ordered-data.c 26 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/slab.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/writeback.h>
  21. #include <linux/pagevec.h>
  22. #include "ctree.h"
  23. #include "transaction.h"
  24. #include "btrfs_inode.h"
  25. #include "extent_io.h"
  26. static u64 entry_end(struct btrfs_ordered_extent *entry)
  27. {
  28. if (entry->file_offset + entry->len < entry->file_offset)
  29. return (u64)-1;
  30. return entry->file_offset + entry->len;
  31. }
  32. /* returns NULL if the insertion worked, or it returns the node it did find
  33. * in the tree
  34. */
  35. static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
  36. struct rb_node *node)
  37. {
  38. struct rb_node **p = &root->rb_node;
  39. struct rb_node *parent = NULL;
  40. struct btrfs_ordered_extent *entry;
  41. while (*p) {
  42. parent = *p;
  43. entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
  44. if (file_offset < entry->file_offset)
  45. p = &(*p)->rb_left;
  46. else if (file_offset >= entry_end(entry))
  47. p = &(*p)->rb_right;
  48. else
  49. return parent;
  50. }
  51. rb_link_node(node, parent, p);
  52. rb_insert_color(node, root);
  53. return NULL;
  54. }
  55. static void ordered_data_tree_panic(struct inode *inode, int errno,
  56. u64 offset)
  57. {
  58. struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
  59. btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
  60. "%llu\n", (unsigned long long)offset);
  61. }
  62. /*
  63. * look for a given offset in the tree, and if it can't be found return the
  64. * first lesser offset
  65. */
  66. static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
  67. struct rb_node **prev_ret)
  68. {
  69. struct rb_node *n = root->rb_node;
  70. struct rb_node *prev = NULL;
  71. struct rb_node *test;
  72. struct btrfs_ordered_extent *entry;
  73. struct btrfs_ordered_extent *prev_entry = NULL;
  74. while (n) {
  75. entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
  76. prev = n;
  77. prev_entry = entry;
  78. if (file_offset < entry->file_offset)
  79. n = n->rb_left;
  80. else if (file_offset >= entry_end(entry))
  81. n = n->rb_right;
  82. else
  83. return n;
  84. }
  85. if (!prev_ret)
  86. return NULL;
  87. while (prev && file_offset >= entry_end(prev_entry)) {
  88. test = rb_next(prev);
  89. if (!test)
  90. break;
  91. prev_entry = rb_entry(test, struct btrfs_ordered_extent,
  92. rb_node);
  93. if (file_offset < entry_end(prev_entry))
  94. break;
  95. prev = test;
  96. }
  97. if (prev)
  98. prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
  99. rb_node);
  100. while (prev && file_offset < entry_end(prev_entry)) {
  101. test = rb_prev(prev);
  102. if (!test)
  103. break;
  104. prev_entry = rb_entry(test, struct btrfs_ordered_extent,
  105. rb_node);
  106. prev = test;
  107. }
  108. *prev_ret = prev;
  109. return NULL;
  110. }
  111. /*
  112. * helper to check if a given offset is inside a given entry
  113. */
  114. static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
  115. {
  116. if (file_offset < entry->file_offset ||
  117. entry->file_offset + entry->len <= file_offset)
  118. return 0;
  119. return 1;
  120. }
  121. static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
  122. u64 len)
  123. {
  124. if (file_offset + len <= entry->file_offset ||
  125. entry->file_offset + entry->len <= file_offset)
  126. return 0;
  127. return 1;
  128. }
  129. /*
  130. * look find the first ordered struct that has this offset, otherwise
  131. * the first one less than this offset
  132. */
  133. static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
  134. u64 file_offset)
  135. {
  136. struct rb_root *root = &tree->tree;
  137. struct rb_node *prev = NULL;
  138. struct rb_node *ret;
  139. struct btrfs_ordered_extent *entry;
  140. if (tree->last) {
  141. entry = rb_entry(tree->last, struct btrfs_ordered_extent,
  142. rb_node);
  143. if (offset_in_entry(entry, file_offset))
  144. return tree->last;
  145. }
  146. ret = __tree_search(root, file_offset, &prev);
  147. if (!ret)
  148. ret = prev;
  149. if (ret)
  150. tree->last = ret;
  151. return ret;
  152. }
  153. /* allocate and add a new ordered_extent into the per-inode tree.
  154. * file_offset is the logical offset in the file
  155. *
  156. * start is the disk block number of an extent already reserved in the
  157. * extent allocation tree
  158. *
  159. * len is the length of the extent
  160. *
  161. * The tree is given a single reference on the ordered extent that was
  162. * inserted.
  163. */
  164. static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
  165. u64 start, u64 len, u64 disk_len,
  166. int type, int dio, int compress_type)
  167. {
  168. struct btrfs_ordered_inode_tree *tree;
  169. struct rb_node *node;
  170. struct btrfs_ordered_extent *entry;
  171. tree = &BTRFS_I(inode)->ordered_tree;
  172. entry = kzalloc(sizeof(*entry), GFP_NOFS);
  173. if (!entry)
  174. return -ENOMEM;
  175. entry->file_offset = file_offset;
  176. entry->start = start;
  177. entry->len = len;
  178. entry->disk_len = disk_len;
  179. entry->bytes_left = len;
  180. entry->inode = inode;
  181. entry->compress_type = compress_type;
  182. if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
  183. set_bit(type, &entry->flags);
  184. if (dio)
  185. set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
  186. /* one ref for the tree */
  187. atomic_set(&entry->refs, 1);
  188. init_waitqueue_head(&entry->wait);
  189. INIT_LIST_HEAD(&entry->list);
  190. INIT_LIST_HEAD(&entry->root_extent_list);
  191. trace_btrfs_ordered_extent_add(inode, entry);
  192. spin_lock(&tree->lock);
  193. node = tree_insert(&tree->tree, file_offset,
  194. &entry->rb_node);
  195. if (node)
  196. ordered_data_tree_panic(inode, -EEXIST, file_offset);
  197. spin_unlock(&tree->lock);
  198. spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
  199. list_add_tail(&entry->root_extent_list,
  200. &BTRFS_I(inode)->root->fs_info->ordered_extents);
  201. spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
  202. return 0;
  203. }
  204. int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
  205. u64 start, u64 len, u64 disk_len, int type)
  206. {
  207. return __btrfs_add_ordered_extent(inode, file_offset, start, len,
  208. disk_len, type, 0,
  209. BTRFS_COMPRESS_NONE);
  210. }
  211. int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
  212. u64 start, u64 len, u64 disk_len, int type)
  213. {
  214. return __btrfs_add_ordered_extent(inode, file_offset, start, len,
  215. disk_len, type, 1,
  216. BTRFS_COMPRESS_NONE);
  217. }
  218. int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
  219. u64 start, u64 len, u64 disk_len,
  220. int type, int compress_type)
  221. {
  222. return __btrfs_add_ordered_extent(inode, file_offset, start, len,
  223. disk_len, type, 0,
  224. compress_type);
  225. }
  226. /*
  227. * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
  228. * when an ordered extent is finished. If the list covers more than one
  229. * ordered extent, it is split across multiples.
  230. */
  231. int btrfs_add_ordered_sum(struct inode *inode,
  232. struct btrfs_ordered_extent *entry,
  233. struct btrfs_ordered_sum *sum)
  234. {
  235. struct btrfs_ordered_inode_tree *tree;
  236. tree = &BTRFS_I(inode)->ordered_tree;
  237. spin_lock(&tree->lock);
  238. list_add_tail(&sum->list, &entry->list);
  239. spin_unlock(&tree->lock);
  240. return 0;
  241. }
  242. /*
  243. * this is used to account for finished IO across a given range
  244. * of the file. The IO may span ordered extents. If
  245. * a given ordered_extent is completely done, 1 is returned, otherwise
  246. * 0.
  247. *
  248. * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
  249. * to make sure this function only returns 1 once for a given ordered extent.
  250. *
  251. * file_offset is updated to one byte past the range that is recorded as
  252. * complete. This allows you to walk forward in the file.
  253. */
  254. int btrfs_dec_test_first_ordered_pending(struct inode *inode,
  255. struct btrfs_ordered_extent **cached,
  256. u64 *file_offset, u64 io_size)
  257. {
  258. struct btrfs_ordered_inode_tree *tree;
  259. struct rb_node *node;
  260. struct btrfs_ordered_extent *entry = NULL;
  261. int ret;
  262. u64 dec_end;
  263. u64 dec_start;
  264. u64 to_dec;
  265. tree = &BTRFS_I(inode)->ordered_tree;
  266. spin_lock(&tree->lock);
  267. node = tree_search(tree, *file_offset);
  268. if (!node) {
  269. ret = 1;
  270. goto out;
  271. }
  272. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  273. if (!offset_in_entry(entry, *file_offset)) {
  274. ret = 1;
  275. goto out;
  276. }
  277. dec_start = max(*file_offset, entry->file_offset);
  278. dec_end = min(*file_offset + io_size, entry->file_offset +
  279. entry->len);
  280. *file_offset = dec_end;
  281. if (dec_start > dec_end) {
  282. printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n",
  283. (unsigned long long)dec_start,
  284. (unsigned long long)dec_end);
  285. }
  286. to_dec = dec_end - dec_start;
  287. if (to_dec > entry->bytes_left) {
  288. printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
  289. (unsigned long long)entry->bytes_left,
  290. (unsigned long long)to_dec);
  291. }
  292. entry->bytes_left -= to_dec;
  293. if (entry->bytes_left == 0)
  294. ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
  295. else
  296. ret = 1;
  297. out:
  298. if (!ret && cached && entry) {
  299. *cached = entry;
  300. atomic_inc(&entry->refs);
  301. }
  302. spin_unlock(&tree->lock);
  303. return ret == 0;
  304. }
  305. /*
  306. * this is used to account for finished IO across a given range
  307. * of the file. The IO should not span ordered extents. If
  308. * a given ordered_extent is completely done, 1 is returned, otherwise
  309. * 0.
  310. *
  311. * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
  312. * to make sure this function only returns 1 once for a given ordered extent.
  313. */
  314. int btrfs_dec_test_ordered_pending(struct inode *inode,
  315. struct btrfs_ordered_extent **cached,
  316. u64 file_offset, u64 io_size)
  317. {
  318. struct btrfs_ordered_inode_tree *tree;
  319. struct rb_node *node;
  320. struct btrfs_ordered_extent *entry = NULL;
  321. int ret;
  322. tree = &BTRFS_I(inode)->ordered_tree;
  323. spin_lock(&tree->lock);
  324. node = tree_search(tree, file_offset);
  325. if (!node) {
  326. ret = 1;
  327. goto out;
  328. }
  329. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  330. if (!offset_in_entry(entry, file_offset)) {
  331. ret = 1;
  332. goto out;
  333. }
  334. if (io_size > entry->bytes_left) {
  335. printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
  336. (unsigned long long)entry->bytes_left,
  337. (unsigned long long)io_size);
  338. }
  339. entry->bytes_left -= io_size;
  340. if (entry->bytes_left == 0)
  341. ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
  342. else
  343. ret = 1;
  344. out:
  345. if (!ret && cached && entry) {
  346. *cached = entry;
  347. atomic_inc(&entry->refs);
  348. }
  349. spin_unlock(&tree->lock);
  350. return ret == 0;
  351. }
  352. /*
  353. * used to drop a reference on an ordered extent. This will free
  354. * the extent if the last reference is dropped
  355. */
  356. int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
  357. {
  358. struct list_head *cur;
  359. struct btrfs_ordered_sum *sum;
  360. trace_btrfs_ordered_extent_put(entry->inode, entry);
  361. if (atomic_dec_and_test(&entry->refs)) {
  362. while (!list_empty(&entry->list)) {
  363. cur = entry->list.next;
  364. sum = list_entry(cur, struct btrfs_ordered_sum, list);
  365. list_del(&sum->list);
  366. kfree(sum);
  367. }
  368. kfree(entry);
  369. }
  370. return 0;
  371. }
  372. /*
  373. * remove an ordered extent from the tree. No references are dropped
  374. * and you must wake_up entry->wait. You must hold the tree lock
  375. * while you call this function.
  376. */
  377. static int __btrfs_remove_ordered_extent(struct inode *inode,
  378. struct btrfs_ordered_extent *entry)
  379. {
  380. struct btrfs_ordered_inode_tree *tree;
  381. struct btrfs_root *root = BTRFS_I(inode)->root;
  382. struct rb_node *node;
  383. tree = &BTRFS_I(inode)->ordered_tree;
  384. node = &entry->rb_node;
  385. rb_erase(node, &tree->tree);
  386. tree->last = NULL;
  387. set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
  388. spin_lock(&root->fs_info->ordered_extent_lock);
  389. list_del_init(&entry->root_extent_list);
  390. trace_btrfs_ordered_extent_remove(inode, entry);
  391. /*
  392. * we have no more ordered extents for this inode and
  393. * no dirty pages. We can safely remove it from the
  394. * list of ordered extents
  395. */
  396. if (RB_EMPTY_ROOT(&tree->tree) &&
  397. !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
  398. list_del_init(&BTRFS_I(inode)->ordered_operations);
  399. }
  400. spin_unlock(&root->fs_info->ordered_extent_lock);
  401. return 0;
  402. }
  403. /*
  404. * remove an ordered extent from the tree. No references are dropped
  405. * but any waiters are woken.
  406. */
  407. int btrfs_remove_ordered_extent(struct inode *inode,
  408. struct btrfs_ordered_extent *entry)
  409. {
  410. struct btrfs_ordered_inode_tree *tree;
  411. int ret;
  412. tree = &BTRFS_I(inode)->ordered_tree;
  413. spin_lock(&tree->lock);
  414. ret = __btrfs_remove_ordered_extent(inode, entry);
  415. spin_unlock(&tree->lock);
  416. wake_up(&entry->wait);
  417. return ret;
  418. }
  419. /*
  420. * wait for all the ordered extents in a root. This is done when balancing
  421. * space between drives.
  422. */
  423. int btrfs_wait_ordered_extents(struct btrfs_root *root,
  424. int nocow_only, int delay_iput)
  425. {
  426. struct list_head splice;
  427. struct list_head *cur;
  428. struct btrfs_ordered_extent *ordered;
  429. struct inode *inode;
  430. INIT_LIST_HEAD(&splice);
  431. spin_lock(&root->fs_info->ordered_extent_lock);
  432. list_splice_init(&root->fs_info->ordered_extents, &splice);
  433. while (!list_empty(&splice)) {
  434. cur = splice.next;
  435. ordered = list_entry(cur, struct btrfs_ordered_extent,
  436. root_extent_list);
  437. if (nocow_only &&
  438. !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
  439. !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
  440. list_move(&ordered->root_extent_list,
  441. &root->fs_info->ordered_extents);
  442. cond_resched_lock(&root->fs_info->ordered_extent_lock);
  443. continue;
  444. }
  445. list_del_init(&ordered->root_extent_list);
  446. atomic_inc(&ordered->refs);
  447. /*
  448. * the inode may be getting freed (in sys_unlink path).
  449. */
  450. inode = igrab(ordered->inode);
  451. spin_unlock(&root->fs_info->ordered_extent_lock);
  452. if (inode) {
  453. btrfs_start_ordered_extent(inode, ordered, 1);
  454. btrfs_put_ordered_extent(ordered);
  455. if (delay_iput)
  456. btrfs_add_delayed_iput(inode);
  457. else
  458. iput(inode);
  459. } else {
  460. btrfs_put_ordered_extent(ordered);
  461. }
  462. spin_lock(&root->fs_info->ordered_extent_lock);
  463. }
  464. spin_unlock(&root->fs_info->ordered_extent_lock);
  465. return 0;
  466. }
  467. /*
  468. * this is used during transaction commit to write all the inodes
  469. * added to the ordered operation list. These files must be fully on
  470. * disk before the transaction commits.
  471. *
  472. * we have two modes here, one is to just start the IO via filemap_flush
  473. * and the other is to wait for all the io. When we wait, we have an
  474. * extra check to make sure the ordered operation list really is empty
  475. * before we return
  476. */
  477. int btrfs_run_ordered_operations(struct btrfs_root *root, int wait)
  478. {
  479. struct btrfs_inode *btrfs_inode;
  480. struct inode *inode;
  481. struct list_head splice;
  482. INIT_LIST_HEAD(&splice);
  483. mutex_lock(&root->fs_info->ordered_operations_mutex);
  484. spin_lock(&root->fs_info->ordered_extent_lock);
  485. again:
  486. list_splice_init(&root->fs_info->ordered_operations, &splice);
  487. while (!list_empty(&splice)) {
  488. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  489. ordered_operations);
  490. inode = &btrfs_inode->vfs_inode;
  491. list_del_init(&btrfs_inode->ordered_operations);
  492. /*
  493. * the inode may be getting freed (in sys_unlink path).
  494. */
  495. inode = igrab(inode);
  496. if (!wait && inode) {
  497. list_add_tail(&BTRFS_I(inode)->ordered_operations,
  498. &root->fs_info->ordered_operations);
  499. }
  500. spin_unlock(&root->fs_info->ordered_extent_lock);
  501. if (inode) {
  502. if (wait)
  503. btrfs_wait_ordered_range(inode, 0, (u64)-1);
  504. else
  505. filemap_flush(inode->i_mapping);
  506. btrfs_add_delayed_iput(inode);
  507. }
  508. cond_resched();
  509. spin_lock(&root->fs_info->ordered_extent_lock);
  510. }
  511. if (wait && !list_empty(&root->fs_info->ordered_operations))
  512. goto again;
  513. spin_unlock(&root->fs_info->ordered_extent_lock);
  514. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  515. return 0;
  516. }
  517. /*
  518. * Used to start IO or wait for a given ordered extent to finish.
  519. *
  520. * If wait is one, this effectively waits on page writeback for all the pages
  521. * in the extent, and it waits on the io completion code to insert
  522. * metadata into the btree corresponding to the extent
  523. */
  524. void btrfs_start_ordered_extent(struct inode *inode,
  525. struct btrfs_ordered_extent *entry,
  526. int wait)
  527. {
  528. u64 start = entry->file_offset;
  529. u64 end = start + entry->len - 1;
  530. trace_btrfs_ordered_extent_start(inode, entry);
  531. /*
  532. * pages in the range can be dirty, clean or writeback. We
  533. * start IO on any dirty ones so the wait doesn't stall waiting
  534. * for pdflush to find them
  535. */
  536. if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
  537. filemap_fdatawrite_range(inode->i_mapping, start, end);
  538. if (wait) {
  539. wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
  540. &entry->flags));
  541. }
  542. }
  543. /*
  544. * Used to wait on ordered extents across a large range of bytes.
  545. */
  546. int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
  547. {
  548. u64 end;
  549. u64 orig_end;
  550. struct btrfs_ordered_extent *ordered;
  551. int found;
  552. if (start + len < start) {
  553. orig_end = INT_LIMIT(loff_t);
  554. } else {
  555. orig_end = start + len - 1;
  556. if (orig_end > INT_LIMIT(loff_t))
  557. orig_end = INT_LIMIT(loff_t);
  558. }
  559. again:
  560. /* start IO across the range first to instantiate any delalloc
  561. * extents
  562. */
  563. filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
  564. /* The compression code will leave pages locked but return from
  565. * writepage without setting the page writeback. Starting again
  566. * with WB_SYNC_ALL will end up waiting for the IO to actually start.
  567. */
  568. filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
  569. filemap_fdatawait_range(inode->i_mapping, start, orig_end);
  570. end = orig_end;
  571. found = 0;
  572. while (1) {
  573. ordered = btrfs_lookup_first_ordered_extent(inode, end);
  574. if (!ordered)
  575. break;
  576. if (ordered->file_offset > orig_end) {
  577. btrfs_put_ordered_extent(ordered);
  578. break;
  579. }
  580. if (ordered->file_offset + ordered->len < start) {
  581. btrfs_put_ordered_extent(ordered);
  582. break;
  583. }
  584. found++;
  585. btrfs_start_ordered_extent(inode, ordered, 1);
  586. end = ordered->file_offset;
  587. btrfs_put_ordered_extent(ordered);
  588. if (end == 0 || end == start)
  589. break;
  590. end--;
  591. }
  592. if (found || test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end,
  593. EXTENT_DELALLOC, 0, NULL)) {
  594. schedule_timeout(1);
  595. goto again;
  596. }
  597. return 0;
  598. }
  599. /*
  600. * find an ordered extent corresponding to file_offset. return NULL if
  601. * nothing is found, otherwise take a reference on the extent and return it
  602. */
  603. struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
  604. u64 file_offset)
  605. {
  606. struct btrfs_ordered_inode_tree *tree;
  607. struct rb_node *node;
  608. struct btrfs_ordered_extent *entry = NULL;
  609. tree = &BTRFS_I(inode)->ordered_tree;
  610. spin_lock(&tree->lock);
  611. node = tree_search(tree, file_offset);
  612. if (!node)
  613. goto out;
  614. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  615. if (!offset_in_entry(entry, file_offset))
  616. entry = NULL;
  617. if (entry)
  618. atomic_inc(&entry->refs);
  619. out:
  620. spin_unlock(&tree->lock);
  621. return entry;
  622. }
  623. /* Since the DIO code tries to lock a wide area we need to look for any ordered
  624. * extents that exist in the range, rather than just the start of the range.
  625. */
  626. struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
  627. u64 file_offset,
  628. u64 len)
  629. {
  630. struct btrfs_ordered_inode_tree *tree;
  631. struct rb_node *node;
  632. struct btrfs_ordered_extent *entry = NULL;
  633. tree = &BTRFS_I(inode)->ordered_tree;
  634. spin_lock(&tree->lock);
  635. node = tree_search(tree, file_offset);
  636. if (!node) {
  637. node = tree_search(tree, file_offset + len);
  638. if (!node)
  639. goto out;
  640. }
  641. while (1) {
  642. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  643. if (range_overlaps(entry, file_offset, len))
  644. break;
  645. if (entry->file_offset >= file_offset + len) {
  646. entry = NULL;
  647. break;
  648. }
  649. entry = NULL;
  650. node = rb_next(node);
  651. if (!node)
  652. break;
  653. }
  654. out:
  655. if (entry)
  656. atomic_inc(&entry->refs);
  657. spin_unlock(&tree->lock);
  658. return entry;
  659. }
  660. /*
  661. * lookup and return any extent before 'file_offset'. NULL is returned
  662. * if none is found
  663. */
  664. struct btrfs_ordered_extent *
  665. btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
  666. {
  667. struct btrfs_ordered_inode_tree *tree;
  668. struct rb_node *node;
  669. struct btrfs_ordered_extent *entry = NULL;
  670. tree = &BTRFS_I(inode)->ordered_tree;
  671. spin_lock(&tree->lock);
  672. node = tree_search(tree, file_offset);
  673. if (!node)
  674. goto out;
  675. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  676. atomic_inc(&entry->refs);
  677. out:
  678. spin_unlock(&tree->lock);
  679. return entry;
  680. }
  681. /*
  682. * After an extent is done, call this to conditionally update the on disk
  683. * i_size. i_size is updated to cover any fully written part of the file.
  684. */
  685. int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
  686. struct btrfs_ordered_extent *ordered)
  687. {
  688. struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
  689. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  690. u64 disk_i_size;
  691. u64 new_i_size;
  692. u64 i_size_test;
  693. u64 i_size = i_size_read(inode);
  694. struct rb_node *node;
  695. struct rb_node *prev = NULL;
  696. struct btrfs_ordered_extent *test;
  697. int ret = 1;
  698. if (ordered)
  699. offset = entry_end(ordered);
  700. else
  701. offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
  702. spin_lock(&tree->lock);
  703. disk_i_size = BTRFS_I(inode)->disk_i_size;
  704. /* truncate file */
  705. if (disk_i_size > i_size) {
  706. BTRFS_I(inode)->disk_i_size = i_size;
  707. ret = 0;
  708. goto out;
  709. }
  710. /*
  711. * if the disk i_size is already at the inode->i_size, or
  712. * this ordered extent is inside the disk i_size, we're done
  713. */
  714. if (disk_i_size == i_size || offset <= disk_i_size) {
  715. goto out;
  716. }
  717. /*
  718. * we can't update the disk_isize if there are delalloc bytes
  719. * between disk_i_size and this ordered extent
  720. */
  721. if (test_range_bit(io_tree, disk_i_size, offset - 1,
  722. EXTENT_DELALLOC, 0, NULL)) {
  723. goto out;
  724. }
  725. /*
  726. * walk backward from this ordered extent to disk_i_size.
  727. * if we find an ordered extent then we can't update disk i_size
  728. * yet
  729. */
  730. if (ordered) {
  731. node = rb_prev(&ordered->rb_node);
  732. } else {
  733. prev = tree_search(tree, offset);
  734. /*
  735. * we insert file extents without involving ordered struct,
  736. * so there should be no ordered struct cover this offset
  737. */
  738. if (prev) {
  739. test = rb_entry(prev, struct btrfs_ordered_extent,
  740. rb_node);
  741. BUG_ON(offset_in_entry(test, offset));
  742. }
  743. node = prev;
  744. }
  745. while (node) {
  746. test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  747. if (test->file_offset + test->len <= disk_i_size)
  748. break;
  749. if (test->file_offset >= i_size)
  750. break;
  751. if (test->file_offset >= disk_i_size)
  752. goto out;
  753. node = rb_prev(node);
  754. }
  755. new_i_size = min_t(u64, offset, i_size);
  756. /*
  757. * at this point, we know we can safely update i_size to at least
  758. * the offset from this ordered extent. But, we need to
  759. * walk forward and see if ios from higher up in the file have
  760. * finished.
  761. */
  762. if (ordered) {
  763. node = rb_next(&ordered->rb_node);
  764. } else {
  765. if (prev)
  766. node = rb_next(prev);
  767. else
  768. node = rb_first(&tree->tree);
  769. }
  770. i_size_test = 0;
  771. if (node) {
  772. /*
  773. * do we have an area where IO might have finished
  774. * between our ordered extent and the next one.
  775. */
  776. test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  777. if (test->file_offset > offset)
  778. i_size_test = test->file_offset;
  779. } else {
  780. i_size_test = i_size;
  781. }
  782. /*
  783. * i_size_test is the end of a region after this ordered
  784. * extent where there are no ordered extents. As long as there
  785. * are no delalloc bytes in this area, it is safe to update
  786. * disk_i_size to the end of the region.
  787. */
  788. if (i_size_test > offset &&
  789. !test_range_bit(io_tree, offset, i_size_test - 1,
  790. EXTENT_DELALLOC, 0, NULL)) {
  791. new_i_size = min_t(u64, i_size_test, i_size);
  792. }
  793. BTRFS_I(inode)->disk_i_size = new_i_size;
  794. ret = 0;
  795. out:
  796. /*
  797. * we need to remove the ordered extent with the tree lock held
  798. * so that other people calling this function don't find our fully
  799. * processed ordered entry and skip updating the i_size
  800. */
  801. if (ordered)
  802. __btrfs_remove_ordered_extent(inode, ordered);
  803. spin_unlock(&tree->lock);
  804. if (ordered)
  805. wake_up(&ordered->wait);
  806. return ret;
  807. }
  808. /*
  809. * search the ordered extents for one corresponding to 'offset' and
  810. * try to find a checksum. This is used because we allow pages to
  811. * be reclaimed before their checksum is actually put into the btree
  812. */
  813. int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
  814. u32 *sum)
  815. {
  816. struct btrfs_ordered_sum *ordered_sum;
  817. struct btrfs_sector_sum *sector_sums;
  818. struct btrfs_ordered_extent *ordered;
  819. struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
  820. unsigned long num_sectors;
  821. unsigned long i;
  822. u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
  823. int ret = 1;
  824. ordered = btrfs_lookup_ordered_extent(inode, offset);
  825. if (!ordered)
  826. return 1;
  827. spin_lock(&tree->lock);
  828. list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
  829. if (disk_bytenr >= ordered_sum->bytenr) {
  830. num_sectors = ordered_sum->len / sectorsize;
  831. sector_sums = ordered_sum->sums;
  832. for (i = 0; i < num_sectors; i++) {
  833. if (sector_sums[i].bytenr == disk_bytenr) {
  834. *sum = sector_sums[i].sum;
  835. ret = 0;
  836. goto out;
  837. }
  838. }
  839. }
  840. }
  841. out:
  842. spin_unlock(&tree->lock);
  843. btrfs_put_ordered_extent(ordered);
  844. return ret;
  845. }
  846. /*
  847. * add a given inode to the list of inodes that must be fully on
  848. * disk before a transaction commit finishes.
  849. *
  850. * This basically gives us the ext3 style data=ordered mode, and it is mostly
  851. * used to make sure renamed files are fully on disk.
  852. *
  853. * It is a noop if the inode is already fully on disk.
  854. *
  855. * If trans is not null, we'll do a friendly check for a transaction that
  856. * is already flushing things and force the IO down ourselves.
  857. */
  858. int btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
  859. struct btrfs_root *root,
  860. struct inode *inode)
  861. {
  862. u64 last_mod;
  863. last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
  864. /*
  865. * if this file hasn't been changed since the last transaction
  866. * commit, we can safely return without doing anything
  867. */
  868. if (last_mod < root->fs_info->last_trans_committed)
  869. return 0;
  870. /*
  871. * the transaction is already committing. Just start the IO and
  872. * don't bother with all of this list nonsense
  873. */
  874. if (trans && root->fs_info->running_transaction->blocked) {
  875. btrfs_wait_ordered_range(inode, 0, (u64)-1);
  876. return 0;
  877. }
  878. spin_lock(&root->fs_info->ordered_extent_lock);
  879. if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
  880. list_add_tail(&BTRFS_I(inode)->ordered_operations,
  881. &root->fs_info->ordered_operations);
  882. }
  883. spin_unlock(&root->fs_info->ordered_extent_lock);
  884. return 0;
  885. }