sched_rt.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344
  1. /*
  2. * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
  3. * policies)
  4. */
  5. #ifdef CONFIG_SMP
  6. static inline int rt_overloaded(struct rq *rq)
  7. {
  8. return atomic_read(&rq->rd->rto_count);
  9. }
  10. static inline void rt_set_overload(struct rq *rq)
  11. {
  12. cpu_set(rq->cpu, rq->rd->rto_mask);
  13. /*
  14. * Make sure the mask is visible before we set
  15. * the overload count. That is checked to determine
  16. * if we should look at the mask. It would be a shame
  17. * if we looked at the mask, but the mask was not
  18. * updated yet.
  19. */
  20. wmb();
  21. atomic_inc(&rq->rd->rto_count);
  22. }
  23. static inline void rt_clear_overload(struct rq *rq)
  24. {
  25. /* the order here really doesn't matter */
  26. atomic_dec(&rq->rd->rto_count);
  27. cpu_clear(rq->cpu, rq->rd->rto_mask);
  28. }
  29. static void update_rt_migration(struct rq *rq)
  30. {
  31. if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
  32. if (!rq->rt.overloaded) {
  33. rt_set_overload(rq);
  34. rq->rt.overloaded = 1;
  35. }
  36. } else if (rq->rt.overloaded) {
  37. rt_clear_overload(rq);
  38. rq->rt.overloaded = 0;
  39. }
  40. }
  41. #endif /* CONFIG_SMP */
  42. static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
  43. {
  44. return container_of(rt_se, struct task_struct, rt);
  45. }
  46. static inline int on_rt_rq(struct sched_rt_entity *rt_se)
  47. {
  48. return !list_empty(&rt_se->run_list);
  49. }
  50. #ifdef CONFIG_RT_GROUP_SCHED
  51. static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
  52. {
  53. if (!rt_rq->tg)
  54. return RUNTIME_INF;
  55. return rt_rq->rt_runtime;
  56. }
  57. static inline u64 sched_rt_period(struct rt_rq *rt_rq)
  58. {
  59. return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
  60. }
  61. #define for_each_leaf_rt_rq(rt_rq, rq) \
  62. list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
  63. static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
  64. {
  65. return rt_rq->rq;
  66. }
  67. static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
  68. {
  69. return rt_se->rt_rq;
  70. }
  71. #define for_each_sched_rt_entity(rt_se) \
  72. for (; rt_se; rt_se = rt_se->parent)
  73. static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
  74. {
  75. return rt_se->my_q;
  76. }
  77. static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
  78. static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
  79. static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
  80. {
  81. struct sched_rt_entity *rt_se = rt_rq->rt_se;
  82. if (rt_se && !on_rt_rq(rt_se) && rt_rq->rt_nr_running) {
  83. struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
  84. enqueue_rt_entity(rt_se);
  85. if (rt_rq->highest_prio < curr->prio)
  86. resched_task(curr);
  87. }
  88. }
  89. static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
  90. {
  91. struct sched_rt_entity *rt_se = rt_rq->rt_se;
  92. if (rt_se && on_rt_rq(rt_se))
  93. dequeue_rt_entity(rt_se);
  94. }
  95. static inline int rt_rq_throttled(struct rt_rq *rt_rq)
  96. {
  97. return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
  98. }
  99. static int rt_se_boosted(struct sched_rt_entity *rt_se)
  100. {
  101. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  102. struct task_struct *p;
  103. if (rt_rq)
  104. return !!rt_rq->rt_nr_boosted;
  105. p = rt_task_of(rt_se);
  106. return p->prio != p->normal_prio;
  107. }
  108. #ifdef CONFIG_SMP
  109. static inline cpumask_t sched_rt_period_mask(void)
  110. {
  111. return cpu_rq(smp_processor_id())->rd->span;
  112. }
  113. #else
  114. static inline cpumask_t sched_rt_period_mask(void)
  115. {
  116. return cpu_online_map;
  117. }
  118. #endif
  119. static inline
  120. struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
  121. {
  122. return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
  123. }
  124. static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
  125. {
  126. return &rt_rq->tg->rt_bandwidth;
  127. }
  128. #else
  129. static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
  130. {
  131. return rt_rq->rt_runtime;
  132. }
  133. static inline u64 sched_rt_period(struct rt_rq *rt_rq)
  134. {
  135. return ktime_to_ns(def_rt_bandwidth.rt_period);
  136. }
  137. #define for_each_leaf_rt_rq(rt_rq, rq) \
  138. for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
  139. static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
  140. {
  141. return container_of(rt_rq, struct rq, rt);
  142. }
  143. static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
  144. {
  145. struct task_struct *p = rt_task_of(rt_se);
  146. struct rq *rq = task_rq(p);
  147. return &rq->rt;
  148. }
  149. #define for_each_sched_rt_entity(rt_se) \
  150. for (; rt_se; rt_se = NULL)
  151. static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
  152. {
  153. return NULL;
  154. }
  155. static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
  156. {
  157. }
  158. static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
  159. {
  160. }
  161. static inline int rt_rq_throttled(struct rt_rq *rt_rq)
  162. {
  163. return rt_rq->rt_throttled;
  164. }
  165. static inline cpumask_t sched_rt_period_mask(void)
  166. {
  167. return cpu_online_map;
  168. }
  169. static inline
  170. struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
  171. {
  172. return &cpu_rq(cpu)->rt;
  173. }
  174. static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
  175. {
  176. return &def_rt_bandwidth;
  177. }
  178. #endif
  179. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
  180. {
  181. int i, idle = 1;
  182. cpumask_t span;
  183. if (rt_b->rt_runtime == RUNTIME_INF)
  184. return 1;
  185. span = sched_rt_period_mask();
  186. for_each_cpu_mask(i, span) {
  187. int enqueue = 0;
  188. struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
  189. struct rq *rq = rq_of_rt_rq(rt_rq);
  190. spin_lock(&rq->lock);
  191. if (rt_rq->rt_time) {
  192. u64 runtime;
  193. spin_lock(&rt_rq->rt_runtime_lock);
  194. runtime = rt_rq->rt_runtime;
  195. rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
  196. if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
  197. rt_rq->rt_throttled = 0;
  198. enqueue = 1;
  199. }
  200. if (rt_rq->rt_time || rt_rq->rt_nr_running)
  201. idle = 0;
  202. spin_unlock(&rt_rq->rt_runtime_lock);
  203. }
  204. if (enqueue)
  205. sched_rt_rq_enqueue(rt_rq);
  206. spin_unlock(&rq->lock);
  207. }
  208. return idle;
  209. }
  210. #ifdef CONFIG_SMP
  211. static int balance_runtime(struct rt_rq *rt_rq)
  212. {
  213. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  214. struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
  215. int i, weight, more = 0;
  216. u64 rt_period;
  217. weight = cpus_weight(rd->span);
  218. spin_lock(&rt_b->rt_runtime_lock);
  219. rt_period = ktime_to_ns(rt_b->rt_period);
  220. for_each_cpu_mask(i, rd->span) {
  221. struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
  222. s64 diff;
  223. if (iter == rt_rq)
  224. continue;
  225. spin_lock(&iter->rt_runtime_lock);
  226. diff = iter->rt_runtime - iter->rt_time;
  227. if (diff > 0) {
  228. do_div(diff, weight);
  229. if (rt_rq->rt_runtime + diff > rt_period)
  230. diff = rt_period - rt_rq->rt_runtime;
  231. iter->rt_runtime -= diff;
  232. rt_rq->rt_runtime += diff;
  233. more = 1;
  234. if (rt_rq->rt_runtime == rt_period) {
  235. spin_unlock(&iter->rt_runtime_lock);
  236. break;
  237. }
  238. }
  239. spin_unlock(&iter->rt_runtime_lock);
  240. }
  241. spin_unlock(&rt_b->rt_runtime_lock);
  242. return more;
  243. }
  244. #endif
  245. static inline int rt_se_prio(struct sched_rt_entity *rt_se)
  246. {
  247. #ifdef CONFIG_RT_GROUP_SCHED
  248. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  249. if (rt_rq)
  250. return rt_rq->highest_prio;
  251. #endif
  252. return rt_task_of(rt_se)->prio;
  253. }
  254. static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
  255. {
  256. u64 runtime = sched_rt_runtime(rt_rq);
  257. if (runtime == RUNTIME_INF)
  258. return 0;
  259. if (rt_rq->rt_throttled)
  260. return rt_rq_throttled(rt_rq);
  261. if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
  262. return 0;
  263. #ifdef CONFIG_SMP
  264. if (rt_rq->rt_time > runtime) {
  265. int more;
  266. spin_unlock(&rt_rq->rt_runtime_lock);
  267. more = balance_runtime(rt_rq);
  268. spin_lock(&rt_rq->rt_runtime_lock);
  269. if (more)
  270. runtime = sched_rt_runtime(rt_rq);
  271. }
  272. #endif
  273. if (rt_rq->rt_time > runtime) {
  274. rt_rq->rt_throttled = 1;
  275. if (rt_rq_throttled(rt_rq)) {
  276. sched_rt_rq_dequeue(rt_rq);
  277. return 1;
  278. }
  279. }
  280. return 0;
  281. }
  282. /*
  283. * Update the current task's runtime statistics. Skip current tasks that
  284. * are not in our scheduling class.
  285. */
  286. static void update_curr_rt(struct rq *rq)
  287. {
  288. struct task_struct *curr = rq->curr;
  289. struct sched_rt_entity *rt_se = &curr->rt;
  290. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  291. u64 delta_exec;
  292. if (!task_has_rt_policy(curr))
  293. return;
  294. delta_exec = rq->clock - curr->se.exec_start;
  295. if (unlikely((s64)delta_exec < 0))
  296. delta_exec = 0;
  297. schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
  298. curr->se.sum_exec_runtime += delta_exec;
  299. curr->se.exec_start = rq->clock;
  300. cpuacct_charge(curr, delta_exec);
  301. for_each_sched_rt_entity(rt_se) {
  302. rt_rq = rt_rq_of_se(rt_se);
  303. spin_lock(&rt_rq->rt_runtime_lock);
  304. rt_rq->rt_time += delta_exec;
  305. if (sched_rt_runtime_exceeded(rt_rq))
  306. resched_task(curr);
  307. spin_unlock(&rt_rq->rt_runtime_lock);
  308. }
  309. }
  310. static inline
  311. void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  312. {
  313. WARN_ON(!rt_prio(rt_se_prio(rt_se)));
  314. rt_rq->rt_nr_running++;
  315. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  316. if (rt_se_prio(rt_se) < rt_rq->highest_prio)
  317. rt_rq->highest_prio = rt_se_prio(rt_se);
  318. #endif
  319. #ifdef CONFIG_SMP
  320. if (rt_se->nr_cpus_allowed > 1) {
  321. struct rq *rq = rq_of_rt_rq(rt_rq);
  322. rq->rt.rt_nr_migratory++;
  323. }
  324. update_rt_migration(rq_of_rt_rq(rt_rq));
  325. #endif
  326. #ifdef CONFIG_RT_GROUP_SCHED
  327. if (rt_se_boosted(rt_se))
  328. rt_rq->rt_nr_boosted++;
  329. if (rt_rq->tg)
  330. start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
  331. #else
  332. start_rt_bandwidth(&def_rt_bandwidth);
  333. #endif
  334. }
  335. static inline
  336. void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  337. {
  338. WARN_ON(!rt_prio(rt_se_prio(rt_se)));
  339. WARN_ON(!rt_rq->rt_nr_running);
  340. rt_rq->rt_nr_running--;
  341. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  342. if (rt_rq->rt_nr_running) {
  343. struct rt_prio_array *array;
  344. WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
  345. if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
  346. /* recalculate */
  347. array = &rt_rq->active;
  348. rt_rq->highest_prio =
  349. sched_find_first_bit(array->bitmap);
  350. } /* otherwise leave rq->highest prio alone */
  351. } else
  352. rt_rq->highest_prio = MAX_RT_PRIO;
  353. #endif
  354. #ifdef CONFIG_SMP
  355. if (rt_se->nr_cpus_allowed > 1) {
  356. struct rq *rq = rq_of_rt_rq(rt_rq);
  357. rq->rt.rt_nr_migratory--;
  358. }
  359. update_rt_migration(rq_of_rt_rq(rt_rq));
  360. #endif /* CONFIG_SMP */
  361. #ifdef CONFIG_RT_GROUP_SCHED
  362. if (rt_se_boosted(rt_se))
  363. rt_rq->rt_nr_boosted--;
  364. WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
  365. #endif
  366. }
  367. static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
  368. {
  369. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  370. struct rt_prio_array *array = &rt_rq->active;
  371. struct rt_rq *group_rq = group_rt_rq(rt_se);
  372. if (group_rq && rt_rq_throttled(group_rq))
  373. return;
  374. list_add_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se));
  375. __set_bit(rt_se_prio(rt_se), array->bitmap);
  376. inc_rt_tasks(rt_se, rt_rq);
  377. }
  378. static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
  379. {
  380. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  381. struct rt_prio_array *array = &rt_rq->active;
  382. list_del_init(&rt_se->run_list);
  383. if (list_empty(array->queue + rt_se_prio(rt_se)))
  384. __clear_bit(rt_se_prio(rt_se), array->bitmap);
  385. dec_rt_tasks(rt_se, rt_rq);
  386. }
  387. /*
  388. * Because the prio of an upper entry depends on the lower
  389. * entries, we must remove entries top - down.
  390. *
  391. * XXX: O(1/2 h^2) because we can only walk up, not down the chain.
  392. */
  393. static void dequeue_rt_stack(struct task_struct *p)
  394. {
  395. struct sched_rt_entity *rt_se, *top_se;
  396. /*
  397. * dequeue all, top - down.
  398. */
  399. do {
  400. rt_se = &p->rt;
  401. top_se = NULL;
  402. for_each_sched_rt_entity(rt_se) {
  403. if (on_rt_rq(rt_se))
  404. top_se = rt_se;
  405. }
  406. if (top_se)
  407. dequeue_rt_entity(top_se);
  408. } while (top_se);
  409. }
  410. /*
  411. * Adding/removing a task to/from a priority array:
  412. */
  413. static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
  414. {
  415. struct sched_rt_entity *rt_se = &p->rt;
  416. if (wakeup)
  417. rt_se->timeout = 0;
  418. dequeue_rt_stack(p);
  419. /*
  420. * enqueue everybody, bottom - up.
  421. */
  422. for_each_sched_rt_entity(rt_se)
  423. enqueue_rt_entity(rt_se);
  424. }
  425. static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
  426. {
  427. struct sched_rt_entity *rt_se = &p->rt;
  428. struct rt_rq *rt_rq;
  429. update_curr_rt(rq);
  430. dequeue_rt_stack(p);
  431. /*
  432. * re-enqueue all non-empty rt_rq entities.
  433. */
  434. for_each_sched_rt_entity(rt_se) {
  435. rt_rq = group_rt_rq(rt_se);
  436. if (rt_rq && rt_rq->rt_nr_running)
  437. enqueue_rt_entity(rt_se);
  438. }
  439. }
  440. /*
  441. * Put task to the end of the run list without the overhead of dequeue
  442. * followed by enqueue.
  443. */
  444. static
  445. void requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
  446. {
  447. struct rt_prio_array *array = &rt_rq->active;
  448. list_move_tail(&rt_se->run_list, array->queue + rt_se_prio(rt_se));
  449. }
  450. static void requeue_task_rt(struct rq *rq, struct task_struct *p)
  451. {
  452. struct sched_rt_entity *rt_se = &p->rt;
  453. struct rt_rq *rt_rq;
  454. for_each_sched_rt_entity(rt_se) {
  455. rt_rq = rt_rq_of_se(rt_se);
  456. requeue_rt_entity(rt_rq, rt_se);
  457. }
  458. }
  459. static void yield_task_rt(struct rq *rq)
  460. {
  461. requeue_task_rt(rq, rq->curr);
  462. }
  463. #ifdef CONFIG_SMP
  464. static int find_lowest_rq(struct task_struct *task);
  465. static int select_task_rq_rt(struct task_struct *p, int sync)
  466. {
  467. struct rq *rq = task_rq(p);
  468. /*
  469. * If the current task is an RT task, then
  470. * try to see if we can wake this RT task up on another
  471. * runqueue. Otherwise simply start this RT task
  472. * on its current runqueue.
  473. *
  474. * We want to avoid overloading runqueues. Even if
  475. * the RT task is of higher priority than the current RT task.
  476. * RT tasks behave differently than other tasks. If
  477. * one gets preempted, we try to push it off to another queue.
  478. * So trying to keep a preempting RT task on the same
  479. * cache hot CPU will force the running RT task to
  480. * a cold CPU. So we waste all the cache for the lower
  481. * RT task in hopes of saving some of a RT task
  482. * that is just being woken and probably will have
  483. * cold cache anyway.
  484. */
  485. if (unlikely(rt_task(rq->curr)) &&
  486. (p->rt.nr_cpus_allowed > 1)) {
  487. int cpu = find_lowest_rq(p);
  488. return (cpu == -1) ? task_cpu(p) : cpu;
  489. }
  490. /*
  491. * Otherwise, just let it ride on the affined RQ and the
  492. * post-schedule router will push the preempted task away
  493. */
  494. return task_cpu(p);
  495. }
  496. #endif /* CONFIG_SMP */
  497. /*
  498. * Preempt the current task with a newly woken task if needed:
  499. */
  500. static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p)
  501. {
  502. if (p->prio < rq->curr->prio)
  503. resched_task(rq->curr);
  504. }
  505. static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
  506. struct rt_rq *rt_rq)
  507. {
  508. struct rt_prio_array *array = &rt_rq->active;
  509. struct sched_rt_entity *next = NULL;
  510. struct list_head *queue;
  511. int idx;
  512. idx = sched_find_first_bit(array->bitmap);
  513. BUG_ON(idx >= MAX_RT_PRIO);
  514. queue = array->queue + idx;
  515. next = list_entry(queue->next, struct sched_rt_entity, run_list);
  516. return next;
  517. }
  518. static struct task_struct *pick_next_task_rt(struct rq *rq)
  519. {
  520. struct sched_rt_entity *rt_se;
  521. struct task_struct *p;
  522. struct rt_rq *rt_rq;
  523. rt_rq = &rq->rt;
  524. if (unlikely(!rt_rq->rt_nr_running))
  525. return NULL;
  526. if (rt_rq_throttled(rt_rq))
  527. return NULL;
  528. do {
  529. rt_se = pick_next_rt_entity(rq, rt_rq);
  530. BUG_ON(!rt_se);
  531. rt_rq = group_rt_rq(rt_se);
  532. } while (rt_rq);
  533. p = rt_task_of(rt_se);
  534. p->se.exec_start = rq->clock;
  535. return p;
  536. }
  537. static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
  538. {
  539. update_curr_rt(rq);
  540. p->se.exec_start = 0;
  541. }
  542. #ifdef CONFIG_SMP
  543. /* Only try algorithms three times */
  544. #define RT_MAX_TRIES 3
  545. static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
  546. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
  547. static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
  548. {
  549. if (!task_running(rq, p) &&
  550. (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
  551. (p->rt.nr_cpus_allowed > 1))
  552. return 1;
  553. return 0;
  554. }
  555. /* Return the second highest RT task, NULL otherwise */
  556. static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
  557. {
  558. struct task_struct *next = NULL;
  559. struct sched_rt_entity *rt_se;
  560. struct rt_prio_array *array;
  561. struct rt_rq *rt_rq;
  562. int idx;
  563. for_each_leaf_rt_rq(rt_rq, rq) {
  564. array = &rt_rq->active;
  565. idx = sched_find_first_bit(array->bitmap);
  566. next_idx:
  567. if (idx >= MAX_RT_PRIO)
  568. continue;
  569. if (next && next->prio < idx)
  570. continue;
  571. list_for_each_entry(rt_se, array->queue + idx, run_list) {
  572. struct task_struct *p = rt_task_of(rt_se);
  573. if (pick_rt_task(rq, p, cpu)) {
  574. next = p;
  575. break;
  576. }
  577. }
  578. if (!next) {
  579. idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
  580. goto next_idx;
  581. }
  582. }
  583. return next;
  584. }
  585. static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
  586. static int find_lowest_cpus(struct task_struct *task, cpumask_t *lowest_mask)
  587. {
  588. int lowest_prio = -1;
  589. int lowest_cpu = -1;
  590. int count = 0;
  591. int cpu;
  592. cpus_and(*lowest_mask, task_rq(task)->rd->online, task->cpus_allowed);
  593. /*
  594. * Scan each rq for the lowest prio.
  595. */
  596. for_each_cpu_mask(cpu, *lowest_mask) {
  597. struct rq *rq = cpu_rq(cpu);
  598. /* We look for lowest RT prio or non-rt CPU */
  599. if (rq->rt.highest_prio >= MAX_RT_PRIO) {
  600. /*
  601. * if we already found a low RT queue
  602. * and now we found this non-rt queue
  603. * clear the mask and set our bit.
  604. * Otherwise just return the queue as is
  605. * and the count==1 will cause the algorithm
  606. * to use the first bit found.
  607. */
  608. if (lowest_cpu != -1) {
  609. cpus_clear(*lowest_mask);
  610. cpu_set(rq->cpu, *lowest_mask);
  611. }
  612. return 1;
  613. }
  614. /* no locking for now */
  615. if ((rq->rt.highest_prio > task->prio)
  616. && (rq->rt.highest_prio >= lowest_prio)) {
  617. if (rq->rt.highest_prio > lowest_prio) {
  618. /* new low - clear old data */
  619. lowest_prio = rq->rt.highest_prio;
  620. lowest_cpu = cpu;
  621. count = 0;
  622. }
  623. count++;
  624. } else
  625. cpu_clear(cpu, *lowest_mask);
  626. }
  627. /*
  628. * Clear out all the set bits that represent
  629. * runqueues that were of higher prio than
  630. * the lowest_prio.
  631. */
  632. if (lowest_cpu > 0) {
  633. /*
  634. * Perhaps we could add another cpumask op to
  635. * zero out bits. Like cpu_zero_bits(cpumask, nrbits);
  636. * Then that could be optimized to use memset and such.
  637. */
  638. for_each_cpu_mask(cpu, *lowest_mask) {
  639. if (cpu >= lowest_cpu)
  640. break;
  641. cpu_clear(cpu, *lowest_mask);
  642. }
  643. }
  644. return count;
  645. }
  646. static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
  647. {
  648. int first;
  649. /* "this_cpu" is cheaper to preempt than a remote processor */
  650. if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
  651. return this_cpu;
  652. first = first_cpu(*mask);
  653. if (first != NR_CPUS)
  654. return first;
  655. return -1;
  656. }
  657. static int find_lowest_rq(struct task_struct *task)
  658. {
  659. struct sched_domain *sd;
  660. cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
  661. int this_cpu = smp_processor_id();
  662. int cpu = task_cpu(task);
  663. int count = find_lowest_cpus(task, lowest_mask);
  664. if (!count)
  665. return -1; /* No targets found */
  666. /*
  667. * There is no sense in performing an optimal search if only one
  668. * target is found.
  669. */
  670. if (count == 1)
  671. return first_cpu(*lowest_mask);
  672. /*
  673. * At this point we have built a mask of cpus representing the
  674. * lowest priority tasks in the system. Now we want to elect
  675. * the best one based on our affinity and topology.
  676. *
  677. * We prioritize the last cpu that the task executed on since
  678. * it is most likely cache-hot in that location.
  679. */
  680. if (cpu_isset(cpu, *lowest_mask))
  681. return cpu;
  682. /*
  683. * Otherwise, we consult the sched_domains span maps to figure
  684. * out which cpu is logically closest to our hot cache data.
  685. */
  686. if (this_cpu == cpu)
  687. this_cpu = -1; /* Skip this_cpu opt if the same */
  688. for_each_domain(cpu, sd) {
  689. if (sd->flags & SD_WAKE_AFFINE) {
  690. cpumask_t domain_mask;
  691. int best_cpu;
  692. cpus_and(domain_mask, sd->span, *lowest_mask);
  693. best_cpu = pick_optimal_cpu(this_cpu,
  694. &domain_mask);
  695. if (best_cpu != -1)
  696. return best_cpu;
  697. }
  698. }
  699. /*
  700. * And finally, if there were no matches within the domains
  701. * just give the caller *something* to work with from the compatible
  702. * locations.
  703. */
  704. return pick_optimal_cpu(this_cpu, lowest_mask);
  705. }
  706. /* Will lock the rq it finds */
  707. static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
  708. {
  709. struct rq *lowest_rq = NULL;
  710. int tries;
  711. int cpu;
  712. for (tries = 0; tries < RT_MAX_TRIES; tries++) {
  713. cpu = find_lowest_rq(task);
  714. if ((cpu == -1) || (cpu == rq->cpu))
  715. break;
  716. lowest_rq = cpu_rq(cpu);
  717. /* if the prio of this runqueue changed, try again */
  718. if (double_lock_balance(rq, lowest_rq)) {
  719. /*
  720. * We had to unlock the run queue. In
  721. * the mean time, task could have
  722. * migrated already or had its affinity changed.
  723. * Also make sure that it wasn't scheduled on its rq.
  724. */
  725. if (unlikely(task_rq(task) != rq ||
  726. !cpu_isset(lowest_rq->cpu,
  727. task->cpus_allowed) ||
  728. task_running(rq, task) ||
  729. !task->se.on_rq)) {
  730. spin_unlock(&lowest_rq->lock);
  731. lowest_rq = NULL;
  732. break;
  733. }
  734. }
  735. /* If this rq is still suitable use it. */
  736. if (lowest_rq->rt.highest_prio > task->prio)
  737. break;
  738. /* try again */
  739. spin_unlock(&lowest_rq->lock);
  740. lowest_rq = NULL;
  741. }
  742. return lowest_rq;
  743. }
  744. /*
  745. * If the current CPU has more than one RT task, see if the non
  746. * running task can migrate over to a CPU that is running a task
  747. * of lesser priority.
  748. */
  749. static int push_rt_task(struct rq *rq)
  750. {
  751. struct task_struct *next_task;
  752. struct rq *lowest_rq;
  753. int ret = 0;
  754. int paranoid = RT_MAX_TRIES;
  755. if (!rq->rt.overloaded)
  756. return 0;
  757. next_task = pick_next_highest_task_rt(rq, -1);
  758. if (!next_task)
  759. return 0;
  760. retry:
  761. if (unlikely(next_task == rq->curr)) {
  762. WARN_ON(1);
  763. return 0;
  764. }
  765. /*
  766. * It's possible that the next_task slipped in of
  767. * higher priority than current. If that's the case
  768. * just reschedule current.
  769. */
  770. if (unlikely(next_task->prio < rq->curr->prio)) {
  771. resched_task(rq->curr);
  772. return 0;
  773. }
  774. /* We might release rq lock */
  775. get_task_struct(next_task);
  776. /* find_lock_lowest_rq locks the rq if found */
  777. lowest_rq = find_lock_lowest_rq(next_task, rq);
  778. if (!lowest_rq) {
  779. struct task_struct *task;
  780. /*
  781. * find lock_lowest_rq releases rq->lock
  782. * so it is possible that next_task has changed.
  783. * If it has, then try again.
  784. */
  785. task = pick_next_highest_task_rt(rq, -1);
  786. if (unlikely(task != next_task) && task && paranoid--) {
  787. put_task_struct(next_task);
  788. next_task = task;
  789. goto retry;
  790. }
  791. goto out;
  792. }
  793. deactivate_task(rq, next_task, 0);
  794. set_task_cpu(next_task, lowest_rq->cpu);
  795. activate_task(lowest_rq, next_task, 0);
  796. resched_task(lowest_rq->curr);
  797. spin_unlock(&lowest_rq->lock);
  798. ret = 1;
  799. out:
  800. put_task_struct(next_task);
  801. return ret;
  802. }
  803. /*
  804. * TODO: Currently we just use the second highest prio task on
  805. * the queue, and stop when it can't migrate (or there's
  806. * no more RT tasks). There may be a case where a lower
  807. * priority RT task has a different affinity than the
  808. * higher RT task. In this case the lower RT task could
  809. * possibly be able to migrate where as the higher priority
  810. * RT task could not. We currently ignore this issue.
  811. * Enhancements are welcome!
  812. */
  813. static void push_rt_tasks(struct rq *rq)
  814. {
  815. /* push_rt_task will return true if it moved an RT */
  816. while (push_rt_task(rq))
  817. ;
  818. }
  819. static int pull_rt_task(struct rq *this_rq)
  820. {
  821. int this_cpu = this_rq->cpu, ret = 0, cpu;
  822. struct task_struct *p, *next;
  823. struct rq *src_rq;
  824. if (likely(!rt_overloaded(this_rq)))
  825. return 0;
  826. next = pick_next_task_rt(this_rq);
  827. for_each_cpu_mask(cpu, this_rq->rd->rto_mask) {
  828. if (this_cpu == cpu)
  829. continue;
  830. src_rq = cpu_rq(cpu);
  831. /*
  832. * We can potentially drop this_rq's lock in
  833. * double_lock_balance, and another CPU could
  834. * steal our next task - hence we must cause
  835. * the caller to recalculate the next task
  836. * in that case:
  837. */
  838. if (double_lock_balance(this_rq, src_rq)) {
  839. struct task_struct *old_next = next;
  840. next = pick_next_task_rt(this_rq);
  841. if (next != old_next)
  842. ret = 1;
  843. }
  844. /*
  845. * Are there still pullable RT tasks?
  846. */
  847. if (src_rq->rt.rt_nr_running <= 1)
  848. goto skip;
  849. p = pick_next_highest_task_rt(src_rq, this_cpu);
  850. /*
  851. * Do we have an RT task that preempts
  852. * the to-be-scheduled task?
  853. */
  854. if (p && (!next || (p->prio < next->prio))) {
  855. WARN_ON(p == src_rq->curr);
  856. WARN_ON(!p->se.on_rq);
  857. /*
  858. * There's a chance that p is higher in priority
  859. * than what's currently running on its cpu.
  860. * This is just that p is wakeing up and hasn't
  861. * had a chance to schedule. We only pull
  862. * p if it is lower in priority than the
  863. * current task on the run queue or
  864. * this_rq next task is lower in prio than
  865. * the current task on that rq.
  866. */
  867. if (p->prio < src_rq->curr->prio ||
  868. (next && next->prio < src_rq->curr->prio))
  869. goto skip;
  870. ret = 1;
  871. deactivate_task(src_rq, p, 0);
  872. set_task_cpu(p, this_cpu);
  873. activate_task(this_rq, p, 0);
  874. /*
  875. * We continue with the search, just in
  876. * case there's an even higher prio task
  877. * in another runqueue. (low likelyhood
  878. * but possible)
  879. *
  880. * Update next so that we won't pick a task
  881. * on another cpu with a priority lower (or equal)
  882. * than the one we just picked.
  883. */
  884. next = p;
  885. }
  886. skip:
  887. spin_unlock(&src_rq->lock);
  888. }
  889. return ret;
  890. }
  891. static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
  892. {
  893. /* Try to pull RT tasks here if we lower this rq's prio */
  894. if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
  895. pull_rt_task(rq);
  896. }
  897. static void post_schedule_rt(struct rq *rq)
  898. {
  899. /*
  900. * If we have more than one rt_task queued, then
  901. * see if we can push the other rt_tasks off to other CPUS.
  902. * Note we may release the rq lock, and since
  903. * the lock was owned by prev, we need to release it
  904. * first via finish_lock_switch and then reaquire it here.
  905. */
  906. if (unlikely(rq->rt.overloaded)) {
  907. spin_lock_irq(&rq->lock);
  908. push_rt_tasks(rq);
  909. spin_unlock_irq(&rq->lock);
  910. }
  911. }
  912. static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
  913. {
  914. if (!task_running(rq, p) &&
  915. (p->prio >= rq->rt.highest_prio) &&
  916. rq->rt.overloaded)
  917. push_rt_tasks(rq);
  918. }
  919. static unsigned long
  920. load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
  921. unsigned long max_load_move,
  922. struct sched_domain *sd, enum cpu_idle_type idle,
  923. int *all_pinned, int *this_best_prio)
  924. {
  925. /* don't touch RT tasks */
  926. return 0;
  927. }
  928. static int
  929. move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
  930. struct sched_domain *sd, enum cpu_idle_type idle)
  931. {
  932. /* don't touch RT tasks */
  933. return 0;
  934. }
  935. static void set_cpus_allowed_rt(struct task_struct *p,
  936. const cpumask_t *new_mask)
  937. {
  938. int weight = cpus_weight(*new_mask);
  939. BUG_ON(!rt_task(p));
  940. /*
  941. * Update the migration status of the RQ if we have an RT task
  942. * which is running AND changing its weight value.
  943. */
  944. if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
  945. struct rq *rq = task_rq(p);
  946. if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
  947. rq->rt.rt_nr_migratory++;
  948. } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
  949. BUG_ON(!rq->rt.rt_nr_migratory);
  950. rq->rt.rt_nr_migratory--;
  951. }
  952. update_rt_migration(rq);
  953. }
  954. p->cpus_allowed = *new_mask;
  955. p->rt.nr_cpus_allowed = weight;
  956. }
  957. /* Assumes rq->lock is held */
  958. static void join_domain_rt(struct rq *rq)
  959. {
  960. if (rq->rt.overloaded)
  961. rt_set_overload(rq);
  962. }
  963. /* Assumes rq->lock is held */
  964. static void leave_domain_rt(struct rq *rq)
  965. {
  966. if (rq->rt.overloaded)
  967. rt_clear_overload(rq);
  968. }
  969. /*
  970. * When switch from the rt queue, we bring ourselves to a position
  971. * that we might want to pull RT tasks from other runqueues.
  972. */
  973. static void switched_from_rt(struct rq *rq, struct task_struct *p,
  974. int running)
  975. {
  976. /*
  977. * If there are other RT tasks then we will reschedule
  978. * and the scheduling of the other RT tasks will handle
  979. * the balancing. But if we are the last RT task
  980. * we may need to handle the pulling of RT tasks
  981. * now.
  982. */
  983. if (!rq->rt.rt_nr_running)
  984. pull_rt_task(rq);
  985. }
  986. #endif /* CONFIG_SMP */
  987. /*
  988. * When switching a task to RT, we may overload the runqueue
  989. * with RT tasks. In this case we try to push them off to
  990. * other runqueues.
  991. */
  992. static void switched_to_rt(struct rq *rq, struct task_struct *p,
  993. int running)
  994. {
  995. int check_resched = 1;
  996. /*
  997. * If we are already running, then there's nothing
  998. * that needs to be done. But if we are not running
  999. * we may need to preempt the current running task.
  1000. * If that current running task is also an RT task
  1001. * then see if we can move to another run queue.
  1002. */
  1003. if (!running) {
  1004. #ifdef CONFIG_SMP
  1005. if (rq->rt.overloaded && push_rt_task(rq) &&
  1006. /* Don't resched if we changed runqueues */
  1007. rq != task_rq(p))
  1008. check_resched = 0;
  1009. #endif /* CONFIG_SMP */
  1010. if (check_resched && p->prio < rq->curr->prio)
  1011. resched_task(rq->curr);
  1012. }
  1013. }
  1014. /*
  1015. * Priority of the task has changed. This may cause
  1016. * us to initiate a push or pull.
  1017. */
  1018. static void prio_changed_rt(struct rq *rq, struct task_struct *p,
  1019. int oldprio, int running)
  1020. {
  1021. if (running) {
  1022. #ifdef CONFIG_SMP
  1023. /*
  1024. * If our priority decreases while running, we
  1025. * may need to pull tasks to this runqueue.
  1026. */
  1027. if (oldprio < p->prio)
  1028. pull_rt_task(rq);
  1029. /*
  1030. * If there's a higher priority task waiting to run
  1031. * then reschedule. Note, the above pull_rt_task
  1032. * can release the rq lock and p could migrate.
  1033. * Only reschedule if p is still on the same runqueue.
  1034. */
  1035. if (p->prio > rq->rt.highest_prio && rq->curr == p)
  1036. resched_task(p);
  1037. #else
  1038. /* For UP simply resched on drop of prio */
  1039. if (oldprio < p->prio)
  1040. resched_task(p);
  1041. #endif /* CONFIG_SMP */
  1042. } else {
  1043. /*
  1044. * This task is not running, but if it is
  1045. * greater than the current running task
  1046. * then reschedule.
  1047. */
  1048. if (p->prio < rq->curr->prio)
  1049. resched_task(rq->curr);
  1050. }
  1051. }
  1052. static void watchdog(struct rq *rq, struct task_struct *p)
  1053. {
  1054. unsigned long soft, hard;
  1055. if (!p->signal)
  1056. return;
  1057. soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
  1058. hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
  1059. if (soft != RLIM_INFINITY) {
  1060. unsigned long next;
  1061. p->rt.timeout++;
  1062. next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
  1063. if (p->rt.timeout > next)
  1064. p->it_sched_expires = p->se.sum_exec_runtime;
  1065. }
  1066. }
  1067. static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
  1068. {
  1069. update_curr_rt(rq);
  1070. watchdog(rq, p);
  1071. /*
  1072. * RR tasks need a special form of timeslice management.
  1073. * FIFO tasks have no timeslices.
  1074. */
  1075. if (p->policy != SCHED_RR)
  1076. return;
  1077. if (--p->rt.time_slice)
  1078. return;
  1079. p->rt.time_slice = DEF_TIMESLICE;
  1080. /*
  1081. * Requeue to the end of queue if we are not the only element
  1082. * on the queue:
  1083. */
  1084. if (p->rt.run_list.prev != p->rt.run_list.next) {
  1085. requeue_task_rt(rq, p);
  1086. set_tsk_need_resched(p);
  1087. }
  1088. }
  1089. static void set_curr_task_rt(struct rq *rq)
  1090. {
  1091. struct task_struct *p = rq->curr;
  1092. p->se.exec_start = rq->clock;
  1093. }
  1094. const struct sched_class rt_sched_class = {
  1095. .next = &fair_sched_class,
  1096. .enqueue_task = enqueue_task_rt,
  1097. .dequeue_task = dequeue_task_rt,
  1098. .yield_task = yield_task_rt,
  1099. #ifdef CONFIG_SMP
  1100. .select_task_rq = select_task_rq_rt,
  1101. #endif /* CONFIG_SMP */
  1102. .check_preempt_curr = check_preempt_curr_rt,
  1103. .pick_next_task = pick_next_task_rt,
  1104. .put_prev_task = put_prev_task_rt,
  1105. #ifdef CONFIG_SMP
  1106. .load_balance = load_balance_rt,
  1107. .move_one_task = move_one_task_rt,
  1108. .set_cpus_allowed = set_cpus_allowed_rt,
  1109. .join_domain = join_domain_rt,
  1110. .leave_domain = leave_domain_rt,
  1111. .pre_schedule = pre_schedule_rt,
  1112. .post_schedule = post_schedule_rt,
  1113. .task_wake_up = task_wake_up_rt,
  1114. .switched_from = switched_from_rt,
  1115. #endif
  1116. .set_curr_task = set_curr_task_rt,
  1117. .task_tick = task_tick_rt,
  1118. .prio_changed = prio_changed_rt,
  1119. .switched_to = switched_to_rt,
  1120. };