i915_gem.c 104 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155
  1. /*
  2. * Copyright © 2008 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. #include "drmP.h"
  28. #include "drm.h"
  29. #include "i915_drm.h"
  30. #include "i915_drv.h"
  31. #include "i915_trace.h"
  32. #include "intel_drv.h"
  33. #include <linux/shmem_fs.h>
  34. #include <linux/slab.h>
  35. #include <linux/swap.h>
  36. #include <linux/pci.h>
  37. static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
  38. static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
  39. static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
  40. static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  41. unsigned alignment,
  42. bool map_and_fenceable);
  43. static void i915_gem_clear_fence_reg(struct drm_device *dev,
  44. struct drm_i915_fence_reg *reg);
  45. static int i915_gem_phys_pwrite(struct drm_device *dev,
  46. struct drm_i915_gem_object *obj,
  47. struct drm_i915_gem_pwrite *args,
  48. struct drm_file *file);
  49. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
  50. static int i915_gem_inactive_shrink(struct shrinker *shrinker,
  51. struct shrink_control *sc);
  52. static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
  53. /* some bookkeeping */
  54. static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
  55. size_t size)
  56. {
  57. dev_priv->mm.object_count++;
  58. dev_priv->mm.object_memory += size;
  59. }
  60. static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
  61. size_t size)
  62. {
  63. dev_priv->mm.object_count--;
  64. dev_priv->mm.object_memory -= size;
  65. }
  66. static int
  67. i915_gem_wait_for_error(struct drm_device *dev)
  68. {
  69. struct drm_i915_private *dev_priv = dev->dev_private;
  70. struct completion *x = &dev_priv->error_completion;
  71. unsigned long flags;
  72. int ret;
  73. if (!atomic_read(&dev_priv->mm.wedged))
  74. return 0;
  75. ret = wait_for_completion_interruptible(x);
  76. if (ret)
  77. return ret;
  78. if (atomic_read(&dev_priv->mm.wedged)) {
  79. /* GPU is hung, bump the completion count to account for
  80. * the token we just consumed so that we never hit zero and
  81. * end up waiting upon a subsequent completion event that
  82. * will never happen.
  83. */
  84. spin_lock_irqsave(&x->wait.lock, flags);
  85. x->done++;
  86. spin_unlock_irqrestore(&x->wait.lock, flags);
  87. }
  88. return 0;
  89. }
  90. int i915_mutex_lock_interruptible(struct drm_device *dev)
  91. {
  92. int ret;
  93. ret = i915_gem_wait_for_error(dev);
  94. if (ret)
  95. return ret;
  96. ret = mutex_lock_interruptible(&dev->struct_mutex);
  97. if (ret)
  98. return ret;
  99. WARN_ON(i915_verify_lists(dev));
  100. return 0;
  101. }
  102. static inline bool
  103. i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
  104. {
  105. return obj->gtt_space && !obj->active && obj->pin_count == 0;
  106. }
  107. int
  108. i915_gem_init_ioctl(struct drm_device *dev, void *data,
  109. struct drm_file *file)
  110. {
  111. struct drm_i915_gem_init *args = data;
  112. if (args->gtt_start >= args->gtt_end ||
  113. (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
  114. return -EINVAL;
  115. /* GEM with user mode setting was never supported on ilk and later. */
  116. if (INTEL_INFO(dev)->gen >= 5)
  117. return -ENODEV;
  118. mutex_lock(&dev->struct_mutex);
  119. i915_gem_init_global_gtt(dev, args->gtt_start,
  120. args->gtt_end, args->gtt_end);
  121. mutex_unlock(&dev->struct_mutex);
  122. return 0;
  123. }
  124. int
  125. i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
  126. struct drm_file *file)
  127. {
  128. struct drm_i915_private *dev_priv = dev->dev_private;
  129. struct drm_i915_gem_get_aperture *args = data;
  130. struct drm_i915_gem_object *obj;
  131. size_t pinned;
  132. if (!(dev->driver->driver_features & DRIVER_GEM))
  133. return -ENODEV;
  134. pinned = 0;
  135. mutex_lock(&dev->struct_mutex);
  136. list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
  137. pinned += obj->gtt_space->size;
  138. mutex_unlock(&dev->struct_mutex);
  139. args->aper_size = dev_priv->mm.gtt_total;
  140. args->aper_available_size = args->aper_size - pinned;
  141. return 0;
  142. }
  143. static int
  144. i915_gem_create(struct drm_file *file,
  145. struct drm_device *dev,
  146. uint64_t size,
  147. uint32_t *handle_p)
  148. {
  149. struct drm_i915_gem_object *obj;
  150. int ret;
  151. u32 handle;
  152. size = roundup(size, PAGE_SIZE);
  153. if (size == 0)
  154. return -EINVAL;
  155. /* Allocate the new object */
  156. obj = i915_gem_alloc_object(dev, size);
  157. if (obj == NULL)
  158. return -ENOMEM;
  159. ret = drm_gem_handle_create(file, &obj->base, &handle);
  160. if (ret) {
  161. drm_gem_object_release(&obj->base);
  162. i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
  163. kfree(obj);
  164. return ret;
  165. }
  166. /* drop reference from allocate - handle holds it now */
  167. drm_gem_object_unreference(&obj->base);
  168. trace_i915_gem_object_create(obj);
  169. *handle_p = handle;
  170. return 0;
  171. }
  172. int
  173. i915_gem_dumb_create(struct drm_file *file,
  174. struct drm_device *dev,
  175. struct drm_mode_create_dumb *args)
  176. {
  177. /* have to work out size/pitch and return them */
  178. args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
  179. args->size = args->pitch * args->height;
  180. return i915_gem_create(file, dev,
  181. args->size, &args->handle);
  182. }
  183. int i915_gem_dumb_destroy(struct drm_file *file,
  184. struct drm_device *dev,
  185. uint32_t handle)
  186. {
  187. return drm_gem_handle_delete(file, handle);
  188. }
  189. /**
  190. * Creates a new mm object and returns a handle to it.
  191. */
  192. int
  193. i915_gem_create_ioctl(struct drm_device *dev, void *data,
  194. struct drm_file *file)
  195. {
  196. struct drm_i915_gem_create *args = data;
  197. return i915_gem_create(file, dev,
  198. args->size, &args->handle);
  199. }
  200. static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
  201. {
  202. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  203. return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
  204. obj->tiling_mode != I915_TILING_NONE;
  205. }
  206. static inline int
  207. __copy_to_user_swizzled(char __user *cpu_vaddr,
  208. const char *gpu_vaddr, int gpu_offset,
  209. int length)
  210. {
  211. int ret, cpu_offset = 0;
  212. while (length > 0) {
  213. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  214. int this_length = min(cacheline_end - gpu_offset, length);
  215. int swizzled_gpu_offset = gpu_offset ^ 64;
  216. ret = __copy_to_user(cpu_vaddr + cpu_offset,
  217. gpu_vaddr + swizzled_gpu_offset,
  218. this_length);
  219. if (ret)
  220. return ret + length;
  221. cpu_offset += this_length;
  222. gpu_offset += this_length;
  223. length -= this_length;
  224. }
  225. return 0;
  226. }
  227. static inline int
  228. __copy_from_user_swizzled(char __user *gpu_vaddr, int gpu_offset,
  229. const char *cpu_vaddr,
  230. int length)
  231. {
  232. int ret, cpu_offset = 0;
  233. while (length > 0) {
  234. int cacheline_end = ALIGN(gpu_offset + 1, 64);
  235. int this_length = min(cacheline_end - gpu_offset, length);
  236. int swizzled_gpu_offset = gpu_offset ^ 64;
  237. ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
  238. cpu_vaddr + cpu_offset,
  239. this_length);
  240. if (ret)
  241. return ret + length;
  242. cpu_offset += this_length;
  243. gpu_offset += this_length;
  244. length -= this_length;
  245. }
  246. return 0;
  247. }
  248. /* Per-page copy function for the shmem pread fastpath.
  249. * Flushes invalid cachelines before reading the target if
  250. * needs_clflush is set. */
  251. static int
  252. shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
  253. char __user *user_data,
  254. bool page_do_bit17_swizzling, bool needs_clflush)
  255. {
  256. char *vaddr;
  257. int ret;
  258. if (unlikely(page_do_bit17_swizzling))
  259. return -EINVAL;
  260. vaddr = kmap_atomic(page);
  261. if (needs_clflush)
  262. drm_clflush_virt_range(vaddr + shmem_page_offset,
  263. page_length);
  264. ret = __copy_to_user_inatomic(user_data,
  265. vaddr + shmem_page_offset,
  266. page_length);
  267. kunmap_atomic(vaddr);
  268. return ret;
  269. }
  270. static void
  271. shmem_clflush_swizzled_range(char *addr, unsigned long length,
  272. bool swizzled)
  273. {
  274. if (unlikely(swizzled)) {
  275. unsigned long start = (unsigned long) addr;
  276. unsigned long end = (unsigned long) addr + length;
  277. /* For swizzling simply ensure that we always flush both
  278. * channels. Lame, but simple and it works. Swizzled
  279. * pwrite/pread is far from a hotpath - current userspace
  280. * doesn't use it at all. */
  281. start = round_down(start, 128);
  282. end = round_up(end, 128);
  283. drm_clflush_virt_range((void *)start, end - start);
  284. } else {
  285. drm_clflush_virt_range(addr, length);
  286. }
  287. }
  288. /* Only difference to the fast-path function is that this can handle bit17
  289. * and uses non-atomic copy and kmap functions. */
  290. static int
  291. shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
  292. char __user *user_data,
  293. bool page_do_bit17_swizzling, bool needs_clflush)
  294. {
  295. char *vaddr;
  296. int ret;
  297. vaddr = kmap(page);
  298. if (needs_clflush)
  299. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  300. page_length,
  301. page_do_bit17_swizzling);
  302. if (page_do_bit17_swizzling)
  303. ret = __copy_to_user_swizzled(user_data,
  304. vaddr, shmem_page_offset,
  305. page_length);
  306. else
  307. ret = __copy_to_user(user_data,
  308. vaddr + shmem_page_offset,
  309. page_length);
  310. kunmap(page);
  311. return ret;
  312. }
  313. static int
  314. i915_gem_shmem_pread(struct drm_device *dev,
  315. struct drm_i915_gem_object *obj,
  316. struct drm_i915_gem_pread *args,
  317. struct drm_file *file)
  318. {
  319. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  320. char __user *user_data;
  321. ssize_t remain;
  322. loff_t offset;
  323. int shmem_page_offset, page_length, ret = 0;
  324. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  325. int hit_slowpath = 0;
  326. int prefaulted = 0;
  327. int needs_clflush = 0;
  328. int release_page;
  329. user_data = (char __user *) (uintptr_t) args->data_ptr;
  330. remain = args->size;
  331. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  332. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
  333. /* If we're not in the cpu read domain, set ourself into the gtt
  334. * read domain and manually flush cachelines (if required). This
  335. * optimizes for the case when the gpu will dirty the data
  336. * anyway again before the next pread happens. */
  337. if (obj->cache_level == I915_CACHE_NONE)
  338. needs_clflush = 1;
  339. ret = i915_gem_object_set_to_gtt_domain(obj, false);
  340. if (ret)
  341. return ret;
  342. }
  343. offset = args->offset;
  344. while (remain > 0) {
  345. struct page *page;
  346. /* Operation in this page
  347. *
  348. * shmem_page_offset = offset within page in shmem file
  349. * page_length = bytes to copy for this page
  350. */
  351. shmem_page_offset = offset_in_page(offset);
  352. page_length = remain;
  353. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  354. page_length = PAGE_SIZE - shmem_page_offset;
  355. if (obj->pages) {
  356. page = obj->pages[offset >> PAGE_SHIFT];
  357. release_page = 0;
  358. } else {
  359. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  360. if (IS_ERR(page)) {
  361. ret = PTR_ERR(page);
  362. goto out;
  363. }
  364. release_page = 1;
  365. }
  366. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  367. (page_to_phys(page) & (1 << 17)) != 0;
  368. ret = shmem_pread_fast(page, shmem_page_offset, page_length,
  369. user_data, page_do_bit17_swizzling,
  370. needs_clflush);
  371. if (ret == 0)
  372. goto next_page;
  373. hit_slowpath = 1;
  374. page_cache_get(page);
  375. mutex_unlock(&dev->struct_mutex);
  376. if (!prefaulted) {
  377. ret = fault_in_multipages_writeable(user_data, remain);
  378. /* Userspace is tricking us, but we've already clobbered
  379. * its pages with the prefault and promised to write the
  380. * data up to the first fault. Hence ignore any errors
  381. * and just continue. */
  382. (void)ret;
  383. prefaulted = 1;
  384. }
  385. ret = shmem_pread_slow(page, shmem_page_offset, page_length,
  386. user_data, page_do_bit17_swizzling,
  387. needs_clflush);
  388. mutex_lock(&dev->struct_mutex);
  389. page_cache_release(page);
  390. next_page:
  391. mark_page_accessed(page);
  392. if (release_page)
  393. page_cache_release(page);
  394. if (ret) {
  395. ret = -EFAULT;
  396. goto out;
  397. }
  398. remain -= page_length;
  399. user_data += page_length;
  400. offset += page_length;
  401. }
  402. out:
  403. if (hit_slowpath) {
  404. /* Fixup: Kill any reinstated backing storage pages */
  405. if (obj->madv == __I915_MADV_PURGED)
  406. i915_gem_object_truncate(obj);
  407. }
  408. return ret;
  409. }
  410. /**
  411. * Reads data from the object referenced by handle.
  412. *
  413. * On error, the contents of *data are undefined.
  414. */
  415. int
  416. i915_gem_pread_ioctl(struct drm_device *dev, void *data,
  417. struct drm_file *file)
  418. {
  419. struct drm_i915_gem_pread *args = data;
  420. struct drm_i915_gem_object *obj;
  421. int ret = 0;
  422. if (args->size == 0)
  423. return 0;
  424. if (!access_ok(VERIFY_WRITE,
  425. (char __user *)(uintptr_t)args->data_ptr,
  426. args->size))
  427. return -EFAULT;
  428. ret = i915_mutex_lock_interruptible(dev);
  429. if (ret)
  430. return ret;
  431. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  432. if (&obj->base == NULL) {
  433. ret = -ENOENT;
  434. goto unlock;
  435. }
  436. /* Bounds check source. */
  437. if (args->offset > obj->base.size ||
  438. args->size > obj->base.size - args->offset) {
  439. ret = -EINVAL;
  440. goto out;
  441. }
  442. trace_i915_gem_object_pread(obj, args->offset, args->size);
  443. ret = i915_gem_shmem_pread(dev, obj, args, file);
  444. out:
  445. drm_gem_object_unreference(&obj->base);
  446. unlock:
  447. mutex_unlock(&dev->struct_mutex);
  448. return ret;
  449. }
  450. /* This is the fast write path which cannot handle
  451. * page faults in the source data
  452. */
  453. static inline int
  454. fast_user_write(struct io_mapping *mapping,
  455. loff_t page_base, int page_offset,
  456. char __user *user_data,
  457. int length)
  458. {
  459. char *vaddr_atomic;
  460. unsigned long unwritten;
  461. vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
  462. unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
  463. user_data, length);
  464. io_mapping_unmap_atomic(vaddr_atomic);
  465. return unwritten;
  466. }
  467. /**
  468. * This is the fast pwrite path, where we copy the data directly from the
  469. * user into the GTT, uncached.
  470. */
  471. static int
  472. i915_gem_gtt_pwrite_fast(struct drm_device *dev,
  473. struct drm_i915_gem_object *obj,
  474. struct drm_i915_gem_pwrite *args,
  475. struct drm_file *file)
  476. {
  477. drm_i915_private_t *dev_priv = dev->dev_private;
  478. ssize_t remain;
  479. loff_t offset, page_base;
  480. char __user *user_data;
  481. int page_offset, page_length, ret;
  482. ret = i915_gem_object_pin(obj, 0, true);
  483. if (ret)
  484. goto out;
  485. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  486. if (ret)
  487. goto out_unpin;
  488. ret = i915_gem_object_put_fence(obj);
  489. if (ret)
  490. goto out_unpin;
  491. user_data = (char __user *) (uintptr_t) args->data_ptr;
  492. remain = args->size;
  493. offset = obj->gtt_offset + args->offset;
  494. while (remain > 0) {
  495. /* Operation in this page
  496. *
  497. * page_base = page offset within aperture
  498. * page_offset = offset within page
  499. * page_length = bytes to copy for this page
  500. */
  501. page_base = offset & PAGE_MASK;
  502. page_offset = offset_in_page(offset);
  503. page_length = remain;
  504. if ((page_offset + remain) > PAGE_SIZE)
  505. page_length = PAGE_SIZE - page_offset;
  506. /* If we get a fault while copying data, then (presumably) our
  507. * source page isn't available. Return the error and we'll
  508. * retry in the slow path.
  509. */
  510. if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
  511. page_offset, user_data, page_length)) {
  512. ret = -EFAULT;
  513. goto out_unpin;
  514. }
  515. remain -= page_length;
  516. user_data += page_length;
  517. offset += page_length;
  518. }
  519. out_unpin:
  520. i915_gem_object_unpin(obj);
  521. out:
  522. return ret;
  523. }
  524. /* Per-page copy function for the shmem pwrite fastpath.
  525. * Flushes invalid cachelines before writing to the target if
  526. * needs_clflush_before is set and flushes out any written cachelines after
  527. * writing if needs_clflush is set. */
  528. static int
  529. shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
  530. char __user *user_data,
  531. bool page_do_bit17_swizzling,
  532. bool needs_clflush_before,
  533. bool needs_clflush_after)
  534. {
  535. char *vaddr;
  536. int ret;
  537. if (unlikely(page_do_bit17_swizzling))
  538. return -EINVAL;
  539. vaddr = kmap_atomic(page);
  540. if (needs_clflush_before)
  541. drm_clflush_virt_range(vaddr + shmem_page_offset,
  542. page_length);
  543. ret = __copy_from_user_inatomic_nocache(vaddr + shmem_page_offset,
  544. user_data,
  545. page_length);
  546. if (needs_clflush_after)
  547. drm_clflush_virt_range(vaddr + shmem_page_offset,
  548. page_length);
  549. kunmap_atomic(vaddr);
  550. return ret;
  551. }
  552. /* Only difference to the fast-path function is that this can handle bit17
  553. * and uses non-atomic copy and kmap functions. */
  554. static int
  555. shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
  556. char __user *user_data,
  557. bool page_do_bit17_swizzling,
  558. bool needs_clflush_before,
  559. bool needs_clflush_after)
  560. {
  561. char *vaddr;
  562. int ret;
  563. vaddr = kmap(page);
  564. if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
  565. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  566. page_length,
  567. page_do_bit17_swizzling);
  568. if (page_do_bit17_swizzling)
  569. ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
  570. user_data,
  571. page_length);
  572. else
  573. ret = __copy_from_user(vaddr + shmem_page_offset,
  574. user_data,
  575. page_length);
  576. if (needs_clflush_after)
  577. shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
  578. page_length,
  579. page_do_bit17_swizzling);
  580. kunmap(page);
  581. return ret;
  582. }
  583. static int
  584. i915_gem_shmem_pwrite(struct drm_device *dev,
  585. struct drm_i915_gem_object *obj,
  586. struct drm_i915_gem_pwrite *args,
  587. struct drm_file *file)
  588. {
  589. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  590. ssize_t remain;
  591. loff_t offset;
  592. char __user *user_data;
  593. int shmem_page_offset, page_length, ret = 0;
  594. int obj_do_bit17_swizzling, page_do_bit17_swizzling;
  595. int hit_slowpath = 0;
  596. int needs_clflush_after = 0;
  597. int needs_clflush_before = 0;
  598. int release_page;
  599. user_data = (char __user *) (uintptr_t) args->data_ptr;
  600. remain = args->size;
  601. obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
  602. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  603. /* If we're not in the cpu write domain, set ourself into the gtt
  604. * write domain and manually flush cachelines (if required). This
  605. * optimizes for the case when the gpu will use the data
  606. * right away and we therefore have to clflush anyway. */
  607. if (obj->cache_level == I915_CACHE_NONE)
  608. needs_clflush_after = 1;
  609. ret = i915_gem_object_set_to_gtt_domain(obj, true);
  610. if (ret)
  611. return ret;
  612. }
  613. /* Same trick applies for invalidate partially written cachelines before
  614. * writing. */
  615. if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)
  616. && obj->cache_level == I915_CACHE_NONE)
  617. needs_clflush_before = 1;
  618. offset = args->offset;
  619. obj->dirty = 1;
  620. while (remain > 0) {
  621. struct page *page;
  622. int partial_cacheline_write;
  623. /* Operation in this page
  624. *
  625. * shmem_page_offset = offset within page in shmem file
  626. * page_length = bytes to copy for this page
  627. */
  628. shmem_page_offset = offset_in_page(offset);
  629. page_length = remain;
  630. if ((shmem_page_offset + page_length) > PAGE_SIZE)
  631. page_length = PAGE_SIZE - shmem_page_offset;
  632. /* If we don't overwrite a cacheline completely we need to be
  633. * careful to have up-to-date data by first clflushing. Don't
  634. * overcomplicate things and flush the entire patch. */
  635. partial_cacheline_write = needs_clflush_before &&
  636. ((shmem_page_offset | page_length)
  637. & (boot_cpu_data.x86_clflush_size - 1));
  638. if (obj->pages) {
  639. page = obj->pages[offset >> PAGE_SHIFT];
  640. release_page = 0;
  641. } else {
  642. page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
  643. if (IS_ERR(page)) {
  644. ret = PTR_ERR(page);
  645. goto out;
  646. }
  647. release_page = 1;
  648. }
  649. page_do_bit17_swizzling = obj_do_bit17_swizzling &&
  650. (page_to_phys(page) & (1 << 17)) != 0;
  651. ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
  652. user_data, page_do_bit17_swizzling,
  653. partial_cacheline_write,
  654. needs_clflush_after);
  655. if (ret == 0)
  656. goto next_page;
  657. hit_slowpath = 1;
  658. page_cache_get(page);
  659. mutex_unlock(&dev->struct_mutex);
  660. ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
  661. user_data, page_do_bit17_swizzling,
  662. partial_cacheline_write,
  663. needs_clflush_after);
  664. mutex_lock(&dev->struct_mutex);
  665. page_cache_release(page);
  666. next_page:
  667. set_page_dirty(page);
  668. mark_page_accessed(page);
  669. if (release_page)
  670. page_cache_release(page);
  671. if (ret) {
  672. ret = -EFAULT;
  673. goto out;
  674. }
  675. remain -= page_length;
  676. user_data += page_length;
  677. offset += page_length;
  678. }
  679. out:
  680. if (hit_slowpath) {
  681. /* Fixup: Kill any reinstated backing storage pages */
  682. if (obj->madv == __I915_MADV_PURGED)
  683. i915_gem_object_truncate(obj);
  684. /* and flush dirty cachelines in case the object isn't in the cpu write
  685. * domain anymore. */
  686. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  687. i915_gem_clflush_object(obj);
  688. intel_gtt_chipset_flush();
  689. }
  690. }
  691. if (needs_clflush_after)
  692. intel_gtt_chipset_flush();
  693. return ret;
  694. }
  695. /**
  696. * Writes data to the object referenced by handle.
  697. *
  698. * On error, the contents of the buffer that were to be modified are undefined.
  699. */
  700. int
  701. i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
  702. struct drm_file *file)
  703. {
  704. struct drm_i915_gem_pwrite *args = data;
  705. struct drm_i915_gem_object *obj;
  706. int ret;
  707. if (args->size == 0)
  708. return 0;
  709. if (!access_ok(VERIFY_READ,
  710. (char __user *)(uintptr_t)args->data_ptr,
  711. args->size))
  712. return -EFAULT;
  713. ret = fault_in_multipages_readable((char __user *)(uintptr_t)args->data_ptr,
  714. args->size);
  715. if (ret)
  716. return -EFAULT;
  717. ret = i915_mutex_lock_interruptible(dev);
  718. if (ret)
  719. return ret;
  720. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  721. if (&obj->base == NULL) {
  722. ret = -ENOENT;
  723. goto unlock;
  724. }
  725. /* Bounds check destination. */
  726. if (args->offset > obj->base.size ||
  727. args->size > obj->base.size - args->offset) {
  728. ret = -EINVAL;
  729. goto out;
  730. }
  731. trace_i915_gem_object_pwrite(obj, args->offset, args->size);
  732. ret = -EFAULT;
  733. /* We can only do the GTT pwrite on untiled buffers, as otherwise
  734. * it would end up going through the fenced access, and we'll get
  735. * different detiling behavior between reading and writing.
  736. * pread/pwrite currently are reading and writing from the CPU
  737. * perspective, requiring manual detiling by the client.
  738. */
  739. if (obj->phys_obj) {
  740. ret = i915_gem_phys_pwrite(dev, obj, args, file);
  741. goto out;
  742. }
  743. if (obj->gtt_space &&
  744. obj->cache_level == I915_CACHE_NONE &&
  745. obj->map_and_fenceable &&
  746. obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
  747. ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
  748. /* Note that the gtt paths might fail with non-page-backed user
  749. * pointers (e.g. gtt mappings when moving data between
  750. * textures). Fallback to the shmem path in that case. */
  751. }
  752. if (ret == -EFAULT)
  753. ret = i915_gem_shmem_pwrite(dev, obj, args, file);
  754. out:
  755. drm_gem_object_unreference(&obj->base);
  756. unlock:
  757. mutex_unlock(&dev->struct_mutex);
  758. return ret;
  759. }
  760. /**
  761. * Called when user space prepares to use an object with the CPU, either
  762. * through the mmap ioctl's mapping or a GTT mapping.
  763. */
  764. int
  765. i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
  766. struct drm_file *file)
  767. {
  768. struct drm_i915_gem_set_domain *args = data;
  769. struct drm_i915_gem_object *obj;
  770. uint32_t read_domains = args->read_domains;
  771. uint32_t write_domain = args->write_domain;
  772. int ret;
  773. if (!(dev->driver->driver_features & DRIVER_GEM))
  774. return -ENODEV;
  775. /* Only handle setting domains to types used by the CPU. */
  776. if (write_domain & I915_GEM_GPU_DOMAINS)
  777. return -EINVAL;
  778. if (read_domains & I915_GEM_GPU_DOMAINS)
  779. return -EINVAL;
  780. /* Having something in the write domain implies it's in the read
  781. * domain, and only that read domain. Enforce that in the request.
  782. */
  783. if (write_domain != 0 && read_domains != write_domain)
  784. return -EINVAL;
  785. ret = i915_mutex_lock_interruptible(dev);
  786. if (ret)
  787. return ret;
  788. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  789. if (&obj->base == NULL) {
  790. ret = -ENOENT;
  791. goto unlock;
  792. }
  793. if (read_domains & I915_GEM_DOMAIN_GTT) {
  794. ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
  795. /* Silently promote "you're not bound, there was nothing to do"
  796. * to success, since the client was just asking us to
  797. * make sure everything was done.
  798. */
  799. if (ret == -EINVAL)
  800. ret = 0;
  801. } else {
  802. ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
  803. }
  804. drm_gem_object_unreference(&obj->base);
  805. unlock:
  806. mutex_unlock(&dev->struct_mutex);
  807. return ret;
  808. }
  809. /**
  810. * Called when user space has done writes to this buffer
  811. */
  812. int
  813. i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
  814. struct drm_file *file)
  815. {
  816. struct drm_i915_gem_sw_finish *args = data;
  817. struct drm_i915_gem_object *obj;
  818. int ret = 0;
  819. if (!(dev->driver->driver_features & DRIVER_GEM))
  820. return -ENODEV;
  821. ret = i915_mutex_lock_interruptible(dev);
  822. if (ret)
  823. return ret;
  824. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  825. if (&obj->base == NULL) {
  826. ret = -ENOENT;
  827. goto unlock;
  828. }
  829. /* Pinned buffers may be scanout, so flush the cache */
  830. if (obj->pin_count)
  831. i915_gem_object_flush_cpu_write_domain(obj);
  832. drm_gem_object_unreference(&obj->base);
  833. unlock:
  834. mutex_unlock(&dev->struct_mutex);
  835. return ret;
  836. }
  837. /**
  838. * Maps the contents of an object, returning the address it is mapped
  839. * into.
  840. *
  841. * While the mapping holds a reference on the contents of the object, it doesn't
  842. * imply a ref on the object itself.
  843. */
  844. int
  845. i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
  846. struct drm_file *file)
  847. {
  848. struct drm_i915_gem_mmap *args = data;
  849. struct drm_gem_object *obj;
  850. unsigned long addr;
  851. if (!(dev->driver->driver_features & DRIVER_GEM))
  852. return -ENODEV;
  853. obj = drm_gem_object_lookup(dev, file, args->handle);
  854. if (obj == NULL)
  855. return -ENOENT;
  856. down_write(&current->mm->mmap_sem);
  857. addr = do_mmap(obj->filp, 0, args->size,
  858. PROT_READ | PROT_WRITE, MAP_SHARED,
  859. args->offset);
  860. up_write(&current->mm->mmap_sem);
  861. drm_gem_object_unreference_unlocked(obj);
  862. if (IS_ERR((void *)addr))
  863. return addr;
  864. args->addr_ptr = (uint64_t) addr;
  865. return 0;
  866. }
  867. /**
  868. * i915_gem_fault - fault a page into the GTT
  869. * vma: VMA in question
  870. * vmf: fault info
  871. *
  872. * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
  873. * from userspace. The fault handler takes care of binding the object to
  874. * the GTT (if needed), allocating and programming a fence register (again,
  875. * only if needed based on whether the old reg is still valid or the object
  876. * is tiled) and inserting a new PTE into the faulting process.
  877. *
  878. * Note that the faulting process may involve evicting existing objects
  879. * from the GTT and/or fence registers to make room. So performance may
  880. * suffer if the GTT working set is large or there are few fence registers
  881. * left.
  882. */
  883. int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  884. {
  885. struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
  886. struct drm_device *dev = obj->base.dev;
  887. drm_i915_private_t *dev_priv = dev->dev_private;
  888. pgoff_t page_offset;
  889. unsigned long pfn;
  890. int ret = 0;
  891. bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
  892. /* We don't use vmf->pgoff since that has the fake offset */
  893. page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
  894. PAGE_SHIFT;
  895. ret = i915_mutex_lock_interruptible(dev);
  896. if (ret)
  897. goto out;
  898. trace_i915_gem_object_fault(obj, page_offset, true, write);
  899. /* Now bind it into the GTT if needed */
  900. if (!obj->map_and_fenceable) {
  901. ret = i915_gem_object_unbind(obj);
  902. if (ret)
  903. goto unlock;
  904. }
  905. if (!obj->gtt_space) {
  906. ret = i915_gem_object_bind_to_gtt(obj, 0, true);
  907. if (ret)
  908. goto unlock;
  909. ret = i915_gem_object_set_to_gtt_domain(obj, write);
  910. if (ret)
  911. goto unlock;
  912. }
  913. if (!obj->has_global_gtt_mapping)
  914. i915_gem_gtt_bind_object(obj, obj->cache_level);
  915. ret = i915_gem_object_get_fence(obj, NULL);
  916. if (ret)
  917. goto unlock;
  918. if (i915_gem_object_is_inactive(obj))
  919. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  920. obj->fault_mappable = true;
  921. pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
  922. page_offset;
  923. /* Finally, remap it using the new GTT offset */
  924. ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
  925. unlock:
  926. mutex_unlock(&dev->struct_mutex);
  927. out:
  928. switch (ret) {
  929. case -EIO:
  930. case -EAGAIN:
  931. /* Give the error handler a chance to run and move the
  932. * objects off the GPU active list. Next time we service the
  933. * fault, we should be able to transition the page into the
  934. * GTT without touching the GPU (and so avoid further
  935. * EIO/EGAIN). If the GPU is wedged, then there is no issue
  936. * with coherency, just lost writes.
  937. */
  938. set_need_resched();
  939. case 0:
  940. case -ERESTARTSYS:
  941. case -EINTR:
  942. return VM_FAULT_NOPAGE;
  943. case -ENOMEM:
  944. return VM_FAULT_OOM;
  945. default:
  946. return VM_FAULT_SIGBUS;
  947. }
  948. }
  949. /**
  950. * i915_gem_release_mmap - remove physical page mappings
  951. * @obj: obj in question
  952. *
  953. * Preserve the reservation of the mmapping with the DRM core code, but
  954. * relinquish ownership of the pages back to the system.
  955. *
  956. * It is vital that we remove the page mapping if we have mapped a tiled
  957. * object through the GTT and then lose the fence register due to
  958. * resource pressure. Similarly if the object has been moved out of the
  959. * aperture, than pages mapped into userspace must be revoked. Removing the
  960. * mapping will then trigger a page fault on the next user access, allowing
  961. * fixup by i915_gem_fault().
  962. */
  963. void
  964. i915_gem_release_mmap(struct drm_i915_gem_object *obj)
  965. {
  966. if (!obj->fault_mappable)
  967. return;
  968. if (obj->base.dev->dev_mapping)
  969. unmap_mapping_range(obj->base.dev->dev_mapping,
  970. (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
  971. obj->base.size, 1);
  972. obj->fault_mappable = false;
  973. }
  974. static uint32_t
  975. i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
  976. {
  977. uint32_t gtt_size;
  978. if (INTEL_INFO(dev)->gen >= 4 ||
  979. tiling_mode == I915_TILING_NONE)
  980. return size;
  981. /* Previous chips need a power-of-two fence region when tiling */
  982. if (INTEL_INFO(dev)->gen == 3)
  983. gtt_size = 1024*1024;
  984. else
  985. gtt_size = 512*1024;
  986. while (gtt_size < size)
  987. gtt_size <<= 1;
  988. return gtt_size;
  989. }
  990. /**
  991. * i915_gem_get_gtt_alignment - return required GTT alignment for an object
  992. * @obj: object to check
  993. *
  994. * Return the required GTT alignment for an object, taking into account
  995. * potential fence register mapping.
  996. */
  997. static uint32_t
  998. i915_gem_get_gtt_alignment(struct drm_device *dev,
  999. uint32_t size,
  1000. int tiling_mode)
  1001. {
  1002. /*
  1003. * Minimum alignment is 4k (GTT page size), but might be greater
  1004. * if a fence register is needed for the object.
  1005. */
  1006. if (INTEL_INFO(dev)->gen >= 4 ||
  1007. tiling_mode == I915_TILING_NONE)
  1008. return 4096;
  1009. /*
  1010. * Previous chips need to be aligned to the size of the smallest
  1011. * fence register that can contain the object.
  1012. */
  1013. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1014. }
  1015. /**
  1016. * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
  1017. * unfenced object
  1018. * @dev: the device
  1019. * @size: size of the object
  1020. * @tiling_mode: tiling mode of the object
  1021. *
  1022. * Return the required GTT alignment for an object, only taking into account
  1023. * unfenced tiled surface requirements.
  1024. */
  1025. uint32_t
  1026. i915_gem_get_unfenced_gtt_alignment(struct drm_device *dev,
  1027. uint32_t size,
  1028. int tiling_mode)
  1029. {
  1030. /*
  1031. * Minimum alignment is 4k (GTT page size) for sane hw.
  1032. */
  1033. if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
  1034. tiling_mode == I915_TILING_NONE)
  1035. return 4096;
  1036. /* Previous hardware however needs to be aligned to a power-of-two
  1037. * tile height. The simplest method for determining this is to reuse
  1038. * the power-of-tile object size.
  1039. */
  1040. return i915_gem_get_gtt_size(dev, size, tiling_mode);
  1041. }
  1042. int
  1043. i915_gem_mmap_gtt(struct drm_file *file,
  1044. struct drm_device *dev,
  1045. uint32_t handle,
  1046. uint64_t *offset)
  1047. {
  1048. struct drm_i915_private *dev_priv = dev->dev_private;
  1049. struct drm_i915_gem_object *obj;
  1050. int ret;
  1051. if (!(dev->driver->driver_features & DRIVER_GEM))
  1052. return -ENODEV;
  1053. ret = i915_mutex_lock_interruptible(dev);
  1054. if (ret)
  1055. return ret;
  1056. obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
  1057. if (&obj->base == NULL) {
  1058. ret = -ENOENT;
  1059. goto unlock;
  1060. }
  1061. if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
  1062. ret = -E2BIG;
  1063. goto out;
  1064. }
  1065. if (obj->madv != I915_MADV_WILLNEED) {
  1066. DRM_ERROR("Attempting to mmap a purgeable buffer\n");
  1067. ret = -EINVAL;
  1068. goto out;
  1069. }
  1070. if (!obj->base.map_list.map) {
  1071. ret = drm_gem_create_mmap_offset(&obj->base);
  1072. if (ret)
  1073. goto out;
  1074. }
  1075. *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
  1076. out:
  1077. drm_gem_object_unreference(&obj->base);
  1078. unlock:
  1079. mutex_unlock(&dev->struct_mutex);
  1080. return ret;
  1081. }
  1082. /**
  1083. * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
  1084. * @dev: DRM device
  1085. * @data: GTT mapping ioctl data
  1086. * @file: GEM object info
  1087. *
  1088. * Simply returns the fake offset to userspace so it can mmap it.
  1089. * The mmap call will end up in drm_gem_mmap(), which will set things
  1090. * up so we can get faults in the handler above.
  1091. *
  1092. * The fault handler will take care of binding the object into the GTT
  1093. * (since it may have been evicted to make room for something), allocating
  1094. * a fence register, and mapping the appropriate aperture address into
  1095. * userspace.
  1096. */
  1097. int
  1098. i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
  1099. struct drm_file *file)
  1100. {
  1101. struct drm_i915_gem_mmap_gtt *args = data;
  1102. if (!(dev->driver->driver_features & DRIVER_GEM))
  1103. return -ENODEV;
  1104. return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
  1105. }
  1106. static int
  1107. i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
  1108. gfp_t gfpmask)
  1109. {
  1110. int page_count, i;
  1111. struct address_space *mapping;
  1112. struct inode *inode;
  1113. struct page *page;
  1114. /* Get the list of pages out of our struct file. They'll be pinned
  1115. * at this point until we release them.
  1116. */
  1117. page_count = obj->base.size / PAGE_SIZE;
  1118. BUG_ON(obj->pages != NULL);
  1119. obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
  1120. if (obj->pages == NULL)
  1121. return -ENOMEM;
  1122. inode = obj->base.filp->f_path.dentry->d_inode;
  1123. mapping = inode->i_mapping;
  1124. gfpmask |= mapping_gfp_mask(mapping);
  1125. for (i = 0; i < page_count; i++) {
  1126. page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
  1127. if (IS_ERR(page))
  1128. goto err_pages;
  1129. obj->pages[i] = page;
  1130. }
  1131. if (i915_gem_object_needs_bit17_swizzle(obj))
  1132. i915_gem_object_do_bit_17_swizzle(obj);
  1133. return 0;
  1134. err_pages:
  1135. while (i--)
  1136. page_cache_release(obj->pages[i]);
  1137. drm_free_large(obj->pages);
  1138. obj->pages = NULL;
  1139. return PTR_ERR(page);
  1140. }
  1141. static void
  1142. i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
  1143. {
  1144. int page_count = obj->base.size / PAGE_SIZE;
  1145. int i;
  1146. BUG_ON(obj->madv == __I915_MADV_PURGED);
  1147. if (i915_gem_object_needs_bit17_swizzle(obj))
  1148. i915_gem_object_save_bit_17_swizzle(obj);
  1149. if (obj->madv == I915_MADV_DONTNEED)
  1150. obj->dirty = 0;
  1151. for (i = 0; i < page_count; i++) {
  1152. if (obj->dirty)
  1153. set_page_dirty(obj->pages[i]);
  1154. if (obj->madv == I915_MADV_WILLNEED)
  1155. mark_page_accessed(obj->pages[i]);
  1156. page_cache_release(obj->pages[i]);
  1157. }
  1158. obj->dirty = 0;
  1159. drm_free_large(obj->pages);
  1160. obj->pages = NULL;
  1161. }
  1162. void
  1163. i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
  1164. struct intel_ring_buffer *ring,
  1165. u32 seqno)
  1166. {
  1167. struct drm_device *dev = obj->base.dev;
  1168. struct drm_i915_private *dev_priv = dev->dev_private;
  1169. BUG_ON(ring == NULL);
  1170. obj->ring = ring;
  1171. /* Add a reference if we're newly entering the active list. */
  1172. if (!obj->active) {
  1173. drm_gem_object_reference(&obj->base);
  1174. obj->active = 1;
  1175. }
  1176. /* Move from whatever list we were on to the tail of execution. */
  1177. list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
  1178. list_move_tail(&obj->ring_list, &ring->active_list);
  1179. obj->last_rendering_seqno = seqno;
  1180. if (obj->fenced_gpu_access) {
  1181. obj->last_fenced_seqno = seqno;
  1182. obj->last_fenced_ring = ring;
  1183. /* Bump MRU to take account of the delayed flush */
  1184. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  1185. struct drm_i915_fence_reg *reg;
  1186. reg = &dev_priv->fence_regs[obj->fence_reg];
  1187. list_move_tail(&reg->lru_list,
  1188. &dev_priv->mm.fence_list);
  1189. }
  1190. }
  1191. }
  1192. static void
  1193. i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
  1194. {
  1195. list_del_init(&obj->ring_list);
  1196. obj->last_rendering_seqno = 0;
  1197. }
  1198. static void
  1199. i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
  1200. {
  1201. struct drm_device *dev = obj->base.dev;
  1202. drm_i915_private_t *dev_priv = dev->dev_private;
  1203. BUG_ON(!obj->active);
  1204. list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
  1205. i915_gem_object_move_off_active(obj);
  1206. }
  1207. static void
  1208. i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
  1209. {
  1210. struct drm_device *dev = obj->base.dev;
  1211. struct drm_i915_private *dev_priv = dev->dev_private;
  1212. if (obj->pin_count != 0)
  1213. list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
  1214. else
  1215. list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  1216. BUG_ON(!list_empty(&obj->gpu_write_list));
  1217. BUG_ON(!obj->active);
  1218. obj->ring = NULL;
  1219. i915_gem_object_move_off_active(obj);
  1220. obj->fenced_gpu_access = false;
  1221. obj->active = 0;
  1222. obj->pending_gpu_write = false;
  1223. drm_gem_object_unreference(&obj->base);
  1224. WARN_ON(i915_verify_lists(dev));
  1225. }
  1226. /* Immediately discard the backing storage */
  1227. static void
  1228. i915_gem_object_truncate(struct drm_i915_gem_object *obj)
  1229. {
  1230. struct inode *inode;
  1231. /* Our goal here is to return as much of the memory as
  1232. * is possible back to the system as we are called from OOM.
  1233. * To do this we must instruct the shmfs to drop all of its
  1234. * backing pages, *now*.
  1235. */
  1236. inode = obj->base.filp->f_path.dentry->d_inode;
  1237. shmem_truncate_range(inode, 0, (loff_t)-1);
  1238. if (obj->base.map_list.map)
  1239. drm_gem_free_mmap_offset(&obj->base);
  1240. obj->madv = __I915_MADV_PURGED;
  1241. }
  1242. static inline int
  1243. i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
  1244. {
  1245. return obj->madv == I915_MADV_DONTNEED;
  1246. }
  1247. static void
  1248. i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
  1249. uint32_t flush_domains)
  1250. {
  1251. struct drm_i915_gem_object *obj, *next;
  1252. list_for_each_entry_safe(obj, next,
  1253. &ring->gpu_write_list,
  1254. gpu_write_list) {
  1255. if (obj->base.write_domain & flush_domains) {
  1256. uint32_t old_write_domain = obj->base.write_domain;
  1257. obj->base.write_domain = 0;
  1258. list_del_init(&obj->gpu_write_list);
  1259. i915_gem_object_move_to_active(obj, ring,
  1260. i915_gem_next_request_seqno(ring));
  1261. trace_i915_gem_object_change_domain(obj,
  1262. obj->base.read_domains,
  1263. old_write_domain);
  1264. }
  1265. }
  1266. }
  1267. static u32
  1268. i915_gem_get_seqno(struct drm_device *dev)
  1269. {
  1270. drm_i915_private_t *dev_priv = dev->dev_private;
  1271. u32 seqno = dev_priv->next_seqno;
  1272. /* reserve 0 for non-seqno */
  1273. if (++dev_priv->next_seqno == 0)
  1274. dev_priv->next_seqno = 1;
  1275. return seqno;
  1276. }
  1277. u32
  1278. i915_gem_next_request_seqno(struct intel_ring_buffer *ring)
  1279. {
  1280. if (ring->outstanding_lazy_request == 0)
  1281. ring->outstanding_lazy_request = i915_gem_get_seqno(ring->dev);
  1282. return ring->outstanding_lazy_request;
  1283. }
  1284. int
  1285. i915_add_request(struct intel_ring_buffer *ring,
  1286. struct drm_file *file,
  1287. struct drm_i915_gem_request *request)
  1288. {
  1289. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1290. uint32_t seqno;
  1291. u32 request_ring_position;
  1292. int was_empty;
  1293. int ret;
  1294. BUG_ON(request == NULL);
  1295. seqno = i915_gem_next_request_seqno(ring);
  1296. /* Record the position of the start of the request so that
  1297. * should we detect the updated seqno part-way through the
  1298. * GPU processing the request, we never over-estimate the
  1299. * position of the head.
  1300. */
  1301. request_ring_position = intel_ring_get_tail(ring);
  1302. ret = ring->add_request(ring, &seqno);
  1303. if (ret)
  1304. return ret;
  1305. trace_i915_gem_request_add(ring, seqno);
  1306. request->seqno = seqno;
  1307. request->ring = ring;
  1308. request->tail = request_ring_position;
  1309. request->emitted_jiffies = jiffies;
  1310. was_empty = list_empty(&ring->request_list);
  1311. list_add_tail(&request->list, &ring->request_list);
  1312. if (file) {
  1313. struct drm_i915_file_private *file_priv = file->driver_priv;
  1314. spin_lock(&file_priv->mm.lock);
  1315. request->file_priv = file_priv;
  1316. list_add_tail(&request->client_list,
  1317. &file_priv->mm.request_list);
  1318. spin_unlock(&file_priv->mm.lock);
  1319. }
  1320. ring->outstanding_lazy_request = 0;
  1321. if (!dev_priv->mm.suspended) {
  1322. if (i915_enable_hangcheck) {
  1323. mod_timer(&dev_priv->hangcheck_timer,
  1324. jiffies +
  1325. msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
  1326. }
  1327. if (was_empty)
  1328. queue_delayed_work(dev_priv->wq,
  1329. &dev_priv->mm.retire_work, HZ);
  1330. }
  1331. return 0;
  1332. }
  1333. static inline void
  1334. i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
  1335. {
  1336. struct drm_i915_file_private *file_priv = request->file_priv;
  1337. if (!file_priv)
  1338. return;
  1339. spin_lock(&file_priv->mm.lock);
  1340. if (request->file_priv) {
  1341. list_del(&request->client_list);
  1342. request->file_priv = NULL;
  1343. }
  1344. spin_unlock(&file_priv->mm.lock);
  1345. }
  1346. static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
  1347. struct intel_ring_buffer *ring)
  1348. {
  1349. while (!list_empty(&ring->request_list)) {
  1350. struct drm_i915_gem_request *request;
  1351. request = list_first_entry(&ring->request_list,
  1352. struct drm_i915_gem_request,
  1353. list);
  1354. list_del(&request->list);
  1355. i915_gem_request_remove_from_client(request);
  1356. kfree(request);
  1357. }
  1358. while (!list_empty(&ring->active_list)) {
  1359. struct drm_i915_gem_object *obj;
  1360. obj = list_first_entry(&ring->active_list,
  1361. struct drm_i915_gem_object,
  1362. ring_list);
  1363. obj->base.write_domain = 0;
  1364. list_del_init(&obj->gpu_write_list);
  1365. i915_gem_object_move_to_inactive(obj);
  1366. }
  1367. }
  1368. static void i915_gem_reset_fences(struct drm_device *dev)
  1369. {
  1370. struct drm_i915_private *dev_priv = dev->dev_private;
  1371. int i;
  1372. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  1373. struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
  1374. struct drm_i915_gem_object *obj = reg->obj;
  1375. if (!obj)
  1376. continue;
  1377. if (obj->tiling_mode)
  1378. i915_gem_release_mmap(obj);
  1379. reg->obj->fence_reg = I915_FENCE_REG_NONE;
  1380. reg->obj->fenced_gpu_access = false;
  1381. reg->obj->last_fenced_seqno = 0;
  1382. reg->obj->last_fenced_ring = NULL;
  1383. i915_gem_clear_fence_reg(dev, reg);
  1384. }
  1385. }
  1386. void i915_gem_reset(struct drm_device *dev)
  1387. {
  1388. struct drm_i915_private *dev_priv = dev->dev_private;
  1389. struct drm_i915_gem_object *obj;
  1390. int i;
  1391. for (i = 0; i < I915_NUM_RINGS; i++)
  1392. i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
  1393. /* Remove anything from the flushing lists. The GPU cache is likely
  1394. * to be lost on reset along with the data, so simply move the
  1395. * lost bo to the inactive list.
  1396. */
  1397. while (!list_empty(&dev_priv->mm.flushing_list)) {
  1398. obj = list_first_entry(&dev_priv->mm.flushing_list,
  1399. struct drm_i915_gem_object,
  1400. mm_list);
  1401. obj->base.write_domain = 0;
  1402. list_del_init(&obj->gpu_write_list);
  1403. i915_gem_object_move_to_inactive(obj);
  1404. }
  1405. /* Move everything out of the GPU domains to ensure we do any
  1406. * necessary invalidation upon reuse.
  1407. */
  1408. list_for_each_entry(obj,
  1409. &dev_priv->mm.inactive_list,
  1410. mm_list)
  1411. {
  1412. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  1413. }
  1414. /* The fence registers are invalidated so clear them out */
  1415. i915_gem_reset_fences(dev);
  1416. }
  1417. /**
  1418. * This function clears the request list as sequence numbers are passed.
  1419. */
  1420. void
  1421. i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
  1422. {
  1423. uint32_t seqno;
  1424. int i;
  1425. if (list_empty(&ring->request_list))
  1426. return;
  1427. WARN_ON(i915_verify_lists(ring->dev));
  1428. seqno = ring->get_seqno(ring);
  1429. for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
  1430. if (seqno >= ring->sync_seqno[i])
  1431. ring->sync_seqno[i] = 0;
  1432. while (!list_empty(&ring->request_list)) {
  1433. struct drm_i915_gem_request *request;
  1434. request = list_first_entry(&ring->request_list,
  1435. struct drm_i915_gem_request,
  1436. list);
  1437. if (!i915_seqno_passed(seqno, request->seqno))
  1438. break;
  1439. trace_i915_gem_request_retire(ring, request->seqno);
  1440. /* We know the GPU must have read the request to have
  1441. * sent us the seqno + interrupt, so use the position
  1442. * of tail of the request to update the last known position
  1443. * of the GPU head.
  1444. */
  1445. ring->last_retired_head = request->tail;
  1446. list_del(&request->list);
  1447. i915_gem_request_remove_from_client(request);
  1448. kfree(request);
  1449. }
  1450. /* Move any buffers on the active list that are no longer referenced
  1451. * by the ringbuffer to the flushing/inactive lists as appropriate.
  1452. */
  1453. while (!list_empty(&ring->active_list)) {
  1454. struct drm_i915_gem_object *obj;
  1455. obj = list_first_entry(&ring->active_list,
  1456. struct drm_i915_gem_object,
  1457. ring_list);
  1458. if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
  1459. break;
  1460. if (obj->base.write_domain != 0)
  1461. i915_gem_object_move_to_flushing(obj);
  1462. else
  1463. i915_gem_object_move_to_inactive(obj);
  1464. }
  1465. if (unlikely(ring->trace_irq_seqno &&
  1466. i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
  1467. ring->irq_put(ring);
  1468. ring->trace_irq_seqno = 0;
  1469. }
  1470. WARN_ON(i915_verify_lists(ring->dev));
  1471. }
  1472. void
  1473. i915_gem_retire_requests(struct drm_device *dev)
  1474. {
  1475. drm_i915_private_t *dev_priv = dev->dev_private;
  1476. int i;
  1477. if (!list_empty(&dev_priv->mm.deferred_free_list)) {
  1478. struct drm_i915_gem_object *obj, *next;
  1479. /* We must be careful that during unbind() we do not
  1480. * accidentally infinitely recurse into retire requests.
  1481. * Currently:
  1482. * retire -> free -> unbind -> wait -> retire_ring
  1483. */
  1484. list_for_each_entry_safe(obj, next,
  1485. &dev_priv->mm.deferred_free_list,
  1486. mm_list)
  1487. i915_gem_free_object_tail(obj);
  1488. }
  1489. for (i = 0; i < I915_NUM_RINGS; i++)
  1490. i915_gem_retire_requests_ring(&dev_priv->ring[i]);
  1491. }
  1492. static void
  1493. i915_gem_retire_work_handler(struct work_struct *work)
  1494. {
  1495. drm_i915_private_t *dev_priv;
  1496. struct drm_device *dev;
  1497. bool idle;
  1498. int i;
  1499. dev_priv = container_of(work, drm_i915_private_t,
  1500. mm.retire_work.work);
  1501. dev = dev_priv->dev;
  1502. /* Come back later if the device is busy... */
  1503. if (!mutex_trylock(&dev->struct_mutex)) {
  1504. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1505. return;
  1506. }
  1507. i915_gem_retire_requests(dev);
  1508. /* Send a periodic flush down the ring so we don't hold onto GEM
  1509. * objects indefinitely.
  1510. */
  1511. idle = true;
  1512. for (i = 0; i < I915_NUM_RINGS; i++) {
  1513. struct intel_ring_buffer *ring = &dev_priv->ring[i];
  1514. if (!list_empty(&ring->gpu_write_list)) {
  1515. struct drm_i915_gem_request *request;
  1516. int ret;
  1517. ret = i915_gem_flush_ring(ring,
  1518. 0, I915_GEM_GPU_DOMAINS);
  1519. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1520. if (ret || request == NULL ||
  1521. i915_add_request(ring, NULL, request))
  1522. kfree(request);
  1523. }
  1524. idle &= list_empty(&ring->request_list);
  1525. }
  1526. if (!dev_priv->mm.suspended && !idle)
  1527. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
  1528. mutex_unlock(&dev->struct_mutex);
  1529. }
  1530. /**
  1531. * Waits for a sequence number to be signaled, and cleans up the
  1532. * request and object lists appropriately for that event.
  1533. */
  1534. int
  1535. i915_wait_request(struct intel_ring_buffer *ring,
  1536. uint32_t seqno,
  1537. bool do_retire)
  1538. {
  1539. drm_i915_private_t *dev_priv = ring->dev->dev_private;
  1540. u32 ier;
  1541. int ret = 0;
  1542. BUG_ON(seqno == 0);
  1543. if (atomic_read(&dev_priv->mm.wedged)) {
  1544. struct completion *x = &dev_priv->error_completion;
  1545. bool recovery_complete;
  1546. unsigned long flags;
  1547. /* Give the error handler a chance to run. */
  1548. spin_lock_irqsave(&x->wait.lock, flags);
  1549. recovery_complete = x->done > 0;
  1550. spin_unlock_irqrestore(&x->wait.lock, flags);
  1551. return recovery_complete ? -EIO : -EAGAIN;
  1552. }
  1553. if (seqno == ring->outstanding_lazy_request) {
  1554. struct drm_i915_gem_request *request;
  1555. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1556. if (request == NULL)
  1557. return -ENOMEM;
  1558. ret = i915_add_request(ring, NULL, request);
  1559. if (ret) {
  1560. kfree(request);
  1561. return ret;
  1562. }
  1563. seqno = request->seqno;
  1564. }
  1565. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  1566. if (HAS_PCH_SPLIT(ring->dev))
  1567. ier = I915_READ(DEIER) | I915_READ(GTIER);
  1568. else if (IS_VALLEYVIEW(ring->dev))
  1569. ier = I915_READ(GTIER) | I915_READ(VLV_IER);
  1570. else
  1571. ier = I915_READ(IER);
  1572. if (!ier) {
  1573. DRM_ERROR("something (likely vbetool) disabled "
  1574. "interrupts, re-enabling\n");
  1575. ring->dev->driver->irq_preinstall(ring->dev);
  1576. ring->dev->driver->irq_postinstall(ring->dev);
  1577. }
  1578. trace_i915_gem_request_wait_begin(ring, seqno);
  1579. ring->waiting_seqno = seqno;
  1580. if (ring->irq_get(ring)) {
  1581. if (dev_priv->mm.interruptible)
  1582. ret = wait_event_interruptible(ring->irq_queue,
  1583. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1584. || atomic_read(&dev_priv->mm.wedged));
  1585. else
  1586. wait_event(ring->irq_queue,
  1587. i915_seqno_passed(ring->get_seqno(ring), seqno)
  1588. || atomic_read(&dev_priv->mm.wedged));
  1589. ring->irq_put(ring);
  1590. } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
  1591. seqno) ||
  1592. atomic_read(&dev_priv->mm.wedged), 3000))
  1593. ret = -EBUSY;
  1594. ring->waiting_seqno = 0;
  1595. trace_i915_gem_request_wait_end(ring, seqno);
  1596. }
  1597. if (atomic_read(&dev_priv->mm.wedged))
  1598. ret = -EAGAIN;
  1599. /* Directly dispatch request retiring. While we have the work queue
  1600. * to handle this, the waiter on a request often wants an associated
  1601. * buffer to have made it to the inactive list, and we would need
  1602. * a separate wait queue to handle that.
  1603. */
  1604. if (ret == 0 && do_retire)
  1605. i915_gem_retire_requests_ring(ring);
  1606. return ret;
  1607. }
  1608. /**
  1609. * Ensures that all rendering to the object has completed and the object is
  1610. * safe to unbind from the GTT or access from the CPU.
  1611. */
  1612. int
  1613. i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
  1614. {
  1615. int ret;
  1616. /* This function only exists to support waiting for existing rendering,
  1617. * not for emitting required flushes.
  1618. */
  1619. BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
  1620. /* If there is rendering queued on the buffer being evicted, wait for
  1621. * it.
  1622. */
  1623. if (obj->active) {
  1624. ret = i915_wait_request(obj->ring, obj->last_rendering_seqno,
  1625. true);
  1626. if (ret)
  1627. return ret;
  1628. }
  1629. return 0;
  1630. }
  1631. /**
  1632. * i915_gem_object_sync - sync an object to a ring.
  1633. *
  1634. * @obj: object which may be in use on another ring.
  1635. * @to: ring we wish to use the object on. May be NULL.
  1636. *
  1637. * This code is meant to abstract object synchronization with the GPU.
  1638. * Calling with NULL implies synchronizing the object with the CPU
  1639. * rather than a particular GPU ring.
  1640. *
  1641. * Returns 0 if successful, else propagates up the lower layer error.
  1642. */
  1643. int
  1644. i915_gem_object_sync(struct drm_i915_gem_object *obj,
  1645. struct intel_ring_buffer *to)
  1646. {
  1647. struct intel_ring_buffer *from = obj->ring;
  1648. u32 seqno;
  1649. int ret, idx;
  1650. if (from == NULL || to == from)
  1651. return 0;
  1652. if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
  1653. return i915_gem_object_wait_rendering(obj);
  1654. idx = intel_ring_sync_index(from, to);
  1655. seqno = obj->last_rendering_seqno;
  1656. if (seqno <= from->sync_seqno[idx])
  1657. return 0;
  1658. if (seqno == from->outstanding_lazy_request) {
  1659. struct drm_i915_gem_request *request;
  1660. request = kzalloc(sizeof(*request), GFP_KERNEL);
  1661. if (request == NULL)
  1662. return -ENOMEM;
  1663. ret = i915_add_request(from, NULL, request);
  1664. if (ret) {
  1665. kfree(request);
  1666. return ret;
  1667. }
  1668. seqno = request->seqno;
  1669. }
  1670. ret = to->sync_to(to, from, seqno);
  1671. if (!ret)
  1672. from->sync_seqno[idx] = seqno;
  1673. return ret;
  1674. }
  1675. static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
  1676. {
  1677. u32 old_write_domain, old_read_domains;
  1678. /* Act a barrier for all accesses through the GTT */
  1679. mb();
  1680. /* Force a pagefault for domain tracking on next user access */
  1681. i915_gem_release_mmap(obj);
  1682. if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
  1683. return;
  1684. old_read_domains = obj->base.read_domains;
  1685. old_write_domain = obj->base.write_domain;
  1686. obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
  1687. obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
  1688. trace_i915_gem_object_change_domain(obj,
  1689. old_read_domains,
  1690. old_write_domain);
  1691. }
  1692. /**
  1693. * Unbinds an object from the GTT aperture.
  1694. */
  1695. int
  1696. i915_gem_object_unbind(struct drm_i915_gem_object *obj)
  1697. {
  1698. drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
  1699. int ret = 0;
  1700. if (obj->gtt_space == NULL)
  1701. return 0;
  1702. if (obj->pin_count != 0) {
  1703. DRM_ERROR("Attempting to unbind pinned buffer\n");
  1704. return -EINVAL;
  1705. }
  1706. ret = i915_gem_object_finish_gpu(obj);
  1707. if (ret == -ERESTARTSYS)
  1708. return ret;
  1709. /* Continue on if we fail due to EIO, the GPU is hung so we
  1710. * should be safe and we need to cleanup or else we might
  1711. * cause memory corruption through use-after-free.
  1712. */
  1713. i915_gem_object_finish_gtt(obj);
  1714. /* Move the object to the CPU domain to ensure that
  1715. * any possible CPU writes while it's not in the GTT
  1716. * are flushed when we go to remap it.
  1717. */
  1718. if (ret == 0)
  1719. ret = i915_gem_object_set_to_cpu_domain(obj, 1);
  1720. if (ret == -ERESTARTSYS)
  1721. return ret;
  1722. if (ret) {
  1723. /* In the event of a disaster, abandon all caches and
  1724. * hope for the best.
  1725. */
  1726. i915_gem_clflush_object(obj);
  1727. obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  1728. }
  1729. /* release the fence reg _after_ flushing */
  1730. ret = i915_gem_object_put_fence(obj);
  1731. if (ret == -ERESTARTSYS)
  1732. return ret;
  1733. trace_i915_gem_object_unbind(obj);
  1734. if (obj->has_global_gtt_mapping)
  1735. i915_gem_gtt_unbind_object(obj);
  1736. if (obj->has_aliasing_ppgtt_mapping) {
  1737. i915_ppgtt_unbind_object(dev_priv->mm.aliasing_ppgtt, obj);
  1738. obj->has_aliasing_ppgtt_mapping = 0;
  1739. }
  1740. i915_gem_gtt_finish_object(obj);
  1741. i915_gem_object_put_pages_gtt(obj);
  1742. list_del_init(&obj->gtt_list);
  1743. list_del_init(&obj->mm_list);
  1744. /* Avoid an unnecessary call to unbind on rebind. */
  1745. obj->map_and_fenceable = true;
  1746. drm_mm_put_block(obj->gtt_space);
  1747. obj->gtt_space = NULL;
  1748. obj->gtt_offset = 0;
  1749. if (i915_gem_object_is_purgeable(obj))
  1750. i915_gem_object_truncate(obj);
  1751. return ret;
  1752. }
  1753. int
  1754. i915_gem_flush_ring(struct intel_ring_buffer *ring,
  1755. uint32_t invalidate_domains,
  1756. uint32_t flush_domains)
  1757. {
  1758. int ret;
  1759. if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
  1760. return 0;
  1761. trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
  1762. ret = ring->flush(ring, invalidate_domains, flush_domains);
  1763. if (ret)
  1764. return ret;
  1765. if (flush_domains & I915_GEM_GPU_DOMAINS)
  1766. i915_gem_process_flushing_list(ring, flush_domains);
  1767. return 0;
  1768. }
  1769. static int i915_ring_idle(struct intel_ring_buffer *ring, bool do_retire)
  1770. {
  1771. int ret;
  1772. if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
  1773. return 0;
  1774. if (!list_empty(&ring->gpu_write_list)) {
  1775. ret = i915_gem_flush_ring(ring,
  1776. I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
  1777. if (ret)
  1778. return ret;
  1779. }
  1780. return i915_wait_request(ring, i915_gem_next_request_seqno(ring),
  1781. do_retire);
  1782. }
  1783. int i915_gpu_idle(struct drm_device *dev, bool do_retire)
  1784. {
  1785. drm_i915_private_t *dev_priv = dev->dev_private;
  1786. int ret, i;
  1787. /* Flush everything onto the inactive list. */
  1788. for (i = 0; i < I915_NUM_RINGS; i++) {
  1789. ret = i915_ring_idle(&dev_priv->ring[i], do_retire);
  1790. if (ret)
  1791. return ret;
  1792. }
  1793. return 0;
  1794. }
  1795. static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
  1796. struct intel_ring_buffer *pipelined)
  1797. {
  1798. struct drm_device *dev = obj->base.dev;
  1799. drm_i915_private_t *dev_priv = dev->dev_private;
  1800. u32 size = obj->gtt_space->size;
  1801. int regnum = obj->fence_reg;
  1802. uint64_t val;
  1803. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1804. 0xfffff000) << 32;
  1805. val |= obj->gtt_offset & 0xfffff000;
  1806. val |= (uint64_t)((obj->stride / 128) - 1) <<
  1807. SANDYBRIDGE_FENCE_PITCH_SHIFT;
  1808. if (obj->tiling_mode == I915_TILING_Y)
  1809. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1810. val |= I965_FENCE_REG_VALID;
  1811. if (pipelined) {
  1812. int ret = intel_ring_begin(pipelined, 6);
  1813. if (ret)
  1814. return ret;
  1815. intel_ring_emit(pipelined, MI_NOOP);
  1816. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1817. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
  1818. intel_ring_emit(pipelined, (u32)val);
  1819. intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
  1820. intel_ring_emit(pipelined, (u32)(val >> 32));
  1821. intel_ring_advance(pipelined);
  1822. } else
  1823. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
  1824. return 0;
  1825. }
  1826. static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
  1827. struct intel_ring_buffer *pipelined)
  1828. {
  1829. struct drm_device *dev = obj->base.dev;
  1830. drm_i915_private_t *dev_priv = dev->dev_private;
  1831. u32 size = obj->gtt_space->size;
  1832. int regnum = obj->fence_reg;
  1833. uint64_t val;
  1834. val = (uint64_t)((obj->gtt_offset + size - 4096) &
  1835. 0xfffff000) << 32;
  1836. val |= obj->gtt_offset & 0xfffff000;
  1837. val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
  1838. if (obj->tiling_mode == I915_TILING_Y)
  1839. val |= 1 << I965_FENCE_TILING_Y_SHIFT;
  1840. val |= I965_FENCE_REG_VALID;
  1841. if (pipelined) {
  1842. int ret = intel_ring_begin(pipelined, 6);
  1843. if (ret)
  1844. return ret;
  1845. intel_ring_emit(pipelined, MI_NOOP);
  1846. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
  1847. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
  1848. intel_ring_emit(pipelined, (u32)val);
  1849. intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
  1850. intel_ring_emit(pipelined, (u32)(val >> 32));
  1851. intel_ring_advance(pipelined);
  1852. } else
  1853. I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
  1854. return 0;
  1855. }
  1856. static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
  1857. struct intel_ring_buffer *pipelined)
  1858. {
  1859. struct drm_device *dev = obj->base.dev;
  1860. drm_i915_private_t *dev_priv = dev->dev_private;
  1861. u32 size = obj->gtt_space->size;
  1862. u32 fence_reg, val, pitch_val;
  1863. int tile_width;
  1864. if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
  1865. (size & -size) != size ||
  1866. (obj->gtt_offset & (size - 1)),
  1867. "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
  1868. obj->gtt_offset, obj->map_and_fenceable, size))
  1869. return -EINVAL;
  1870. if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
  1871. tile_width = 128;
  1872. else
  1873. tile_width = 512;
  1874. /* Note: pitch better be a power of two tile widths */
  1875. pitch_val = obj->stride / tile_width;
  1876. pitch_val = ffs(pitch_val) - 1;
  1877. val = obj->gtt_offset;
  1878. if (obj->tiling_mode == I915_TILING_Y)
  1879. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1880. val |= I915_FENCE_SIZE_BITS(size);
  1881. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1882. val |= I830_FENCE_REG_VALID;
  1883. fence_reg = obj->fence_reg;
  1884. if (fence_reg < 8)
  1885. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  1886. else
  1887. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  1888. if (pipelined) {
  1889. int ret = intel_ring_begin(pipelined, 4);
  1890. if (ret)
  1891. return ret;
  1892. intel_ring_emit(pipelined, MI_NOOP);
  1893. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  1894. intel_ring_emit(pipelined, fence_reg);
  1895. intel_ring_emit(pipelined, val);
  1896. intel_ring_advance(pipelined);
  1897. } else
  1898. I915_WRITE(fence_reg, val);
  1899. return 0;
  1900. }
  1901. static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
  1902. struct intel_ring_buffer *pipelined)
  1903. {
  1904. struct drm_device *dev = obj->base.dev;
  1905. drm_i915_private_t *dev_priv = dev->dev_private;
  1906. u32 size = obj->gtt_space->size;
  1907. int regnum = obj->fence_reg;
  1908. uint32_t val;
  1909. uint32_t pitch_val;
  1910. if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
  1911. (size & -size) != size ||
  1912. (obj->gtt_offset & (size - 1)),
  1913. "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
  1914. obj->gtt_offset, size))
  1915. return -EINVAL;
  1916. pitch_val = obj->stride / 128;
  1917. pitch_val = ffs(pitch_val) - 1;
  1918. val = obj->gtt_offset;
  1919. if (obj->tiling_mode == I915_TILING_Y)
  1920. val |= 1 << I830_FENCE_TILING_Y_SHIFT;
  1921. val |= I830_FENCE_SIZE_BITS(size);
  1922. val |= pitch_val << I830_FENCE_PITCH_SHIFT;
  1923. val |= I830_FENCE_REG_VALID;
  1924. if (pipelined) {
  1925. int ret = intel_ring_begin(pipelined, 4);
  1926. if (ret)
  1927. return ret;
  1928. intel_ring_emit(pipelined, MI_NOOP);
  1929. intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
  1930. intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
  1931. intel_ring_emit(pipelined, val);
  1932. intel_ring_advance(pipelined);
  1933. } else
  1934. I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
  1935. return 0;
  1936. }
  1937. static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
  1938. {
  1939. return i915_seqno_passed(ring->get_seqno(ring), seqno);
  1940. }
  1941. static int
  1942. i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
  1943. struct intel_ring_buffer *pipelined)
  1944. {
  1945. int ret;
  1946. if (obj->fenced_gpu_access) {
  1947. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  1948. ret = i915_gem_flush_ring(obj->last_fenced_ring,
  1949. 0, obj->base.write_domain);
  1950. if (ret)
  1951. return ret;
  1952. }
  1953. obj->fenced_gpu_access = false;
  1954. }
  1955. if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
  1956. if (!ring_passed_seqno(obj->last_fenced_ring,
  1957. obj->last_fenced_seqno)) {
  1958. ret = i915_wait_request(obj->last_fenced_ring,
  1959. obj->last_fenced_seqno,
  1960. true);
  1961. if (ret)
  1962. return ret;
  1963. }
  1964. obj->last_fenced_seqno = 0;
  1965. obj->last_fenced_ring = NULL;
  1966. }
  1967. /* Ensure that all CPU reads are completed before installing a fence
  1968. * and all writes before removing the fence.
  1969. */
  1970. if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
  1971. mb();
  1972. return 0;
  1973. }
  1974. int
  1975. i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
  1976. {
  1977. int ret;
  1978. if (obj->tiling_mode)
  1979. i915_gem_release_mmap(obj);
  1980. ret = i915_gem_object_flush_fence(obj, NULL);
  1981. if (ret)
  1982. return ret;
  1983. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  1984. struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
  1985. WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count);
  1986. i915_gem_clear_fence_reg(obj->base.dev,
  1987. &dev_priv->fence_regs[obj->fence_reg]);
  1988. obj->fence_reg = I915_FENCE_REG_NONE;
  1989. }
  1990. return 0;
  1991. }
  1992. static struct drm_i915_fence_reg *
  1993. i915_find_fence_reg(struct drm_device *dev,
  1994. struct intel_ring_buffer *pipelined)
  1995. {
  1996. struct drm_i915_private *dev_priv = dev->dev_private;
  1997. struct drm_i915_fence_reg *reg, *first, *avail;
  1998. int i;
  1999. /* First try to find a free reg */
  2000. avail = NULL;
  2001. for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
  2002. reg = &dev_priv->fence_regs[i];
  2003. if (!reg->obj)
  2004. return reg;
  2005. if (!reg->pin_count)
  2006. avail = reg;
  2007. }
  2008. if (avail == NULL)
  2009. return NULL;
  2010. /* None available, try to steal one or wait for a user to finish */
  2011. avail = first = NULL;
  2012. list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
  2013. if (reg->pin_count)
  2014. continue;
  2015. if (first == NULL)
  2016. first = reg;
  2017. if (!pipelined ||
  2018. !reg->obj->last_fenced_ring ||
  2019. reg->obj->last_fenced_ring == pipelined) {
  2020. avail = reg;
  2021. break;
  2022. }
  2023. }
  2024. if (avail == NULL)
  2025. avail = first;
  2026. return avail;
  2027. }
  2028. /**
  2029. * i915_gem_object_get_fence - set up fencing for an object
  2030. * @obj: object to map through a fence reg
  2031. * @pipelined: ring on which to queue the change, or NULL for CPU access
  2032. *
  2033. * When mapping objects through the GTT, userspace wants to be able to write
  2034. * to them without having to worry about swizzling if the object is tiled.
  2035. * This function walks the fence regs looking for a free one for @obj,
  2036. * stealing one if it can't find any.
  2037. *
  2038. * It then sets up the reg based on the object's properties: address, pitch
  2039. * and tiling format.
  2040. *
  2041. * For an untiled surface, this removes any existing fence.
  2042. */
  2043. int
  2044. i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
  2045. struct intel_ring_buffer *pipelined)
  2046. {
  2047. struct drm_device *dev = obj->base.dev;
  2048. struct drm_i915_private *dev_priv = dev->dev_private;
  2049. struct drm_i915_fence_reg *reg;
  2050. int ret;
  2051. if (obj->tiling_mode == I915_TILING_NONE)
  2052. return i915_gem_object_put_fence(obj);
  2053. /* XXX disable pipelining. There are bugs. Shocking. */
  2054. pipelined = NULL;
  2055. /* Just update our place in the LRU if our fence is getting reused. */
  2056. if (obj->fence_reg != I915_FENCE_REG_NONE) {
  2057. reg = &dev_priv->fence_regs[obj->fence_reg];
  2058. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2059. if (obj->tiling_changed) {
  2060. ret = i915_gem_object_flush_fence(obj, pipelined);
  2061. if (ret)
  2062. return ret;
  2063. if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
  2064. pipelined = NULL;
  2065. if (pipelined) {
  2066. reg->setup_seqno =
  2067. i915_gem_next_request_seqno(pipelined);
  2068. obj->last_fenced_seqno = reg->setup_seqno;
  2069. obj->last_fenced_ring = pipelined;
  2070. }
  2071. goto update;
  2072. }
  2073. if (!pipelined) {
  2074. if (reg->setup_seqno) {
  2075. if (!ring_passed_seqno(obj->last_fenced_ring,
  2076. reg->setup_seqno)) {
  2077. ret = i915_wait_request(obj->last_fenced_ring,
  2078. reg->setup_seqno,
  2079. true);
  2080. if (ret)
  2081. return ret;
  2082. }
  2083. reg->setup_seqno = 0;
  2084. }
  2085. } else if (obj->last_fenced_ring &&
  2086. obj->last_fenced_ring != pipelined) {
  2087. ret = i915_gem_object_flush_fence(obj, pipelined);
  2088. if (ret)
  2089. return ret;
  2090. }
  2091. return 0;
  2092. }
  2093. reg = i915_find_fence_reg(dev, pipelined);
  2094. if (reg == NULL)
  2095. return -EDEADLK;
  2096. ret = i915_gem_object_flush_fence(obj, pipelined);
  2097. if (ret)
  2098. return ret;
  2099. if (reg->obj) {
  2100. struct drm_i915_gem_object *old = reg->obj;
  2101. drm_gem_object_reference(&old->base);
  2102. if (old->tiling_mode)
  2103. i915_gem_release_mmap(old);
  2104. ret = i915_gem_object_flush_fence(old, pipelined);
  2105. if (ret) {
  2106. drm_gem_object_unreference(&old->base);
  2107. return ret;
  2108. }
  2109. if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
  2110. pipelined = NULL;
  2111. old->fence_reg = I915_FENCE_REG_NONE;
  2112. old->last_fenced_ring = pipelined;
  2113. old->last_fenced_seqno =
  2114. pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
  2115. drm_gem_object_unreference(&old->base);
  2116. } else if (obj->last_fenced_seqno == 0)
  2117. pipelined = NULL;
  2118. reg->obj = obj;
  2119. list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
  2120. obj->fence_reg = reg - dev_priv->fence_regs;
  2121. obj->last_fenced_ring = pipelined;
  2122. reg->setup_seqno =
  2123. pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
  2124. obj->last_fenced_seqno = reg->setup_seqno;
  2125. update:
  2126. obj->tiling_changed = false;
  2127. switch (INTEL_INFO(dev)->gen) {
  2128. case 7:
  2129. case 6:
  2130. ret = sandybridge_write_fence_reg(obj, pipelined);
  2131. break;
  2132. case 5:
  2133. case 4:
  2134. ret = i965_write_fence_reg(obj, pipelined);
  2135. break;
  2136. case 3:
  2137. ret = i915_write_fence_reg(obj, pipelined);
  2138. break;
  2139. case 2:
  2140. ret = i830_write_fence_reg(obj, pipelined);
  2141. break;
  2142. }
  2143. return ret;
  2144. }
  2145. /**
  2146. * i915_gem_clear_fence_reg - clear out fence register info
  2147. * @obj: object to clear
  2148. *
  2149. * Zeroes out the fence register itself and clears out the associated
  2150. * data structures in dev_priv and obj.
  2151. */
  2152. static void
  2153. i915_gem_clear_fence_reg(struct drm_device *dev,
  2154. struct drm_i915_fence_reg *reg)
  2155. {
  2156. drm_i915_private_t *dev_priv = dev->dev_private;
  2157. uint32_t fence_reg = reg - dev_priv->fence_regs;
  2158. switch (INTEL_INFO(dev)->gen) {
  2159. case 7:
  2160. case 6:
  2161. I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
  2162. break;
  2163. case 5:
  2164. case 4:
  2165. I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
  2166. break;
  2167. case 3:
  2168. if (fence_reg >= 8)
  2169. fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
  2170. else
  2171. case 2:
  2172. fence_reg = FENCE_REG_830_0 + fence_reg * 4;
  2173. I915_WRITE(fence_reg, 0);
  2174. break;
  2175. }
  2176. list_del_init(&reg->lru_list);
  2177. reg->obj = NULL;
  2178. reg->setup_seqno = 0;
  2179. reg->pin_count = 0;
  2180. }
  2181. /**
  2182. * Finds free space in the GTT aperture and binds the object there.
  2183. */
  2184. static int
  2185. i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
  2186. unsigned alignment,
  2187. bool map_and_fenceable)
  2188. {
  2189. struct drm_device *dev = obj->base.dev;
  2190. drm_i915_private_t *dev_priv = dev->dev_private;
  2191. struct drm_mm_node *free_space;
  2192. gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
  2193. u32 size, fence_size, fence_alignment, unfenced_alignment;
  2194. bool mappable, fenceable;
  2195. int ret;
  2196. if (obj->madv != I915_MADV_WILLNEED) {
  2197. DRM_ERROR("Attempting to bind a purgeable object\n");
  2198. return -EINVAL;
  2199. }
  2200. fence_size = i915_gem_get_gtt_size(dev,
  2201. obj->base.size,
  2202. obj->tiling_mode);
  2203. fence_alignment = i915_gem_get_gtt_alignment(dev,
  2204. obj->base.size,
  2205. obj->tiling_mode);
  2206. unfenced_alignment =
  2207. i915_gem_get_unfenced_gtt_alignment(dev,
  2208. obj->base.size,
  2209. obj->tiling_mode);
  2210. if (alignment == 0)
  2211. alignment = map_and_fenceable ? fence_alignment :
  2212. unfenced_alignment;
  2213. if (map_and_fenceable && alignment & (fence_alignment - 1)) {
  2214. DRM_ERROR("Invalid object alignment requested %u\n", alignment);
  2215. return -EINVAL;
  2216. }
  2217. size = map_and_fenceable ? fence_size : obj->base.size;
  2218. /* If the object is bigger than the entire aperture, reject it early
  2219. * before evicting everything in a vain attempt to find space.
  2220. */
  2221. if (obj->base.size >
  2222. (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
  2223. DRM_ERROR("Attempting to bind an object larger than the aperture\n");
  2224. return -E2BIG;
  2225. }
  2226. search_free:
  2227. if (map_and_fenceable)
  2228. free_space =
  2229. drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
  2230. size, alignment, 0,
  2231. dev_priv->mm.gtt_mappable_end,
  2232. 0);
  2233. else
  2234. free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
  2235. size, alignment, 0);
  2236. if (free_space != NULL) {
  2237. if (map_and_fenceable)
  2238. obj->gtt_space =
  2239. drm_mm_get_block_range_generic(free_space,
  2240. size, alignment, 0,
  2241. dev_priv->mm.gtt_mappable_end,
  2242. 0);
  2243. else
  2244. obj->gtt_space =
  2245. drm_mm_get_block(free_space, size, alignment);
  2246. }
  2247. if (obj->gtt_space == NULL) {
  2248. /* If the gtt is empty and we're still having trouble
  2249. * fitting our object in, we're out of memory.
  2250. */
  2251. ret = i915_gem_evict_something(dev, size, alignment,
  2252. map_and_fenceable);
  2253. if (ret)
  2254. return ret;
  2255. goto search_free;
  2256. }
  2257. ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
  2258. if (ret) {
  2259. drm_mm_put_block(obj->gtt_space);
  2260. obj->gtt_space = NULL;
  2261. if (ret == -ENOMEM) {
  2262. /* first try to reclaim some memory by clearing the GTT */
  2263. ret = i915_gem_evict_everything(dev, false);
  2264. if (ret) {
  2265. /* now try to shrink everyone else */
  2266. if (gfpmask) {
  2267. gfpmask = 0;
  2268. goto search_free;
  2269. }
  2270. return -ENOMEM;
  2271. }
  2272. goto search_free;
  2273. }
  2274. return ret;
  2275. }
  2276. ret = i915_gem_gtt_prepare_object(obj);
  2277. if (ret) {
  2278. i915_gem_object_put_pages_gtt(obj);
  2279. drm_mm_put_block(obj->gtt_space);
  2280. obj->gtt_space = NULL;
  2281. if (i915_gem_evict_everything(dev, false))
  2282. return ret;
  2283. goto search_free;
  2284. }
  2285. if (!dev_priv->mm.aliasing_ppgtt)
  2286. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2287. list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
  2288. list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
  2289. /* Assert that the object is not currently in any GPU domain. As it
  2290. * wasn't in the GTT, there shouldn't be any way it could have been in
  2291. * a GPU cache
  2292. */
  2293. BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
  2294. BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
  2295. obj->gtt_offset = obj->gtt_space->start;
  2296. fenceable =
  2297. obj->gtt_space->size == fence_size &&
  2298. (obj->gtt_space->start & (fence_alignment - 1)) == 0;
  2299. mappable =
  2300. obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
  2301. obj->map_and_fenceable = mappable && fenceable;
  2302. trace_i915_gem_object_bind(obj, map_and_fenceable);
  2303. return 0;
  2304. }
  2305. void
  2306. i915_gem_clflush_object(struct drm_i915_gem_object *obj)
  2307. {
  2308. /* If we don't have a page list set up, then we're not pinned
  2309. * to GPU, and we can ignore the cache flush because it'll happen
  2310. * again at bind time.
  2311. */
  2312. if (obj->pages == NULL)
  2313. return;
  2314. /* If the GPU is snooping the contents of the CPU cache,
  2315. * we do not need to manually clear the CPU cache lines. However,
  2316. * the caches are only snooped when the render cache is
  2317. * flushed/invalidated. As we always have to emit invalidations
  2318. * and flushes when moving into and out of the RENDER domain, correct
  2319. * snooping behaviour occurs naturally as the result of our domain
  2320. * tracking.
  2321. */
  2322. if (obj->cache_level != I915_CACHE_NONE)
  2323. return;
  2324. trace_i915_gem_object_clflush(obj);
  2325. drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
  2326. }
  2327. /** Flushes any GPU write domain for the object if it's dirty. */
  2328. static int
  2329. i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
  2330. {
  2331. if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
  2332. return 0;
  2333. /* Queue the GPU write cache flushing we need. */
  2334. return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2335. }
  2336. /** Flushes the GTT write domain for the object if it's dirty. */
  2337. static void
  2338. i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
  2339. {
  2340. uint32_t old_write_domain;
  2341. if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
  2342. return;
  2343. /* No actual flushing is required for the GTT write domain. Writes
  2344. * to it immediately go to main memory as far as we know, so there's
  2345. * no chipset flush. It also doesn't land in render cache.
  2346. *
  2347. * However, we do have to enforce the order so that all writes through
  2348. * the GTT land before any writes to the device, such as updates to
  2349. * the GATT itself.
  2350. */
  2351. wmb();
  2352. old_write_domain = obj->base.write_domain;
  2353. obj->base.write_domain = 0;
  2354. trace_i915_gem_object_change_domain(obj,
  2355. obj->base.read_domains,
  2356. old_write_domain);
  2357. }
  2358. /** Flushes the CPU write domain for the object if it's dirty. */
  2359. static void
  2360. i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
  2361. {
  2362. uint32_t old_write_domain;
  2363. if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
  2364. return;
  2365. i915_gem_clflush_object(obj);
  2366. intel_gtt_chipset_flush();
  2367. old_write_domain = obj->base.write_domain;
  2368. obj->base.write_domain = 0;
  2369. trace_i915_gem_object_change_domain(obj,
  2370. obj->base.read_domains,
  2371. old_write_domain);
  2372. }
  2373. /**
  2374. * Moves a single object to the GTT read, and possibly write domain.
  2375. *
  2376. * This function returns when the move is complete, including waiting on
  2377. * flushes to occur.
  2378. */
  2379. int
  2380. i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
  2381. {
  2382. uint32_t old_write_domain, old_read_domains;
  2383. int ret;
  2384. /* Not valid to be called on unbound objects. */
  2385. if (obj->gtt_space == NULL)
  2386. return -EINVAL;
  2387. if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
  2388. return 0;
  2389. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2390. if (ret)
  2391. return ret;
  2392. if (obj->pending_gpu_write || write) {
  2393. ret = i915_gem_object_wait_rendering(obj);
  2394. if (ret)
  2395. return ret;
  2396. }
  2397. i915_gem_object_flush_cpu_write_domain(obj);
  2398. old_write_domain = obj->base.write_domain;
  2399. old_read_domains = obj->base.read_domains;
  2400. /* It should now be out of any other write domains, and we can update
  2401. * the domain values for our changes.
  2402. */
  2403. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2404. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2405. if (write) {
  2406. obj->base.read_domains = I915_GEM_DOMAIN_GTT;
  2407. obj->base.write_domain = I915_GEM_DOMAIN_GTT;
  2408. obj->dirty = 1;
  2409. }
  2410. trace_i915_gem_object_change_domain(obj,
  2411. old_read_domains,
  2412. old_write_domain);
  2413. return 0;
  2414. }
  2415. int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
  2416. enum i915_cache_level cache_level)
  2417. {
  2418. struct drm_device *dev = obj->base.dev;
  2419. drm_i915_private_t *dev_priv = dev->dev_private;
  2420. int ret;
  2421. if (obj->cache_level == cache_level)
  2422. return 0;
  2423. if (obj->pin_count) {
  2424. DRM_DEBUG("can not change the cache level of pinned objects\n");
  2425. return -EBUSY;
  2426. }
  2427. if (obj->gtt_space) {
  2428. ret = i915_gem_object_finish_gpu(obj);
  2429. if (ret)
  2430. return ret;
  2431. i915_gem_object_finish_gtt(obj);
  2432. /* Before SandyBridge, you could not use tiling or fence
  2433. * registers with snooped memory, so relinquish any fences
  2434. * currently pointing to our region in the aperture.
  2435. */
  2436. if (INTEL_INFO(obj->base.dev)->gen < 6) {
  2437. ret = i915_gem_object_put_fence(obj);
  2438. if (ret)
  2439. return ret;
  2440. }
  2441. if (obj->has_global_gtt_mapping)
  2442. i915_gem_gtt_bind_object(obj, cache_level);
  2443. if (obj->has_aliasing_ppgtt_mapping)
  2444. i915_ppgtt_bind_object(dev_priv->mm.aliasing_ppgtt,
  2445. obj, cache_level);
  2446. }
  2447. if (cache_level == I915_CACHE_NONE) {
  2448. u32 old_read_domains, old_write_domain;
  2449. /* If we're coming from LLC cached, then we haven't
  2450. * actually been tracking whether the data is in the
  2451. * CPU cache or not, since we only allow one bit set
  2452. * in obj->write_domain and have been skipping the clflushes.
  2453. * Just set it to the CPU cache for now.
  2454. */
  2455. WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
  2456. WARN_ON(obj->base.read_domains & ~I915_GEM_DOMAIN_CPU);
  2457. old_read_domains = obj->base.read_domains;
  2458. old_write_domain = obj->base.write_domain;
  2459. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2460. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2461. trace_i915_gem_object_change_domain(obj,
  2462. old_read_domains,
  2463. old_write_domain);
  2464. }
  2465. obj->cache_level = cache_level;
  2466. return 0;
  2467. }
  2468. /*
  2469. * Prepare buffer for display plane (scanout, cursors, etc).
  2470. * Can be called from an uninterruptible phase (modesetting) and allows
  2471. * any flushes to be pipelined (for pageflips).
  2472. */
  2473. int
  2474. i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
  2475. u32 alignment,
  2476. struct intel_ring_buffer *pipelined)
  2477. {
  2478. u32 old_read_domains, old_write_domain;
  2479. int ret;
  2480. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2481. if (ret)
  2482. return ret;
  2483. if (pipelined != obj->ring) {
  2484. ret = i915_gem_object_sync(obj, pipelined);
  2485. if (ret)
  2486. return ret;
  2487. }
  2488. /* The display engine is not coherent with the LLC cache on gen6. As
  2489. * a result, we make sure that the pinning that is about to occur is
  2490. * done with uncached PTEs. This is lowest common denominator for all
  2491. * chipsets.
  2492. *
  2493. * However for gen6+, we could do better by using the GFDT bit instead
  2494. * of uncaching, which would allow us to flush all the LLC-cached data
  2495. * with that bit in the PTE to main memory with just one PIPE_CONTROL.
  2496. */
  2497. ret = i915_gem_object_set_cache_level(obj, I915_CACHE_NONE);
  2498. if (ret)
  2499. return ret;
  2500. /* As the user may map the buffer once pinned in the display plane
  2501. * (e.g. libkms for the bootup splash), we have to ensure that we
  2502. * always use map_and_fenceable for all scanout buffers.
  2503. */
  2504. ret = i915_gem_object_pin(obj, alignment, true);
  2505. if (ret)
  2506. return ret;
  2507. i915_gem_object_flush_cpu_write_domain(obj);
  2508. old_write_domain = obj->base.write_domain;
  2509. old_read_domains = obj->base.read_domains;
  2510. /* It should now be out of any other write domains, and we can update
  2511. * the domain values for our changes.
  2512. */
  2513. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
  2514. obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
  2515. trace_i915_gem_object_change_domain(obj,
  2516. old_read_domains,
  2517. old_write_domain);
  2518. return 0;
  2519. }
  2520. int
  2521. i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
  2522. {
  2523. int ret;
  2524. if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
  2525. return 0;
  2526. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2527. ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
  2528. if (ret)
  2529. return ret;
  2530. }
  2531. ret = i915_gem_object_wait_rendering(obj);
  2532. if (ret)
  2533. return ret;
  2534. /* Ensure that we invalidate the GPU's caches and TLBs. */
  2535. obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
  2536. return 0;
  2537. }
  2538. /**
  2539. * Moves a single object to the CPU read, and possibly write domain.
  2540. *
  2541. * This function returns when the move is complete, including waiting on
  2542. * flushes to occur.
  2543. */
  2544. int
  2545. i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
  2546. {
  2547. uint32_t old_write_domain, old_read_domains;
  2548. int ret;
  2549. if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
  2550. return 0;
  2551. ret = i915_gem_object_flush_gpu_write_domain(obj);
  2552. if (ret)
  2553. return ret;
  2554. if (write || obj->pending_gpu_write) {
  2555. ret = i915_gem_object_wait_rendering(obj);
  2556. if (ret)
  2557. return ret;
  2558. }
  2559. i915_gem_object_flush_gtt_write_domain(obj);
  2560. old_write_domain = obj->base.write_domain;
  2561. old_read_domains = obj->base.read_domains;
  2562. /* Flush the CPU cache if it's still invalid. */
  2563. if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
  2564. i915_gem_clflush_object(obj);
  2565. obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
  2566. }
  2567. /* It should now be out of any other write domains, and we can update
  2568. * the domain values for our changes.
  2569. */
  2570. BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
  2571. /* If we're writing through the CPU, then the GPU read domains will
  2572. * need to be invalidated at next use.
  2573. */
  2574. if (write) {
  2575. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2576. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2577. }
  2578. trace_i915_gem_object_change_domain(obj,
  2579. old_read_domains,
  2580. old_write_domain);
  2581. return 0;
  2582. }
  2583. /* Throttle our rendering by waiting until the ring has completed our requests
  2584. * emitted over 20 msec ago.
  2585. *
  2586. * Note that if we were to use the current jiffies each time around the loop,
  2587. * we wouldn't escape the function with any frames outstanding if the time to
  2588. * render a frame was over 20ms.
  2589. *
  2590. * This should get us reasonable parallelism between CPU and GPU but also
  2591. * relatively low latency when blocking on a particular request to finish.
  2592. */
  2593. static int
  2594. i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
  2595. {
  2596. struct drm_i915_private *dev_priv = dev->dev_private;
  2597. struct drm_i915_file_private *file_priv = file->driver_priv;
  2598. unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
  2599. struct drm_i915_gem_request *request;
  2600. struct intel_ring_buffer *ring = NULL;
  2601. u32 seqno = 0;
  2602. int ret;
  2603. if (atomic_read(&dev_priv->mm.wedged))
  2604. return -EIO;
  2605. spin_lock(&file_priv->mm.lock);
  2606. list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
  2607. if (time_after_eq(request->emitted_jiffies, recent_enough))
  2608. break;
  2609. ring = request->ring;
  2610. seqno = request->seqno;
  2611. }
  2612. spin_unlock(&file_priv->mm.lock);
  2613. if (seqno == 0)
  2614. return 0;
  2615. ret = 0;
  2616. if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
  2617. /* And wait for the seqno passing without holding any locks and
  2618. * causing extra latency for others. This is safe as the irq
  2619. * generation is designed to be run atomically and so is
  2620. * lockless.
  2621. */
  2622. if (ring->irq_get(ring)) {
  2623. ret = wait_event_interruptible(ring->irq_queue,
  2624. i915_seqno_passed(ring->get_seqno(ring), seqno)
  2625. || atomic_read(&dev_priv->mm.wedged));
  2626. ring->irq_put(ring);
  2627. if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
  2628. ret = -EIO;
  2629. } else if (wait_for_atomic(i915_seqno_passed(ring->get_seqno(ring),
  2630. seqno) ||
  2631. atomic_read(&dev_priv->mm.wedged), 3000)) {
  2632. ret = -EBUSY;
  2633. }
  2634. }
  2635. if (ret == 0)
  2636. queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
  2637. return ret;
  2638. }
  2639. int
  2640. i915_gem_object_pin(struct drm_i915_gem_object *obj,
  2641. uint32_t alignment,
  2642. bool map_and_fenceable)
  2643. {
  2644. struct drm_device *dev = obj->base.dev;
  2645. struct drm_i915_private *dev_priv = dev->dev_private;
  2646. int ret;
  2647. BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
  2648. WARN_ON(i915_verify_lists(dev));
  2649. if (obj->gtt_space != NULL) {
  2650. if ((alignment && obj->gtt_offset & (alignment - 1)) ||
  2651. (map_and_fenceable && !obj->map_and_fenceable)) {
  2652. WARN(obj->pin_count,
  2653. "bo is already pinned with incorrect alignment:"
  2654. " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
  2655. " obj->map_and_fenceable=%d\n",
  2656. obj->gtt_offset, alignment,
  2657. map_and_fenceable,
  2658. obj->map_and_fenceable);
  2659. ret = i915_gem_object_unbind(obj);
  2660. if (ret)
  2661. return ret;
  2662. }
  2663. }
  2664. if (obj->gtt_space == NULL) {
  2665. ret = i915_gem_object_bind_to_gtt(obj, alignment,
  2666. map_and_fenceable);
  2667. if (ret)
  2668. return ret;
  2669. }
  2670. if (!obj->has_global_gtt_mapping && map_and_fenceable)
  2671. i915_gem_gtt_bind_object(obj, obj->cache_level);
  2672. if (obj->pin_count++ == 0) {
  2673. if (!obj->active)
  2674. list_move_tail(&obj->mm_list,
  2675. &dev_priv->mm.pinned_list);
  2676. }
  2677. obj->pin_mappable |= map_and_fenceable;
  2678. WARN_ON(i915_verify_lists(dev));
  2679. return 0;
  2680. }
  2681. void
  2682. i915_gem_object_unpin(struct drm_i915_gem_object *obj)
  2683. {
  2684. struct drm_device *dev = obj->base.dev;
  2685. drm_i915_private_t *dev_priv = dev->dev_private;
  2686. WARN_ON(i915_verify_lists(dev));
  2687. BUG_ON(obj->pin_count == 0);
  2688. BUG_ON(obj->gtt_space == NULL);
  2689. if (--obj->pin_count == 0) {
  2690. if (!obj->active)
  2691. list_move_tail(&obj->mm_list,
  2692. &dev_priv->mm.inactive_list);
  2693. obj->pin_mappable = false;
  2694. }
  2695. WARN_ON(i915_verify_lists(dev));
  2696. }
  2697. int
  2698. i915_gem_pin_ioctl(struct drm_device *dev, void *data,
  2699. struct drm_file *file)
  2700. {
  2701. struct drm_i915_gem_pin *args = data;
  2702. struct drm_i915_gem_object *obj;
  2703. int ret;
  2704. ret = i915_mutex_lock_interruptible(dev);
  2705. if (ret)
  2706. return ret;
  2707. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2708. if (&obj->base == NULL) {
  2709. ret = -ENOENT;
  2710. goto unlock;
  2711. }
  2712. if (obj->madv != I915_MADV_WILLNEED) {
  2713. DRM_ERROR("Attempting to pin a purgeable buffer\n");
  2714. ret = -EINVAL;
  2715. goto out;
  2716. }
  2717. if (obj->pin_filp != NULL && obj->pin_filp != file) {
  2718. DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
  2719. args->handle);
  2720. ret = -EINVAL;
  2721. goto out;
  2722. }
  2723. obj->user_pin_count++;
  2724. obj->pin_filp = file;
  2725. if (obj->user_pin_count == 1) {
  2726. ret = i915_gem_object_pin(obj, args->alignment, true);
  2727. if (ret)
  2728. goto out;
  2729. }
  2730. /* XXX - flush the CPU caches for pinned objects
  2731. * as the X server doesn't manage domains yet
  2732. */
  2733. i915_gem_object_flush_cpu_write_domain(obj);
  2734. args->offset = obj->gtt_offset;
  2735. out:
  2736. drm_gem_object_unreference(&obj->base);
  2737. unlock:
  2738. mutex_unlock(&dev->struct_mutex);
  2739. return ret;
  2740. }
  2741. int
  2742. i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
  2743. struct drm_file *file)
  2744. {
  2745. struct drm_i915_gem_pin *args = data;
  2746. struct drm_i915_gem_object *obj;
  2747. int ret;
  2748. ret = i915_mutex_lock_interruptible(dev);
  2749. if (ret)
  2750. return ret;
  2751. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2752. if (&obj->base == NULL) {
  2753. ret = -ENOENT;
  2754. goto unlock;
  2755. }
  2756. if (obj->pin_filp != file) {
  2757. DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
  2758. args->handle);
  2759. ret = -EINVAL;
  2760. goto out;
  2761. }
  2762. obj->user_pin_count--;
  2763. if (obj->user_pin_count == 0) {
  2764. obj->pin_filp = NULL;
  2765. i915_gem_object_unpin(obj);
  2766. }
  2767. out:
  2768. drm_gem_object_unreference(&obj->base);
  2769. unlock:
  2770. mutex_unlock(&dev->struct_mutex);
  2771. return ret;
  2772. }
  2773. int
  2774. i915_gem_busy_ioctl(struct drm_device *dev, void *data,
  2775. struct drm_file *file)
  2776. {
  2777. struct drm_i915_gem_busy *args = data;
  2778. struct drm_i915_gem_object *obj;
  2779. int ret;
  2780. ret = i915_mutex_lock_interruptible(dev);
  2781. if (ret)
  2782. return ret;
  2783. obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
  2784. if (&obj->base == NULL) {
  2785. ret = -ENOENT;
  2786. goto unlock;
  2787. }
  2788. /* Count all active objects as busy, even if they are currently not used
  2789. * by the gpu. Users of this interface expect objects to eventually
  2790. * become non-busy without any further actions, therefore emit any
  2791. * necessary flushes here.
  2792. */
  2793. args->busy = obj->active;
  2794. if (args->busy) {
  2795. /* Unconditionally flush objects, even when the gpu still uses this
  2796. * object. Userspace calling this function indicates that it wants to
  2797. * use this buffer rather sooner than later, so issuing the required
  2798. * flush earlier is beneficial.
  2799. */
  2800. if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
  2801. ret = i915_gem_flush_ring(obj->ring,
  2802. 0, obj->base.write_domain);
  2803. } else if (obj->ring->outstanding_lazy_request ==
  2804. obj->last_rendering_seqno) {
  2805. struct drm_i915_gem_request *request;
  2806. /* This ring is not being cleared by active usage,
  2807. * so emit a request to do so.
  2808. */
  2809. request = kzalloc(sizeof(*request), GFP_KERNEL);
  2810. if (request) {
  2811. ret = i915_add_request(obj->ring, NULL, request);
  2812. if (ret)
  2813. kfree(request);
  2814. } else
  2815. ret = -ENOMEM;
  2816. }
  2817. /* Update the active list for the hardware's current position.
  2818. * Otherwise this only updates on a delayed timer or when irqs
  2819. * are actually unmasked, and our working set ends up being
  2820. * larger than required.
  2821. */
  2822. i915_gem_retire_requests_ring(obj->ring);
  2823. args->busy = obj->active;
  2824. }
  2825. drm_gem_object_unreference(&obj->base);
  2826. unlock:
  2827. mutex_unlock(&dev->struct_mutex);
  2828. return ret;
  2829. }
  2830. int
  2831. i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
  2832. struct drm_file *file_priv)
  2833. {
  2834. return i915_gem_ring_throttle(dev, file_priv);
  2835. }
  2836. int
  2837. i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
  2838. struct drm_file *file_priv)
  2839. {
  2840. struct drm_i915_gem_madvise *args = data;
  2841. struct drm_i915_gem_object *obj;
  2842. int ret;
  2843. switch (args->madv) {
  2844. case I915_MADV_DONTNEED:
  2845. case I915_MADV_WILLNEED:
  2846. break;
  2847. default:
  2848. return -EINVAL;
  2849. }
  2850. ret = i915_mutex_lock_interruptible(dev);
  2851. if (ret)
  2852. return ret;
  2853. obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
  2854. if (&obj->base == NULL) {
  2855. ret = -ENOENT;
  2856. goto unlock;
  2857. }
  2858. if (obj->pin_count) {
  2859. ret = -EINVAL;
  2860. goto out;
  2861. }
  2862. if (obj->madv != __I915_MADV_PURGED)
  2863. obj->madv = args->madv;
  2864. /* if the object is no longer bound, discard its backing storage */
  2865. if (i915_gem_object_is_purgeable(obj) &&
  2866. obj->gtt_space == NULL)
  2867. i915_gem_object_truncate(obj);
  2868. args->retained = obj->madv != __I915_MADV_PURGED;
  2869. out:
  2870. drm_gem_object_unreference(&obj->base);
  2871. unlock:
  2872. mutex_unlock(&dev->struct_mutex);
  2873. return ret;
  2874. }
  2875. struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
  2876. size_t size)
  2877. {
  2878. struct drm_i915_private *dev_priv = dev->dev_private;
  2879. struct drm_i915_gem_object *obj;
  2880. struct address_space *mapping;
  2881. obj = kzalloc(sizeof(*obj), GFP_KERNEL);
  2882. if (obj == NULL)
  2883. return NULL;
  2884. if (drm_gem_object_init(dev, &obj->base, size) != 0) {
  2885. kfree(obj);
  2886. return NULL;
  2887. }
  2888. mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  2889. mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
  2890. i915_gem_info_add_obj(dev_priv, size);
  2891. obj->base.write_domain = I915_GEM_DOMAIN_CPU;
  2892. obj->base.read_domains = I915_GEM_DOMAIN_CPU;
  2893. if (HAS_LLC(dev)) {
  2894. /* On some devices, we can have the GPU use the LLC (the CPU
  2895. * cache) for about a 10% performance improvement
  2896. * compared to uncached. Graphics requests other than
  2897. * display scanout are coherent with the CPU in
  2898. * accessing this cache. This means in this mode we
  2899. * don't need to clflush on the CPU side, and on the
  2900. * GPU side we only need to flush internal caches to
  2901. * get data visible to the CPU.
  2902. *
  2903. * However, we maintain the display planes as UC, and so
  2904. * need to rebind when first used as such.
  2905. */
  2906. obj->cache_level = I915_CACHE_LLC;
  2907. } else
  2908. obj->cache_level = I915_CACHE_NONE;
  2909. obj->base.driver_private = NULL;
  2910. obj->fence_reg = I915_FENCE_REG_NONE;
  2911. INIT_LIST_HEAD(&obj->mm_list);
  2912. INIT_LIST_HEAD(&obj->gtt_list);
  2913. INIT_LIST_HEAD(&obj->ring_list);
  2914. INIT_LIST_HEAD(&obj->exec_list);
  2915. INIT_LIST_HEAD(&obj->gpu_write_list);
  2916. obj->madv = I915_MADV_WILLNEED;
  2917. /* Avoid an unnecessary call to unbind on the first bind. */
  2918. obj->map_and_fenceable = true;
  2919. return obj;
  2920. }
  2921. int i915_gem_init_object(struct drm_gem_object *obj)
  2922. {
  2923. BUG();
  2924. return 0;
  2925. }
  2926. static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
  2927. {
  2928. struct drm_device *dev = obj->base.dev;
  2929. drm_i915_private_t *dev_priv = dev->dev_private;
  2930. int ret;
  2931. ret = i915_gem_object_unbind(obj);
  2932. if (ret == -ERESTARTSYS) {
  2933. list_move(&obj->mm_list,
  2934. &dev_priv->mm.deferred_free_list);
  2935. return;
  2936. }
  2937. trace_i915_gem_object_destroy(obj);
  2938. if (obj->base.map_list.map)
  2939. drm_gem_free_mmap_offset(&obj->base);
  2940. drm_gem_object_release(&obj->base);
  2941. i915_gem_info_remove_obj(dev_priv, obj->base.size);
  2942. kfree(obj->bit_17);
  2943. kfree(obj);
  2944. }
  2945. void i915_gem_free_object(struct drm_gem_object *gem_obj)
  2946. {
  2947. struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
  2948. struct drm_device *dev = obj->base.dev;
  2949. while (obj->pin_count > 0)
  2950. i915_gem_object_unpin(obj);
  2951. if (obj->phys_obj)
  2952. i915_gem_detach_phys_object(dev, obj);
  2953. i915_gem_free_object_tail(obj);
  2954. }
  2955. int
  2956. i915_gem_idle(struct drm_device *dev)
  2957. {
  2958. drm_i915_private_t *dev_priv = dev->dev_private;
  2959. int ret;
  2960. mutex_lock(&dev->struct_mutex);
  2961. if (dev_priv->mm.suspended) {
  2962. mutex_unlock(&dev->struct_mutex);
  2963. return 0;
  2964. }
  2965. ret = i915_gpu_idle(dev, true);
  2966. if (ret) {
  2967. mutex_unlock(&dev->struct_mutex);
  2968. return ret;
  2969. }
  2970. /* Under UMS, be paranoid and evict. */
  2971. if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
  2972. ret = i915_gem_evict_inactive(dev, false);
  2973. if (ret) {
  2974. mutex_unlock(&dev->struct_mutex);
  2975. return ret;
  2976. }
  2977. }
  2978. i915_gem_reset_fences(dev);
  2979. /* Hack! Don't let anybody do execbuf while we don't control the chip.
  2980. * We need to replace this with a semaphore, or something.
  2981. * And not confound mm.suspended!
  2982. */
  2983. dev_priv->mm.suspended = 1;
  2984. del_timer_sync(&dev_priv->hangcheck_timer);
  2985. i915_kernel_lost_context(dev);
  2986. i915_gem_cleanup_ringbuffer(dev);
  2987. mutex_unlock(&dev->struct_mutex);
  2988. /* Cancel the retire work handler, which should be idle now. */
  2989. cancel_delayed_work_sync(&dev_priv->mm.retire_work);
  2990. return 0;
  2991. }
  2992. void i915_gem_init_swizzling(struct drm_device *dev)
  2993. {
  2994. drm_i915_private_t *dev_priv = dev->dev_private;
  2995. if (INTEL_INFO(dev)->gen < 5 ||
  2996. dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
  2997. return;
  2998. I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
  2999. DISP_TILE_SURFACE_SWIZZLING);
  3000. if (IS_GEN5(dev))
  3001. return;
  3002. I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
  3003. if (IS_GEN6(dev))
  3004. I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_SNB));
  3005. else
  3006. I915_WRITE(ARB_MODE, ARB_MODE_ENABLE(ARB_MODE_SWIZZLE_IVB));
  3007. }
  3008. void i915_gem_init_ppgtt(struct drm_device *dev)
  3009. {
  3010. drm_i915_private_t *dev_priv = dev->dev_private;
  3011. uint32_t pd_offset;
  3012. struct intel_ring_buffer *ring;
  3013. struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
  3014. uint32_t __iomem *pd_addr;
  3015. uint32_t pd_entry;
  3016. int i;
  3017. if (!dev_priv->mm.aliasing_ppgtt)
  3018. return;
  3019. pd_addr = dev_priv->mm.gtt->gtt + ppgtt->pd_offset/sizeof(uint32_t);
  3020. for (i = 0; i < ppgtt->num_pd_entries; i++) {
  3021. dma_addr_t pt_addr;
  3022. if (dev_priv->mm.gtt->needs_dmar)
  3023. pt_addr = ppgtt->pt_dma_addr[i];
  3024. else
  3025. pt_addr = page_to_phys(ppgtt->pt_pages[i]);
  3026. pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
  3027. pd_entry |= GEN6_PDE_VALID;
  3028. writel(pd_entry, pd_addr + i);
  3029. }
  3030. readl(pd_addr);
  3031. pd_offset = ppgtt->pd_offset;
  3032. pd_offset /= 64; /* in cachelines, */
  3033. pd_offset <<= 16;
  3034. if (INTEL_INFO(dev)->gen == 6) {
  3035. uint32_t ecochk = I915_READ(GAM_ECOCHK);
  3036. I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT |
  3037. ECOCHK_PPGTT_CACHE64B);
  3038. I915_WRITE(GFX_MODE, GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
  3039. } else if (INTEL_INFO(dev)->gen >= 7) {
  3040. I915_WRITE(GAM_ECOCHK, ECOCHK_PPGTT_CACHE64B);
  3041. /* GFX_MODE is per-ring on gen7+ */
  3042. }
  3043. for (i = 0; i < I915_NUM_RINGS; i++) {
  3044. ring = &dev_priv->ring[i];
  3045. if (INTEL_INFO(dev)->gen >= 7)
  3046. I915_WRITE(RING_MODE_GEN7(ring),
  3047. GFX_MODE_ENABLE(GFX_PPGTT_ENABLE));
  3048. I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
  3049. I915_WRITE(RING_PP_DIR_BASE(ring), pd_offset);
  3050. }
  3051. }
  3052. int
  3053. i915_gem_init_hw(struct drm_device *dev)
  3054. {
  3055. drm_i915_private_t *dev_priv = dev->dev_private;
  3056. int ret;
  3057. i915_gem_init_swizzling(dev);
  3058. ret = intel_init_render_ring_buffer(dev);
  3059. if (ret)
  3060. return ret;
  3061. if (HAS_BSD(dev)) {
  3062. ret = intel_init_bsd_ring_buffer(dev);
  3063. if (ret)
  3064. goto cleanup_render_ring;
  3065. }
  3066. if (HAS_BLT(dev)) {
  3067. ret = intel_init_blt_ring_buffer(dev);
  3068. if (ret)
  3069. goto cleanup_bsd_ring;
  3070. }
  3071. dev_priv->next_seqno = 1;
  3072. i915_gem_init_ppgtt(dev);
  3073. return 0;
  3074. cleanup_bsd_ring:
  3075. intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
  3076. cleanup_render_ring:
  3077. intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
  3078. return ret;
  3079. }
  3080. void
  3081. i915_gem_cleanup_ringbuffer(struct drm_device *dev)
  3082. {
  3083. drm_i915_private_t *dev_priv = dev->dev_private;
  3084. int i;
  3085. for (i = 0; i < I915_NUM_RINGS; i++)
  3086. intel_cleanup_ring_buffer(&dev_priv->ring[i]);
  3087. }
  3088. int
  3089. i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
  3090. struct drm_file *file_priv)
  3091. {
  3092. drm_i915_private_t *dev_priv = dev->dev_private;
  3093. int ret, i;
  3094. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3095. return 0;
  3096. if (atomic_read(&dev_priv->mm.wedged)) {
  3097. DRM_ERROR("Reenabling wedged hardware, good luck\n");
  3098. atomic_set(&dev_priv->mm.wedged, 0);
  3099. }
  3100. mutex_lock(&dev->struct_mutex);
  3101. dev_priv->mm.suspended = 0;
  3102. ret = i915_gem_init_hw(dev);
  3103. if (ret != 0) {
  3104. mutex_unlock(&dev->struct_mutex);
  3105. return ret;
  3106. }
  3107. BUG_ON(!list_empty(&dev_priv->mm.active_list));
  3108. BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
  3109. BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
  3110. for (i = 0; i < I915_NUM_RINGS; i++) {
  3111. BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
  3112. BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
  3113. }
  3114. mutex_unlock(&dev->struct_mutex);
  3115. ret = drm_irq_install(dev);
  3116. if (ret)
  3117. goto cleanup_ringbuffer;
  3118. return 0;
  3119. cleanup_ringbuffer:
  3120. mutex_lock(&dev->struct_mutex);
  3121. i915_gem_cleanup_ringbuffer(dev);
  3122. dev_priv->mm.suspended = 1;
  3123. mutex_unlock(&dev->struct_mutex);
  3124. return ret;
  3125. }
  3126. int
  3127. i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
  3128. struct drm_file *file_priv)
  3129. {
  3130. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3131. return 0;
  3132. drm_irq_uninstall(dev);
  3133. return i915_gem_idle(dev);
  3134. }
  3135. void
  3136. i915_gem_lastclose(struct drm_device *dev)
  3137. {
  3138. int ret;
  3139. if (drm_core_check_feature(dev, DRIVER_MODESET))
  3140. return;
  3141. ret = i915_gem_idle(dev);
  3142. if (ret)
  3143. DRM_ERROR("failed to idle hardware: %d\n", ret);
  3144. }
  3145. static void
  3146. init_ring_lists(struct intel_ring_buffer *ring)
  3147. {
  3148. INIT_LIST_HEAD(&ring->active_list);
  3149. INIT_LIST_HEAD(&ring->request_list);
  3150. INIT_LIST_HEAD(&ring->gpu_write_list);
  3151. }
  3152. void
  3153. i915_gem_load(struct drm_device *dev)
  3154. {
  3155. int i;
  3156. drm_i915_private_t *dev_priv = dev->dev_private;
  3157. INIT_LIST_HEAD(&dev_priv->mm.active_list);
  3158. INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
  3159. INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
  3160. INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
  3161. INIT_LIST_HEAD(&dev_priv->mm.fence_list);
  3162. INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
  3163. INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
  3164. for (i = 0; i < I915_NUM_RINGS; i++)
  3165. init_ring_lists(&dev_priv->ring[i]);
  3166. for (i = 0; i < I915_MAX_NUM_FENCES; i++)
  3167. INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
  3168. INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
  3169. i915_gem_retire_work_handler);
  3170. init_completion(&dev_priv->error_completion);
  3171. /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
  3172. if (IS_GEN3(dev)) {
  3173. u32 tmp = I915_READ(MI_ARB_STATE);
  3174. if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
  3175. /* arb state is a masked write, so set bit + bit in mask */
  3176. tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
  3177. I915_WRITE(MI_ARB_STATE, tmp);
  3178. }
  3179. }
  3180. dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
  3181. /* Old X drivers will take 0-2 for front, back, depth buffers */
  3182. if (!drm_core_check_feature(dev, DRIVER_MODESET))
  3183. dev_priv->fence_reg_start = 3;
  3184. if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
  3185. dev_priv->num_fence_regs = 16;
  3186. else
  3187. dev_priv->num_fence_regs = 8;
  3188. /* Initialize fence registers to zero */
  3189. for (i = 0; i < dev_priv->num_fence_regs; i++) {
  3190. i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
  3191. }
  3192. i915_gem_detect_bit_6_swizzle(dev);
  3193. init_waitqueue_head(&dev_priv->pending_flip_queue);
  3194. dev_priv->mm.interruptible = true;
  3195. dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
  3196. dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
  3197. register_shrinker(&dev_priv->mm.inactive_shrinker);
  3198. }
  3199. /*
  3200. * Create a physically contiguous memory object for this object
  3201. * e.g. for cursor + overlay regs
  3202. */
  3203. static int i915_gem_init_phys_object(struct drm_device *dev,
  3204. int id, int size, int align)
  3205. {
  3206. drm_i915_private_t *dev_priv = dev->dev_private;
  3207. struct drm_i915_gem_phys_object *phys_obj;
  3208. int ret;
  3209. if (dev_priv->mm.phys_objs[id - 1] || !size)
  3210. return 0;
  3211. phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
  3212. if (!phys_obj)
  3213. return -ENOMEM;
  3214. phys_obj->id = id;
  3215. phys_obj->handle = drm_pci_alloc(dev, size, align);
  3216. if (!phys_obj->handle) {
  3217. ret = -ENOMEM;
  3218. goto kfree_obj;
  3219. }
  3220. #ifdef CONFIG_X86
  3221. set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3222. #endif
  3223. dev_priv->mm.phys_objs[id - 1] = phys_obj;
  3224. return 0;
  3225. kfree_obj:
  3226. kfree(phys_obj);
  3227. return ret;
  3228. }
  3229. static void i915_gem_free_phys_object(struct drm_device *dev, int id)
  3230. {
  3231. drm_i915_private_t *dev_priv = dev->dev_private;
  3232. struct drm_i915_gem_phys_object *phys_obj;
  3233. if (!dev_priv->mm.phys_objs[id - 1])
  3234. return;
  3235. phys_obj = dev_priv->mm.phys_objs[id - 1];
  3236. if (phys_obj->cur_obj) {
  3237. i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
  3238. }
  3239. #ifdef CONFIG_X86
  3240. set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
  3241. #endif
  3242. drm_pci_free(dev, phys_obj->handle);
  3243. kfree(phys_obj);
  3244. dev_priv->mm.phys_objs[id - 1] = NULL;
  3245. }
  3246. void i915_gem_free_all_phys_object(struct drm_device *dev)
  3247. {
  3248. int i;
  3249. for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
  3250. i915_gem_free_phys_object(dev, i);
  3251. }
  3252. void i915_gem_detach_phys_object(struct drm_device *dev,
  3253. struct drm_i915_gem_object *obj)
  3254. {
  3255. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3256. char *vaddr;
  3257. int i;
  3258. int page_count;
  3259. if (!obj->phys_obj)
  3260. return;
  3261. vaddr = obj->phys_obj->handle->vaddr;
  3262. page_count = obj->base.size / PAGE_SIZE;
  3263. for (i = 0; i < page_count; i++) {
  3264. struct page *page = shmem_read_mapping_page(mapping, i);
  3265. if (!IS_ERR(page)) {
  3266. char *dst = kmap_atomic(page);
  3267. memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
  3268. kunmap_atomic(dst);
  3269. drm_clflush_pages(&page, 1);
  3270. set_page_dirty(page);
  3271. mark_page_accessed(page);
  3272. page_cache_release(page);
  3273. }
  3274. }
  3275. intel_gtt_chipset_flush();
  3276. obj->phys_obj->cur_obj = NULL;
  3277. obj->phys_obj = NULL;
  3278. }
  3279. int
  3280. i915_gem_attach_phys_object(struct drm_device *dev,
  3281. struct drm_i915_gem_object *obj,
  3282. int id,
  3283. int align)
  3284. {
  3285. struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
  3286. drm_i915_private_t *dev_priv = dev->dev_private;
  3287. int ret = 0;
  3288. int page_count;
  3289. int i;
  3290. if (id > I915_MAX_PHYS_OBJECT)
  3291. return -EINVAL;
  3292. if (obj->phys_obj) {
  3293. if (obj->phys_obj->id == id)
  3294. return 0;
  3295. i915_gem_detach_phys_object(dev, obj);
  3296. }
  3297. /* create a new object */
  3298. if (!dev_priv->mm.phys_objs[id - 1]) {
  3299. ret = i915_gem_init_phys_object(dev, id,
  3300. obj->base.size, align);
  3301. if (ret) {
  3302. DRM_ERROR("failed to init phys object %d size: %zu\n",
  3303. id, obj->base.size);
  3304. return ret;
  3305. }
  3306. }
  3307. /* bind to the object */
  3308. obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
  3309. obj->phys_obj->cur_obj = obj;
  3310. page_count = obj->base.size / PAGE_SIZE;
  3311. for (i = 0; i < page_count; i++) {
  3312. struct page *page;
  3313. char *dst, *src;
  3314. page = shmem_read_mapping_page(mapping, i);
  3315. if (IS_ERR(page))
  3316. return PTR_ERR(page);
  3317. src = kmap_atomic(page);
  3318. dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
  3319. memcpy(dst, src, PAGE_SIZE);
  3320. kunmap_atomic(src);
  3321. mark_page_accessed(page);
  3322. page_cache_release(page);
  3323. }
  3324. return 0;
  3325. }
  3326. static int
  3327. i915_gem_phys_pwrite(struct drm_device *dev,
  3328. struct drm_i915_gem_object *obj,
  3329. struct drm_i915_gem_pwrite *args,
  3330. struct drm_file *file_priv)
  3331. {
  3332. void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
  3333. char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
  3334. if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
  3335. unsigned long unwritten;
  3336. /* The physical object once assigned is fixed for the lifetime
  3337. * of the obj, so we can safely drop the lock and continue
  3338. * to access vaddr.
  3339. */
  3340. mutex_unlock(&dev->struct_mutex);
  3341. unwritten = copy_from_user(vaddr, user_data, args->size);
  3342. mutex_lock(&dev->struct_mutex);
  3343. if (unwritten)
  3344. return -EFAULT;
  3345. }
  3346. intel_gtt_chipset_flush();
  3347. return 0;
  3348. }
  3349. void i915_gem_release(struct drm_device *dev, struct drm_file *file)
  3350. {
  3351. struct drm_i915_file_private *file_priv = file->driver_priv;
  3352. /* Clean up our request list when the client is going away, so that
  3353. * later retire_requests won't dereference our soon-to-be-gone
  3354. * file_priv.
  3355. */
  3356. spin_lock(&file_priv->mm.lock);
  3357. while (!list_empty(&file_priv->mm.request_list)) {
  3358. struct drm_i915_gem_request *request;
  3359. request = list_first_entry(&file_priv->mm.request_list,
  3360. struct drm_i915_gem_request,
  3361. client_list);
  3362. list_del(&request->client_list);
  3363. request->file_priv = NULL;
  3364. }
  3365. spin_unlock(&file_priv->mm.lock);
  3366. }
  3367. static int
  3368. i915_gpu_is_active(struct drm_device *dev)
  3369. {
  3370. drm_i915_private_t *dev_priv = dev->dev_private;
  3371. int lists_empty;
  3372. lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
  3373. list_empty(&dev_priv->mm.active_list);
  3374. return !lists_empty;
  3375. }
  3376. static int
  3377. i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
  3378. {
  3379. struct drm_i915_private *dev_priv =
  3380. container_of(shrinker,
  3381. struct drm_i915_private,
  3382. mm.inactive_shrinker);
  3383. struct drm_device *dev = dev_priv->dev;
  3384. struct drm_i915_gem_object *obj, *next;
  3385. int nr_to_scan = sc->nr_to_scan;
  3386. int cnt;
  3387. if (!mutex_trylock(&dev->struct_mutex))
  3388. return 0;
  3389. /* "fast-path" to count number of available objects */
  3390. if (nr_to_scan == 0) {
  3391. cnt = 0;
  3392. list_for_each_entry(obj,
  3393. &dev_priv->mm.inactive_list,
  3394. mm_list)
  3395. cnt++;
  3396. mutex_unlock(&dev->struct_mutex);
  3397. return cnt / 100 * sysctl_vfs_cache_pressure;
  3398. }
  3399. rescan:
  3400. /* first scan for clean buffers */
  3401. i915_gem_retire_requests(dev);
  3402. list_for_each_entry_safe(obj, next,
  3403. &dev_priv->mm.inactive_list,
  3404. mm_list) {
  3405. if (i915_gem_object_is_purgeable(obj)) {
  3406. if (i915_gem_object_unbind(obj) == 0 &&
  3407. --nr_to_scan == 0)
  3408. break;
  3409. }
  3410. }
  3411. /* second pass, evict/count anything still on the inactive list */
  3412. cnt = 0;
  3413. list_for_each_entry_safe(obj, next,
  3414. &dev_priv->mm.inactive_list,
  3415. mm_list) {
  3416. if (nr_to_scan &&
  3417. i915_gem_object_unbind(obj) == 0)
  3418. nr_to_scan--;
  3419. else
  3420. cnt++;
  3421. }
  3422. if (nr_to_scan && i915_gpu_is_active(dev)) {
  3423. /*
  3424. * We are desperate for pages, so as a last resort, wait
  3425. * for the GPU to finish and discard whatever we can.
  3426. * This has a dramatic impact to reduce the number of
  3427. * OOM-killer events whilst running the GPU aggressively.
  3428. */
  3429. if (i915_gpu_idle(dev, true) == 0)
  3430. goto rescan;
  3431. }
  3432. mutex_unlock(&dev->struct_mutex);
  3433. return cnt / 100 * sysctl_vfs_cache_pressure;
  3434. }