x86.c 128 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * derived from drivers/kvm/kvm_main.c
  5. *
  6. * Copyright (C) 2006 Qumranet, Inc.
  7. * Copyright (C) 2008 Qumranet, Inc.
  8. * Copyright IBM Corporation, 2008
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Amit Shah <amit.shah@qumranet.com>
  14. * Ben-Ami Yassour <benami@il.ibm.com>
  15. *
  16. * This work is licensed under the terms of the GNU GPL, version 2. See
  17. * the COPYING file in the top-level directory.
  18. *
  19. */
  20. #include <linux/kvm_host.h>
  21. #include "irq.h"
  22. #include "mmu.h"
  23. #include "i8254.h"
  24. #include "tss.h"
  25. #include "kvm_cache_regs.h"
  26. #include "x86.h"
  27. #include <linux/clocksource.h>
  28. #include <linux/interrupt.h>
  29. #include <linux/kvm.h>
  30. #include <linux/fs.h>
  31. #include <linux/vmalloc.h>
  32. #include <linux/module.h>
  33. #include <linux/mman.h>
  34. #include <linux/highmem.h>
  35. #include <linux/iommu.h>
  36. #include <linux/intel-iommu.h>
  37. #include <linux/cpufreq.h>
  38. #include <linux/user-return-notifier.h>
  39. #include <trace/events/kvm.h>
  40. #undef TRACE_INCLUDE_FILE
  41. #define CREATE_TRACE_POINTS
  42. #include "trace.h"
  43. #include <asm/uaccess.h>
  44. #include <asm/msr.h>
  45. #include <asm/desc.h>
  46. #include <asm/mtrr.h>
  47. #include <asm/mce.h>
  48. #define MAX_IO_MSRS 256
  49. #define CR0_RESERVED_BITS \
  50. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  51. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  52. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  53. #define CR4_RESERVED_BITS \
  54. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  55. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  56. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  57. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  58. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  59. #define KVM_MAX_MCE_BANKS 32
  60. #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
  61. /* EFER defaults:
  62. * - enable syscall per default because its emulated by KVM
  63. * - enable LME and LMA per default on 64 bit KVM
  64. */
  65. #ifdef CONFIG_X86_64
  66. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
  67. #else
  68. static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
  69. #endif
  70. #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
  71. #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
  72. static void update_cr8_intercept(struct kvm_vcpu *vcpu);
  73. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  74. struct kvm_cpuid_entry2 __user *entries);
  75. struct kvm_x86_ops *kvm_x86_ops;
  76. EXPORT_SYMBOL_GPL(kvm_x86_ops);
  77. int ignore_msrs = 0;
  78. module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
  79. #define KVM_NR_SHARED_MSRS 16
  80. struct kvm_shared_msrs_global {
  81. int nr;
  82. struct kvm_shared_msr {
  83. u32 msr;
  84. u64 value;
  85. } msrs[KVM_NR_SHARED_MSRS];
  86. };
  87. struct kvm_shared_msrs {
  88. struct user_return_notifier urn;
  89. bool registered;
  90. u64 current_value[KVM_NR_SHARED_MSRS];
  91. };
  92. static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
  93. static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
  94. struct kvm_stats_debugfs_item debugfs_entries[] = {
  95. { "pf_fixed", VCPU_STAT(pf_fixed) },
  96. { "pf_guest", VCPU_STAT(pf_guest) },
  97. { "tlb_flush", VCPU_STAT(tlb_flush) },
  98. { "invlpg", VCPU_STAT(invlpg) },
  99. { "exits", VCPU_STAT(exits) },
  100. { "io_exits", VCPU_STAT(io_exits) },
  101. { "mmio_exits", VCPU_STAT(mmio_exits) },
  102. { "signal_exits", VCPU_STAT(signal_exits) },
  103. { "irq_window", VCPU_STAT(irq_window_exits) },
  104. { "nmi_window", VCPU_STAT(nmi_window_exits) },
  105. { "halt_exits", VCPU_STAT(halt_exits) },
  106. { "halt_wakeup", VCPU_STAT(halt_wakeup) },
  107. { "hypercalls", VCPU_STAT(hypercalls) },
  108. { "request_irq", VCPU_STAT(request_irq_exits) },
  109. { "irq_exits", VCPU_STAT(irq_exits) },
  110. { "host_state_reload", VCPU_STAT(host_state_reload) },
  111. { "efer_reload", VCPU_STAT(efer_reload) },
  112. { "fpu_reload", VCPU_STAT(fpu_reload) },
  113. { "insn_emulation", VCPU_STAT(insn_emulation) },
  114. { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
  115. { "irq_injections", VCPU_STAT(irq_injections) },
  116. { "nmi_injections", VCPU_STAT(nmi_injections) },
  117. { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
  118. { "mmu_pte_write", VM_STAT(mmu_pte_write) },
  119. { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
  120. { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
  121. { "mmu_flooded", VM_STAT(mmu_flooded) },
  122. { "mmu_recycled", VM_STAT(mmu_recycled) },
  123. { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
  124. { "mmu_unsync", VM_STAT(mmu_unsync) },
  125. { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
  126. { "largepages", VM_STAT(lpages) },
  127. { NULL }
  128. };
  129. static void kvm_on_user_return(struct user_return_notifier *urn)
  130. {
  131. unsigned slot;
  132. struct kvm_shared_msr *global;
  133. struct kvm_shared_msrs *locals
  134. = container_of(urn, struct kvm_shared_msrs, urn);
  135. for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
  136. global = &shared_msrs_global.msrs[slot];
  137. if (global->value != locals->current_value[slot]) {
  138. wrmsrl(global->msr, global->value);
  139. locals->current_value[slot] = global->value;
  140. }
  141. }
  142. locals->registered = false;
  143. user_return_notifier_unregister(urn);
  144. }
  145. void kvm_define_shared_msr(unsigned slot, u32 msr)
  146. {
  147. int cpu;
  148. u64 value;
  149. if (slot >= shared_msrs_global.nr)
  150. shared_msrs_global.nr = slot + 1;
  151. shared_msrs_global.msrs[slot].msr = msr;
  152. rdmsrl_safe(msr, &value);
  153. shared_msrs_global.msrs[slot].value = value;
  154. for_each_online_cpu(cpu)
  155. per_cpu(shared_msrs, cpu).current_value[slot] = value;
  156. }
  157. EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
  158. static void kvm_shared_msr_cpu_online(void)
  159. {
  160. unsigned i;
  161. struct kvm_shared_msrs *locals = &__get_cpu_var(shared_msrs);
  162. for (i = 0; i < shared_msrs_global.nr; ++i)
  163. locals->current_value[i] = shared_msrs_global.msrs[i].value;
  164. }
  165. void kvm_set_shared_msr(unsigned slot, u64 value)
  166. {
  167. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  168. if (value == smsr->current_value[slot])
  169. return;
  170. smsr->current_value[slot] = value;
  171. wrmsrl(shared_msrs_global.msrs[slot].msr, value);
  172. if (!smsr->registered) {
  173. smsr->urn.on_user_return = kvm_on_user_return;
  174. user_return_notifier_register(&smsr->urn);
  175. smsr->registered = true;
  176. }
  177. }
  178. EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
  179. static void drop_user_return_notifiers(void *ignore)
  180. {
  181. struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
  182. if (smsr->registered)
  183. kvm_on_user_return(&smsr->urn);
  184. }
  185. unsigned long segment_base(u16 selector)
  186. {
  187. struct descriptor_table gdt;
  188. struct desc_struct *d;
  189. unsigned long table_base;
  190. unsigned long v;
  191. if (selector == 0)
  192. return 0;
  193. kvm_get_gdt(&gdt);
  194. table_base = gdt.base;
  195. if (selector & 4) { /* from ldt */
  196. u16 ldt_selector = kvm_read_ldt();
  197. table_base = segment_base(ldt_selector);
  198. }
  199. d = (struct desc_struct *)(table_base + (selector & ~7));
  200. v = get_desc_base(d);
  201. #ifdef CONFIG_X86_64
  202. if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
  203. v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
  204. #endif
  205. return v;
  206. }
  207. EXPORT_SYMBOL_GPL(segment_base);
  208. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  209. {
  210. if (irqchip_in_kernel(vcpu->kvm))
  211. return vcpu->arch.apic_base;
  212. else
  213. return vcpu->arch.apic_base;
  214. }
  215. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  216. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  217. {
  218. /* TODO: reserve bits check */
  219. if (irqchip_in_kernel(vcpu->kvm))
  220. kvm_lapic_set_base(vcpu, data);
  221. else
  222. vcpu->arch.apic_base = data;
  223. }
  224. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  225. void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
  226. {
  227. WARN_ON(vcpu->arch.exception.pending);
  228. vcpu->arch.exception.pending = true;
  229. vcpu->arch.exception.has_error_code = false;
  230. vcpu->arch.exception.nr = nr;
  231. }
  232. EXPORT_SYMBOL_GPL(kvm_queue_exception);
  233. void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
  234. u32 error_code)
  235. {
  236. ++vcpu->stat.pf_guest;
  237. if (vcpu->arch.exception.pending) {
  238. switch(vcpu->arch.exception.nr) {
  239. case DF_VECTOR:
  240. /* triple fault -> shutdown */
  241. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  242. return;
  243. case PF_VECTOR:
  244. vcpu->arch.exception.nr = DF_VECTOR;
  245. vcpu->arch.exception.error_code = 0;
  246. return;
  247. default:
  248. /* replace previous exception with a new one in a hope
  249. that instruction re-execution will regenerate lost
  250. exception */
  251. vcpu->arch.exception.pending = false;
  252. break;
  253. }
  254. }
  255. vcpu->arch.cr2 = addr;
  256. kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
  257. }
  258. void kvm_inject_nmi(struct kvm_vcpu *vcpu)
  259. {
  260. vcpu->arch.nmi_pending = 1;
  261. }
  262. EXPORT_SYMBOL_GPL(kvm_inject_nmi);
  263. void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
  264. {
  265. WARN_ON(vcpu->arch.exception.pending);
  266. vcpu->arch.exception.pending = true;
  267. vcpu->arch.exception.has_error_code = true;
  268. vcpu->arch.exception.nr = nr;
  269. vcpu->arch.exception.error_code = error_code;
  270. }
  271. EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
  272. /*
  273. * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
  274. * a #GP and return false.
  275. */
  276. bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
  277. {
  278. if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
  279. return true;
  280. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  281. return false;
  282. }
  283. EXPORT_SYMBOL_GPL(kvm_require_cpl);
  284. /*
  285. * Load the pae pdptrs. Return true is they are all valid.
  286. */
  287. int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  288. {
  289. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  290. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  291. int i;
  292. int ret;
  293. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  294. ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
  295. offset * sizeof(u64), sizeof(pdpte));
  296. if (ret < 0) {
  297. ret = 0;
  298. goto out;
  299. }
  300. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  301. if (is_present_gpte(pdpte[i]) &&
  302. (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
  303. ret = 0;
  304. goto out;
  305. }
  306. }
  307. ret = 1;
  308. memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
  309. __set_bit(VCPU_EXREG_PDPTR,
  310. (unsigned long *)&vcpu->arch.regs_avail);
  311. __set_bit(VCPU_EXREG_PDPTR,
  312. (unsigned long *)&vcpu->arch.regs_dirty);
  313. out:
  314. return ret;
  315. }
  316. EXPORT_SYMBOL_GPL(load_pdptrs);
  317. static bool pdptrs_changed(struct kvm_vcpu *vcpu)
  318. {
  319. u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
  320. bool changed = true;
  321. int r;
  322. if (is_long_mode(vcpu) || !is_pae(vcpu))
  323. return false;
  324. if (!test_bit(VCPU_EXREG_PDPTR,
  325. (unsigned long *)&vcpu->arch.regs_avail))
  326. return true;
  327. r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
  328. if (r < 0)
  329. goto out;
  330. changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
  331. out:
  332. return changed;
  333. }
  334. void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  335. {
  336. if (cr0 & CR0_RESERVED_BITS) {
  337. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  338. cr0, vcpu->arch.cr0);
  339. kvm_inject_gp(vcpu, 0);
  340. return;
  341. }
  342. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  343. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  344. kvm_inject_gp(vcpu, 0);
  345. return;
  346. }
  347. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  348. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  349. "and a clear PE flag\n");
  350. kvm_inject_gp(vcpu, 0);
  351. return;
  352. }
  353. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  354. #ifdef CONFIG_X86_64
  355. if ((vcpu->arch.shadow_efer & EFER_LME)) {
  356. int cs_db, cs_l;
  357. if (!is_pae(vcpu)) {
  358. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  359. "in long mode while PAE is disabled\n");
  360. kvm_inject_gp(vcpu, 0);
  361. return;
  362. }
  363. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  364. if (cs_l) {
  365. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  366. "in long mode while CS.L == 1\n");
  367. kvm_inject_gp(vcpu, 0);
  368. return;
  369. }
  370. } else
  371. #endif
  372. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  373. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  374. "reserved bits\n");
  375. kvm_inject_gp(vcpu, 0);
  376. return;
  377. }
  378. }
  379. kvm_x86_ops->set_cr0(vcpu, cr0);
  380. vcpu->arch.cr0 = cr0;
  381. kvm_mmu_reset_context(vcpu);
  382. return;
  383. }
  384. EXPORT_SYMBOL_GPL(kvm_set_cr0);
  385. void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  386. {
  387. kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
  388. }
  389. EXPORT_SYMBOL_GPL(kvm_lmsw);
  390. void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  391. {
  392. unsigned long old_cr4 = vcpu->arch.cr4;
  393. unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
  394. if (cr4 & CR4_RESERVED_BITS) {
  395. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  396. kvm_inject_gp(vcpu, 0);
  397. return;
  398. }
  399. if (is_long_mode(vcpu)) {
  400. if (!(cr4 & X86_CR4_PAE)) {
  401. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  402. "in long mode\n");
  403. kvm_inject_gp(vcpu, 0);
  404. return;
  405. }
  406. } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
  407. && ((cr4 ^ old_cr4) & pdptr_bits)
  408. && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
  409. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  410. kvm_inject_gp(vcpu, 0);
  411. return;
  412. }
  413. if (cr4 & X86_CR4_VMXE) {
  414. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  415. kvm_inject_gp(vcpu, 0);
  416. return;
  417. }
  418. kvm_x86_ops->set_cr4(vcpu, cr4);
  419. vcpu->arch.cr4 = cr4;
  420. vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
  421. kvm_mmu_reset_context(vcpu);
  422. }
  423. EXPORT_SYMBOL_GPL(kvm_set_cr4);
  424. void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  425. {
  426. if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
  427. kvm_mmu_sync_roots(vcpu);
  428. kvm_mmu_flush_tlb(vcpu);
  429. return;
  430. }
  431. if (is_long_mode(vcpu)) {
  432. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  433. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  434. kvm_inject_gp(vcpu, 0);
  435. return;
  436. }
  437. } else {
  438. if (is_pae(vcpu)) {
  439. if (cr3 & CR3_PAE_RESERVED_BITS) {
  440. printk(KERN_DEBUG
  441. "set_cr3: #GP, reserved bits\n");
  442. kvm_inject_gp(vcpu, 0);
  443. return;
  444. }
  445. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  446. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  447. "reserved bits\n");
  448. kvm_inject_gp(vcpu, 0);
  449. return;
  450. }
  451. }
  452. /*
  453. * We don't check reserved bits in nonpae mode, because
  454. * this isn't enforced, and VMware depends on this.
  455. */
  456. }
  457. /*
  458. * Does the new cr3 value map to physical memory? (Note, we
  459. * catch an invalid cr3 even in real-mode, because it would
  460. * cause trouble later on when we turn on paging anyway.)
  461. *
  462. * A real CPU would silently accept an invalid cr3 and would
  463. * attempt to use it - with largely undefined (and often hard
  464. * to debug) behavior on the guest side.
  465. */
  466. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  467. kvm_inject_gp(vcpu, 0);
  468. else {
  469. vcpu->arch.cr3 = cr3;
  470. vcpu->arch.mmu.new_cr3(vcpu);
  471. }
  472. }
  473. EXPORT_SYMBOL_GPL(kvm_set_cr3);
  474. void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  475. {
  476. if (cr8 & CR8_RESERVED_BITS) {
  477. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  478. kvm_inject_gp(vcpu, 0);
  479. return;
  480. }
  481. if (irqchip_in_kernel(vcpu->kvm))
  482. kvm_lapic_set_tpr(vcpu, cr8);
  483. else
  484. vcpu->arch.cr8 = cr8;
  485. }
  486. EXPORT_SYMBOL_GPL(kvm_set_cr8);
  487. unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
  488. {
  489. if (irqchip_in_kernel(vcpu->kvm))
  490. return kvm_lapic_get_cr8(vcpu);
  491. else
  492. return vcpu->arch.cr8;
  493. }
  494. EXPORT_SYMBOL_GPL(kvm_get_cr8);
  495. static inline u32 bit(int bitno)
  496. {
  497. return 1 << (bitno & 31);
  498. }
  499. /*
  500. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  501. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  502. *
  503. * This list is modified at module load time to reflect the
  504. * capabilities of the host cpu. This capabilities test skips MSRs that are
  505. * kvm-specific. Those are put in the beginning of the list.
  506. */
  507. #define KVM_SAVE_MSRS_BEGIN 2
  508. static u32 msrs_to_save[] = {
  509. MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
  510. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  511. MSR_K6_STAR,
  512. #ifdef CONFIG_X86_64
  513. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  514. #endif
  515. MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
  516. };
  517. static unsigned num_msrs_to_save;
  518. static u32 emulated_msrs[] = {
  519. MSR_IA32_MISC_ENABLE,
  520. };
  521. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  522. {
  523. if (efer & efer_reserved_bits) {
  524. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  525. efer);
  526. kvm_inject_gp(vcpu, 0);
  527. return;
  528. }
  529. if (is_paging(vcpu)
  530. && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  531. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  532. kvm_inject_gp(vcpu, 0);
  533. return;
  534. }
  535. if (efer & EFER_FFXSR) {
  536. struct kvm_cpuid_entry2 *feat;
  537. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  538. if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
  539. printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
  540. kvm_inject_gp(vcpu, 0);
  541. return;
  542. }
  543. }
  544. if (efer & EFER_SVME) {
  545. struct kvm_cpuid_entry2 *feat;
  546. feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
  547. if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
  548. printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
  549. kvm_inject_gp(vcpu, 0);
  550. return;
  551. }
  552. }
  553. kvm_x86_ops->set_efer(vcpu, efer);
  554. efer &= ~EFER_LMA;
  555. efer |= vcpu->arch.shadow_efer & EFER_LMA;
  556. vcpu->arch.shadow_efer = efer;
  557. vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
  558. kvm_mmu_reset_context(vcpu);
  559. }
  560. void kvm_enable_efer_bits(u64 mask)
  561. {
  562. efer_reserved_bits &= ~mask;
  563. }
  564. EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
  565. /*
  566. * Writes msr value into into the appropriate "register".
  567. * Returns 0 on success, non-0 otherwise.
  568. * Assumes vcpu_load() was already called.
  569. */
  570. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  571. {
  572. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  573. }
  574. /*
  575. * Adapt set_msr() to msr_io()'s calling convention
  576. */
  577. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  578. {
  579. return kvm_set_msr(vcpu, index, *data);
  580. }
  581. static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
  582. {
  583. static int version;
  584. struct pvclock_wall_clock wc;
  585. struct timespec now, sys, boot;
  586. if (!wall_clock)
  587. return;
  588. version++;
  589. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  590. /*
  591. * The guest calculates current wall clock time by adding
  592. * system time (updated by kvm_write_guest_time below) to the
  593. * wall clock specified here. guest system time equals host
  594. * system time for us, thus we must fill in host boot time here.
  595. */
  596. now = current_kernel_time();
  597. ktime_get_ts(&sys);
  598. boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys));
  599. wc.sec = boot.tv_sec;
  600. wc.nsec = boot.tv_nsec;
  601. wc.version = version;
  602. kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
  603. version++;
  604. kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
  605. }
  606. static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
  607. {
  608. uint32_t quotient, remainder;
  609. /* Don't try to replace with do_div(), this one calculates
  610. * "(dividend << 32) / divisor" */
  611. __asm__ ( "divl %4"
  612. : "=a" (quotient), "=d" (remainder)
  613. : "0" (0), "1" (dividend), "r" (divisor) );
  614. return quotient;
  615. }
  616. static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
  617. {
  618. uint64_t nsecs = 1000000000LL;
  619. int32_t shift = 0;
  620. uint64_t tps64;
  621. uint32_t tps32;
  622. tps64 = tsc_khz * 1000LL;
  623. while (tps64 > nsecs*2) {
  624. tps64 >>= 1;
  625. shift--;
  626. }
  627. tps32 = (uint32_t)tps64;
  628. while (tps32 <= (uint32_t)nsecs) {
  629. tps32 <<= 1;
  630. shift++;
  631. }
  632. hv_clock->tsc_shift = shift;
  633. hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
  634. pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
  635. __func__, tsc_khz, hv_clock->tsc_shift,
  636. hv_clock->tsc_to_system_mul);
  637. }
  638. static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
  639. static void kvm_write_guest_time(struct kvm_vcpu *v)
  640. {
  641. struct timespec ts;
  642. unsigned long flags;
  643. struct kvm_vcpu_arch *vcpu = &v->arch;
  644. void *shared_kaddr;
  645. unsigned long this_tsc_khz;
  646. if ((!vcpu->time_page))
  647. return;
  648. this_tsc_khz = get_cpu_var(cpu_tsc_khz);
  649. if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
  650. kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
  651. vcpu->hv_clock_tsc_khz = this_tsc_khz;
  652. }
  653. put_cpu_var(cpu_tsc_khz);
  654. /* Keep irq disabled to prevent changes to the clock */
  655. local_irq_save(flags);
  656. kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
  657. ktime_get_ts(&ts);
  658. local_irq_restore(flags);
  659. /* With all the info we got, fill in the values */
  660. vcpu->hv_clock.system_time = ts.tv_nsec +
  661. (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset;
  662. /*
  663. * The interface expects us to write an even number signaling that the
  664. * update is finished. Since the guest won't see the intermediate
  665. * state, we just increase by 2 at the end.
  666. */
  667. vcpu->hv_clock.version += 2;
  668. shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
  669. memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
  670. sizeof(vcpu->hv_clock));
  671. kunmap_atomic(shared_kaddr, KM_USER0);
  672. mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
  673. }
  674. static int kvm_request_guest_time_update(struct kvm_vcpu *v)
  675. {
  676. struct kvm_vcpu_arch *vcpu = &v->arch;
  677. if (!vcpu->time_page)
  678. return 0;
  679. set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
  680. return 1;
  681. }
  682. static bool msr_mtrr_valid(unsigned msr)
  683. {
  684. switch (msr) {
  685. case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
  686. case MSR_MTRRfix64K_00000:
  687. case MSR_MTRRfix16K_80000:
  688. case MSR_MTRRfix16K_A0000:
  689. case MSR_MTRRfix4K_C0000:
  690. case MSR_MTRRfix4K_C8000:
  691. case MSR_MTRRfix4K_D0000:
  692. case MSR_MTRRfix4K_D8000:
  693. case MSR_MTRRfix4K_E0000:
  694. case MSR_MTRRfix4K_E8000:
  695. case MSR_MTRRfix4K_F0000:
  696. case MSR_MTRRfix4K_F8000:
  697. case MSR_MTRRdefType:
  698. case MSR_IA32_CR_PAT:
  699. return true;
  700. case 0x2f8:
  701. return true;
  702. }
  703. return false;
  704. }
  705. static bool valid_pat_type(unsigned t)
  706. {
  707. return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
  708. }
  709. static bool valid_mtrr_type(unsigned t)
  710. {
  711. return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
  712. }
  713. static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  714. {
  715. int i;
  716. if (!msr_mtrr_valid(msr))
  717. return false;
  718. if (msr == MSR_IA32_CR_PAT) {
  719. for (i = 0; i < 8; i++)
  720. if (!valid_pat_type((data >> (i * 8)) & 0xff))
  721. return false;
  722. return true;
  723. } else if (msr == MSR_MTRRdefType) {
  724. if (data & ~0xcff)
  725. return false;
  726. return valid_mtrr_type(data & 0xff);
  727. } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
  728. for (i = 0; i < 8 ; i++)
  729. if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
  730. return false;
  731. return true;
  732. }
  733. /* variable MTRRs */
  734. return valid_mtrr_type(data & 0xff);
  735. }
  736. static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  737. {
  738. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  739. if (!mtrr_valid(vcpu, msr, data))
  740. return 1;
  741. if (msr == MSR_MTRRdefType) {
  742. vcpu->arch.mtrr_state.def_type = data;
  743. vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
  744. } else if (msr == MSR_MTRRfix64K_00000)
  745. p[0] = data;
  746. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  747. p[1 + msr - MSR_MTRRfix16K_80000] = data;
  748. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  749. p[3 + msr - MSR_MTRRfix4K_C0000] = data;
  750. else if (msr == MSR_IA32_CR_PAT)
  751. vcpu->arch.pat = data;
  752. else { /* Variable MTRRs */
  753. int idx, is_mtrr_mask;
  754. u64 *pt;
  755. idx = (msr - 0x200) / 2;
  756. is_mtrr_mask = msr - 0x200 - 2 * idx;
  757. if (!is_mtrr_mask)
  758. pt =
  759. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  760. else
  761. pt =
  762. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  763. *pt = data;
  764. }
  765. kvm_mmu_reset_context(vcpu);
  766. return 0;
  767. }
  768. static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  769. {
  770. u64 mcg_cap = vcpu->arch.mcg_cap;
  771. unsigned bank_num = mcg_cap & 0xff;
  772. switch (msr) {
  773. case MSR_IA32_MCG_STATUS:
  774. vcpu->arch.mcg_status = data;
  775. break;
  776. case MSR_IA32_MCG_CTL:
  777. if (!(mcg_cap & MCG_CTL_P))
  778. return 1;
  779. if (data != 0 && data != ~(u64)0)
  780. return -1;
  781. vcpu->arch.mcg_ctl = data;
  782. break;
  783. default:
  784. if (msr >= MSR_IA32_MC0_CTL &&
  785. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  786. u32 offset = msr - MSR_IA32_MC0_CTL;
  787. /* only 0 or all 1s can be written to IA32_MCi_CTL */
  788. if ((offset & 0x3) == 0 &&
  789. data != 0 && data != ~(u64)0)
  790. return -1;
  791. vcpu->arch.mce_banks[offset] = data;
  792. break;
  793. }
  794. return 1;
  795. }
  796. return 0;
  797. }
  798. static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
  799. {
  800. struct kvm *kvm = vcpu->kvm;
  801. int lm = is_long_mode(vcpu);
  802. u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
  803. : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
  804. u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
  805. : kvm->arch.xen_hvm_config.blob_size_32;
  806. u32 page_num = data & ~PAGE_MASK;
  807. u64 page_addr = data & PAGE_MASK;
  808. u8 *page;
  809. int r;
  810. r = -E2BIG;
  811. if (page_num >= blob_size)
  812. goto out;
  813. r = -ENOMEM;
  814. page = kzalloc(PAGE_SIZE, GFP_KERNEL);
  815. if (!page)
  816. goto out;
  817. r = -EFAULT;
  818. if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
  819. goto out_free;
  820. if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
  821. goto out_free;
  822. r = 0;
  823. out_free:
  824. kfree(page);
  825. out:
  826. return r;
  827. }
  828. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  829. {
  830. switch (msr) {
  831. case MSR_EFER:
  832. set_efer(vcpu, data);
  833. break;
  834. case MSR_K7_HWCR:
  835. data &= ~(u64)0x40; /* ignore flush filter disable */
  836. if (data != 0) {
  837. pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
  838. data);
  839. return 1;
  840. }
  841. break;
  842. case MSR_FAM10H_MMIO_CONF_BASE:
  843. if (data != 0) {
  844. pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
  845. "0x%llx\n", data);
  846. return 1;
  847. }
  848. break;
  849. case MSR_AMD64_NB_CFG:
  850. break;
  851. case MSR_IA32_DEBUGCTLMSR:
  852. if (!data) {
  853. /* We support the non-activated case already */
  854. break;
  855. } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
  856. /* Values other than LBR and BTF are vendor-specific,
  857. thus reserved and should throw a #GP */
  858. return 1;
  859. }
  860. pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
  861. __func__, data);
  862. break;
  863. case MSR_IA32_UCODE_REV:
  864. case MSR_IA32_UCODE_WRITE:
  865. case MSR_VM_HSAVE_PA:
  866. case MSR_AMD64_PATCH_LOADER:
  867. break;
  868. case 0x200 ... 0x2ff:
  869. return set_msr_mtrr(vcpu, msr, data);
  870. case MSR_IA32_APICBASE:
  871. kvm_set_apic_base(vcpu, data);
  872. break;
  873. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  874. return kvm_x2apic_msr_write(vcpu, msr, data);
  875. case MSR_IA32_MISC_ENABLE:
  876. vcpu->arch.ia32_misc_enable_msr = data;
  877. break;
  878. case MSR_KVM_WALL_CLOCK:
  879. vcpu->kvm->arch.wall_clock = data;
  880. kvm_write_wall_clock(vcpu->kvm, data);
  881. break;
  882. case MSR_KVM_SYSTEM_TIME: {
  883. if (vcpu->arch.time_page) {
  884. kvm_release_page_dirty(vcpu->arch.time_page);
  885. vcpu->arch.time_page = NULL;
  886. }
  887. vcpu->arch.time = data;
  888. /* we verify if the enable bit is set... */
  889. if (!(data & 1))
  890. break;
  891. /* ...but clean it before doing the actual write */
  892. vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
  893. vcpu->arch.time_page =
  894. gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
  895. if (is_error_page(vcpu->arch.time_page)) {
  896. kvm_release_page_clean(vcpu->arch.time_page);
  897. vcpu->arch.time_page = NULL;
  898. }
  899. kvm_request_guest_time_update(vcpu);
  900. break;
  901. }
  902. case MSR_IA32_MCG_CTL:
  903. case MSR_IA32_MCG_STATUS:
  904. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  905. return set_msr_mce(vcpu, msr, data);
  906. /* Performance counters are not protected by a CPUID bit,
  907. * so we should check all of them in the generic path for the sake of
  908. * cross vendor migration.
  909. * Writing a zero into the event select MSRs disables them,
  910. * which we perfectly emulate ;-). Any other value should be at least
  911. * reported, some guests depend on them.
  912. */
  913. case MSR_P6_EVNTSEL0:
  914. case MSR_P6_EVNTSEL1:
  915. case MSR_K7_EVNTSEL0:
  916. case MSR_K7_EVNTSEL1:
  917. case MSR_K7_EVNTSEL2:
  918. case MSR_K7_EVNTSEL3:
  919. if (data != 0)
  920. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  921. "0x%x data 0x%llx\n", msr, data);
  922. break;
  923. /* at least RHEL 4 unconditionally writes to the perfctr registers,
  924. * so we ignore writes to make it happy.
  925. */
  926. case MSR_P6_PERFCTR0:
  927. case MSR_P6_PERFCTR1:
  928. case MSR_K7_PERFCTR0:
  929. case MSR_K7_PERFCTR1:
  930. case MSR_K7_PERFCTR2:
  931. case MSR_K7_PERFCTR3:
  932. pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
  933. "0x%x data 0x%llx\n", msr, data);
  934. break;
  935. default:
  936. if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
  937. return xen_hvm_config(vcpu, data);
  938. if (!ignore_msrs) {
  939. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
  940. msr, data);
  941. return 1;
  942. } else {
  943. pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
  944. msr, data);
  945. break;
  946. }
  947. }
  948. return 0;
  949. }
  950. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  951. /*
  952. * Reads an msr value (of 'msr_index') into 'pdata'.
  953. * Returns 0 on success, non-0 otherwise.
  954. * Assumes vcpu_load() was already called.
  955. */
  956. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  957. {
  958. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  959. }
  960. static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  961. {
  962. u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
  963. if (!msr_mtrr_valid(msr))
  964. return 1;
  965. if (msr == MSR_MTRRdefType)
  966. *pdata = vcpu->arch.mtrr_state.def_type +
  967. (vcpu->arch.mtrr_state.enabled << 10);
  968. else if (msr == MSR_MTRRfix64K_00000)
  969. *pdata = p[0];
  970. else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
  971. *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
  972. else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
  973. *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
  974. else if (msr == MSR_IA32_CR_PAT)
  975. *pdata = vcpu->arch.pat;
  976. else { /* Variable MTRRs */
  977. int idx, is_mtrr_mask;
  978. u64 *pt;
  979. idx = (msr - 0x200) / 2;
  980. is_mtrr_mask = msr - 0x200 - 2 * idx;
  981. if (!is_mtrr_mask)
  982. pt =
  983. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
  984. else
  985. pt =
  986. (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
  987. *pdata = *pt;
  988. }
  989. return 0;
  990. }
  991. static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  992. {
  993. u64 data;
  994. u64 mcg_cap = vcpu->arch.mcg_cap;
  995. unsigned bank_num = mcg_cap & 0xff;
  996. switch (msr) {
  997. case MSR_IA32_P5_MC_ADDR:
  998. case MSR_IA32_P5_MC_TYPE:
  999. data = 0;
  1000. break;
  1001. case MSR_IA32_MCG_CAP:
  1002. data = vcpu->arch.mcg_cap;
  1003. break;
  1004. case MSR_IA32_MCG_CTL:
  1005. if (!(mcg_cap & MCG_CTL_P))
  1006. return 1;
  1007. data = vcpu->arch.mcg_ctl;
  1008. break;
  1009. case MSR_IA32_MCG_STATUS:
  1010. data = vcpu->arch.mcg_status;
  1011. break;
  1012. default:
  1013. if (msr >= MSR_IA32_MC0_CTL &&
  1014. msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
  1015. u32 offset = msr - MSR_IA32_MC0_CTL;
  1016. data = vcpu->arch.mce_banks[offset];
  1017. break;
  1018. }
  1019. return 1;
  1020. }
  1021. *pdata = data;
  1022. return 0;
  1023. }
  1024. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1025. {
  1026. u64 data;
  1027. switch (msr) {
  1028. case MSR_IA32_PLATFORM_ID:
  1029. case MSR_IA32_UCODE_REV:
  1030. case MSR_IA32_EBL_CR_POWERON:
  1031. case MSR_IA32_DEBUGCTLMSR:
  1032. case MSR_IA32_LASTBRANCHFROMIP:
  1033. case MSR_IA32_LASTBRANCHTOIP:
  1034. case MSR_IA32_LASTINTFROMIP:
  1035. case MSR_IA32_LASTINTTOIP:
  1036. case MSR_K8_SYSCFG:
  1037. case MSR_K7_HWCR:
  1038. case MSR_VM_HSAVE_PA:
  1039. case MSR_P6_PERFCTR0:
  1040. case MSR_P6_PERFCTR1:
  1041. case MSR_P6_EVNTSEL0:
  1042. case MSR_P6_EVNTSEL1:
  1043. case MSR_K7_EVNTSEL0:
  1044. case MSR_K7_PERFCTR0:
  1045. case MSR_K8_INT_PENDING_MSG:
  1046. case MSR_AMD64_NB_CFG:
  1047. case MSR_FAM10H_MMIO_CONF_BASE:
  1048. data = 0;
  1049. break;
  1050. case MSR_MTRRcap:
  1051. data = 0x500 | KVM_NR_VAR_MTRR;
  1052. break;
  1053. case 0x200 ... 0x2ff:
  1054. return get_msr_mtrr(vcpu, msr, pdata);
  1055. case 0xcd: /* fsb frequency */
  1056. data = 3;
  1057. break;
  1058. case MSR_IA32_APICBASE:
  1059. data = kvm_get_apic_base(vcpu);
  1060. break;
  1061. case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
  1062. return kvm_x2apic_msr_read(vcpu, msr, pdata);
  1063. break;
  1064. case MSR_IA32_MISC_ENABLE:
  1065. data = vcpu->arch.ia32_misc_enable_msr;
  1066. break;
  1067. case MSR_IA32_PERF_STATUS:
  1068. /* TSC increment by tick */
  1069. data = 1000ULL;
  1070. /* CPU multiplier */
  1071. data |= (((uint64_t)4ULL) << 40);
  1072. break;
  1073. case MSR_EFER:
  1074. data = vcpu->arch.shadow_efer;
  1075. break;
  1076. case MSR_KVM_WALL_CLOCK:
  1077. data = vcpu->kvm->arch.wall_clock;
  1078. break;
  1079. case MSR_KVM_SYSTEM_TIME:
  1080. data = vcpu->arch.time;
  1081. break;
  1082. case MSR_IA32_P5_MC_ADDR:
  1083. case MSR_IA32_P5_MC_TYPE:
  1084. case MSR_IA32_MCG_CAP:
  1085. case MSR_IA32_MCG_CTL:
  1086. case MSR_IA32_MCG_STATUS:
  1087. case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
  1088. return get_msr_mce(vcpu, msr, pdata);
  1089. default:
  1090. if (!ignore_msrs) {
  1091. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1092. return 1;
  1093. } else {
  1094. pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
  1095. data = 0;
  1096. }
  1097. break;
  1098. }
  1099. *pdata = data;
  1100. return 0;
  1101. }
  1102. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1103. /*
  1104. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1105. *
  1106. * @return number of msrs set successfully.
  1107. */
  1108. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1109. struct kvm_msr_entry *entries,
  1110. int (*do_msr)(struct kvm_vcpu *vcpu,
  1111. unsigned index, u64 *data))
  1112. {
  1113. int i;
  1114. vcpu_load(vcpu);
  1115. down_read(&vcpu->kvm->slots_lock);
  1116. for (i = 0; i < msrs->nmsrs; ++i)
  1117. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1118. break;
  1119. up_read(&vcpu->kvm->slots_lock);
  1120. vcpu_put(vcpu);
  1121. return i;
  1122. }
  1123. /*
  1124. * Read or write a bunch of msrs. Parameters are user addresses.
  1125. *
  1126. * @return number of msrs set successfully.
  1127. */
  1128. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1129. int (*do_msr)(struct kvm_vcpu *vcpu,
  1130. unsigned index, u64 *data),
  1131. int writeback)
  1132. {
  1133. struct kvm_msrs msrs;
  1134. struct kvm_msr_entry *entries;
  1135. int r, n;
  1136. unsigned size;
  1137. r = -EFAULT;
  1138. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  1139. goto out;
  1140. r = -E2BIG;
  1141. if (msrs.nmsrs >= MAX_IO_MSRS)
  1142. goto out;
  1143. r = -ENOMEM;
  1144. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  1145. entries = vmalloc(size);
  1146. if (!entries)
  1147. goto out;
  1148. r = -EFAULT;
  1149. if (copy_from_user(entries, user_msrs->entries, size))
  1150. goto out_free;
  1151. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  1152. if (r < 0)
  1153. goto out_free;
  1154. r = -EFAULT;
  1155. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  1156. goto out_free;
  1157. r = n;
  1158. out_free:
  1159. vfree(entries);
  1160. out:
  1161. return r;
  1162. }
  1163. int kvm_dev_ioctl_check_extension(long ext)
  1164. {
  1165. int r;
  1166. switch (ext) {
  1167. case KVM_CAP_IRQCHIP:
  1168. case KVM_CAP_HLT:
  1169. case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
  1170. case KVM_CAP_SET_TSS_ADDR:
  1171. case KVM_CAP_EXT_CPUID:
  1172. case KVM_CAP_CLOCKSOURCE:
  1173. case KVM_CAP_PIT:
  1174. case KVM_CAP_NOP_IO_DELAY:
  1175. case KVM_CAP_MP_STATE:
  1176. case KVM_CAP_SYNC_MMU:
  1177. case KVM_CAP_REINJECT_CONTROL:
  1178. case KVM_CAP_IRQ_INJECT_STATUS:
  1179. case KVM_CAP_ASSIGN_DEV_IRQ:
  1180. case KVM_CAP_IRQFD:
  1181. case KVM_CAP_IOEVENTFD:
  1182. case KVM_CAP_PIT2:
  1183. case KVM_CAP_PIT_STATE2:
  1184. case KVM_CAP_SET_IDENTITY_MAP_ADDR:
  1185. case KVM_CAP_XEN_HVM:
  1186. case KVM_CAP_ADJUST_CLOCK:
  1187. case KVM_CAP_VCPU_EVENTS:
  1188. r = 1;
  1189. break;
  1190. case KVM_CAP_COALESCED_MMIO:
  1191. r = KVM_COALESCED_MMIO_PAGE_OFFSET;
  1192. break;
  1193. case KVM_CAP_VAPIC:
  1194. r = !kvm_x86_ops->cpu_has_accelerated_tpr();
  1195. break;
  1196. case KVM_CAP_NR_VCPUS:
  1197. r = KVM_MAX_VCPUS;
  1198. break;
  1199. case KVM_CAP_NR_MEMSLOTS:
  1200. r = KVM_MEMORY_SLOTS;
  1201. break;
  1202. case KVM_CAP_PV_MMU: /* obsolete */
  1203. r = 0;
  1204. break;
  1205. case KVM_CAP_IOMMU:
  1206. r = iommu_found();
  1207. break;
  1208. case KVM_CAP_MCE:
  1209. r = KVM_MAX_MCE_BANKS;
  1210. break;
  1211. default:
  1212. r = 0;
  1213. break;
  1214. }
  1215. return r;
  1216. }
  1217. long kvm_arch_dev_ioctl(struct file *filp,
  1218. unsigned int ioctl, unsigned long arg)
  1219. {
  1220. void __user *argp = (void __user *)arg;
  1221. long r;
  1222. switch (ioctl) {
  1223. case KVM_GET_MSR_INDEX_LIST: {
  1224. struct kvm_msr_list __user *user_msr_list = argp;
  1225. struct kvm_msr_list msr_list;
  1226. unsigned n;
  1227. r = -EFAULT;
  1228. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  1229. goto out;
  1230. n = msr_list.nmsrs;
  1231. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  1232. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  1233. goto out;
  1234. r = -E2BIG;
  1235. if (n < msr_list.nmsrs)
  1236. goto out;
  1237. r = -EFAULT;
  1238. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  1239. num_msrs_to_save * sizeof(u32)))
  1240. goto out;
  1241. if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
  1242. &emulated_msrs,
  1243. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  1244. goto out;
  1245. r = 0;
  1246. break;
  1247. }
  1248. case KVM_GET_SUPPORTED_CPUID: {
  1249. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1250. struct kvm_cpuid2 cpuid;
  1251. r = -EFAULT;
  1252. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1253. goto out;
  1254. r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
  1255. cpuid_arg->entries);
  1256. if (r)
  1257. goto out;
  1258. r = -EFAULT;
  1259. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1260. goto out;
  1261. r = 0;
  1262. break;
  1263. }
  1264. case KVM_X86_GET_MCE_CAP_SUPPORTED: {
  1265. u64 mce_cap;
  1266. mce_cap = KVM_MCE_CAP_SUPPORTED;
  1267. r = -EFAULT;
  1268. if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
  1269. goto out;
  1270. r = 0;
  1271. break;
  1272. }
  1273. default:
  1274. r = -EINVAL;
  1275. }
  1276. out:
  1277. return r;
  1278. }
  1279. void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  1280. {
  1281. kvm_x86_ops->vcpu_load(vcpu, cpu);
  1282. if (unlikely(per_cpu(cpu_tsc_khz, cpu) == 0)) {
  1283. unsigned long khz = cpufreq_quick_get(cpu);
  1284. if (!khz)
  1285. khz = tsc_khz;
  1286. per_cpu(cpu_tsc_khz, cpu) = khz;
  1287. }
  1288. kvm_request_guest_time_update(vcpu);
  1289. }
  1290. void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
  1291. {
  1292. kvm_x86_ops->vcpu_put(vcpu);
  1293. kvm_put_guest_fpu(vcpu);
  1294. }
  1295. static int is_efer_nx(void)
  1296. {
  1297. unsigned long long efer = 0;
  1298. rdmsrl_safe(MSR_EFER, &efer);
  1299. return efer & EFER_NX;
  1300. }
  1301. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  1302. {
  1303. int i;
  1304. struct kvm_cpuid_entry2 *e, *entry;
  1305. entry = NULL;
  1306. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  1307. e = &vcpu->arch.cpuid_entries[i];
  1308. if (e->function == 0x80000001) {
  1309. entry = e;
  1310. break;
  1311. }
  1312. }
  1313. if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
  1314. entry->edx &= ~(1 << 20);
  1315. printk(KERN_INFO "kvm: guest NX capability removed\n");
  1316. }
  1317. }
  1318. /* when an old userspace process fills a new kernel module */
  1319. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  1320. struct kvm_cpuid *cpuid,
  1321. struct kvm_cpuid_entry __user *entries)
  1322. {
  1323. int r, i;
  1324. struct kvm_cpuid_entry *cpuid_entries;
  1325. r = -E2BIG;
  1326. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1327. goto out;
  1328. r = -ENOMEM;
  1329. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
  1330. if (!cpuid_entries)
  1331. goto out;
  1332. r = -EFAULT;
  1333. if (copy_from_user(cpuid_entries, entries,
  1334. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  1335. goto out_free;
  1336. for (i = 0; i < cpuid->nent; i++) {
  1337. vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
  1338. vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
  1339. vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
  1340. vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
  1341. vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
  1342. vcpu->arch.cpuid_entries[i].index = 0;
  1343. vcpu->arch.cpuid_entries[i].flags = 0;
  1344. vcpu->arch.cpuid_entries[i].padding[0] = 0;
  1345. vcpu->arch.cpuid_entries[i].padding[1] = 0;
  1346. vcpu->arch.cpuid_entries[i].padding[2] = 0;
  1347. }
  1348. vcpu->arch.cpuid_nent = cpuid->nent;
  1349. cpuid_fix_nx_cap(vcpu);
  1350. r = 0;
  1351. kvm_apic_set_version(vcpu);
  1352. out_free:
  1353. vfree(cpuid_entries);
  1354. out:
  1355. return r;
  1356. }
  1357. static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
  1358. struct kvm_cpuid2 *cpuid,
  1359. struct kvm_cpuid_entry2 __user *entries)
  1360. {
  1361. int r;
  1362. r = -E2BIG;
  1363. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1364. goto out;
  1365. r = -EFAULT;
  1366. if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
  1367. cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
  1368. goto out;
  1369. vcpu->arch.cpuid_nent = cpuid->nent;
  1370. kvm_apic_set_version(vcpu);
  1371. return 0;
  1372. out:
  1373. return r;
  1374. }
  1375. static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
  1376. struct kvm_cpuid2 *cpuid,
  1377. struct kvm_cpuid_entry2 __user *entries)
  1378. {
  1379. int r;
  1380. r = -E2BIG;
  1381. if (cpuid->nent < vcpu->arch.cpuid_nent)
  1382. goto out;
  1383. r = -EFAULT;
  1384. if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
  1385. vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
  1386. goto out;
  1387. return 0;
  1388. out:
  1389. cpuid->nent = vcpu->arch.cpuid_nent;
  1390. return r;
  1391. }
  1392. static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1393. u32 index)
  1394. {
  1395. entry->function = function;
  1396. entry->index = index;
  1397. cpuid_count(entry->function, entry->index,
  1398. &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
  1399. entry->flags = 0;
  1400. }
  1401. #define F(x) bit(X86_FEATURE_##x)
  1402. static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
  1403. u32 index, int *nent, int maxnent)
  1404. {
  1405. unsigned f_nx = is_efer_nx() ? F(NX) : 0;
  1406. unsigned f_gbpages = kvm_x86_ops->gb_page_enable() ? F(GBPAGES) : 0;
  1407. #ifdef CONFIG_X86_64
  1408. unsigned f_lm = F(LM);
  1409. #else
  1410. unsigned f_lm = 0;
  1411. #endif
  1412. /* cpuid 1.edx */
  1413. const u32 kvm_supported_word0_x86_features =
  1414. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1415. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1416. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
  1417. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1418. F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
  1419. 0 /* Reserved, DS, ACPI */ | F(MMX) |
  1420. F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
  1421. 0 /* HTT, TM, Reserved, PBE */;
  1422. /* cpuid 0x80000001.edx */
  1423. const u32 kvm_supported_word1_x86_features =
  1424. F(FPU) | F(VME) | F(DE) | F(PSE) |
  1425. F(TSC) | F(MSR) | F(PAE) | F(MCE) |
  1426. F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
  1427. F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
  1428. F(PAT) | F(PSE36) | 0 /* Reserved */ |
  1429. f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
  1430. F(FXSR) | F(FXSR_OPT) | f_gbpages | 0 /* RDTSCP */ |
  1431. 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
  1432. /* cpuid 1.ecx */
  1433. const u32 kvm_supported_word4_x86_features =
  1434. F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
  1435. 0 /* DS-CPL, VMX, SMX, EST */ |
  1436. 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
  1437. 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
  1438. 0 /* Reserved, DCA */ | F(XMM4_1) |
  1439. F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
  1440. 0 /* Reserved, XSAVE, OSXSAVE */;
  1441. /* cpuid 0x80000001.ecx */
  1442. const u32 kvm_supported_word6_x86_features =
  1443. F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
  1444. F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
  1445. F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
  1446. 0 /* SKINIT */ | 0 /* WDT */;
  1447. /* all calls to cpuid_count() should be made on the same cpu */
  1448. get_cpu();
  1449. do_cpuid_1_ent(entry, function, index);
  1450. ++*nent;
  1451. switch (function) {
  1452. case 0:
  1453. entry->eax = min(entry->eax, (u32)0xb);
  1454. break;
  1455. case 1:
  1456. entry->edx &= kvm_supported_word0_x86_features;
  1457. entry->ecx &= kvm_supported_word4_x86_features;
  1458. /* we support x2apic emulation even if host does not support
  1459. * it since we emulate x2apic in software */
  1460. entry->ecx |= F(X2APIC);
  1461. break;
  1462. /* function 2 entries are STATEFUL. That is, repeated cpuid commands
  1463. * may return different values. This forces us to get_cpu() before
  1464. * issuing the first command, and also to emulate this annoying behavior
  1465. * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
  1466. case 2: {
  1467. int t, times = entry->eax & 0xff;
  1468. entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1469. entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  1470. for (t = 1; t < times && *nent < maxnent; ++t) {
  1471. do_cpuid_1_ent(&entry[t], function, 0);
  1472. entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
  1473. ++*nent;
  1474. }
  1475. break;
  1476. }
  1477. /* function 4 and 0xb have additional index. */
  1478. case 4: {
  1479. int i, cache_type;
  1480. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1481. /* read more entries until cache_type is zero */
  1482. for (i = 1; *nent < maxnent; ++i) {
  1483. cache_type = entry[i - 1].eax & 0x1f;
  1484. if (!cache_type)
  1485. break;
  1486. do_cpuid_1_ent(&entry[i], function, i);
  1487. entry[i].flags |=
  1488. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1489. ++*nent;
  1490. }
  1491. break;
  1492. }
  1493. case 0xb: {
  1494. int i, level_type;
  1495. entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1496. /* read more entries until level_type is zero */
  1497. for (i = 1; *nent < maxnent; ++i) {
  1498. level_type = entry[i - 1].ecx & 0xff00;
  1499. if (!level_type)
  1500. break;
  1501. do_cpuid_1_ent(&entry[i], function, i);
  1502. entry[i].flags |=
  1503. KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
  1504. ++*nent;
  1505. }
  1506. break;
  1507. }
  1508. case 0x80000000:
  1509. entry->eax = min(entry->eax, 0x8000001a);
  1510. break;
  1511. case 0x80000001:
  1512. entry->edx &= kvm_supported_word1_x86_features;
  1513. entry->ecx &= kvm_supported_word6_x86_features;
  1514. break;
  1515. }
  1516. put_cpu();
  1517. }
  1518. #undef F
  1519. static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
  1520. struct kvm_cpuid_entry2 __user *entries)
  1521. {
  1522. struct kvm_cpuid_entry2 *cpuid_entries;
  1523. int limit, nent = 0, r = -E2BIG;
  1524. u32 func;
  1525. if (cpuid->nent < 1)
  1526. goto out;
  1527. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  1528. cpuid->nent = KVM_MAX_CPUID_ENTRIES;
  1529. r = -ENOMEM;
  1530. cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
  1531. if (!cpuid_entries)
  1532. goto out;
  1533. do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
  1534. limit = cpuid_entries[0].eax;
  1535. for (func = 1; func <= limit && nent < cpuid->nent; ++func)
  1536. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1537. &nent, cpuid->nent);
  1538. r = -E2BIG;
  1539. if (nent >= cpuid->nent)
  1540. goto out_free;
  1541. do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
  1542. limit = cpuid_entries[nent - 1].eax;
  1543. for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
  1544. do_cpuid_ent(&cpuid_entries[nent], func, 0,
  1545. &nent, cpuid->nent);
  1546. r = -E2BIG;
  1547. if (nent >= cpuid->nent)
  1548. goto out_free;
  1549. r = -EFAULT;
  1550. if (copy_to_user(entries, cpuid_entries,
  1551. nent * sizeof(struct kvm_cpuid_entry2)))
  1552. goto out_free;
  1553. cpuid->nent = nent;
  1554. r = 0;
  1555. out_free:
  1556. vfree(cpuid_entries);
  1557. out:
  1558. return r;
  1559. }
  1560. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  1561. struct kvm_lapic_state *s)
  1562. {
  1563. vcpu_load(vcpu);
  1564. memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
  1565. vcpu_put(vcpu);
  1566. return 0;
  1567. }
  1568. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  1569. struct kvm_lapic_state *s)
  1570. {
  1571. vcpu_load(vcpu);
  1572. memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
  1573. kvm_apic_post_state_restore(vcpu);
  1574. update_cr8_intercept(vcpu);
  1575. vcpu_put(vcpu);
  1576. return 0;
  1577. }
  1578. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  1579. struct kvm_interrupt *irq)
  1580. {
  1581. if (irq->irq < 0 || irq->irq >= 256)
  1582. return -EINVAL;
  1583. if (irqchip_in_kernel(vcpu->kvm))
  1584. return -ENXIO;
  1585. vcpu_load(vcpu);
  1586. kvm_queue_interrupt(vcpu, irq->irq, false);
  1587. vcpu_put(vcpu);
  1588. return 0;
  1589. }
  1590. static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
  1591. {
  1592. vcpu_load(vcpu);
  1593. kvm_inject_nmi(vcpu);
  1594. vcpu_put(vcpu);
  1595. return 0;
  1596. }
  1597. static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
  1598. struct kvm_tpr_access_ctl *tac)
  1599. {
  1600. if (tac->flags)
  1601. return -EINVAL;
  1602. vcpu->arch.tpr_access_reporting = !!tac->enabled;
  1603. return 0;
  1604. }
  1605. static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
  1606. u64 mcg_cap)
  1607. {
  1608. int r;
  1609. unsigned bank_num = mcg_cap & 0xff, bank;
  1610. r = -EINVAL;
  1611. if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
  1612. goto out;
  1613. if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
  1614. goto out;
  1615. r = 0;
  1616. vcpu->arch.mcg_cap = mcg_cap;
  1617. /* Init IA32_MCG_CTL to all 1s */
  1618. if (mcg_cap & MCG_CTL_P)
  1619. vcpu->arch.mcg_ctl = ~(u64)0;
  1620. /* Init IA32_MCi_CTL to all 1s */
  1621. for (bank = 0; bank < bank_num; bank++)
  1622. vcpu->arch.mce_banks[bank*4] = ~(u64)0;
  1623. out:
  1624. return r;
  1625. }
  1626. static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
  1627. struct kvm_x86_mce *mce)
  1628. {
  1629. u64 mcg_cap = vcpu->arch.mcg_cap;
  1630. unsigned bank_num = mcg_cap & 0xff;
  1631. u64 *banks = vcpu->arch.mce_banks;
  1632. if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
  1633. return -EINVAL;
  1634. /*
  1635. * if IA32_MCG_CTL is not all 1s, the uncorrected error
  1636. * reporting is disabled
  1637. */
  1638. if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
  1639. vcpu->arch.mcg_ctl != ~(u64)0)
  1640. return 0;
  1641. banks += 4 * mce->bank;
  1642. /*
  1643. * if IA32_MCi_CTL is not all 1s, the uncorrected error
  1644. * reporting is disabled for the bank
  1645. */
  1646. if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
  1647. return 0;
  1648. if (mce->status & MCI_STATUS_UC) {
  1649. if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
  1650. !(vcpu->arch.cr4 & X86_CR4_MCE)) {
  1651. printk(KERN_DEBUG "kvm: set_mce: "
  1652. "injects mce exception while "
  1653. "previous one is in progress!\n");
  1654. set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
  1655. return 0;
  1656. }
  1657. if (banks[1] & MCI_STATUS_VAL)
  1658. mce->status |= MCI_STATUS_OVER;
  1659. banks[2] = mce->addr;
  1660. banks[3] = mce->misc;
  1661. vcpu->arch.mcg_status = mce->mcg_status;
  1662. banks[1] = mce->status;
  1663. kvm_queue_exception(vcpu, MC_VECTOR);
  1664. } else if (!(banks[1] & MCI_STATUS_VAL)
  1665. || !(banks[1] & MCI_STATUS_UC)) {
  1666. if (banks[1] & MCI_STATUS_VAL)
  1667. mce->status |= MCI_STATUS_OVER;
  1668. banks[2] = mce->addr;
  1669. banks[3] = mce->misc;
  1670. banks[1] = mce->status;
  1671. } else
  1672. banks[1] |= MCI_STATUS_OVER;
  1673. return 0;
  1674. }
  1675. static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
  1676. struct kvm_vcpu_events *events)
  1677. {
  1678. vcpu_load(vcpu);
  1679. events->exception.injected = vcpu->arch.exception.pending;
  1680. events->exception.nr = vcpu->arch.exception.nr;
  1681. events->exception.has_error_code = vcpu->arch.exception.has_error_code;
  1682. events->exception.error_code = vcpu->arch.exception.error_code;
  1683. events->interrupt.injected = vcpu->arch.interrupt.pending;
  1684. events->interrupt.nr = vcpu->arch.interrupt.nr;
  1685. events->interrupt.soft = vcpu->arch.interrupt.soft;
  1686. events->nmi.injected = vcpu->arch.nmi_injected;
  1687. events->nmi.pending = vcpu->arch.nmi_pending;
  1688. events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
  1689. events->sipi_vector = vcpu->arch.sipi_vector;
  1690. events->flags = 0;
  1691. vcpu_put(vcpu);
  1692. }
  1693. static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
  1694. struct kvm_vcpu_events *events)
  1695. {
  1696. if (events->flags)
  1697. return -EINVAL;
  1698. vcpu_load(vcpu);
  1699. vcpu->arch.exception.pending = events->exception.injected;
  1700. vcpu->arch.exception.nr = events->exception.nr;
  1701. vcpu->arch.exception.has_error_code = events->exception.has_error_code;
  1702. vcpu->arch.exception.error_code = events->exception.error_code;
  1703. vcpu->arch.interrupt.pending = events->interrupt.injected;
  1704. vcpu->arch.interrupt.nr = events->interrupt.nr;
  1705. vcpu->arch.interrupt.soft = events->interrupt.soft;
  1706. if (vcpu->arch.interrupt.pending && irqchip_in_kernel(vcpu->kvm))
  1707. kvm_pic_clear_isr_ack(vcpu->kvm);
  1708. vcpu->arch.nmi_injected = events->nmi.injected;
  1709. vcpu->arch.nmi_pending = events->nmi.pending;
  1710. kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
  1711. vcpu->arch.sipi_vector = events->sipi_vector;
  1712. vcpu_put(vcpu);
  1713. return 0;
  1714. }
  1715. long kvm_arch_vcpu_ioctl(struct file *filp,
  1716. unsigned int ioctl, unsigned long arg)
  1717. {
  1718. struct kvm_vcpu *vcpu = filp->private_data;
  1719. void __user *argp = (void __user *)arg;
  1720. int r;
  1721. struct kvm_lapic_state *lapic = NULL;
  1722. switch (ioctl) {
  1723. case KVM_GET_LAPIC: {
  1724. r = -EINVAL;
  1725. if (!vcpu->arch.apic)
  1726. goto out;
  1727. lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1728. r = -ENOMEM;
  1729. if (!lapic)
  1730. goto out;
  1731. r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
  1732. if (r)
  1733. goto out;
  1734. r = -EFAULT;
  1735. if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
  1736. goto out;
  1737. r = 0;
  1738. break;
  1739. }
  1740. case KVM_SET_LAPIC: {
  1741. r = -EINVAL;
  1742. if (!vcpu->arch.apic)
  1743. goto out;
  1744. lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
  1745. r = -ENOMEM;
  1746. if (!lapic)
  1747. goto out;
  1748. r = -EFAULT;
  1749. if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
  1750. goto out;
  1751. r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
  1752. if (r)
  1753. goto out;
  1754. r = 0;
  1755. break;
  1756. }
  1757. case KVM_INTERRUPT: {
  1758. struct kvm_interrupt irq;
  1759. r = -EFAULT;
  1760. if (copy_from_user(&irq, argp, sizeof irq))
  1761. goto out;
  1762. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  1763. if (r)
  1764. goto out;
  1765. r = 0;
  1766. break;
  1767. }
  1768. case KVM_NMI: {
  1769. r = kvm_vcpu_ioctl_nmi(vcpu);
  1770. if (r)
  1771. goto out;
  1772. r = 0;
  1773. break;
  1774. }
  1775. case KVM_SET_CPUID: {
  1776. struct kvm_cpuid __user *cpuid_arg = argp;
  1777. struct kvm_cpuid cpuid;
  1778. r = -EFAULT;
  1779. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1780. goto out;
  1781. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  1782. if (r)
  1783. goto out;
  1784. break;
  1785. }
  1786. case KVM_SET_CPUID2: {
  1787. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1788. struct kvm_cpuid2 cpuid;
  1789. r = -EFAULT;
  1790. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1791. goto out;
  1792. r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
  1793. cpuid_arg->entries);
  1794. if (r)
  1795. goto out;
  1796. break;
  1797. }
  1798. case KVM_GET_CPUID2: {
  1799. struct kvm_cpuid2 __user *cpuid_arg = argp;
  1800. struct kvm_cpuid2 cpuid;
  1801. r = -EFAULT;
  1802. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  1803. goto out;
  1804. r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
  1805. cpuid_arg->entries);
  1806. if (r)
  1807. goto out;
  1808. r = -EFAULT;
  1809. if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
  1810. goto out;
  1811. r = 0;
  1812. break;
  1813. }
  1814. case KVM_GET_MSRS:
  1815. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  1816. break;
  1817. case KVM_SET_MSRS:
  1818. r = msr_io(vcpu, argp, do_set_msr, 0);
  1819. break;
  1820. case KVM_TPR_ACCESS_REPORTING: {
  1821. struct kvm_tpr_access_ctl tac;
  1822. r = -EFAULT;
  1823. if (copy_from_user(&tac, argp, sizeof tac))
  1824. goto out;
  1825. r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
  1826. if (r)
  1827. goto out;
  1828. r = -EFAULT;
  1829. if (copy_to_user(argp, &tac, sizeof tac))
  1830. goto out;
  1831. r = 0;
  1832. break;
  1833. };
  1834. case KVM_SET_VAPIC_ADDR: {
  1835. struct kvm_vapic_addr va;
  1836. r = -EINVAL;
  1837. if (!irqchip_in_kernel(vcpu->kvm))
  1838. goto out;
  1839. r = -EFAULT;
  1840. if (copy_from_user(&va, argp, sizeof va))
  1841. goto out;
  1842. r = 0;
  1843. kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
  1844. break;
  1845. }
  1846. case KVM_X86_SETUP_MCE: {
  1847. u64 mcg_cap;
  1848. r = -EFAULT;
  1849. if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
  1850. goto out;
  1851. r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
  1852. break;
  1853. }
  1854. case KVM_X86_SET_MCE: {
  1855. struct kvm_x86_mce mce;
  1856. r = -EFAULT;
  1857. if (copy_from_user(&mce, argp, sizeof mce))
  1858. goto out;
  1859. r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
  1860. break;
  1861. }
  1862. case KVM_GET_VCPU_EVENTS: {
  1863. struct kvm_vcpu_events events;
  1864. kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
  1865. r = -EFAULT;
  1866. if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
  1867. break;
  1868. r = 0;
  1869. break;
  1870. }
  1871. case KVM_SET_VCPU_EVENTS: {
  1872. struct kvm_vcpu_events events;
  1873. r = -EFAULT;
  1874. if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
  1875. break;
  1876. r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
  1877. break;
  1878. }
  1879. default:
  1880. r = -EINVAL;
  1881. }
  1882. out:
  1883. kfree(lapic);
  1884. return r;
  1885. }
  1886. static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
  1887. {
  1888. int ret;
  1889. if (addr > (unsigned int)(-3 * PAGE_SIZE))
  1890. return -1;
  1891. ret = kvm_x86_ops->set_tss_addr(kvm, addr);
  1892. return ret;
  1893. }
  1894. static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
  1895. u64 ident_addr)
  1896. {
  1897. kvm->arch.ept_identity_map_addr = ident_addr;
  1898. return 0;
  1899. }
  1900. static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
  1901. u32 kvm_nr_mmu_pages)
  1902. {
  1903. if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
  1904. return -EINVAL;
  1905. down_write(&kvm->slots_lock);
  1906. spin_lock(&kvm->mmu_lock);
  1907. kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
  1908. kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
  1909. spin_unlock(&kvm->mmu_lock);
  1910. up_write(&kvm->slots_lock);
  1911. return 0;
  1912. }
  1913. static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
  1914. {
  1915. return kvm->arch.n_alloc_mmu_pages;
  1916. }
  1917. gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  1918. {
  1919. int i;
  1920. struct kvm_mem_alias *alias;
  1921. for (i = 0; i < kvm->arch.naliases; ++i) {
  1922. alias = &kvm->arch.aliases[i];
  1923. if (gfn >= alias->base_gfn
  1924. && gfn < alias->base_gfn + alias->npages)
  1925. return alias->target_gfn + gfn - alias->base_gfn;
  1926. }
  1927. return gfn;
  1928. }
  1929. /*
  1930. * Set a new alias region. Aliases map a portion of physical memory into
  1931. * another portion. This is useful for memory windows, for example the PC
  1932. * VGA region.
  1933. */
  1934. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  1935. struct kvm_memory_alias *alias)
  1936. {
  1937. int r, n;
  1938. struct kvm_mem_alias *p;
  1939. r = -EINVAL;
  1940. /* General sanity checks */
  1941. if (alias->memory_size & (PAGE_SIZE - 1))
  1942. goto out;
  1943. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  1944. goto out;
  1945. if (alias->slot >= KVM_ALIAS_SLOTS)
  1946. goto out;
  1947. if (alias->guest_phys_addr + alias->memory_size
  1948. < alias->guest_phys_addr)
  1949. goto out;
  1950. if (alias->target_phys_addr + alias->memory_size
  1951. < alias->target_phys_addr)
  1952. goto out;
  1953. down_write(&kvm->slots_lock);
  1954. spin_lock(&kvm->mmu_lock);
  1955. p = &kvm->arch.aliases[alias->slot];
  1956. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  1957. p->npages = alias->memory_size >> PAGE_SHIFT;
  1958. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  1959. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  1960. if (kvm->arch.aliases[n - 1].npages)
  1961. break;
  1962. kvm->arch.naliases = n;
  1963. spin_unlock(&kvm->mmu_lock);
  1964. kvm_mmu_zap_all(kvm);
  1965. up_write(&kvm->slots_lock);
  1966. return 0;
  1967. out:
  1968. return r;
  1969. }
  1970. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1971. {
  1972. int r;
  1973. r = 0;
  1974. switch (chip->chip_id) {
  1975. case KVM_IRQCHIP_PIC_MASTER:
  1976. memcpy(&chip->chip.pic,
  1977. &pic_irqchip(kvm)->pics[0],
  1978. sizeof(struct kvm_pic_state));
  1979. break;
  1980. case KVM_IRQCHIP_PIC_SLAVE:
  1981. memcpy(&chip->chip.pic,
  1982. &pic_irqchip(kvm)->pics[1],
  1983. sizeof(struct kvm_pic_state));
  1984. break;
  1985. case KVM_IRQCHIP_IOAPIC:
  1986. r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
  1987. break;
  1988. default:
  1989. r = -EINVAL;
  1990. break;
  1991. }
  1992. return r;
  1993. }
  1994. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  1995. {
  1996. int r;
  1997. r = 0;
  1998. switch (chip->chip_id) {
  1999. case KVM_IRQCHIP_PIC_MASTER:
  2000. spin_lock(&pic_irqchip(kvm)->lock);
  2001. memcpy(&pic_irqchip(kvm)->pics[0],
  2002. &chip->chip.pic,
  2003. sizeof(struct kvm_pic_state));
  2004. spin_unlock(&pic_irqchip(kvm)->lock);
  2005. break;
  2006. case KVM_IRQCHIP_PIC_SLAVE:
  2007. spin_lock(&pic_irqchip(kvm)->lock);
  2008. memcpy(&pic_irqchip(kvm)->pics[1],
  2009. &chip->chip.pic,
  2010. sizeof(struct kvm_pic_state));
  2011. spin_unlock(&pic_irqchip(kvm)->lock);
  2012. break;
  2013. case KVM_IRQCHIP_IOAPIC:
  2014. r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
  2015. break;
  2016. default:
  2017. r = -EINVAL;
  2018. break;
  2019. }
  2020. kvm_pic_update_irq(pic_irqchip(kvm));
  2021. return r;
  2022. }
  2023. static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2024. {
  2025. int r = 0;
  2026. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2027. memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
  2028. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2029. return r;
  2030. }
  2031. static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
  2032. {
  2033. int r = 0;
  2034. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2035. memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
  2036. kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
  2037. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2038. return r;
  2039. }
  2040. static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2041. {
  2042. int r = 0;
  2043. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2044. memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
  2045. sizeof(ps->channels));
  2046. ps->flags = kvm->arch.vpit->pit_state.flags;
  2047. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2048. return r;
  2049. }
  2050. static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
  2051. {
  2052. int r = 0, start = 0;
  2053. u32 prev_legacy, cur_legacy;
  2054. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2055. prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2056. cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
  2057. if (!prev_legacy && cur_legacy)
  2058. start = 1;
  2059. memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
  2060. sizeof(kvm->arch.vpit->pit_state.channels));
  2061. kvm->arch.vpit->pit_state.flags = ps->flags;
  2062. kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
  2063. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2064. return r;
  2065. }
  2066. static int kvm_vm_ioctl_reinject(struct kvm *kvm,
  2067. struct kvm_reinject_control *control)
  2068. {
  2069. if (!kvm->arch.vpit)
  2070. return -ENXIO;
  2071. mutex_lock(&kvm->arch.vpit->pit_state.lock);
  2072. kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
  2073. mutex_unlock(&kvm->arch.vpit->pit_state.lock);
  2074. return 0;
  2075. }
  2076. /*
  2077. * Get (and clear) the dirty memory log for a memory slot.
  2078. */
  2079. int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  2080. struct kvm_dirty_log *log)
  2081. {
  2082. int r;
  2083. int n;
  2084. struct kvm_memory_slot *memslot;
  2085. int is_dirty = 0;
  2086. down_write(&kvm->slots_lock);
  2087. r = kvm_get_dirty_log(kvm, log, &is_dirty);
  2088. if (r)
  2089. goto out;
  2090. /* If nothing is dirty, don't bother messing with page tables. */
  2091. if (is_dirty) {
  2092. spin_lock(&kvm->mmu_lock);
  2093. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  2094. spin_unlock(&kvm->mmu_lock);
  2095. memslot = &kvm->memslots[log->slot];
  2096. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  2097. memset(memslot->dirty_bitmap, 0, n);
  2098. }
  2099. r = 0;
  2100. out:
  2101. up_write(&kvm->slots_lock);
  2102. return r;
  2103. }
  2104. long kvm_arch_vm_ioctl(struct file *filp,
  2105. unsigned int ioctl, unsigned long arg)
  2106. {
  2107. struct kvm *kvm = filp->private_data;
  2108. void __user *argp = (void __user *)arg;
  2109. int r = -ENOTTY;
  2110. /*
  2111. * This union makes it completely explicit to gcc-3.x
  2112. * that these two variables' stack usage should be
  2113. * combined, not added together.
  2114. */
  2115. union {
  2116. struct kvm_pit_state ps;
  2117. struct kvm_pit_state2 ps2;
  2118. struct kvm_memory_alias alias;
  2119. struct kvm_pit_config pit_config;
  2120. } u;
  2121. switch (ioctl) {
  2122. case KVM_SET_TSS_ADDR:
  2123. r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
  2124. if (r < 0)
  2125. goto out;
  2126. break;
  2127. case KVM_SET_IDENTITY_MAP_ADDR: {
  2128. u64 ident_addr;
  2129. r = -EFAULT;
  2130. if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
  2131. goto out;
  2132. r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
  2133. if (r < 0)
  2134. goto out;
  2135. break;
  2136. }
  2137. case KVM_SET_MEMORY_REGION: {
  2138. struct kvm_memory_region kvm_mem;
  2139. struct kvm_userspace_memory_region kvm_userspace_mem;
  2140. r = -EFAULT;
  2141. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  2142. goto out;
  2143. kvm_userspace_mem.slot = kvm_mem.slot;
  2144. kvm_userspace_mem.flags = kvm_mem.flags;
  2145. kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
  2146. kvm_userspace_mem.memory_size = kvm_mem.memory_size;
  2147. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
  2148. if (r)
  2149. goto out;
  2150. break;
  2151. }
  2152. case KVM_SET_NR_MMU_PAGES:
  2153. r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
  2154. if (r)
  2155. goto out;
  2156. break;
  2157. case KVM_GET_NR_MMU_PAGES:
  2158. r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
  2159. break;
  2160. case KVM_SET_MEMORY_ALIAS:
  2161. r = -EFAULT;
  2162. if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
  2163. goto out;
  2164. r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
  2165. if (r)
  2166. goto out;
  2167. break;
  2168. case KVM_CREATE_IRQCHIP: {
  2169. struct kvm_pic *vpic;
  2170. mutex_lock(&kvm->lock);
  2171. r = -EEXIST;
  2172. if (kvm->arch.vpic)
  2173. goto create_irqchip_unlock;
  2174. r = -ENOMEM;
  2175. vpic = kvm_create_pic(kvm);
  2176. if (vpic) {
  2177. r = kvm_ioapic_init(kvm);
  2178. if (r) {
  2179. kfree(vpic);
  2180. goto create_irqchip_unlock;
  2181. }
  2182. } else
  2183. goto create_irqchip_unlock;
  2184. smp_wmb();
  2185. kvm->arch.vpic = vpic;
  2186. smp_wmb();
  2187. r = kvm_setup_default_irq_routing(kvm);
  2188. if (r) {
  2189. mutex_lock(&kvm->irq_lock);
  2190. kfree(kvm->arch.vpic);
  2191. kfree(kvm->arch.vioapic);
  2192. kvm->arch.vpic = NULL;
  2193. kvm->arch.vioapic = NULL;
  2194. mutex_unlock(&kvm->irq_lock);
  2195. }
  2196. create_irqchip_unlock:
  2197. mutex_unlock(&kvm->lock);
  2198. break;
  2199. }
  2200. case KVM_CREATE_PIT:
  2201. u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
  2202. goto create_pit;
  2203. case KVM_CREATE_PIT2:
  2204. r = -EFAULT;
  2205. if (copy_from_user(&u.pit_config, argp,
  2206. sizeof(struct kvm_pit_config)))
  2207. goto out;
  2208. create_pit:
  2209. down_write(&kvm->slots_lock);
  2210. r = -EEXIST;
  2211. if (kvm->arch.vpit)
  2212. goto create_pit_unlock;
  2213. r = -ENOMEM;
  2214. kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
  2215. if (kvm->arch.vpit)
  2216. r = 0;
  2217. create_pit_unlock:
  2218. up_write(&kvm->slots_lock);
  2219. break;
  2220. case KVM_IRQ_LINE_STATUS:
  2221. case KVM_IRQ_LINE: {
  2222. struct kvm_irq_level irq_event;
  2223. r = -EFAULT;
  2224. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2225. goto out;
  2226. if (irqchip_in_kernel(kvm)) {
  2227. __s32 status;
  2228. status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
  2229. irq_event.irq, irq_event.level);
  2230. if (ioctl == KVM_IRQ_LINE_STATUS) {
  2231. irq_event.status = status;
  2232. if (copy_to_user(argp, &irq_event,
  2233. sizeof irq_event))
  2234. goto out;
  2235. }
  2236. r = 0;
  2237. }
  2238. break;
  2239. }
  2240. case KVM_GET_IRQCHIP: {
  2241. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2242. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2243. r = -ENOMEM;
  2244. if (!chip)
  2245. goto out;
  2246. r = -EFAULT;
  2247. if (copy_from_user(chip, argp, sizeof *chip))
  2248. goto get_irqchip_out;
  2249. r = -ENXIO;
  2250. if (!irqchip_in_kernel(kvm))
  2251. goto get_irqchip_out;
  2252. r = kvm_vm_ioctl_get_irqchip(kvm, chip);
  2253. if (r)
  2254. goto get_irqchip_out;
  2255. r = -EFAULT;
  2256. if (copy_to_user(argp, chip, sizeof *chip))
  2257. goto get_irqchip_out;
  2258. r = 0;
  2259. get_irqchip_out:
  2260. kfree(chip);
  2261. if (r)
  2262. goto out;
  2263. break;
  2264. }
  2265. case KVM_SET_IRQCHIP: {
  2266. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2267. struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
  2268. r = -ENOMEM;
  2269. if (!chip)
  2270. goto out;
  2271. r = -EFAULT;
  2272. if (copy_from_user(chip, argp, sizeof *chip))
  2273. goto set_irqchip_out;
  2274. r = -ENXIO;
  2275. if (!irqchip_in_kernel(kvm))
  2276. goto set_irqchip_out;
  2277. r = kvm_vm_ioctl_set_irqchip(kvm, chip);
  2278. if (r)
  2279. goto set_irqchip_out;
  2280. r = 0;
  2281. set_irqchip_out:
  2282. kfree(chip);
  2283. if (r)
  2284. goto out;
  2285. break;
  2286. }
  2287. case KVM_GET_PIT: {
  2288. r = -EFAULT;
  2289. if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
  2290. goto out;
  2291. r = -ENXIO;
  2292. if (!kvm->arch.vpit)
  2293. goto out;
  2294. r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
  2295. if (r)
  2296. goto out;
  2297. r = -EFAULT;
  2298. if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
  2299. goto out;
  2300. r = 0;
  2301. break;
  2302. }
  2303. case KVM_SET_PIT: {
  2304. r = -EFAULT;
  2305. if (copy_from_user(&u.ps, argp, sizeof u.ps))
  2306. goto out;
  2307. r = -ENXIO;
  2308. if (!kvm->arch.vpit)
  2309. goto out;
  2310. r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
  2311. if (r)
  2312. goto out;
  2313. r = 0;
  2314. break;
  2315. }
  2316. case KVM_GET_PIT2: {
  2317. r = -ENXIO;
  2318. if (!kvm->arch.vpit)
  2319. goto out;
  2320. r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
  2321. if (r)
  2322. goto out;
  2323. r = -EFAULT;
  2324. if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
  2325. goto out;
  2326. r = 0;
  2327. break;
  2328. }
  2329. case KVM_SET_PIT2: {
  2330. r = -EFAULT;
  2331. if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
  2332. goto out;
  2333. r = -ENXIO;
  2334. if (!kvm->arch.vpit)
  2335. goto out;
  2336. r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
  2337. if (r)
  2338. goto out;
  2339. r = 0;
  2340. break;
  2341. }
  2342. case KVM_REINJECT_CONTROL: {
  2343. struct kvm_reinject_control control;
  2344. r = -EFAULT;
  2345. if (copy_from_user(&control, argp, sizeof(control)))
  2346. goto out;
  2347. r = kvm_vm_ioctl_reinject(kvm, &control);
  2348. if (r)
  2349. goto out;
  2350. r = 0;
  2351. break;
  2352. }
  2353. case KVM_XEN_HVM_CONFIG: {
  2354. r = -EFAULT;
  2355. if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
  2356. sizeof(struct kvm_xen_hvm_config)))
  2357. goto out;
  2358. r = -EINVAL;
  2359. if (kvm->arch.xen_hvm_config.flags)
  2360. goto out;
  2361. r = 0;
  2362. break;
  2363. }
  2364. case KVM_SET_CLOCK: {
  2365. struct timespec now;
  2366. struct kvm_clock_data user_ns;
  2367. u64 now_ns;
  2368. s64 delta;
  2369. r = -EFAULT;
  2370. if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
  2371. goto out;
  2372. r = -EINVAL;
  2373. if (user_ns.flags)
  2374. goto out;
  2375. r = 0;
  2376. ktime_get_ts(&now);
  2377. now_ns = timespec_to_ns(&now);
  2378. delta = user_ns.clock - now_ns;
  2379. kvm->arch.kvmclock_offset = delta;
  2380. break;
  2381. }
  2382. case KVM_GET_CLOCK: {
  2383. struct timespec now;
  2384. struct kvm_clock_data user_ns;
  2385. u64 now_ns;
  2386. ktime_get_ts(&now);
  2387. now_ns = timespec_to_ns(&now);
  2388. user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
  2389. user_ns.flags = 0;
  2390. r = -EFAULT;
  2391. if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
  2392. goto out;
  2393. r = 0;
  2394. break;
  2395. }
  2396. default:
  2397. ;
  2398. }
  2399. out:
  2400. return r;
  2401. }
  2402. static void kvm_init_msr_list(void)
  2403. {
  2404. u32 dummy[2];
  2405. unsigned i, j;
  2406. /* skip the first msrs in the list. KVM-specific */
  2407. for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
  2408. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  2409. continue;
  2410. if (j < i)
  2411. msrs_to_save[j] = msrs_to_save[i];
  2412. j++;
  2413. }
  2414. num_msrs_to_save = j;
  2415. }
  2416. static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
  2417. const void *v)
  2418. {
  2419. if (vcpu->arch.apic &&
  2420. !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
  2421. return 0;
  2422. return kvm_io_bus_write(&vcpu->kvm->mmio_bus, addr, len, v);
  2423. }
  2424. static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
  2425. {
  2426. if (vcpu->arch.apic &&
  2427. !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
  2428. return 0;
  2429. return kvm_io_bus_read(&vcpu->kvm->mmio_bus, addr, len, v);
  2430. }
  2431. static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2432. struct kvm_vcpu *vcpu)
  2433. {
  2434. void *data = val;
  2435. int r = X86EMUL_CONTINUE;
  2436. while (bytes) {
  2437. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2438. unsigned offset = addr & (PAGE_SIZE-1);
  2439. unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
  2440. int ret;
  2441. if (gpa == UNMAPPED_GVA) {
  2442. r = X86EMUL_PROPAGATE_FAULT;
  2443. goto out;
  2444. }
  2445. ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
  2446. if (ret < 0) {
  2447. r = X86EMUL_UNHANDLEABLE;
  2448. goto out;
  2449. }
  2450. bytes -= toread;
  2451. data += toread;
  2452. addr += toread;
  2453. }
  2454. out:
  2455. return r;
  2456. }
  2457. static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
  2458. struct kvm_vcpu *vcpu)
  2459. {
  2460. void *data = val;
  2461. int r = X86EMUL_CONTINUE;
  2462. while (bytes) {
  2463. gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2464. unsigned offset = addr & (PAGE_SIZE-1);
  2465. unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
  2466. int ret;
  2467. if (gpa == UNMAPPED_GVA) {
  2468. r = X86EMUL_PROPAGATE_FAULT;
  2469. goto out;
  2470. }
  2471. ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
  2472. if (ret < 0) {
  2473. r = X86EMUL_UNHANDLEABLE;
  2474. goto out;
  2475. }
  2476. bytes -= towrite;
  2477. data += towrite;
  2478. addr += towrite;
  2479. }
  2480. out:
  2481. return r;
  2482. }
  2483. static int emulator_read_emulated(unsigned long addr,
  2484. void *val,
  2485. unsigned int bytes,
  2486. struct kvm_vcpu *vcpu)
  2487. {
  2488. gpa_t gpa;
  2489. if (vcpu->mmio_read_completed) {
  2490. memcpy(val, vcpu->mmio_data, bytes);
  2491. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
  2492. vcpu->mmio_phys_addr, *(u64 *)val);
  2493. vcpu->mmio_read_completed = 0;
  2494. return X86EMUL_CONTINUE;
  2495. }
  2496. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2497. /* For APIC access vmexit */
  2498. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2499. goto mmio;
  2500. if (kvm_read_guest_virt(addr, val, bytes, vcpu)
  2501. == X86EMUL_CONTINUE)
  2502. return X86EMUL_CONTINUE;
  2503. if (gpa == UNMAPPED_GVA)
  2504. return X86EMUL_PROPAGATE_FAULT;
  2505. mmio:
  2506. /*
  2507. * Is this MMIO handled locally?
  2508. */
  2509. if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
  2510. trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
  2511. return X86EMUL_CONTINUE;
  2512. }
  2513. trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
  2514. vcpu->mmio_needed = 1;
  2515. vcpu->mmio_phys_addr = gpa;
  2516. vcpu->mmio_size = bytes;
  2517. vcpu->mmio_is_write = 0;
  2518. return X86EMUL_UNHANDLEABLE;
  2519. }
  2520. int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  2521. const void *val, int bytes)
  2522. {
  2523. int ret;
  2524. ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
  2525. if (ret < 0)
  2526. return 0;
  2527. kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
  2528. return 1;
  2529. }
  2530. static int emulator_write_emulated_onepage(unsigned long addr,
  2531. const void *val,
  2532. unsigned int bytes,
  2533. struct kvm_vcpu *vcpu)
  2534. {
  2535. gpa_t gpa;
  2536. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2537. if (gpa == UNMAPPED_GVA) {
  2538. kvm_inject_page_fault(vcpu, addr, 2);
  2539. return X86EMUL_PROPAGATE_FAULT;
  2540. }
  2541. /* For APIC access vmexit */
  2542. if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2543. goto mmio;
  2544. if (emulator_write_phys(vcpu, gpa, val, bytes))
  2545. return X86EMUL_CONTINUE;
  2546. mmio:
  2547. trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
  2548. /*
  2549. * Is this MMIO handled locally?
  2550. */
  2551. if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
  2552. return X86EMUL_CONTINUE;
  2553. vcpu->mmio_needed = 1;
  2554. vcpu->mmio_phys_addr = gpa;
  2555. vcpu->mmio_size = bytes;
  2556. vcpu->mmio_is_write = 1;
  2557. memcpy(vcpu->mmio_data, val, bytes);
  2558. return X86EMUL_CONTINUE;
  2559. }
  2560. int emulator_write_emulated(unsigned long addr,
  2561. const void *val,
  2562. unsigned int bytes,
  2563. struct kvm_vcpu *vcpu)
  2564. {
  2565. /* Crossing a page boundary? */
  2566. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  2567. int rc, now;
  2568. now = -addr & ~PAGE_MASK;
  2569. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  2570. if (rc != X86EMUL_CONTINUE)
  2571. return rc;
  2572. addr += now;
  2573. val += now;
  2574. bytes -= now;
  2575. }
  2576. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  2577. }
  2578. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  2579. static int emulator_cmpxchg_emulated(unsigned long addr,
  2580. const void *old,
  2581. const void *new,
  2582. unsigned int bytes,
  2583. struct kvm_vcpu *vcpu)
  2584. {
  2585. printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
  2586. #ifndef CONFIG_X86_64
  2587. /* guests cmpxchg8b have to be emulated atomically */
  2588. if (bytes == 8) {
  2589. gpa_t gpa;
  2590. struct page *page;
  2591. char *kaddr;
  2592. u64 val;
  2593. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
  2594. if (gpa == UNMAPPED_GVA ||
  2595. (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
  2596. goto emul_write;
  2597. if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
  2598. goto emul_write;
  2599. val = *(u64 *)new;
  2600. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  2601. kaddr = kmap_atomic(page, KM_USER0);
  2602. set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
  2603. kunmap_atomic(kaddr, KM_USER0);
  2604. kvm_release_page_dirty(page);
  2605. }
  2606. emul_write:
  2607. #endif
  2608. return emulator_write_emulated(addr, new, bytes, vcpu);
  2609. }
  2610. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  2611. {
  2612. return kvm_x86_ops->get_segment_base(vcpu, seg);
  2613. }
  2614. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  2615. {
  2616. kvm_mmu_invlpg(vcpu, address);
  2617. return X86EMUL_CONTINUE;
  2618. }
  2619. int emulate_clts(struct kvm_vcpu *vcpu)
  2620. {
  2621. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
  2622. return X86EMUL_CONTINUE;
  2623. }
  2624. int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
  2625. {
  2626. struct kvm_vcpu *vcpu = ctxt->vcpu;
  2627. switch (dr) {
  2628. case 0 ... 3:
  2629. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  2630. return X86EMUL_CONTINUE;
  2631. default:
  2632. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
  2633. return X86EMUL_UNHANDLEABLE;
  2634. }
  2635. }
  2636. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  2637. {
  2638. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  2639. int exception;
  2640. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  2641. if (exception) {
  2642. /* FIXME: better handling */
  2643. return X86EMUL_UNHANDLEABLE;
  2644. }
  2645. return X86EMUL_CONTINUE;
  2646. }
  2647. void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
  2648. {
  2649. u8 opcodes[4];
  2650. unsigned long rip = kvm_rip_read(vcpu);
  2651. unsigned long rip_linear;
  2652. if (!printk_ratelimit())
  2653. return;
  2654. rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
  2655. kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
  2656. printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
  2657. context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  2658. }
  2659. EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
  2660. static struct x86_emulate_ops emulate_ops = {
  2661. .read_std = kvm_read_guest_virt,
  2662. .read_emulated = emulator_read_emulated,
  2663. .write_emulated = emulator_write_emulated,
  2664. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  2665. };
  2666. static void cache_all_regs(struct kvm_vcpu *vcpu)
  2667. {
  2668. kvm_register_read(vcpu, VCPU_REGS_RAX);
  2669. kvm_register_read(vcpu, VCPU_REGS_RSP);
  2670. kvm_register_read(vcpu, VCPU_REGS_RIP);
  2671. vcpu->arch.regs_dirty = ~0;
  2672. }
  2673. int emulate_instruction(struct kvm_vcpu *vcpu,
  2674. unsigned long cr2,
  2675. u16 error_code,
  2676. int emulation_type)
  2677. {
  2678. int r, shadow_mask;
  2679. struct decode_cache *c;
  2680. struct kvm_run *run = vcpu->run;
  2681. kvm_clear_exception_queue(vcpu);
  2682. vcpu->arch.mmio_fault_cr2 = cr2;
  2683. /*
  2684. * TODO: fix emulate.c to use guest_read/write_register
  2685. * instead of direct ->regs accesses, can save hundred cycles
  2686. * on Intel for instructions that don't read/change RSP, for
  2687. * for example.
  2688. */
  2689. cache_all_regs(vcpu);
  2690. vcpu->mmio_is_write = 0;
  2691. vcpu->arch.pio.string = 0;
  2692. if (!(emulation_type & EMULTYPE_NO_DECODE)) {
  2693. int cs_db, cs_l;
  2694. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  2695. vcpu->arch.emulate_ctxt.vcpu = vcpu;
  2696. vcpu->arch.emulate_ctxt.eflags = kvm_get_rflags(vcpu);
  2697. vcpu->arch.emulate_ctxt.mode =
  2698. (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
  2699. ? X86EMUL_MODE_REAL : cs_l
  2700. ? X86EMUL_MODE_PROT64 : cs_db
  2701. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  2702. r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2703. /* Only allow emulation of specific instructions on #UD
  2704. * (namely VMMCALL, sysenter, sysexit, syscall)*/
  2705. c = &vcpu->arch.emulate_ctxt.decode;
  2706. if (emulation_type & EMULTYPE_TRAP_UD) {
  2707. if (!c->twobyte)
  2708. return EMULATE_FAIL;
  2709. switch (c->b) {
  2710. case 0x01: /* VMMCALL */
  2711. if (c->modrm_mod != 3 || c->modrm_rm != 1)
  2712. return EMULATE_FAIL;
  2713. break;
  2714. case 0x34: /* sysenter */
  2715. case 0x35: /* sysexit */
  2716. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  2717. return EMULATE_FAIL;
  2718. break;
  2719. case 0x05: /* syscall */
  2720. if (c->modrm_mod != 0 || c->modrm_rm != 0)
  2721. return EMULATE_FAIL;
  2722. break;
  2723. default:
  2724. return EMULATE_FAIL;
  2725. }
  2726. if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
  2727. return EMULATE_FAIL;
  2728. }
  2729. ++vcpu->stat.insn_emulation;
  2730. if (r) {
  2731. ++vcpu->stat.insn_emulation_fail;
  2732. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2733. return EMULATE_DONE;
  2734. return EMULATE_FAIL;
  2735. }
  2736. }
  2737. if (emulation_type & EMULTYPE_SKIP) {
  2738. kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
  2739. return EMULATE_DONE;
  2740. }
  2741. r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
  2742. shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
  2743. if (r == 0)
  2744. kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
  2745. if (vcpu->arch.pio.string)
  2746. return EMULATE_DO_MMIO;
  2747. if ((r || vcpu->mmio_is_write) && run) {
  2748. run->exit_reason = KVM_EXIT_MMIO;
  2749. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  2750. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  2751. run->mmio.len = vcpu->mmio_size;
  2752. run->mmio.is_write = vcpu->mmio_is_write;
  2753. }
  2754. if (r) {
  2755. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  2756. return EMULATE_DONE;
  2757. if (!vcpu->mmio_needed) {
  2758. kvm_report_emulation_failure(vcpu, "mmio");
  2759. return EMULATE_FAIL;
  2760. }
  2761. return EMULATE_DO_MMIO;
  2762. }
  2763. kvm_set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
  2764. if (vcpu->mmio_is_write) {
  2765. vcpu->mmio_needed = 0;
  2766. return EMULATE_DO_MMIO;
  2767. }
  2768. return EMULATE_DONE;
  2769. }
  2770. EXPORT_SYMBOL_GPL(emulate_instruction);
  2771. static int pio_copy_data(struct kvm_vcpu *vcpu)
  2772. {
  2773. void *p = vcpu->arch.pio_data;
  2774. gva_t q = vcpu->arch.pio.guest_gva;
  2775. unsigned bytes;
  2776. int ret;
  2777. bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
  2778. if (vcpu->arch.pio.in)
  2779. ret = kvm_write_guest_virt(q, p, bytes, vcpu);
  2780. else
  2781. ret = kvm_read_guest_virt(q, p, bytes, vcpu);
  2782. return ret;
  2783. }
  2784. int complete_pio(struct kvm_vcpu *vcpu)
  2785. {
  2786. struct kvm_pio_request *io = &vcpu->arch.pio;
  2787. long delta;
  2788. int r;
  2789. unsigned long val;
  2790. if (!io->string) {
  2791. if (io->in) {
  2792. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2793. memcpy(&val, vcpu->arch.pio_data, io->size);
  2794. kvm_register_write(vcpu, VCPU_REGS_RAX, val);
  2795. }
  2796. } else {
  2797. if (io->in) {
  2798. r = pio_copy_data(vcpu);
  2799. if (r)
  2800. return r;
  2801. }
  2802. delta = 1;
  2803. if (io->rep) {
  2804. delta *= io->cur_count;
  2805. /*
  2806. * The size of the register should really depend on
  2807. * current address size.
  2808. */
  2809. val = kvm_register_read(vcpu, VCPU_REGS_RCX);
  2810. val -= delta;
  2811. kvm_register_write(vcpu, VCPU_REGS_RCX, val);
  2812. }
  2813. if (io->down)
  2814. delta = -delta;
  2815. delta *= io->size;
  2816. if (io->in) {
  2817. val = kvm_register_read(vcpu, VCPU_REGS_RDI);
  2818. val += delta;
  2819. kvm_register_write(vcpu, VCPU_REGS_RDI, val);
  2820. } else {
  2821. val = kvm_register_read(vcpu, VCPU_REGS_RSI);
  2822. val += delta;
  2823. kvm_register_write(vcpu, VCPU_REGS_RSI, val);
  2824. }
  2825. }
  2826. io->count -= io->cur_count;
  2827. io->cur_count = 0;
  2828. return 0;
  2829. }
  2830. static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
  2831. {
  2832. /* TODO: String I/O for in kernel device */
  2833. int r;
  2834. if (vcpu->arch.pio.in)
  2835. r = kvm_io_bus_read(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
  2836. vcpu->arch.pio.size, pd);
  2837. else
  2838. r = kvm_io_bus_write(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
  2839. vcpu->arch.pio.size, pd);
  2840. return r;
  2841. }
  2842. static int pio_string_write(struct kvm_vcpu *vcpu)
  2843. {
  2844. struct kvm_pio_request *io = &vcpu->arch.pio;
  2845. void *pd = vcpu->arch.pio_data;
  2846. int i, r = 0;
  2847. for (i = 0; i < io->cur_count; i++) {
  2848. if (kvm_io_bus_write(&vcpu->kvm->pio_bus,
  2849. io->port, io->size, pd)) {
  2850. r = -EOPNOTSUPP;
  2851. break;
  2852. }
  2853. pd += io->size;
  2854. }
  2855. return r;
  2856. }
  2857. int kvm_emulate_pio(struct kvm_vcpu *vcpu, int in, int size, unsigned port)
  2858. {
  2859. unsigned long val;
  2860. vcpu->run->exit_reason = KVM_EXIT_IO;
  2861. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2862. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2863. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2864. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
  2865. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2866. vcpu->arch.pio.in = in;
  2867. vcpu->arch.pio.string = 0;
  2868. vcpu->arch.pio.down = 0;
  2869. vcpu->arch.pio.rep = 0;
  2870. trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
  2871. size, 1);
  2872. val = kvm_register_read(vcpu, VCPU_REGS_RAX);
  2873. memcpy(vcpu->arch.pio_data, &val, 4);
  2874. if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
  2875. complete_pio(vcpu);
  2876. return 1;
  2877. }
  2878. return 0;
  2879. }
  2880. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  2881. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, int in,
  2882. int size, unsigned long count, int down,
  2883. gva_t address, int rep, unsigned port)
  2884. {
  2885. unsigned now, in_page;
  2886. int ret = 0;
  2887. vcpu->run->exit_reason = KVM_EXIT_IO;
  2888. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  2889. vcpu->run->io.size = vcpu->arch.pio.size = size;
  2890. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  2891. vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
  2892. vcpu->run->io.port = vcpu->arch.pio.port = port;
  2893. vcpu->arch.pio.in = in;
  2894. vcpu->arch.pio.string = 1;
  2895. vcpu->arch.pio.down = down;
  2896. vcpu->arch.pio.rep = rep;
  2897. trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
  2898. size, count);
  2899. if (!count) {
  2900. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2901. return 1;
  2902. }
  2903. if (!down)
  2904. in_page = PAGE_SIZE - offset_in_page(address);
  2905. else
  2906. in_page = offset_in_page(address) + size;
  2907. now = min(count, (unsigned long)in_page / size);
  2908. if (!now)
  2909. now = 1;
  2910. if (down) {
  2911. /*
  2912. * String I/O in reverse. Yuck. Kill the guest, fix later.
  2913. */
  2914. pr_unimpl(vcpu, "guest string pio down\n");
  2915. kvm_inject_gp(vcpu, 0);
  2916. return 1;
  2917. }
  2918. vcpu->run->io.count = now;
  2919. vcpu->arch.pio.cur_count = now;
  2920. if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
  2921. kvm_x86_ops->skip_emulated_instruction(vcpu);
  2922. vcpu->arch.pio.guest_gva = address;
  2923. if (!vcpu->arch.pio.in) {
  2924. /* string PIO write */
  2925. ret = pio_copy_data(vcpu);
  2926. if (ret == X86EMUL_PROPAGATE_FAULT) {
  2927. kvm_inject_gp(vcpu, 0);
  2928. return 1;
  2929. }
  2930. if (ret == 0 && !pio_string_write(vcpu)) {
  2931. complete_pio(vcpu);
  2932. if (vcpu->arch.pio.count == 0)
  2933. ret = 1;
  2934. }
  2935. }
  2936. /* no string PIO read support yet */
  2937. return ret;
  2938. }
  2939. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  2940. static void bounce_off(void *info)
  2941. {
  2942. /* nothing */
  2943. }
  2944. static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
  2945. void *data)
  2946. {
  2947. struct cpufreq_freqs *freq = data;
  2948. struct kvm *kvm;
  2949. struct kvm_vcpu *vcpu;
  2950. int i, send_ipi = 0;
  2951. if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
  2952. return 0;
  2953. if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
  2954. return 0;
  2955. per_cpu(cpu_tsc_khz, freq->cpu) = freq->new;
  2956. spin_lock(&kvm_lock);
  2957. list_for_each_entry(kvm, &vm_list, vm_list) {
  2958. kvm_for_each_vcpu(i, vcpu, kvm) {
  2959. if (vcpu->cpu != freq->cpu)
  2960. continue;
  2961. if (!kvm_request_guest_time_update(vcpu))
  2962. continue;
  2963. if (vcpu->cpu != smp_processor_id())
  2964. send_ipi++;
  2965. }
  2966. }
  2967. spin_unlock(&kvm_lock);
  2968. if (freq->old < freq->new && send_ipi) {
  2969. /*
  2970. * We upscale the frequency. Must make the guest
  2971. * doesn't see old kvmclock values while running with
  2972. * the new frequency, otherwise we risk the guest sees
  2973. * time go backwards.
  2974. *
  2975. * In case we update the frequency for another cpu
  2976. * (which might be in guest context) send an interrupt
  2977. * to kick the cpu out of guest context. Next time
  2978. * guest context is entered kvmclock will be updated,
  2979. * so the guest will not see stale values.
  2980. */
  2981. smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
  2982. }
  2983. return 0;
  2984. }
  2985. static struct notifier_block kvmclock_cpufreq_notifier_block = {
  2986. .notifier_call = kvmclock_cpufreq_notifier
  2987. };
  2988. static void kvm_timer_init(void)
  2989. {
  2990. int cpu;
  2991. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  2992. cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
  2993. CPUFREQ_TRANSITION_NOTIFIER);
  2994. for_each_online_cpu(cpu) {
  2995. unsigned long khz = cpufreq_get(cpu);
  2996. if (!khz)
  2997. khz = tsc_khz;
  2998. per_cpu(cpu_tsc_khz, cpu) = khz;
  2999. }
  3000. } else {
  3001. for_each_possible_cpu(cpu)
  3002. per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
  3003. }
  3004. }
  3005. int kvm_arch_init(void *opaque)
  3006. {
  3007. int r;
  3008. struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
  3009. if (kvm_x86_ops) {
  3010. printk(KERN_ERR "kvm: already loaded the other module\n");
  3011. r = -EEXIST;
  3012. goto out;
  3013. }
  3014. if (!ops->cpu_has_kvm_support()) {
  3015. printk(KERN_ERR "kvm: no hardware support\n");
  3016. r = -EOPNOTSUPP;
  3017. goto out;
  3018. }
  3019. if (ops->disabled_by_bios()) {
  3020. printk(KERN_ERR "kvm: disabled by bios\n");
  3021. r = -EOPNOTSUPP;
  3022. goto out;
  3023. }
  3024. r = kvm_mmu_module_init();
  3025. if (r)
  3026. goto out;
  3027. kvm_init_msr_list();
  3028. kvm_x86_ops = ops;
  3029. kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
  3030. kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
  3031. kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
  3032. PT_DIRTY_MASK, PT64_NX_MASK, 0);
  3033. kvm_timer_init();
  3034. return 0;
  3035. out:
  3036. return r;
  3037. }
  3038. void kvm_arch_exit(void)
  3039. {
  3040. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
  3041. cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
  3042. CPUFREQ_TRANSITION_NOTIFIER);
  3043. kvm_x86_ops = NULL;
  3044. kvm_mmu_module_exit();
  3045. }
  3046. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  3047. {
  3048. ++vcpu->stat.halt_exits;
  3049. if (irqchip_in_kernel(vcpu->kvm)) {
  3050. vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
  3051. return 1;
  3052. } else {
  3053. vcpu->run->exit_reason = KVM_EXIT_HLT;
  3054. return 0;
  3055. }
  3056. }
  3057. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  3058. static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
  3059. unsigned long a1)
  3060. {
  3061. if (is_long_mode(vcpu))
  3062. return a0;
  3063. else
  3064. return a0 | ((gpa_t)a1 << 32);
  3065. }
  3066. int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
  3067. {
  3068. unsigned long nr, a0, a1, a2, a3, ret;
  3069. int r = 1;
  3070. nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3071. a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3072. a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3073. a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3074. a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3075. trace_kvm_hypercall(nr, a0, a1, a2, a3);
  3076. if (!is_long_mode(vcpu)) {
  3077. nr &= 0xFFFFFFFF;
  3078. a0 &= 0xFFFFFFFF;
  3079. a1 &= 0xFFFFFFFF;
  3080. a2 &= 0xFFFFFFFF;
  3081. a3 &= 0xFFFFFFFF;
  3082. }
  3083. if (kvm_x86_ops->get_cpl(vcpu) != 0) {
  3084. ret = -KVM_EPERM;
  3085. goto out;
  3086. }
  3087. switch (nr) {
  3088. case KVM_HC_VAPIC_POLL_IRQ:
  3089. ret = 0;
  3090. break;
  3091. case KVM_HC_MMU_OP:
  3092. r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
  3093. break;
  3094. default:
  3095. ret = -KVM_ENOSYS;
  3096. break;
  3097. }
  3098. out:
  3099. kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
  3100. ++vcpu->stat.hypercalls;
  3101. return r;
  3102. }
  3103. EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
  3104. int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
  3105. {
  3106. char instruction[3];
  3107. int ret = 0;
  3108. unsigned long rip = kvm_rip_read(vcpu);
  3109. /*
  3110. * Blow out the MMU to ensure that no other VCPU has an active mapping
  3111. * to ensure that the updated hypercall appears atomically across all
  3112. * VCPUs.
  3113. */
  3114. kvm_mmu_zap_all(vcpu->kvm);
  3115. kvm_x86_ops->patch_hypercall(vcpu, instruction);
  3116. if (emulator_write_emulated(rip, instruction, 3, vcpu)
  3117. != X86EMUL_CONTINUE)
  3118. ret = -EFAULT;
  3119. return ret;
  3120. }
  3121. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  3122. {
  3123. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  3124. }
  3125. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  3126. {
  3127. struct descriptor_table dt = { limit, base };
  3128. kvm_x86_ops->set_gdt(vcpu, &dt);
  3129. }
  3130. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  3131. {
  3132. struct descriptor_table dt = { limit, base };
  3133. kvm_x86_ops->set_idt(vcpu, &dt);
  3134. }
  3135. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  3136. unsigned long *rflags)
  3137. {
  3138. kvm_lmsw(vcpu, msw);
  3139. *rflags = kvm_get_rflags(vcpu);
  3140. }
  3141. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  3142. {
  3143. unsigned long value;
  3144. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3145. switch (cr) {
  3146. case 0:
  3147. value = vcpu->arch.cr0;
  3148. break;
  3149. case 2:
  3150. value = vcpu->arch.cr2;
  3151. break;
  3152. case 3:
  3153. value = vcpu->arch.cr3;
  3154. break;
  3155. case 4:
  3156. value = vcpu->arch.cr4;
  3157. break;
  3158. case 8:
  3159. value = kvm_get_cr8(vcpu);
  3160. break;
  3161. default:
  3162. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3163. return 0;
  3164. }
  3165. return value;
  3166. }
  3167. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  3168. unsigned long *rflags)
  3169. {
  3170. switch (cr) {
  3171. case 0:
  3172. kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
  3173. *rflags = kvm_get_rflags(vcpu);
  3174. break;
  3175. case 2:
  3176. vcpu->arch.cr2 = val;
  3177. break;
  3178. case 3:
  3179. kvm_set_cr3(vcpu, val);
  3180. break;
  3181. case 4:
  3182. kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
  3183. break;
  3184. case 8:
  3185. kvm_set_cr8(vcpu, val & 0xfUL);
  3186. break;
  3187. default:
  3188. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
  3189. }
  3190. }
  3191. static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
  3192. {
  3193. struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
  3194. int j, nent = vcpu->arch.cpuid_nent;
  3195. e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
  3196. /* when no next entry is found, the current entry[i] is reselected */
  3197. for (j = i + 1; ; j = (j + 1) % nent) {
  3198. struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
  3199. if (ej->function == e->function) {
  3200. ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
  3201. return j;
  3202. }
  3203. }
  3204. return 0; /* silence gcc, even though control never reaches here */
  3205. }
  3206. /* find an entry with matching function, matching index (if needed), and that
  3207. * should be read next (if it's stateful) */
  3208. static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
  3209. u32 function, u32 index)
  3210. {
  3211. if (e->function != function)
  3212. return 0;
  3213. if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
  3214. return 0;
  3215. if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
  3216. !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
  3217. return 0;
  3218. return 1;
  3219. }
  3220. struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
  3221. u32 function, u32 index)
  3222. {
  3223. int i;
  3224. struct kvm_cpuid_entry2 *best = NULL;
  3225. for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
  3226. struct kvm_cpuid_entry2 *e;
  3227. e = &vcpu->arch.cpuid_entries[i];
  3228. if (is_matching_cpuid_entry(e, function, index)) {
  3229. if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
  3230. move_to_next_stateful_cpuid_entry(vcpu, i);
  3231. best = e;
  3232. break;
  3233. }
  3234. /*
  3235. * Both basic or both extended?
  3236. */
  3237. if (((e->function ^ function) & 0x80000000) == 0)
  3238. if (!best || e->function > best->function)
  3239. best = e;
  3240. }
  3241. return best;
  3242. }
  3243. int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
  3244. {
  3245. struct kvm_cpuid_entry2 *best;
  3246. best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
  3247. if (best)
  3248. return best->eax & 0xff;
  3249. return 36;
  3250. }
  3251. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  3252. {
  3253. u32 function, index;
  3254. struct kvm_cpuid_entry2 *best;
  3255. function = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3256. index = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3257. kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
  3258. kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
  3259. kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
  3260. kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
  3261. best = kvm_find_cpuid_entry(vcpu, function, index);
  3262. if (best) {
  3263. kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
  3264. kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
  3265. kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
  3266. kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
  3267. }
  3268. kvm_x86_ops->skip_emulated_instruction(vcpu);
  3269. trace_kvm_cpuid(function,
  3270. kvm_register_read(vcpu, VCPU_REGS_RAX),
  3271. kvm_register_read(vcpu, VCPU_REGS_RBX),
  3272. kvm_register_read(vcpu, VCPU_REGS_RCX),
  3273. kvm_register_read(vcpu, VCPU_REGS_RDX));
  3274. }
  3275. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  3276. /*
  3277. * Check if userspace requested an interrupt window, and that the
  3278. * interrupt window is open.
  3279. *
  3280. * No need to exit to userspace if we already have an interrupt queued.
  3281. */
  3282. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
  3283. {
  3284. return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
  3285. vcpu->run->request_interrupt_window &&
  3286. kvm_arch_interrupt_allowed(vcpu));
  3287. }
  3288. static void post_kvm_run_save(struct kvm_vcpu *vcpu)
  3289. {
  3290. struct kvm_run *kvm_run = vcpu->run;
  3291. kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
  3292. kvm_run->cr8 = kvm_get_cr8(vcpu);
  3293. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  3294. if (irqchip_in_kernel(vcpu->kvm))
  3295. kvm_run->ready_for_interrupt_injection = 1;
  3296. else
  3297. kvm_run->ready_for_interrupt_injection =
  3298. kvm_arch_interrupt_allowed(vcpu) &&
  3299. !kvm_cpu_has_interrupt(vcpu) &&
  3300. !kvm_event_needs_reinjection(vcpu);
  3301. }
  3302. static void vapic_enter(struct kvm_vcpu *vcpu)
  3303. {
  3304. struct kvm_lapic *apic = vcpu->arch.apic;
  3305. struct page *page;
  3306. if (!apic || !apic->vapic_addr)
  3307. return;
  3308. page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  3309. vcpu->arch.apic->vapic_page = page;
  3310. }
  3311. static void vapic_exit(struct kvm_vcpu *vcpu)
  3312. {
  3313. struct kvm_lapic *apic = vcpu->arch.apic;
  3314. if (!apic || !apic->vapic_addr)
  3315. return;
  3316. down_read(&vcpu->kvm->slots_lock);
  3317. kvm_release_page_dirty(apic->vapic_page);
  3318. mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
  3319. up_read(&vcpu->kvm->slots_lock);
  3320. }
  3321. static void update_cr8_intercept(struct kvm_vcpu *vcpu)
  3322. {
  3323. int max_irr, tpr;
  3324. if (!kvm_x86_ops->update_cr8_intercept)
  3325. return;
  3326. if (!vcpu->arch.apic)
  3327. return;
  3328. if (!vcpu->arch.apic->vapic_addr)
  3329. max_irr = kvm_lapic_find_highest_irr(vcpu);
  3330. else
  3331. max_irr = -1;
  3332. if (max_irr != -1)
  3333. max_irr >>= 4;
  3334. tpr = kvm_lapic_get_cr8(vcpu);
  3335. kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
  3336. }
  3337. static void inject_pending_event(struct kvm_vcpu *vcpu)
  3338. {
  3339. /* try to reinject previous events if any */
  3340. if (vcpu->arch.exception.pending) {
  3341. kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
  3342. vcpu->arch.exception.has_error_code,
  3343. vcpu->arch.exception.error_code);
  3344. return;
  3345. }
  3346. if (vcpu->arch.nmi_injected) {
  3347. kvm_x86_ops->set_nmi(vcpu);
  3348. return;
  3349. }
  3350. if (vcpu->arch.interrupt.pending) {
  3351. kvm_x86_ops->set_irq(vcpu);
  3352. return;
  3353. }
  3354. /* try to inject new event if pending */
  3355. if (vcpu->arch.nmi_pending) {
  3356. if (kvm_x86_ops->nmi_allowed(vcpu)) {
  3357. vcpu->arch.nmi_pending = false;
  3358. vcpu->arch.nmi_injected = true;
  3359. kvm_x86_ops->set_nmi(vcpu);
  3360. }
  3361. } else if (kvm_cpu_has_interrupt(vcpu)) {
  3362. if (kvm_x86_ops->interrupt_allowed(vcpu)) {
  3363. kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
  3364. false);
  3365. kvm_x86_ops->set_irq(vcpu);
  3366. }
  3367. }
  3368. }
  3369. static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
  3370. {
  3371. int r;
  3372. bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
  3373. vcpu->run->request_interrupt_window;
  3374. if (vcpu->requests)
  3375. if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
  3376. kvm_mmu_unload(vcpu);
  3377. r = kvm_mmu_reload(vcpu);
  3378. if (unlikely(r))
  3379. goto out;
  3380. if (vcpu->requests) {
  3381. if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
  3382. __kvm_migrate_timers(vcpu);
  3383. if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
  3384. kvm_write_guest_time(vcpu);
  3385. if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
  3386. kvm_mmu_sync_roots(vcpu);
  3387. if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
  3388. kvm_x86_ops->tlb_flush(vcpu);
  3389. if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
  3390. &vcpu->requests)) {
  3391. vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
  3392. r = 0;
  3393. goto out;
  3394. }
  3395. if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
  3396. vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
  3397. r = 0;
  3398. goto out;
  3399. }
  3400. }
  3401. preempt_disable();
  3402. kvm_x86_ops->prepare_guest_switch(vcpu);
  3403. kvm_load_guest_fpu(vcpu);
  3404. local_irq_disable();
  3405. clear_bit(KVM_REQ_KICK, &vcpu->requests);
  3406. smp_mb__after_clear_bit();
  3407. if (vcpu->requests || need_resched() || signal_pending(current)) {
  3408. set_bit(KVM_REQ_KICK, &vcpu->requests);
  3409. local_irq_enable();
  3410. preempt_enable();
  3411. r = 1;
  3412. goto out;
  3413. }
  3414. inject_pending_event(vcpu);
  3415. /* enable NMI/IRQ window open exits if needed */
  3416. if (vcpu->arch.nmi_pending)
  3417. kvm_x86_ops->enable_nmi_window(vcpu);
  3418. else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
  3419. kvm_x86_ops->enable_irq_window(vcpu);
  3420. if (kvm_lapic_enabled(vcpu)) {
  3421. update_cr8_intercept(vcpu);
  3422. kvm_lapic_sync_to_vapic(vcpu);
  3423. }
  3424. up_read(&vcpu->kvm->slots_lock);
  3425. kvm_guest_enter();
  3426. if (unlikely(vcpu->arch.switch_db_regs)) {
  3427. set_debugreg(0, 7);
  3428. set_debugreg(vcpu->arch.eff_db[0], 0);
  3429. set_debugreg(vcpu->arch.eff_db[1], 1);
  3430. set_debugreg(vcpu->arch.eff_db[2], 2);
  3431. set_debugreg(vcpu->arch.eff_db[3], 3);
  3432. }
  3433. trace_kvm_entry(vcpu->vcpu_id);
  3434. kvm_x86_ops->run(vcpu);
  3435. if (unlikely(vcpu->arch.switch_db_regs || test_thread_flag(TIF_DEBUG))) {
  3436. set_debugreg(current->thread.debugreg0, 0);
  3437. set_debugreg(current->thread.debugreg1, 1);
  3438. set_debugreg(current->thread.debugreg2, 2);
  3439. set_debugreg(current->thread.debugreg3, 3);
  3440. set_debugreg(current->thread.debugreg6, 6);
  3441. set_debugreg(current->thread.debugreg7, 7);
  3442. }
  3443. set_bit(KVM_REQ_KICK, &vcpu->requests);
  3444. local_irq_enable();
  3445. ++vcpu->stat.exits;
  3446. /*
  3447. * We must have an instruction between local_irq_enable() and
  3448. * kvm_guest_exit(), so the timer interrupt isn't delayed by
  3449. * the interrupt shadow. The stat.exits increment will do nicely.
  3450. * But we need to prevent reordering, hence this barrier():
  3451. */
  3452. barrier();
  3453. kvm_guest_exit();
  3454. preempt_enable();
  3455. down_read(&vcpu->kvm->slots_lock);
  3456. /*
  3457. * Profile KVM exit RIPs:
  3458. */
  3459. if (unlikely(prof_on == KVM_PROFILING)) {
  3460. unsigned long rip = kvm_rip_read(vcpu);
  3461. profile_hit(KVM_PROFILING, (void *)rip);
  3462. }
  3463. kvm_lapic_sync_from_vapic(vcpu);
  3464. r = kvm_x86_ops->handle_exit(vcpu);
  3465. out:
  3466. return r;
  3467. }
  3468. static int __vcpu_run(struct kvm_vcpu *vcpu)
  3469. {
  3470. int r;
  3471. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
  3472. pr_debug("vcpu %d received sipi with vector # %x\n",
  3473. vcpu->vcpu_id, vcpu->arch.sipi_vector);
  3474. kvm_lapic_reset(vcpu);
  3475. r = kvm_arch_vcpu_reset(vcpu);
  3476. if (r)
  3477. return r;
  3478. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  3479. }
  3480. down_read(&vcpu->kvm->slots_lock);
  3481. vapic_enter(vcpu);
  3482. r = 1;
  3483. while (r > 0) {
  3484. if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
  3485. r = vcpu_enter_guest(vcpu);
  3486. else {
  3487. up_read(&vcpu->kvm->slots_lock);
  3488. kvm_vcpu_block(vcpu);
  3489. down_read(&vcpu->kvm->slots_lock);
  3490. if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
  3491. {
  3492. switch(vcpu->arch.mp_state) {
  3493. case KVM_MP_STATE_HALTED:
  3494. vcpu->arch.mp_state =
  3495. KVM_MP_STATE_RUNNABLE;
  3496. case KVM_MP_STATE_RUNNABLE:
  3497. break;
  3498. case KVM_MP_STATE_SIPI_RECEIVED:
  3499. default:
  3500. r = -EINTR;
  3501. break;
  3502. }
  3503. }
  3504. }
  3505. if (r <= 0)
  3506. break;
  3507. clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
  3508. if (kvm_cpu_has_pending_timer(vcpu))
  3509. kvm_inject_pending_timer_irqs(vcpu);
  3510. if (dm_request_for_irq_injection(vcpu)) {
  3511. r = -EINTR;
  3512. vcpu->run->exit_reason = KVM_EXIT_INTR;
  3513. ++vcpu->stat.request_irq_exits;
  3514. }
  3515. if (signal_pending(current)) {
  3516. r = -EINTR;
  3517. vcpu->run->exit_reason = KVM_EXIT_INTR;
  3518. ++vcpu->stat.signal_exits;
  3519. }
  3520. if (need_resched()) {
  3521. up_read(&vcpu->kvm->slots_lock);
  3522. kvm_resched(vcpu);
  3523. down_read(&vcpu->kvm->slots_lock);
  3524. }
  3525. }
  3526. up_read(&vcpu->kvm->slots_lock);
  3527. post_kvm_run_save(vcpu);
  3528. vapic_exit(vcpu);
  3529. return r;
  3530. }
  3531. int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  3532. {
  3533. int r;
  3534. sigset_t sigsaved;
  3535. vcpu_load(vcpu);
  3536. if (vcpu->sigset_active)
  3537. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  3538. if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
  3539. kvm_vcpu_block(vcpu);
  3540. clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
  3541. r = -EAGAIN;
  3542. goto out;
  3543. }
  3544. /* re-sync apic's tpr */
  3545. if (!irqchip_in_kernel(vcpu->kvm))
  3546. kvm_set_cr8(vcpu, kvm_run->cr8);
  3547. if (vcpu->arch.pio.cur_count) {
  3548. r = complete_pio(vcpu);
  3549. if (r)
  3550. goto out;
  3551. }
  3552. if (vcpu->mmio_needed) {
  3553. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  3554. vcpu->mmio_read_completed = 1;
  3555. vcpu->mmio_needed = 0;
  3556. down_read(&vcpu->kvm->slots_lock);
  3557. r = emulate_instruction(vcpu, vcpu->arch.mmio_fault_cr2, 0,
  3558. EMULTYPE_NO_DECODE);
  3559. up_read(&vcpu->kvm->slots_lock);
  3560. if (r == EMULATE_DO_MMIO) {
  3561. /*
  3562. * Read-modify-write. Back to userspace.
  3563. */
  3564. r = 0;
  3565. goto out;
  3566. }
  3567. }
  3568. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
  3569. kvm_register_write(vcpu, VCPU_REGS_RAX,
  3570. kvm_run->hypercall.ret);
  3571. r = __vcpu_run(vcpu);
  3572. out:
  3573. if (vcpu->sigset_active)
  3574. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  3575. vcpu_put(vcpu);
  3576. return r;
  3577. }
  3578. int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3579. {
  3580. vcpu_load(vcpu);
  3581. regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3582. regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3583. regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3584. regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3585. regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3586. regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3587. regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3588. regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3589. #ifdef CONFIG_X86_64
  3590. regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
  3591. regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
  3592. regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
  3593. regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
  3594. regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
  3595. regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
  3596. regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
  3597. regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
  3598. #endif
  3599. regs->rip = kvm_rip_read(vcpu);
  3600. regs->rflags = kvm_get_rflags(vcpu);
  3601. vcpu_put(vcpu);
  3602. return 0;
  3603. }
  3604. int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
  3605. {
  3606. vcpu_load(vcpu);
  3607. kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
  3608. kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
  3609. kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
  3610. kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
  3611. kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
  3612. kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
  3613. kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
  3614. kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
  3615. #ifdef CONFIG_X86_64
  3616. kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
  3617. kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
  3618. kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
  3619. kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
  3620. kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
  3621. kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
  3622. kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
  3623. kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
  3624. #endif
  3625. kvm_rip_write(vcpu, regs->rip);
  3626. kvm_set_rflags(vcpu, regs->rflags);
  3627. vcpu->arch.exception.pending = false;
  3628. vcpu_put(vcpu);
  3629. return 0;
  3630. }
  3631. void kvm_get_segment(struct kvm_vcpu *vcpu,
  3632. struct kvm_segment *var, int seg)
  3633. {
  3634. kvm_x86_ops->get_segment(vcpu, var, seg);
  3635. }
  3636. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  3637. {
  3638. struct kvm_segment cs;
  3639. kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
  3640. *db = cs.db;
  3641. *l = cs.l;
  3642. }
  3643. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  3644. int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  3645. struct kvm_sregs *sregs)
  3646. {
  3647. struct descriptor_table dt;
  3648. vcpu_load(vcpu);
  3649. kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  3650. kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  3651. kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  3652. kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  3653. kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  3654. kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  3655. kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  3656. kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  3657. kvm_x86_ops->get_idt(vcpu, &dt);
  3658. sregs->idt.limit = dt.limit;
  3659. sregs->idt.base = dt.base;
  3660. kvm_x86_ops->get_gdt(vcpu, &dt);
  3661. sregs->gdt.limit = dt.limit;
  3662. sregs->gdt.base = dt.base;
  3663. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  3664. sregs->cr0 = vcpu->arch.cr0;
  3665. sregs->cr2 = vcpu->arch.cr2;
  3666. sregs->cr3 = vcpu->arch.cr3;
  3667. sregs->cr4 = vcpu->arch.cr4;
  3668. sregs->cr8 = kvm_get_cr8(vcpu);
  3669. sregs->efer = vcpu->arch.shadow_efer;
  3670. sregs->apic_base = kvm_get_apic_base(vcpu);
  3671. memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
  3672. if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
  3673. set_bit(vcpu->arch.interrupt.nr,
  3674. (unsigned long *)sregs->interrupt_bitmap);
  3675. vcpu_put(vcpu);
  3676. return 0;
  3677. }
  3678. int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
  3679. struct kvm_mp_state *mp_state)
  3680. {
  3681. vcpu_load(vcpu);
  3682. mp_state->mp_state = vcpu->arch.mp_state;
  3683. vcpu_put(vcpu);
  3684. return 0;
  3685. }
  3686. int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
  3687. struct kvm_mp_state *mp_state)
  3688. {
  3689. vcpu_load(vcpu);
  3690. vcpu->arch.mp_state = mp_state->mp_state;
  3691. vcpu_put(vcpu);
  3692. return 0;
  3693. }
  3694. static void kvm_set_segment(struct kvm_vcpu *vcpu,
  3695. struct kvm_segment *var, int seg)
  3696. {
  3697. kvm_x86_ops->set_segment(vcpu, var, seg);
  3698. }
  3699. static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
  3700. struct kvm_segment *kvm_desct)
  3701. {
  3702. kvm_desct->base = get_desc_base(seg_desc);
  3703. kvm_desct->limit = get_desc_limit(seg_desc);
  3704. if (seg_desc->g) {
  3705. kvm_desct->limit <<= 12;
  3706. kvm_desct->limit |= 0xfff;
  3707. }
  3708. kvm_desct->selector = selector;
  3709. kvm_desct->type = seg_desc->type;
  3710. kvm_desct->present = seg_desc->p;
  3711. kvm_desct->dpl = seg_desc->dpl;
  3712. kvm_desct->db = seg_desc->d;
  3713. kvm_desct->s = seg_desc->s;
  3714. kvm_desct->l = seg_desc->l;
  3715. kvm_desct->g = seg_desc->g;
  3716. kvm_desct->avl = seg_desc->avl;
  3717. if (!selector)
  3718. kvm_desct->unusable = 1;
  3719. else
  3720. kvm_desct->unusable = 0;
  3721. kvm_desct->padding = 0;
  3722. }
  3723. static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
  3724. u16 selector,
  3725. struct descriptor_table *dtable)
  3726. {
  3727. if (selector & 1 << 2) {
  3728. struct kvm_segment kvm_seg;
  3729. kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
  3730. if (kvm_seg.unusable)
  3731. dtable->limit = 0;
  3732. else
  3733. dtable->limit = kvm_seg.limit;
  3734. dtable->base = kvm_seg.base;
  3735. }
  3736. else
  3737. kvm_x86_ops->get_gdt(vcpu, dtable);
  3738. }
  3739. /* allowed just for 8 bytes segments */
  3740. static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3741. struct desc_struct *seg_desc)
  3742. {
  3743. struct descriptor_table dtable;
  3744. u16 index = selector >> 3;
  3745. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3746. if (dtable.limit < index * 8 + 7) {
  3747. kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
  3748. return 1;
  3749. }
  3750. return kvm_read_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
  3751. }
  3752. /* allowed just for 8 bytes segments */
  3753. static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3754. struct desc_struct *seg_desc)
  3755. {
  3756. struct descriptor_table dtable;
  3757. u16 index = selector >> 3;
  3758. get_segment_descriptor_dtable(vcpu, selector, &dtable);
  3759. if (dtable.limit < index * 8 + 7)
  3760. return 1;
  3761. return kvm_write_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
  3762. }
  3763. static gpa_t get_tss_base_addr(struct kvm_vcpu *vcpu,
  3764. struct desc_struct *seg_desc)
  3765. {
  3766. u32 base_addr = get_desc_base(seg_desc);
  3767. return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
  3768. }
  3769. static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
  3770. {
  3771. struct kvm_segment kvm_seg;
  3772. kvm_get_segment(vcpu, &kvm_seg, seg);
  3773. return kvm_seg.selector;
  3774. }
  3775. static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
  3776. u16 selector,
  3777. struct kvm_segment *kvm_seg)
  3778. {
  3779. struct desc_struct seg_desc;
  3780. if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
  3781. return 1;
  3782. seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
  3783. return 0;
  3784. }
  3785. static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
  3786. {
  3787. struct kvm_segment segvar = {
  3788. .base = selector << 4,
  3789. .limit = 0xffff,
  3790. .selector = selector,
  3791. .type = 3,
  3792. .present = 1,
  3793. .dpl = 3,
  3794. .db = 0,
  3795. .s = 1,
  3796. .l = 0,
  3797. .g = 0,
  3798. .avl = 0,
  3799. .unusable = 0,
  3800. };
  3801. kvm_x86_ops->set_segment(vcpu, &segvar, seg);
  3802. return 0;
  3803. }
  3804. static int is_vm86_segment(struct kvm_vcpu *vcpu, int seg)
  3805. {
  3806. return (seg != VCPU_SREG_LDTR) &&
  3807. (seg != VCPU_SREG_TR) &&
  3808. (kvm_get_rflags(vcpu) & X86_EFLAGS_VM);
  3809. }
  3810. int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
  3811. int type_bits, int seg)
  3812. {
  3813. struct kvm_segment kvm_seg;
  3814. if (is_vm86_segment(vcpu, seg) || !(vcpu->arch.cr0 & X86_CR0_PE))
  3815. return kvm_load_realmode_segment(vcpu, selector, seg);
  3816. if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
  3817. return 1;
  3818. kvm_seg.type |= type_bits;
  3819. if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
  3820. seg != VCPU_SREG_LDTR)
  3821. if (!kvm_seg.s)
  3822. kvm_seg.unusable = 1;
  3823. kvm_set_segment(vcpu, &kvm_seg, seg);
  3824. return 0;
  3825. }
  3826. static void save_state_to_tss32(struct kvm_vcpu *vcpu,
  3827. struct tss_segment_32 *tss)
  3828. {
  3829. tss->cr3 = vcpu->arch.cr3;
  3830. tss->eip = kvm_rip_read(vcpu);
  3831. tss->eflags = kvm_get_rflags(vcpu);
  3832. tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3833. tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3834. tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3835. tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3836. tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3837. tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3838. tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3839. tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3840. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3841. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3842. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3843. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3844. tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
  3845. tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
  3846. tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3847. }
  3848. static int load_state_from_tss32(struct kvm_vcpu *vcpu,
  3849. struct tss_segment_32 *tss)
  3850. {
  3851. kvm_set_cr3(vcpu, tss->cr3);
  3852. kvm_rip_write(vcpu, tss->eip);
  3853. kvm_set_rflags(vcpu, tss->eflags | 2);
  3854. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
  3855. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
  3856. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
  3857. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
  3858. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
  3859. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
  3860. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
  3861. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
  3862. if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
  3863. return 1;
  3864. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3865. return 1;
  3866. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3867. return 1;
  3868. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3869. return 1;
  3870. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3871. return 1;
  3872. if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
  3873. return 1;
  3874. if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
  3875. return 1;
  3876. return 0;
  3877. }
  3878. static void save_state_to_tss16(struct kvm_vcpu *vcpu,
  3879. struct tss_segment_16 *tss)
  3880. {
  3881. tss->ip = kvm_rip_read(vcpu);
  3882. tss->flag = kvm_get_rflags(vcpu);
  3883. tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
  3884. tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
  3885. tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
  3886. tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
  3887. tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
  3888. tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
  3889. tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
  3890. tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
  3891. tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
  3892. tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
  3893. tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
  3894. tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
  3895. tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
  3896. }
  3897. static int load_state_from_tss16(struct kvm_vcpu *vcpu,
  3898. struct tss_segment_16 *tss)
  3899. {
  3900. kvm_rip_write(vcpu, tss->ip);
  3901. kvm_set_rflags(vcpu, tss->flag | 2);
  3902. kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
  3903. kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
  3904. kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
  3905. kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
  3906. kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
  3907. kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
  3908. kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
  3909. kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
  3910. if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
  3911. return 1;
  3912. if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
  3913. return 1;
  3914. if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
  3915. return 1;
  3916. if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
  3917. return 1;
  3918. if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
  3919. return 1;
  3920. return 0;
  3921. }
  3922. static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
  3923. u16 old_tss_sel, u32 old_tss_base,
  3924. struct desc_struct *nseg_desc)
  3925. {
  3926. struct tss_segment_16 tss_segment_16;
  3927. int ret = 0;
  3928. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3929. sizeof tss_segment_16))
  3930. goto out;
  3931. save_state_to_tss16(vcpu, &tss_segment_16);
  3932. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
  3933. sizeof tss_segment_16))
  3934. goto out;
  3935. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3936. &tss_segment_16, sizeof tss_segment_16))
  3937. goto out;
  3938. if (old_tss_sel != 0xffff) {
  3939. tss_segment_16.prev_task_link = old_tss_sel;
  3940. if (kvm_write_guest(vcpu->kvm,
  3941. get_tss_base_addr(vcpu, nseg_desc),
  3942. &tss_segment_16.prev_task_link,
  3943. sizeof tss_segment_16.prev_task_link))
  3944. goto out;
  3945. }
  3946. if (load_state_from_tss16(vcpu, &tss_segment_16))
  3947. goto out;
  3948. ret = 1;
  3949. out:
  3950. return ret;
  3951. }
  3952. static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
  3953. u16 old_tss_sel, u32 old_tss_base,
  3954. struct desc_struct *nseg_desc)
  3955. {
  3956. struct tss_segment_32 tss_segment_32;
  3957. int ret = 0;
  3958. if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3959. sizeof tss_segment_32))
  3960. goto out;
  3961. save_state_to_tss32(vcpu, &tss_segment_32);
  3962. if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
  3963. sizeof tss_segment_32))
  3964. goto out;
  3965. if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
  3966. &tss_segment_32, sizeof tss_segment_32))
  3967. goto out;
  3968. if (old_tss_sel != 0xffff) {
  3969. tss_segment_32.prev_task_link = old_tss_sel;
  3970. if (kvm_write_guest(vcpu->kvm,
  3971. get_tss_base_addr(vcpu, nseg_desc),
  3972. &tss_segment_32.prev_task_link,
  3973. sizeof tss_segment_32.prev_task_link))
  3974. goto out;
  3975. }
  3976. if (load_state_from_tss32(vcpu, &tss_segment_32))
  3977. goto out;
  3978. ret = 1;
  3979. out:
  3980. return ret;
  3981. }
  3982. int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
  3983. {
  3984. struct kvm_segment tr_seg;
  3985. struct desc_struct cseg_desc;
  3986. struct desc_struct nseg_desc;
  3987. int ret = 0;
  3988. u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
  3989. u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
  3990. old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
  3991. /* FIXME: Handle errors. Failure to read either TSS or their
  3992. * descriptors should generate a pagefault.
  3993. */
  3994. if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
  3995. goto out;
  3996. if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
  3997. goto out;
  3998. if (reason != TASK_SWITCH_IRET) {
  3999. int cpl;
  4000. cpl = kvm_x86_ops->get_cpl(vcpu);
  4001. if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
  4002. kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
  4003. return 1;
  4004. }
  4005. }
  4006. if (!nseg_desc.p || get_desc_limit(&nseg_desc) < 0x67) {
  4007. kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
  4008. return 1;
  4009. }
  4010. if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
  4011. cseg_desc.type &= ~(1 << 1); //clear the B flag
  4012. save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
  4013. }
  4014. if (reason == TASK_SWITCH_IRET) {
  4015. u32 eflags = kvm_get_rflags(vcpu);
  4016. kvm_set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
  4017. }
  4018. /* set back link to prev task only if NT bit is set in eflags
  4019. note that old_tss_sel is not used afetr this point */
  4020. if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
  4021. old_tss_sel = 0xffff;
  4022. if (nseg_desc.type & 8)
  4023. ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
  4024. old_tss_base, &nseg_desc);
  4025. else
  4026. ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
  4027. old_tss_base, &nseg_desc);
  4028. if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
  4029. u32 eflags = kvm_get_rflags(vcpu);
  4030. kvm_set_rflags(vcpu, eflags | X86_EFLAGS_NT);
  4031. }
  4032. if (reason != TASK_SWITCH_IRET) {
  4033. nseg_desc.type |= (1 << 1);
  4034. save_guest_segment_descriptor(vcpu, tss_selector,
  4035. &nseg_desc);
  4036. }
  4037. kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
  4038. seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
  4039. tr_seg.type = 11;
  4040. kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
  4041. out:
  4042. return ret;
  4043. }
  4044. EXPORT_SYMBOL_GPL(kvm_task_switch);
  4045. int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  4046. struct kvm_sregs *sregs)
  4047. {
  4048. int mmu_reset_needed = 0;
  4049. int pending_vec, max_bits;
  4050. struct descriptor_table dt;
  4051. vcpu_load(vcpu);
  4052. dt.limit = sregs->idt.limit;
  4053. dt.base = sregs->idt.base;
  4054. kvm_x86_ops->set_idt(vcpu, &dt);
  4055. dt.limit = sregs->gdt.limit;
  4056. dt.base = sregs->gdt.base;
  4057. kvm_x86_ops->set_gdt(vcpu, &dt);
  4058. vcpu->arch.cr2 = sregs->cr2;
  4059. mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
  4060. vcpu->arch.cr3 = sregs->cr3;
  4061. kvm_set_cr8(vcpu, sregs->cr8);
  4062. mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
  4063. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  4064. kvm_set_apic_base(vcpu, sregs->apic_base);
  4065. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  4066. mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
  4067. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  4068. vcpu->arch.cr0 = sregs->cr0;
  4069. mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
  4070. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  4071. if (!is_long_mode(vcpu) && is_pae(vcpu)) {
  4072. load_pdptrs(vcpu, vcpu->arch.cr3);
  4073. mmu_reset_needed = 1;
  4074. }
  4075. if (mmu_reset_needed)
  4076. kvm_mmu_reset_context(vcpu);
  4077. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  4078. pending_vec = find_first_bit(
  4079. (const unsigned long *)sregs->interrupt_bitmap, max_bits);
  4080. if (pending_vec < max_bits) {
  4081. kvm_queue_interrupt(vcpu, pending_vec, false);
  4082. pr_debug("Set back pending irq %d\n", pending_vec);
  4083. if (irqchip_in_kernel(vcpu->kvm))
  4084. kvm_pic_clear_isr_ack(vcpu->kvm);
  4085. }
  4086. kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  4087. kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  4088. kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  4089. kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  4090. kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  4091. kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  4092. kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  4093. kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  4094. update_cr8_intercept(vcpu);
  4095. /* Older userspace won't unhalt the vcpu on reset. */
  4096. if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
  4097. sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
  4098. !(vcpu->arch.cr0 & X86_CR0_PE))
  4099. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4100. vcpu_put(vcpu);
  4101. return 0;
  4102. }
  4103. int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
  4104. struct kvm_guest_debug *dbg)
  4105. {
  4106. unsigned long rflags;
  4107. int i, r;
  4108. vcpu_load(vcpu);
  4109. if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
  4110. r = -EBUSY;
  4111. if (vcpu->arch.exception.pending)
  4112. goto unlock_out;
  4113. if (dbg->control & KVM_GUESTDBG_INJECT_DB)
  4114. kvm_queue_exception(vcpu, DB_VECTOR);
  4115. else
  4116. kvm_queue_exception(vcpu, BP_VECTOR);
  4117. }
  4118. /*
  4119. * Read rflags as long as potentially injected trace flags are still
  4120. * filtered out.
  4121. */
  4122. rflags = kvm_get_rflags(vcpu);
  4123. vcpu->guest_debug = dbg->control;
  4124. if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
  4125. vcpu->guest_debug = 0;
  4126. if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
  4127. for (i = 0; i < KVM_NR_DB_REGS; ++i)
  4128. vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
  4129. vcpu->arch.switch_db_regs =
  4130. (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
  4131. } else {
  4132. for (i = 0; i < KVM_NR_DB_REGS; i++)
  4133. vcpu->arch.eff_db[i] = vcpu->arch.db[i];
  4134. vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
  4135. }
  4136. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
  4137. vcpu->arch.singlestep_cs =
  4138. get_segment_selector(vcpu, VCPU_SREG_CS);
  4139. vcpu->arch.singlestep_rip = kvm_rip_read(vcpu);
  4140. }
  4141. /*
  4142. * Trigger an rflags update that will inject or remove the trace
  4143. * flags.
  4144. */
  4145. kvm_set_rflags(vcpu, rflags);
  4146. kvm_x86_ops->set_guest_debug(vcpu, dbg);
  4147. r = 0;
  4148. unlock_out:
  4149. vcpu_put(vcpu);
  4150. return r;
  4151. }
  4152. /*
  4153. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  4154. * we have asm/x86/processor.h
  4155. */
  4156. struct fxsave {
  4157. u16 cwd;
  4158. u16 swd;
  4159. u16 twd;
  4160. u16 fop;
  4161. u64 rip;
  4162. u64 rdp;
  4163. u32 mxcsr;
  4164. u32 mxcsr_mask;
  4165. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  4166. #ifdef CONFIG_X86_64
  4167. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  4168. #else
  4169. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  4170. #endif
  4171. };
  4172. /*
  4173. * Translate a guest virtual address to a guest physical address.
  4174. */
  4175. int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  4176. struct kvm_translation *tr)
  4177. {
  4178. unsigned long vaddr = tr->linear_address;
  4179. gpa_t gpa;
  4180. vcpu_load(vcpu);
  4181. down_read(&vcpu->kvm->slots_lock);
  4182. gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
  4183. up_read(&vcpu->kvm->slots_lock);
  4184. tr->physical_address = gpa;
  4185. tr->valid = gpa != UNMAPPED_GVA;
  4186. tr->writeable = 1;
  4187. tr->usermode = 0;
  4188. vcpu_put(vcpu);
  4189. return 0;
  4190. }
  4191. int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4192. {
  4193. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  4194. vcpu_load(vcpu);
  4195. memcpy(fpu->fpr, fxsave->st_space, 128);
  4196. fpu->fcw = fxsave->cwd;
  4197. fpu->fsw = fxsave->swd;
  4198. fpu->ftwx = fxsave->twd;
  4199. fpu->last_opcode = fxsave->fop;
  4200. fpu->last_ip = fxsave->rip;
  4201. fpu->last_dp = fxsave->rdp;
  4202. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  4203. vcpu_put(vcpu);
  4204. return 0;
  4205. }
  4206. int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  4207. {
  4208. struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
  4209. vcpu_load(vcpu);
  4210. memcpy(fxsave->st_space, fpu->fpr, 128);
  4211. fxsave->cwd = fpu->fcw;
  4212. fxsave->swd = fpu->fsw;
  4213. fxsave->twd = fpu->ftwx;
  4214. fxsave->fop = fpu->last_opcode;
  4215. fxsave->rip = fpu->last_ip;
  4216. fxsave->rdp = fpu->last_dp;
  4217. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  4218. vcpu_put(vcpu);
  4219. return 0;
  4220. }
  4221. void fx_init(struct kvm_vcpu *vcpu)
  4222. {
  4223. unsigned after_mxcsr_mask;
  4224. /*
  4225. * Touch the fpu the first time in non atomic context as if
  4226. * this is the first fpu instruction the exception handler
  4227. * will fire before the instruction returns and it'll have to
  4228. * allocate ram with GFP_KERNEL.
  4229. */
  4230. if (!used_math())
  4231. kvm_fx_save(&vcpu->arch.host_fx_image);
  4232. /* Initialize guest FPU by resetting ours and saving into guest's */
  4233. preempt_disable();
  4234. kvm_fx_save(&vcpu->arch.host_fx_image);
  4235. kvm_fx_finit();
  4236. kvm_fx_save(&vcpu->arch.guest_fx_image);
  4237. kvm_fx_restore(&vcpu->arch.host_fx_image);
  4238. preempt_enable();
  4239. vcpu->arch.cr0 |= X86_CR0_ET;
  4240. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  4241. vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
  4242. memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
  4243. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  4244. }
  4245. EXPORT_SYMBOL_GPL(fx_init);
  4246. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  4247. {
  4248. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  4249. return;
  4250. vcpu->guest_fpu_loaded = 1;
  4251. kvm_fx_save(&vcpu->arch.host_fx_image);
  4252. kvm_fx_restore(&vcpu->arch.guest_fx_image);
  4253. }
  4254. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  4255. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  4256. {
  4257. if (!vcpu->guest_fpu_loaded)
  4258. return;
  4259. vcpu->guest_fpu_loaded = 0;
  4260. kvm_fx_save(&vcpu->arch.guest_fx_image);
  4261. kvm_fx_restore(&vcpu->arch.host_fx_image);
  4262. ++vcpu->stat.fpu_reload;
  4263. }
  4264. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  4265. void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
  4266. {
  4267. if (vcpu->arch.time_page) {
  4268. kvm_release_page_dirty(vcpu->arch.time_page);
  4269. vcpu->arch.time_page = NULL;
  4270. }
  4271. kvm_x86_ops->vcpu_free(vcpu);
  4272. }
  4273. struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
  4274. unsigned int id)
  4275. {
  4276. return kvm_x86_ops->vcpu_create(kvm, id);
  4277. }
  4278. int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
  4279. {
  4280. int r;
  4281. /* We do fxsave: this must be aligned. */
  4282. BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
  4283. vcpu->arch.mtrr_state.have_fixed = 1;
  4284. vcpu_load(vcpu);
  4285. r = kvm_arch_vcpu_reset(vcpu);
  4286. if (r == 0)
  4287. r = kvm_mmu_setup(vcpu);
  4288. vcpu_put(vcpu);
  4289. if (r < 0)
  4290. goto free_vcpu;
  4291. return 0;
  4292. free_vcpu:
  4293. kvm_x86_ops->vcpu_free(vcpu);
  4294. return r;
  4295. }
  4296. void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
  4297. {
  4298. vcpu_load(vcpu);
  4299. kvm_mmu_unload(vcpu);
  4300. vcpu_put(vcpu);
  4301. kvm_x86_ops->vcpu_free(vcpu);
  4302. }
  4303. int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
  4304. {
  4305. vcpu->arch.nmi_pending = false;
  4306. vcpu->arch.nmi_injected = false;
  4307. vcpu->arch.switch_db_regs = 0;
  4308. memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
  4309. vcpu->arch.dr6 = DR6_FIXED_1;
  4310. vcpu->arch.dr7 = DR7_FIXED_1;
  4311. return kvm_x86_ops->vcpu_reset(vcpu);
  4312. }
  4313. int kvm_arch_hardware_enable(void *garbage)
  4314. {
  4315. /*
  4316. * Since this may be called from a hotplug notifcation,
  4317. * we can't get the CPU frequency directly.
  4318. */
  4319. if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
  4320. int cpu = raw_smp_processor_id();
  4321. per_cpu(cpu_tsc_khz, cpu) = 0;
  4322. }
  4323. kvm_shared_msr_cpu_online();
  4324. return kvm_x86_ops->hardware_enable(garbage);
  4325. }
  4326. void kvm_arch_hardware_disable(void *garbage)
  4327. {
  4328. kvm_x86_ops->hardware_disable(garbage);
  4329. drop_user_return_notifiers(garbage);
  4330. }
  4331. int kvm_arch_hardware_setup(void)
  4332. {
  4333. return kvm_x86_ops->hardware_setup();
  4334. }
  4335. void kvm_arch_hardware_unsetup(void)
  4336. {
  4337. kvm_x86_ops->hardware_unsetup();
  4338. }
  4339. void kvm_arch_check_processor_compat(void *rtn)
  4340. {
  4341. kvm_x86_ops->check_processor_compatibility(rtn);
  4342. }
  4343. int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
  4344. {
  4345. struct page *page;
  4346. struct kvm *kvm;
  4347. int r;
  4348. BUG_ON(vcpu->kvm == NULL);
  4349. kvm = vcpu->kvm;
  4350. vcpu->arch.mmu.root_hpa = INVALID_PAGE;
  4351. if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
  4352. vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
  4353. else
  4354. vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
  4355. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  4356. if (!page) {
  4357. r = -ENOMEM;
  4358. goto fail;
  4359. }
  4360. vcpu->arch.pio_data = page_address(page);
  4361. r = kvm_mmu_create(vcpu);
  4362. if (r < 0)
  4363. goto fail_free_pio_data;
  4364. if (irqchip_in_kernel(kvm)) {
  4365. r = kvm_create_lapic(vcpu);
  4366. if (r < 0)
  4367. goto fail_mmu_destroy;
  4368. }
  4369. vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
  4370. GFP_KERNEL);
  4371. if (!vcpu->arch.mce_banks) {
  4372. r = -ENOMEM;
  4373. goto fail_mmu_destroy;
  4374. }
  4375. vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
  4376. return 0;
  4377. fail_mmu_destroy:
  4378. kvm_mmu_destroy(vcpu);
  4379. fail_free_pio_data:
  4380. free_page((unsigned long)vcpu->arch.pio_data);
  4381. fail:
  4382. return r;
  4383. }
  4384. void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
  4385. {
  4386. kvm_free_lapic(vcpu);
  4387. down_read(&vcpu->kvm->slots_lock);
  4388. kvm_mmu_destroy(vcpu);
  4389. up_read(&vcpu->kvm->slots_lock);
  4390. free_page((unsigned long)vcpu->arch.pio_data);
  4391. }
  4392. struct kvm *kvm_arch_create_vm(void)
  4393. {
  4394. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  4395. if (!kvm)
  4396. return ERR_PTR(-ENOMEM);
  4397. INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
  4398. INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
  4399. /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
  4400. set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
  4401. rdtscll(kvm->arch.vm_init_tsc);
  4402. return kvm;
  4403. }
  4404. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  4405. {
  4406. vcpu_load(vcpu);
  4407. kvm_mmu_unload(vcpu);
  4408. vcpu_put(vcpu);
  4409. }
  4410. static void kvm_free_vcpus(struct kvm *kvm)
  4411. {
  4412. unsigned int i;
  4413. struct kvm_vcpu *vcpu;
  4414. /*
  4415. * Unpin any mmu pages first.
  4416. */
  4417. kvm_for_each_vcpu(i, vcpu, kvm)
  4418. kvm_unload_vcpu_mmu(vcpu);
  4419. kvm_for_each_vcpu(i, vcpu, kvm)
  4420. kvm_arch_vcpu_free(vcpu);
  4421. mutex_lock(&kvm->lock);
  4422. for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
  4423. kvm->vcpus[i] = NULL;
  4424. atomic_set(&kvm->online_vcpus, 0);
  4425. mutex_unlock(&kvm->lock);
  4426. }
  4427. void kvm_arch_sync_events(struct kvm *kvm)
  4428. {
  4429. kvm_free_all_assigned_devices(kvm);
  4430. }
  4431. void kvm_arch_destroy_vm(struct kvm *kvm)
  4432. {
  4433. kvm_iommu_unmap_guest(kvm);
  4434. kvm_free_pit(kvm);
  4435. kfree(kvm->arch.vpic);
  4436. kfree(kvm->arch.vioapic);
  4437. kvm_free_vcpus(kvm);
  4438. kvm_free_physmem(kvm);
  4439. if (kvm->arch.apic_access_page)
  4440. put_page(kvm->arch.apic_access_page);
  4441. if (kvm->arch.ept_identity_pagetable)
  4442. put_page(kvm->arch.ept_identity_pagetable);
  4443. kfree(kvm);
  4444. }
  4445. int kvm_arch_set_memory_region(struct kvm *kvm,
  4446. struct kvm_userspace_memory_region *mem,
  4447. struct kvm_memory_slot old,
  4448. int user_alloc)
  4449. {
  4450. int npages = mem->memory_size >> PAGE_SHIFT;
  4451. struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
  4452. /*To keep backward compatibility with older userspace,
  4453. *x86 needs to hanlde !user_alloc case.
  4454. */
  4455. if (!user_alloc) {
  4456. if (npages && !old.rmap) {
  4457. unsigned long userspace_addr;
  4458. down_write(&current->mm->mmap_sem);
  4459. userspace_addr = do_mmap(NULL, 0,
  4460. npages * PAGE_SIZE,
  4461. PROT_READ | PROT_WRITE,
  4462. MAP_PRIVATE | MAP_ANONYMOUS,
  4463. 0);
  4464. up_write(&current->mm->mmap_sem);
  4465. if (IS_ERR((void *)userspace_addr))
  4466. return PTR_ERR((void *)userspace_addr);
  4467. /* set userspace_addr atomically for kvm_hva_to_rmapp */
  4468. spin_lock(&kvm->mmu_lock);
  4469. memslot->userspace_addr = userspace_addr;
  4470. spin_unlock(&kvm->mmu_lock);
  4471. } else {
  4472. if (!old.user_alloc && old.rmap) {
  4473. int ret;
  4474. down_write(&current->mm->mmap_sem);
  4475. ret = do_munmap(current->mm, old.userspace_addr,
  4476. old.npages * PAGE_SIZE);
  4477. up_write(&current->mm->mmap_sem);
  4478. if (ret < 0)
  4479. printk(KERN_WARNING
  4480. "kvm_vm_ioctl_set_memory_region: "
  4481. "failed to munmap memory\n");
  4482. }
  4483. }
  4484. }
  4485. spin_lock(&kvm->mmu_lock);
  4486. if (!kvm->arch.n_requested_mmu_pages) {
  4487. unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
  4488. kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
  4489. }
  4490. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  4491. spin_unlock(&kvm->mmu_lock);
  4492. return 0;
  4493. }
  4494. void kvm_arch_flush_shadow(struct kvm *kvm)
  4495. {
  4496. kvm_mmu_zap_all(kvm);
  4497. kvm_reload_remote_mmus(kvm);
  4498. }
  4499. int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
  4500. {
  4501. return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
  4502. || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
  4503. || vcpu->arch.nmi_pending ||
  4504. (kvm_arch_interrupt_allowed(vcpu) &&
  4505. kvm_cpu_has_interrupt(vcpu));
  4506. }
  4507. void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
  4508. {
  4509. int me;
  4510. int cpu = vcpu->cpu;
  4511. if (waitqueue_active(&vcpu->wq)) {
  4512. wake_up_interruptible(&vcpu->wq);
  4513. ++vcpu->stat.halt_wakeup;
  4514. }
  4515. me = get_cpu();
  4516. if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
  4517. if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
  4518. smp_send_reschedule(cpu);
  4519. put_cpu();
  4520. }
  4521. int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
  4522. {
  4523. return kvm_x86_ops->interrupt_allowed(vcpu);
  4524. }
  4525. unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
  4526. {
  4527. unsigned long rflags;
  4528. rflags = kvm_x86_ops->get_rflags(vcpu);
  4529. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
  4530. rflags &= ~(unsigned long)(X86_EFLAGS_TF | X86_EFLAGS_RF);
  4531. return rflags;
  4532. }
  4533. EXPORT_SYMBOL_GPL(kvm_get_rflags);
  4534. void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  4535. {
  4536. if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
  4537. vcpu->arch.singlestep_cs ==
  4538. get_segment_selector(vcpu, VCPU_SREG_CS) &&
  4539. vcpu->arch.singlestep_rip == kvm_rip_read(vcpu))
  4540. rflags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  4541. kvm_x86_ops->set_rflags(vcpu, rflags);
  4542. }
  4543. EXPORT_SYMBOL_GPL(kvm_set_rflags);
  4544. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
  4545. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
  4546. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
  4547. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
  4548. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
  4549. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
  4550. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
  4551. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
  4552. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
  4553. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
  4554. EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);