | PROT_WRITE,
  4218. MAP_PRIVATE | MAP_ANONYMOUS,
  4219. 0);
  4220. up_write(&current->mm->mmap_sem);
  4221. if (IS_ERR((void *)userspace_addr))
  4222. return PTR_ERR((void *)userspace_addr);
  4223. /* set userspace_addr atomically for kvm_hva_to_rmapp */
  4224. spin_lock(&kvm->mmu_lock);
  4225. memslot->userspace_addr = userspace_addr;
  4226. spin_unlock(&kvm->mmu_lock);
  4227. } else {
  4228. if (!old.user_alloc && old.rmap) {
  4229. int ret;
  4230. down_write(&current->mm->mmap_sem);
  4231. ret = do_munmap(current->mm, old.userspace_addr,
  4232. old.npages * PAGE_SIZE);
  4233. up_write(&current->mm->mmap_sem);
  4234. if (ret < 0)
  4235. printk(KERN_WARNING
  4236. "kvm_vm_ioctl_set_memory_region: "
  4237. "failed to munmap memory\n");
  4238. }
  4239. }
  4240. }
  4241. spin_lock(&kvm->mmu_lock);
  4242. if (!kvm->arch.n_requested_mmu_pages) {
  4243. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  4244. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  4245. }
  4246. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  4247. spin_unlock(&kvm->mmu_lock);
  4248. return 0;
  4249. }
  4250. void kvm_arch_flush_shadow(struct kvm *kvm)
  4251. {
  4252. kvm_mmu_zap_all(kvm);
  4253. kvm_reload_remote_mmus(kvm);
  4254. }
  4255. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  4256. {
  4257. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  4258. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  4259. || vcpu->arch.nmi_pending ||
  4260. (kvm_arch_interrupt_allowed(vcpu) &&
  4261. kvm_cpu_has_interrupt(vcpu));
  4262. }
  4263. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  4264. {
  4265. int me;
  4266. int cpu = vcpu->cpu;
  4267. if (waitqueue_active(&vcpu->wq)) {
  4268. wake_up_interruptible(&vcpu->wq);
  4269. ++vcpu->stat.halt_wakeup;
  4270. }
  4271. me = get_cpu();
  4272. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  4273. if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
  4274. smp_send_reschedule(cpu);
  4275. put_cpu();
  4276. }
  4277. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  4278. {
  4279. return kvm_x86_ops->interrupt_allowed(vcpu);
  4280. }
  4281. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
  4282. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
  4283. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
  4284. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
  4285. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);