exynos_mct.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551
  1. /* linux/arch/arm/mach-exynos4/mct.c
  2. *
  3. * Copyright (c) 2011 Samsung Electronics Co., Ltd.
  4. * http://www.samsung.com
  5. *
  6. * EXYNOS4 MCT(Multi-Core Timer) support
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. */
  12. #include <linux/sched.h>
  13. #include <linux/interrupt.h>
  14. #include <linux/irq.h>
  15. #include <linux/err.h>
  16. #include <linux/clk.h>
  17. #include <linux/clockchips.h>
  18. #include <linux/platform_device.h>
  19. #include <linux/delay.h>
  20. #include <linux/percpu.h>
  21. #include <linux/of.h>
  22. #include <linux/of_irq.h>
  23. #include <linux/of_address.h>
  24. #include <linux/clocksource.h>
  25. #include <asm/arch_timer.h>
  26. #include <asm/localtimer.h>
  27. #include <plat/cpu.h>
  28. #include <mach/map.h>
  29. #include <mach/irqs.h>
  30. #include <asm/mach/time.h>
  31. #define EXYNOS4_MCTREG(x) (x)
  32. #define EXYNOS4_MCT_G_CNT_L EXYNOS4_MCTREG(0x100)
  33. #define EXYNOS4_MCT_G_CNT_U EXYNOS4_MCTREG(0x104)
  34. #define EXYNOS4_MCT_G_CNT_WSTAT EXYNOS4_MCTREG(0x110)
  35. #define EXYNOS4_MCT_G_COMP0_L EXYNOS4_MCTREG(0x200)
  36. #define EXYNOS4_MCT_G_COMP0_U EXYNOS4_MCTREG(0x204)
  37. #define EXYNOS4_MCT_G_COMP0_ADD_INCR EXYNOS4_MCTREG(0x208)
  38. #define EXYNOS4_MCT_G_TCON EXYNOS4_MCTREG(0x240)
  39. #define EXYNOS4_MCT_G_INT_CSTAT EXYNOS4_MCTREG(0x244)
  40. #define EXYNOS4_MCT_G_INT_ENB EXYNOS4_MCTREG(0x248)
  41. #define EXYNOS4_MCT_G_WSTAT EXYNOS4_MCTREG(0x24C)
  42. #define _EXYNOS4_MCT_L_BASE EXYNOS4_MCTREG(0x300)
  43. #define EXYNOS4_MCT_L_BASE(x) (_EXYNOS4_MCT_L_BASE + (0x100 * x))
  44. #define EXYNOS4_MCT_L_MASK (0xffffff00)
  45. #define MCT_L_TCNTB_OFFSET (0x00)
  46. #define MCT_L_ICNTB_OFFSET (0x08)
  47. #define MCT_L_TCON_OFFSET (0x20)
  48. #define MCT_L_INT_CSTAT_OFFSET (0x30)
  49. #define MCT_L_INT_ENB_OFFSET (0x34)
  50. #define MCT_L_WSTAT_OFFSET (0x40)
  51. #define MCT_G_TCON_START (1 << 8)
  52. #define MCT_G_TCON_COMP0_AUTO_INC (1 << 1)
  53. #define MCT_G_TCON_COMP0_ENABLE (1 << 0)
  54. #define MCT_L_TCON_INTERVAL_MODE (1 << 2)
  55. #define MCT_L_TCON_INT_START (1 << 1)
  56. #define MCT_L_TCON_TIMER_START (1 << 0)
  57. #define TICK_BASE_CNT 1
  58. enum {
  59. MCT_INT_SPI,
  60. MCT_INT_PPI
  61. };
  62. enum {
  63. MCT_G0_IRQ,
  64. MCT_G1_IRQ,
  65. MCT_G2_IRQ,
  66. MCT_G3_IRQ,
  67. MCT_L0_IRQ,
  68. MCT_L1_IRQ,
  69. MCT_L2_IRQ,
  70. MCT_L3_IRQ,
  71. MCT_NR_IRQS,
  72. };
  73. static void __iomem *reg_base;
  74. static unsigned long clk_rate;
  75. static unsigned int mct_int_type;
  76. static int mct_irqs[MCT_NR_IRQS];
  77. struct mct_clock_event_device {
  78. struct clock_event_device *evt;
  79. unsigned long base;
  80. char name[10];
  81. };
  82. static void exynos4_mct_write(unsigned int value, unsigned long offset)
  83. {
  84. unsigned long stat_addr;
  85. u32 mask;
  86. u32 i;
  87. __raw_writel(value, reg_base + offset);
  88. if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) {
  89. stat_addr = (offset & ~EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET;
  90. switch (offset & EXYNOS4_MCT_L_MASK) {
  91. case MCT_L_TCON_OFFSET:
  92. mask = 1 << 3; /* L_TCON write status */
  93. break;
  94. case MCT_L_ICNTB_OFFSET:
  95. mask = 1 << 1; /* L_ICNTB write status */
  96. break;
  97. case MCT_L_TCNTB_OFFSET:
  98. mask = 1 << 0; /* L_TCNTB write status */
  99. break;
  100. default:
  101. return;
  102. }
  103. } else {
  104. switch (offset) {
  105. case EXYNOS4_MCT_G_TCON:
  106. stat_addr = EXYNOS4_MCT_G_WSTAT;
  107. mask = 1 << 16; /* G_TCON write status */
  108. break;
  109. case EXYNOS4_MCT_G_COMP0_L:
  110. stat_addr = EXYNOS4_MCT_G_WSTAT;
  111. mask = 1 << 0; /* G_COMP0_L write status */
  112. break;
  113. case EXYNOS4_MCT_G_COMP0_U:
  114. stat_addr = EXYNOS4_MCT_G_WSTAT;
  115. mask = 1 << 1; /* G_COMP0_U write status */
  116. break;
  117. case EXYNOS4_MCT_G_COMP0_ADD_INCR:
  118. stat_addr = EXYNOS4_MCT_G_WSTAT;
  119. mask = 1 << 2; /* G_COMP0_ADD_INCR w status */
  120. break;
  121. case EXYNOS4_MCT_G_CNT_L:
  122. stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
  123. mask = 1 << 0; /* G_CNT_L write status */
  124. break;
  125. case EXYNOS4_MCT_G_CNT_U:
  126. stat_addr = EXYNOS4_MCT_G_CNT_WSTAT;
  127. mask = 1 << 1; /* G_CNT_U write status */
  128. break;
  129. default:
  130. return;
  131. }
  132. }
  133. /* Wait maximum 1 ms until written values are applied */
  134. for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++)
  135. if (__raw_readl(reg_base + stat_addr) & mask) {
  136. __raw_writel(mask, reg_base + stat_addr);
  137. return;
  138. }
  139. panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset);
  140. }
  141. /* Clocksource handling */
  142. static void exynos4_mct_frc_start(u32 hi, u32 lo)
  143. {
  144. u32 reg;
  145. exynos4_mct_write(lo, EXYNOS4_MCT_G_CNT_L);
  146. exynos4_mct_write(hi, EXYNOS4_MCT_G_CNT_U);
  147. reg = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
  148. reg |= MCT_G_TCON_START;
  149. exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON);
  150. }
  151. static cycle_t exynos4_frc_read(struct clocksource *cs)
  152. {
  153. unsigned int lo, hi;
  154. u32 hi2 = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_U);
  155. do {
  156. hi = hi2;
  157. lo = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_L);
  158. hi2 = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_U);
  159. } while (hi != hi2);
  160. return ((cycle_t)hi << 32) | lo;
  161. }
  162. static void exynos4_frc_resume(struct clocksource *cs)
  163. {
  164. exynos4_mct_frc_start(0, 0);
  165. }
  166. struct clocksource mct_frc = {
  167. .name = "mct-frc",
  168. .rating = 400,
  169. .read = exynos4_frc_read,
  170. .mask = CLOCKSOURCE_MASK(64),
  171. .flags = CLOCK_SOURCE_IS_CONTINUOUS,
  172. .resume = exynos4_frc_resume,
  173. };
  174. static void __init exynos4_clocksource_init(void)
  175. {
  176. exynos4_mct_frc_start(0, 0);
  177. if (clocksource_register_hz(&mct_frc, clk_rate))
  178. panic("%s: can't register clocksource\n", mct_frc.name);
  179. }
  180. static void exynos4_mct_comp0_stop(void)
  181. {
  182. unsigned int tcon;
  183. tcon = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
  184. tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC);
  185. exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON);
  186. exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB);
  187. }
  188. static void exynos4_mct_comp0_start(enum clock_event_mode mode,
  189. unsigned long cycles)
  190. {
  191. unsigned int tcon;
  192. cycle_t comp_cycle;
  193. tcon = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON);
  194. if (mode == CLOCK_EVT_MODE_PERIODIC) {
  195. tcon |= MCT_G_TCON_COMP0_AUTO_INC;
  196. exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR);
  197. }
  198. comp_cycle = exynos4_frc_read(&mct_frc) + cycles;
  199. exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L);
  200. exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U);
  201. exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB);
  202. tcon |= MCT_G_TCON_COMP0_ENABLE;
  203. exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON);
  204. }
  205. static int exynos4_comp_set_next_event(unsigned long cycles,
  206. struct clock_event_device *evt)
  207. {
  208. exynos4_mct_comp0_start(evt->mode, cycles);
  209. return 0;
  210. }
  211. static void exynos4_comp_set_mode(enum clock_event_mode mode,
  212. struct clock_event_device *evt)
  213. {
  214. unsigned long cycles_per_jiffy;
  215. exynos4_mct_comp0_stop();
  216. switch (mode) {
  217. case CLOCK_EVT_MODE_PERIODIC:
  218. cycles_per_jiffy =
  219. (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
  220. exynos4_mct_comp0_start(mode, cycles_per_jiffy);
  221. break;
  222. case CLOCK_EVT_MODE_ONESHOT:
  223. case CLOCK_EVT_MODE_UNUSED:
  224. case CLOCK_EVT_MODE_SHUTDOWN:
  225. case CLOCK_EVT_MODE_RESUME:
  226. break;
  227. }
  228. }
  229. static struct clock_event_device mct_comp_device = {
  230. .name = "mct-comp",
  231. .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
  232. .rating = 250,
  233. .set_next_event = exynos4_comp_set_next_event,
  234. .set_mode = exynos4_comp_set_mode,
  235. };
  236. static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id)
  237. {
  238. struct clock_event_device *evt = dev_id;
  239. exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT);
  240. evt->event_handler(evt);
  241. return IRQ_HANDLED;
  242. }
  243. static struct irqaction mct_comp_event_irq = {
  244. .name = "mct_comp_irq",
  245. .flags = IRQF_TIMER | IRQF_IRQPOLL,
  246. .handler = exynos4_mct_comp_isr,
  247. .dev_id = &mct_comp_device,
  248. };
  249. static void exynos4_clockevent_init(void)
  250. {
  251. mct_comp_device.cpumask = cpumask_of(0);
  252. clockevents_config_and_register(&mct_comp_device, clk_rate,
  253. 0xf, 0xffffffff);
  254. setup_irq(mct_irqs[MCT_G0_IRQ], &mct_comp_event_irq);
  255. }
  256. #ifdef CONFIG_LOCAL_TIMERS
  257. static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick);
  258. /* Clock event handling */
  259. static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt)
  260. {
  261. unsigned long tmp;
  262. unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START;
  263. unsigned long offset = mevt->base + MCT_L_TCON_OFFSET;
  264. tmp = __raw_readl(reg_base + offset);
  265. if (tmp & mask) {
  266. tmp &= ~mask;
  267. exynos4_mct_write(tmp, offset);
  268. }
  269. }
  270. static void exynos4_mct_tick_start(unsigned long cycles,
  271. struct mct_clock_event_device *mevt)
  272. {
  273. unsigned long tmp;
  274. exynos4_mct_tick_stop(mevt);
  275. tmp = (1 << 31) | cycles; /* MCT_L_UPDATE_ICNTB */
  276. /* update interrupt count buffer */
  277. exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET);
  278. /* enable MCT tick interrupt */
  279. exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET);
  280. tmp = __raw_readl(reg_base + mevt->base + MCT_L_TCON_OFFSET);
  281. tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START |
  282. MCT_L_TCON_INTERVAL_MODE;
  283. exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET);
  284. }
  285. static int exynos4_tick_set_next_event(unsigned long cycles,
  286. struct clock_event_device *evt)
  287. {
  288. struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
  289. exynos4_mct_tick_start(cycles, mevt);
  290. return 0;
  291. }
  292. static inline void exynos4_tick_set_mode(enum clock_event_mode mode,
  293. struct clock_event_device *evt)
  294. {
  295. struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick);
  296. unsigned long cycles_per_jiffy;
  297. exynos4_mct_tick_stop(mevt);
  298. switch (mode) {
  299. case CLOCK_EVT_MODE_PERIODIC:
  300. cycles_per_jiffy =
  301. (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift);
  302. exynos4_mct_tick_start(cycles_per_jiffy, mevt);
  303. break;
  304. case CLOCK_EVT_MODE_ONESHOT:
  305. case CLOCK_EVT_MODE_UNUSED:
  306. case CLOCK_EVT_MODE_SHUTDOWN:
  307. case CLOCK_EVT_MODE_RESUME:
  308. break;
  309. }
  310. }
  311. static int exynos4_mct_tick_clear(struct mct_clock_event_device *mevt)
  312. {
  313. struct clock_event_device *evt = mevt->evt;
  314. /*
  315. * This is for supporting oneshot mode.
  316. * Mct would generate interrupt periodically
  317. * without explicit stopping.
  318. */
  319. if (evt->mode != CLOCK_EVT_MODE_PERIODIC)
  320. exynos4_mct_tick_stop(mevt);
  321. /* Clear the MCT tick interrupt */
  322. if (__raw_readl(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1) {
  323. exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET);
  324. return 1;
  325. } else {
  326. return 0;
  327. }
  328. }
  329. static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id)
  330. {
  331. struct mct_clock_event_device *mevt = dev_id;
  332. struct clock_event_device *evt = mevt->evt;
  333. exynos4_mct_tick_clear(mevt);
  334. evt->event_handler(evt);
  335. return IRQ_HANDLED;
  336. }
  337. static struct irqaction mct_tick0_event_irq = {
  338. .name = "mct_tick0_irq",
  339. .flags = IRQF_TIMER | IRQF_NOBALANCING,
  340. .handler = exynos4_mct_tick_isr,
  341. };
  342. static struct irqaction mct_tick1_event_irq = {
  343. .name = "mct_tick1_irq",
  344. .flags = IRQF_TIMER | IRQF_NOBALANCING,
  345. .handler = exynos4_mct_tick_isr,
  346. };
  347. static int __cpuinit exynos4_local_timer_setup(struct clock_event_device *evt)
  348. {
  349. struct mct_clock_event_device *mevt;
  350. unsigned int cpu = smp_processor_id();
  351. mevt = this_cpu_ptr(&percpu_mct_tick);
  352. mevt->evt = evt;
  353. mevt->base = EXYNOS4_MCT_L_BASE(cpu);
  354. sprintf(mevt->name, "mct_tick%d", cpu);
  355. evt->name = mevt->name;
  356. evt->cpumask = cpumask_of(cpu);
  357. evt->set_next_event = exynos4_tick_set_next_event;
  358. evt->set_mode = exynos4_tick_set_mode;
  359. evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
  360. evt->rating = 450;
  361. clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1),
  362. 0xf, 0x7fffffff);
  363. exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET);
  364. if (mct_int_type == MCT_INT_SPI) {
  365. if (cpu == 0) {
  366. mct_tick0_event_irq.dev_id = mevt;
  367. evt->irq = mct_irqs[MCT_L0_IRQ];
  368. setup_irq(evt->irq, &mct_tick0_event_irq);
  369. } else {
  370. mct_tick1_event_irq.dev_id = mevt;
  371. evt->irq = mct_irqs[MCT_L1_IRQ];
  372. setup_irq(evt->irq, &mct_tick1_event_irq);
  373. irq_set_affinity(evt->irq, cpumask_of(1));
  374. }
  375. } else {
  376. enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0);
  377. }
  378. return 0;
  379. }
  380. static void exynos4_local_timer_stop(struct clock_event_device *evt)
  381. {
  382. unsigned int cpu = smp_processor_id();
  383. evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt);
  384. if (mct_int_type == MCT_INT_SPI)
  385. if (cpu == 0)
  386. remove_irq(evt->irq, &mct_tick0_event_irq);
  387. else
  388. remove_irq(evt->irq, &mct_tick1_event_irq);
  389. else
  390. disable_percpu_irq(mct_irqs[MCT_L0_IRQ]);
  391. }
  392. static struct local_timer_ops exynos4_mct_tick_ops __cpuinitdata = {
  393. .setup = exynos4_local_timer_setup,
  394. .stop = exynos4_local_timer_stop,
  395. };
  396. #endif /* CONFIG_LOCAL_TIMERS */
  397. static void __init exynos4_timer_resources(struct device_node *np)
  398. {
  399. struct clk *mct_clk;
  400. mct_clk = clk_get(NULL, "xtal");
  401. clk_rate = clk_get_rate(mct_clk);
  402. reg_base = np ? of_iomap(np, 0) : S5P_VA_SYSTIMER;
  403. if (!reg_base)
  404. panic("%s: unable to ioremap mct address space\n", __func__);
  405. #ifdef CONFIG_LOCAL_TIMERS
  406. if (mct_int_type == MCT_INT_PPI) {
  407. int err;
  408. err = request_percpu_irq(mct_irqs[MCT_L0_IRQ],
  409. exynos4_mct_tick_isr, "MCT",
  410. &percpu_mct_tick);
  411. WARN(err, "MCT: can't request IRQ %d (%d)\n",
  412. mct_irqs[MCT_L0_IRQ], err);
  413. }
  414. local_timer_register(&exynos4_mct_tick_ops);
  415. #endif /* CONFIG_LOCAL_TIMERS */
  416. }
  417. static const struct of_device_id exynos_mct_ids[] = {
  418. { .compatible = "samsung,exynos4210-mct", .data = (void *)MCT_INT_SPI },
  419. { .compatible = "samsung,exynos4412-mct", .data = (void *)MCT_INT_PPI },
  420. { }
  421. };
  422. void __init mct_init(void)
  423. {
  424. struct device_node *np = NULL;
  425. const struct of_device_id *match;
  426. u32 nr_irqs, i;
  427. #ifdef CONFIG_OF
  428. np = of_find_matching_node_and_match(NULL, exynos_mct_ids, &match);
  429. #endif
  430. if (np) {
  431. mct_int_type = (u32)(match->data);
  432. /* This driver uses only one global timer interrupt */
  433. mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ);
  434. /*
  435. * Find out the number of local irqs specified. The local
  436. * timer irqs are specified after the four global timer
  437. * irqs are specified.
  438. */
  439. #ifdef CONFIG_OF
  440. nr_irqs = of_irq_count(np);
  441. #endif
  442. for (i = MCT_L0_IRQ; i < nr_irqs; i++)
  443. mct_irqs[i] = irq_of_parse_and_map(np, i);
  444. } else if (soc_is_exynos4210()) {
  445. mct_irqs[MCT_G0_IRQ] = EXYNOS4_IRQ_MCT_G0;
  446. mct_irqs[MCT_L0_IRQ] = EXYNOS4_IRQ_MCT_L0;
  447. mct_irqs[MCT_L1_IRQ] = EXYNOS4_IRQ_MCT_L1;
  448. mct_int_type = MCT_INT_SPI;
  449. } else {
  450. panic("unable to determine mct controller type\n");
  451. }
  452. exynos4_timer_resources(np);
  453. exynos4_clocksource_init();
  454. exynos4_clockevent_init();
  455. }
  456. CLOCKSOURCE_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init);
  457. CLOCKSOURCE_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init);