e1000_ethtool.c 52 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784
  1. /*******************************************************************************
  2. Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved.
  3. This program is free software; you can redistribute it and/or modify it
  4. under the terms of the GNU General Public License as published by the Free
  5. Software Foundation; either version 2 of the License, or (at your option)
  6. any later version.
  7. This program is distributed in the hope that it will be useful, but WITHOUT
  8. ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  9. FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  10. more details.
  11. You should have received a copy of the GNU General Public License along with
  12. this program; if not, write to the Free Software Foundation, Inc., 59
  13. Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  14. The full GNU General Public License is included in this distribution in the
  15. file called LICENSE.
  16. Contact Information:
  17. Linux NICS <linux.nics@intel.com>
  18. Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  19. *******************************************************************************/
  20. /* ethtool support for e1000 */
  21. #include "e1000.h"
  22. #include <asm/uaccess.h>
  23. extern char e1000_driver_name[];
  24. extern char e1000_driver_version[];
  25. extern int e1000_up(struct e1000_adapter *adapter);
  26. extern void e1000_down(struct e1000_adapter *adapter);
  27. extern void e1000_reset(struct e1000_adapter *adapter);
  28. extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
  29. extern int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
  30. extern int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
  31. extern void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
  32. extern void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
  33. extern void e1000_update_stats(struct e1000_adapter *adapter);
  34. struct e1000_stats {
  35. char stat_string[ETH_GSTRING_LEN];
  36. int sizeof_stat;
  37. int stat_offset;
  38. };
  39. #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \
  40. offsetof(struct e1000_adapter, m)
  41. static const struct e1000_stats e1000_gstrings_stats[] = {
  42. { "rx_packets", E1000_STAT(net_stats.rx_packets) },
  43. { "tx_packets", E1000_STAT(net_stats.tx_packets) },
  44. { "rx_bytes", E1000_STAT(net_stats.rx_bytes) },
  45. { "tx_bytes", E1000_STAT(net_stats.tx_bytes) },
  46. { "rx_errors", E1000_STAT(net_stats.rx_errors) },
  47. { "tx_errors", E1000_STAT(net_stats.tx_errors) },
  48. { "rx_dropped", E1000_STAT(net_stats.rx_dropped) },
  49. { "tx_dropped", E1000_STAT(net_stats.tx_dropped) },
  50. { "multicast", E1000_STAT(net_stats.multicast) },
  51. { "collisions", E1000_STAT(net_stats.collisions) },
  52. { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) },
  53. { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) },
  54. { "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) },
  55. { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) },
  56. { "rx_fifo_errors", E1000_STAT(net_stats.rx_fifo_errors) },
  57. { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
  58. { "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) },
  59. { "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) },
  60. { "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) },
  61. { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) },
  62. { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) },
  63. { "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) },
  64. { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
  65. { "tx_deferred_ok", E1000_STAT(stats.dc) },
  66. { "tx_single_coll_ok", E1000_STAT(stats.scc) },
  67. { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
  68. { "rx_long_length_errors", E1000_STAT(stats.roc) },
  69. { "rx_short_length_errors", E1000_STAT(stats.ruc) },
  70. { "rx_align_errors", E1000_STAT(stats.algnerrc) },
  71. { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
  72. { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
  73. { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
  74. { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
  75. { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
  76. { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
  77. { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
  78. { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
  79. { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
  80. { "rx_header_split", E1000_STAT(rx_hdr_split) },
  81. };
  82. #define E1000_STATS_LEN \
  83. sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats)
  84. static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
  85. "Register test (offline)", "Eeprom test (offline)",
  86. "Interrupt test (offline)", "Loopback test (offline)",
  87. "Link test (on/offline)"
  88. };
  89. #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN
  90. static int
  91. e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
  92. {
  93. struct e1000_adapter *adapter = netdev_priv(netdev);
  94. struct e1000_hw *hw = &adapter->hw;
  95. if(hw->media_type == e1000_media_type_copper) {
  96. ecmd->supported = (SUPPORTED_10baseT_Half |
  97. SUPPORTED_10baseT_Full |
  98. SUPPORTED_100baseT_Half |
  99. SUPPORTED_100baseT_Full |
  100. SUPPORTED_1000baseT_Full|
  101. SUPPORTED_Autoneg |
  102. SUPPORTED_TP);
  103. ecmd->advertising = ADVERTISED_TP;
  104. if(hw->autoneg == 1) {
  105. ecmd->advertising |= ADVERTISED_Autoneg;
  106. /* the e1000 autoneg seems to match ethtool nicely */
  107. ecmd->advertising |= hw->autoneg_advertised;
  108. }
  109. ecmd->port = PORT_TP;
  110. ecmd->phy_address = hw->phy_addr;
  111. if(hw->mac_type == e1000_82543)
  112. ecmd->transceiver = XCVR_EXTERNAL;
  113. else
  114. ecmd->transceiver = XCVR_INTERNAL;
  115. } else {
  116. ecmd->supported = (SUPPORTED_1000baseT_Full |
  117. SUPPORTED_FIBRE |
  118. SUPPORTED_Autoneg);
  119. ecmd->advertising = (ADVERTISED_1000baseT_Full |
  120. ADVERTISED_FIBRE |
  121. ADVERTISED_Autoneg);
  122. ecmd->port = PORT_FIBRE;
  123. if(hw->mac_type >= e1000_82545)
  124. ecmd->transceiver = XCVR_INTERNAL;
  125. else
  126. ecmd->transceiver = XCVR_EXTERNAL;
  127. }
  128. if(netif_carrier_ok(adapter->netdev)) {
  129. e1000_get_speed_and_duplex(hw, &adapter->link_speed,
  130. &adapter->link_duplex);
  131. ecmd->speed = adapter->link_speed;
  132. /* unfortunatly FULL_DUPLEX != DUPLEX_FULL
  133. * and HALF_DUPLEX != DUPLEX_HALF */
  134. if(adapter->link_duplex == FULL_DUPLEX)
  135. ecmd->duplex = DUPLEX_FULL;
  136. else
  137. ecmd->duplex = DUPLEX_HALF;
  138. } else {
  139. ecmd->speed = -1;
  140. ecmd->duplex = -1;
  141. }
  142. ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
  143. hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
  144. return 0;
  145. }
  146. static int
  147. e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
  148. {
  149. struct e1000_adapter *adapter = netdev_priv(netdev);
  150. struct e1000_hw *hw = &adapter->hw;
  151. if(ecmd->autoneg == AUTONEG_ENABLE) {
  152. hw->autoneg = 1;
  153. if(hw->media_type == e1000_media_type_fiber)
  154. hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
  155. ADVERTISED_FIBRE |
  156. ADVERTISED_Autoneg;
  157. else
  158. hw->autoneg_advertised = ADVERTISED_10baseT_Half |
  159. ADVERTISED_10baseT_Full |
  160. ADVERTISED_100baseT_Half |
  161. ADVERTISED_100baseT_Full |
  162. ADVERTISED_1000baseT_Full|
  163. ADVERTISED_Autoneg |
  164. ADVERTISED_TP;
  165. ecmd->advertising = hw->autoneg_advertised;
  166. } else
  167. if(e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex))
  168. return -EINVAL;
  169. /* reset the link */
  170. if(netif_running(adapter->netdev)) {
  171. e1000_down(adapter);
  172. e1000_reset(adapter);
  173. e1000_up(adapter);
  174. } else
  175. e1000_reset(adapter);
  176. return 0;
  177. }
  178. static void
  179. e1000_get_pauseparam(struct net_device *netdev,
  180. struct ethtool_pauseparam *pause)
  181. {
  182. struct e1000_adapter *adapter = netdev_priv(netdev);
  183. struct e1000_hw *hw = &adapter->hw;
  184. pause->autoneg =
  185. (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
  186. if(hw->fc == e1000_fc_rx_pause)
  187. pause->rx_pause = 1;
  188. else if(hw->fc == e1000_fc_tx_pause)
  189. pause->tx_pause = 1;
  190. else if(hw->fc == e1000_fc_full) {
  191. pause->rx_pause = 1;
  192. pause->tx_pause = 1;
  193. }
  194. }
  195. static int
  196. e1000_set_pauseparam(struct net_device *netdev,
  197. struct ethtool_pauseparam *pause)
  198. {
  199. struct e1000_adapter *adapter = netdev_priv(netdev);
  200. struct e1000_hw *hw = &adapter->hw;
  201. adapter->fc_autoneg = pause->autoneg;
  202. if(pause->rx_pause && pause->tx_pause)
  203. hw->fc = e1000_fc_full;
  204. else if(pause->rx_pause && !pause->tx_pause)
  205. hw->fc = e1000_fc_rx_pause;
  206. else if(!pause->rx_pause && pause->tx_pause)
  207. hw->fc = e1000_fc_tx_pause;
  208. else if(!pause->rx_pause && !pause->tx_pause)
  209. hw->fc = e1000_fc_none;
  210. hw->original_fc = hw->fc;
  211. if(adapter->fc_autoneg == AUTONEG_ENABLE) {
  212. if(netif_running(adapter->netdev)) {
  213. e1000_down(adapter);
  214. e1000_up(adapter);
  215. } else
  216. e1000_reset(adapter);
  217. }
  218. else
  219. return ((hw->media_type == e1000_media_type_fiber) ?
  220. e1000_setup_link(hw) : e1000_force_mac_fc(hw));
  221. return 0;
  222. }
  223. static uint32_t
  224. e1000_get_rx_csum(struct net_device *netdev)
  225. {
  226. struct e1000_adapter *adapter = netdev_priv(netdev);
  227. return adapter->rx_csum;
  228. }
  229. static int
  230. e1000_set_rx_csum(struct net_device *netdev, uint32_t data)
  231. {
  232. struct e1000_adapter *adapter = netdev_priv(netdev);
  233. adapter->rx_csum = data;
  234. if(netif_running(netdev)) {
  235. e1000_down(adapter);
  236. e1000_up(adapter);
  237. } else
  238. e1000_reset(adapter);
  239. return 0;
  240. }
  241. static uint32_t
  242. e1000_get_tx_csum(struct net_device *netdev)
  243. {
  244. return (netdev->features & NETIF_F_HW_CSUM) != 0;
  245. }
  246. static int
  247. e1000_set_tx_csum(struct net_device *netdev, uint32_t data)
  248. {
  249. struct e1000_adapter *adapter = netdev_priv(netdev);
  250. if(adapter->hw.mac_type < e1000_82543) {
  251. if (!data)
  252. return -EINVAL;
  253. return 0;
  254. }
  255. if (data)
  256. netdev->features |= NETIF_F_HW_CSUM;
  257. else
  258. netdev->features &= ~NETIF_F_HW_CSUM;
  259. return 0;
  260. }
  261. #ifdef NETIF_F_TSO
  262. static int
  263. e1000_set_tso(struct net_device *netdev, uint32_t data)
  264. {
  265. struct e1000_adapter *adapter = netdev_priv(netdev);
  266. if((adapter->hw.mac_type < e1000_82544) ||
  267. (adapter->hw.mac_type == e1000_82547))
  268. return data ? -EINVAL : 0;
  269. if (data)
  270. netdev->features |= NETIF_F_TSO;
  271. else
  272. netdev->features &= ~NETIF_F_TSO;
  273. return 0;
  274. }
  275. #endif /* NETIF_F_TSO */
  276. static uint32_t
  277. e1000_get_msglevel(struct net_device *netdev)
  278. {
  279. struct e1000_adapter *adapter = netdev_priv(netdev);
  280. return adapter->msg_enable;
  281. }
  282. static void
  283. e1000_set_msglevel(struct net_device *netdev, uint32_t data)
  284. {
  285. struct e1000_adapter *adapter = netdev_priv(netdev);
  286. adapter->msg_enable = data;
  287. }
  288. static int
  289. e1000_get_regs_len(struct net_device *netdev)
  290. {
  291. #define E1000_REGS_LEN 32
  292. return E1000_REGS_LEN * sizeof(uint32_t);
  293. }
  294. static void
  295. e1000_get_regs(struct net_device *netdev,
  296. struct ethtool_regs *regs, void *p)
  297. {
  298. struct e1000_adapter *adapter = netdev_priv(netdev);
  299. struct e1000_hw *hw = &adapter->hw;
  300. uint32_t *regs_buff = p;
  301. uint16_t phy_data;
  302. memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t));
  303. regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
  304. regs_buff[0] = E1000_READ_REG(hw, CTRL);
  305. regs_buff[1] = E1000_READ_REG(hw, STATUS);
  306. regs_buff[2] = E1000_READ_REG(hw, RCTL);
  307. regs_buff[3] = E1000_READ_REG(hw, RDLEN);
  308. regs_buff[4] = E1000_READ_REG(hw, RDH);
  309. regs_buff[5] = E1000_READ_REG(hw, RDT);
  310. regs_buff[6] = E1000_READ_REG(hw, RDTR);
  311. regs_buff[7] = E1000_READ_REG(hw, TCTL);
  312. regs_buff[8] = E1000_READ_REG(hw, TDLEN);
  313. regs_buff[9] = E1000_READ_REG(hw, TDH);
  314. regs_buff[10] = E1000_READ_REG(hw, TDT);
  315. regs_buff[11] = E1000_READ_REG(hw, TIDV);
  316. regs_buff[12] = adapter->hw.phy_type; /* PHY type (IGP=1, M88=0) */
  317. if(hw->phy_type == e1000_phy_igp) {
  318. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
  319. IGP01E1000_PHY_AGC_A);
  320. e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
  321. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  322. regs_buff[13] = (uint32_t)phy_data; /* cable length */
  323. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
  324. IGP01E1000_PHY_AGC_B);
  325. e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
  326. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  327. regs_buff[14] = (uint32_t)phy_data; /* cable length */
  328. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
  329. IGP01E1000_PHY_AGC_C);
  330. e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
  331. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  332. regs_buff[15] = (uint32_t)phy_data; /* cable length */
  333. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
  334. IGP01E1000_PHY_AGC_D);
  335. e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
  336. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  337. regs_buff[16] = (uint32_t)phy_data; /* cable length */
  338. regs_buff[17] = 0; /* extended 10bt distance (not needed) */
  339. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
  340. e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
  341. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  342. regs_buff[18] = (uint32_t)phy_data; /* cable polarity */
  343. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
  344. IGP01E1000_PHY_PCS_INIT_REG);
  345. e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
  346. IGP01E1000_PHY_PAGE_SELECT, &phy_data);
  347. regs_buff[19] = (uint32_t)phy_data; /* cable polarity */
  348. regs_buff[20] = 0; /* polarity correction enabled (always) */
  349. regs_buff[22] = 0; /* phy receive errors (unavailable) */
  350. regs_buff[23] = regs_buff[18]; /* mdix mode */
  351. e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
  352. } else {
  353. e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
  354. regs_buff[13] = (uint32_t)phy_data; /* cable length */
  355. regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
  356. regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
  357. regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
  358. e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
  359. regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */
  360. regs_buff[18] = regs_buff[13]; /* cable polarity */
  361. regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
  362. regs_buff[20] = regs_buff[17]; /* polarity correction */
  363. /* phy receive errors */
  364. regs_buff[22] = adapter->phy_stats.receive_errors;
  365. regs_buff[23] = regs_buff[13]; /* mdix mode */
  366. }
  367. regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
  368. e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
  369. regs_buff[24] = (uint32_t)phy_data; /* phy local receiver status */
  370. regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
  371. if(hw->mac_type >= e1000_82540 &&
  372. hw->media_type == e1000_media_type_copper) {
  373. regs_buff[26] = E1000_READ_REG(hw, MANC);
  374. }
  375. }
  376. static int
  377. e1000_get_eeprom_len(struct net_device *netdev)
  378. {
  379. struct e1000_adapter *adapter = netdev_priv(netdev);
  380. return adapter->hw.eeprom.word_size * 2;
  381. }
  382. static int
  383. e1000_get_eeprom(struct net_device *netdev,
  384. struct ethtool_eeprom *eeprom, uint8_t *bytes)
  385. {
  386. struct e1000_adapter *adapter = netdev_priv(netdev);
  387. struct e1000_hw *hw = &adapter->hw;
  388. uint16_t *eeprom_buff;
  389. int first_word, last_word;
  390. int ret_val = 0;
  391. uint16_t i;
  392. if(eeprom->len == 0)
  393. return -EINVAL;
  394. eeprom->magic = hw->vendor_id | (hw->device_id << 16);
  395. first_word = eeprom->offset >> 1;
  396. last_word = (eeprom->offset + eeprom->len - 1) >> 1;
  397. eeprom_buff = kmalloc(sizeof(uint16_t) *
  398. (last_word - first_word + 1), GFP_KERNEL);
  399. if(!eeprom_buff)
  400. return -ENOMEM;
  401. if(hw->eeprom.type == e1000_eeprom_spi)
  402. ret_val = e1000_read_eeprom(hw, first_word,
  403. last_word - first_word + 1,
  404. eeprom_buff);
  405. else {
  406. for (i = 0; i < last_word - first_word + 1; i++)
  407. if((ret_val = e1000_read_eeprom(hw, first_word + i, 1,
  408. &eeprom_buff[i])))
  409. break;
  410. }
  411. /* Device's eeprom is always little-endian, word addressable */
  412. for (i = 0; i < last_word - first_word + 1; i++)
  413. le16_to_cpus(&eeprom_buff[i]);
  414. memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1),
  415. eeprom->len);
  416. kfree(eeprom_buff);
  417. return ret_val;
  418. }
  419. static int
  420. e1000_set_eeprom(struct net_device *netdev,
  421. struct ethtool_eeprom *eeprom, uint8_t *bytes)
  422. {
  423. struct e1000_adapter *adapter = netdev_priv(netdev);
  424. struct e1000_hw *hw = &adapter->hw;
  425. uint16_t *eeprom_buff;
  426. void *ptr;
  427. int max_len, first_word, last_word, ret_val = 0;
  428. uint16_t i;
  429. if(eeprom->len == 0)
  430. return -EOPNOTSUPP;
  431. if(eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
  432. return -EFAULT;
  433. max_len = hw->eeprom.word_size * 2;
  434. first_word = eeprom->offset >> 1;
  435. last_word = (eeprom->offset + eeprom->len - 1) >> 1;
  436. eeprom_buff = kmalloc(max_len, GFP_KERNEL);
  437. if(!eeprom_buff)
  438. return -ENOMEM;
  439. ptr = (void *)eeprom_buff;
  440. if(eeprom->offset & 1) {
  441. /* need read/modify/write of first changed EEPROM word */
  442. /* only the second byte of the word is being modified */
  443. ret_val = e1000_read_eeprom(hw, first_word, 1,
  444. &eeprom_buff[0]);
  445. ptr++;
  446. }
  447. if(((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
  448. /* need read/modify/write of last changed EEPROM word */
  449. /* only the first byte of the word is being modified */
  450. ret_val = e1000_read_eeprom(hw, last_word, 1,
  451. &eeprom_buff[last_word - first_word]);
  452. }
  453. /* Device's eeprom is always little-endian, word addressable */
  454. for (i = 0; i < last_word - first_word + 1; i++)
  455. le16_to_cpus(&eeprom_buff[i]);
  456. memcpy(ptr, bytes, eeprom->len);
  457. for (i = 0; i < last_word - first_word + 1; i++)
  458. eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
  459. ret_val = e1000_write_eeprom(hw, first_word,
  460. last_word - first_word + 1, eeprom_buff);
  461. /* Update the checksum over the first part of the EEPROM if needed */
  462. if((ret_val == 0) && first_word <= EEPROM_CHECKSUM_REG)
  463. e1000_update_eeprom_checksum(hw);
  464. kfree(eeprom_buff);
  465. return ret_val;
  466. }
  467. static void
  468. e1000_get_drvinfo(struct net_device *netdev,
  469. struct ethtool_drvinfo *drvinfo)
  470. {
  471. struct e1000_adapter *adapter = netdev_priv(netdev);
  472. strncpy(drvinfo->driver, e1000_driver_name, 32);
  473. strncpy(drvinfo->version, e1000_driver_version, 32);
  474. strncpy(drvinfo->fw_version, "N/A", 32);
  475. strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
  476. drvinfo->n_stats = E1000_STATS_LEN;
  477. drvinfo->testinfo_len = E1000_TEST_LEN;
  478. drvinfo->regdump_len = e1000_get_regs_len(netdev);
  479. drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
  480. }
  481. static void
  482. e1000_get_ringparam(struct net_device *netdev,
  483. struct ethtool_ringparam *ring)
  484. {
  485. struct e1000_adapter *adapter = netdev_priv(netdev);
  486. e1000_mac_type mac_type = adapter->hw.mac_type;
  487. struct e1000_tx_ring *txdr = adapter->tx_ring;
  488. struct e1000_rx_ring *rxdr = adapter->rx_ring;
  489. ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
  490. E1000_MAX_82544_RXD;
  491. ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
  492. E1000_MAX_82544_TXD;
  493. ring->rx_mini_max_pending = 0;
  494. ring->rx_jumbo_max_pending = 0;
  495. ring->rx_pending = rxdr->count;
  496. ring->tx_pending = txdr->count;
  497. ring->rx_mini_pending = 0;
  498. ring->rx_jumbo_pending = 0;
  499. }
  500. static int
  501. e1000_set_ringparam(struct net_device *netdev,
  502. struct ethtool_ringparam *ring)
  503. {
  504. struct e1000_adapter *adapter = netdev_priv(netdev);
  505. e1000_mac_type mac_type = adapter->hw.mac_type;
  506. struct e1000_tx_ring *txdr, *tx_old, *tx_new;
  507. struct e1000_rx_ring *rxdr, *rx_old, *rx_new;
  508. int i, err, tx_ring_size, rx_ring_size;
  509. tx_ring_size = sizeof(struct e1000_tx_ring) * adapter->num_queues;
  510. rx_ring_size = sizeof(struct e1000_rx_ring) * adapter->num_queues;
  511. if (netif_running(adapter->netdev))
  512. e1000_down(adapter);
  513. tx_old = adapter->tx_ring;
  514. rx_old = adapter->rx_ring;
  515. adapter->tx_ring = kmalloc(tx_ring_size, GFP_KERNEL);
  516. if (!adapter->tx_ring) {
  517. err = -ENOMEM;
  518. goto err_setup_rx;
  519. }
  520. memset(adapter->tx_ring, 0, tx_ring_size);
  521. adapter->rx_ring = kmalloc(rx_ring_size, GFP_KERNEL);
  522. if (!adapter->rx_ring) {
  523. kfree(adapter->tx_ring);
  524. err = -ENOMEM;
  525. goto err_setup_rx;
  526. }
  527. memset(adapter->rx_ring, 0, rx_ring_size);
  528. txdr = adapter->tx_ring;
  529. rxdr = adapter->rx_ring;
  530. if((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
  531. return -EINVAL;
  532. rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD);
  533. rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ?
  534. E1000_MAX_RXD : E1000_MAX_82544_RXD));
  535. E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
  536. txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD);
  537. txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ?
  538. E1000_MAX_TXD : E1000_MAX_82544_TXD));
  539. E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
  540. for (i = 0; i < adapter->num_queues; i++) {
  541. txdr[i].count = txdr->count;
  542. rxdr[i].count = rxdr->count;
  543. }
  544. if(netif_running(adapter->netdev)) {
  545. /* Try to get new resources before deleting old */
  546. if ((err = e1000_setup_all_rx_resources(adapter)))
  547. goto err_setup_rx;
  548. if ((err = e1000_setup_all_tx_resources(adapter)))
  549. goto err_setup_tx;
  550. /* save the new, restore the old in order to free it,
  551. * then restore the new back again */
  552. rx_new = adapter->rx_ring;
  553. tx_new = adapter->tx_ring;
  554. adapter->rx_ring = rx_old;
  555. adapter->tx_ring = tx_old;
  556. e1000_free_all_rx_resources(adapter);
  557. e1000_free_all_tx_resources(adapter);
  558. kfree(tx_old);
  559. kfree(rx_old);
  560. adapter->rx_ring = rx_new;
  561. adapter->tx_ring = tx_new;
  562. if((err = e1000_up(adapter)))
  563. return err;
  564. }
  565. return 0;
  566. err_setup_tx:
  567. e1000_free_all_rx_resources(adapter);
  568. err_setup_rx:
  569. adapter->rx_ring = rx_old;
  570. adapter->tx_ring = tx_old;
  571. e1000_up(adapter);
  572. return err;
  573. }
  574. #define REG_PATTERN_TEST(R, M, W) \
  575. { \
  576. uint32_t pat, value; \
  577. uint32_t test[] = \
  578. {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF}; \
  579. for(pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) { \
  580. E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W)); \
  581. value = E1000_READ_REG(&adapter->hw, R); \
  582. if(value != (test[pat] & W & M)) { \
  583. DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \
  584. "0x%08X expected 0x%08X\n", \
  585. E1000_##R, value, (test[pat] & W & M)); \
  586. *data = (adapter->hw.mac_type < e1000_82543) ? \
  587. E1000_82542_##R : E1000_##R; \
  588. return 1; \
  589. } \
  590. } \
  591. }
  592. #define REG_SET_AND_CHECK(R, M, W) \
  593. { \
  594. uint32_t value; \
  595. E1000_WRITE_REG(&adapter->hw, R, W & M); \
  596. value = E1000_READ_REG(&adapter->hw, R); \
  597. if((W & M) != (value & M)) { \
  598. DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\
  599. "expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \
  600. *data = (adapter->hw.mac_type < e1000_82543) ? \
  601. E1000_82542_##R : E1000_##R; \
  602. return 1; \
  603. } \
  604. }
  605. static int
  606. e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data)
  607. {
  608. uint32_t value, before, after;
  609. uint32_t i, toggle;
  610. /* The status register is Read Only, so a write should fail.
  611. * Some bits that get toggled are ignored.
  612. */
  613. switch (adapter->hw.mac_type) {
  614. /* there are several bits on newer hardware that are r/w */
  615. case e1000_82571:
  616. case e1000_82572:
  617. toggle = 0x7FFFF3FF;
  618. break;
  619. case e1000_82573:
  620. toggle = 0x7FFFF033;
  621. break;
  622. default:
  623. toggle = 0xFFFFF833;
  624. break;
  625. }
  626. before = E1000_READ_REG(&adapter->hw, STATUS);
  627. value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle);
  628. E1000_WRITE_REG(&adapter->hw, STATUS, toggle);
  629. after = E1000_READ_REG(&adapter->hw, STATUS) & toggle;
  630. if(value != after) {
  631. DPRINTK(DRV, ERR, "failed STATUS register test got: "
  632. "0x%08X expected: 0x%08X\n", after, value);
  633. *data = 1;
  634. return 1;
  635. }
  636. /* restore previous status */
  637. E1000_WRITE_REG(&adapter->hw, STATUS, before);
  638. REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
  639. REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
  640. REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
  641. REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
  642. REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
  643. REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
  644. REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
  645. REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
  646. REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
  647. REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
  648. REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
  649. REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
  650. REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
  651. REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
  652. REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
  653. REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB);
  654. REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
  655. if(adapter->hw.mac_type >= e1000_82543) {
  656. REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF);
  657. REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
  658. REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
  659. REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
  660. REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
  661. for(i = 0; i < E1000_RAR_ENTRIES; i++) {
  662. REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF,
  663. 0xFFFFFFFF);
  664. REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
  665. 0xFFFFFFFF);
  666. }
  667. } else {
  668. REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
  669. REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
  670. REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
  671. REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
  672. }
  673. for(i = 0; i < E1000_MC_TBL_SIZE; i++)
  674. REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
  675. *data = 0;
  676. return 0;
  677. }
  678. static int
  679. e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data)
  680. {
  681. uint16_t temp;
  682. uint16_t checksum = 0;
  683. uint16_t i;
  684. *data = 0;
  685. /* Read and add up the contents of the EEPROM */
  686. for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
  687. if((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) {
  688. *data = 1;
  689. break;
  690. }
  691. checksum += temp;
  692. }
  693. /* If Checksum is not Correct return error else test passed */
  694. if((checksum != (uint16_t) EEPROM_SUM) && !(*data))
  695. *data = 2;
  696. return *data;
  697. }
  698. static irqreturn_t
  699. e1000_test_intr(int irq,
  700. void *data,
  701. struct pt_regs *regs)
  702. {
  703. struct net_device *netdev = (struct net_device *) data;
  704. struct e1000_adapter *adapter = netdev_priv(netdev);
  705. adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR);
  706. return IRQ_HANDLED;
  707. }
  708. static int
  709. e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data)
  710. {
  711. struct net_device *netdev = adapter->netdev;
  712. uint32_t mask, i=0, shared_int = TRUE;
  713. uint32_t irq = adapter->pdev->irq;
  714. *data = 0;
  715. /* Hook up test interrupt handler just for this test */
  716. if(!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) {
  717. shared_int = FALSE;
  718. } else if(request_irq(irq, &e1000_test_intr, SA_SHIRQ,
  719. netdev->name, netdev)){
  720. *data = 1;
  721. return -1;
  722. }
  723. /* Disable all the interrupts */
  724. E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
  725. msec_delay(10);
  726. /* Test each interrupt */
  727. for(; i < 10; i++) {
  728. /* Interrupt to test */
  729. mask = 1 << i;
  730. if(!shared_int) {
  731. /* Disable the interrupt to be reported in
  732. * the cause register and then force the same
  733. * interrupt and see if one gets posted. If
  734. * an interrupt was posted to the bus, the
  735. * test failed.
  736. */
  737. adapter->test_icr = 0;
  738. E1000_WRITE_REG(&adapter->hw, IMC, mask);
  739. E1000_WRITE_REG(&adapter->hw, ICS, mask);
  740. msec_delay(10);
  741. if(adapter->test_icr & mask) {
  742. *data = 3;
  743. break;
  744. }
  745. }
  746. /* Enable the interrupt to be reported in
  747. * the cause register and then force the same
  748. * interrupt and see if one gets posted. If
  749. * an interrupt was not posted to the bus, the
  750. * test failed.
  751. */
  752. adapter->test_icr = 0;
  753. E1000_WRITE_REG(&adapter->hw, IMS, mask);
  754. E1000_WRITE_REG(&adapter->hw, ICS, mask);
  755. msec_delay(10);
  756. if(!(adapter->test_icr & mask)) {
  757. *data = 4;
  758. break;
  759. }
  760. if(!shared_int) {
  761. /* Disable the other interrupts to be reported in
  762. * the cause register and then force the other
  763. * interrupts and see if any get posted. If
  764. * an interrupt was posted to the bus, the
  765. * test failed.
  766. */
  767. adapter->test_icr = 0;
  768. E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF);
  769. E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF);
  770. msec_delay(10);
  771. if(adapter->test_icr) {
  772. *data = 5;
  773. break;
  774. }
  775. }
  776. }
  777. /* Disable all the interrupts */
  778. E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF);
  779. msec_delay(10);
  780. /* Unhook test interrupt handler */
  781. free_irq(irq, netdev);
  782. return *data;
  783. }
  784. static void
  785. e1000_free_desc_rings(struct e1000_adapter *adapter)
  786. {
  787. struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
  788. struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
  789. struct pci_dev *pdev = adapter->pdev;
  790. int i;
  791. if(txdr->desc && txdr->buffer_info) {
  792. for(i = 0; i < txdr->count; i++) {
  793. if(txdr->buffer_info[i].dma)
  794. pci_unmap_single(pdev, txdr->buffer_info[i].dma,
  795. txdr->buffer_info[i].length,
  796. PCI_DMA_TODEVICE);
  797. if(txdr->buffer_info[i].skb)
  798. dev_kfree_skb(txdr->buffer_info[i].skb);
  799. }
  800. }
  801. if(rxdr->desc && rxdr->buffer_info) {
  802. for(i = 0; i < rxdr->count; i++) {
  803. if(rxdr->buffer_info[i].dma)
  804. pci_unmap_single(pdev, rxdr->buffer_info[i].dma,
  805. rxdr->buffer_info[i].length,
  806. PCI_DMA_FROMDEVICE);
  807. if(rxdr->buffer_info[i].skb)
  808. dev_kfree_skb(rxdr->buffer_info[i].skb);
  809. }
  810. }
  811. if(txdr->desc)
  812. pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma);
  813. if(rxdr->desc)
  814. pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma);
  815. if(txdr->buffer_info)
  816. kfree(txdr->buffer_info);
  817. if(rxdr->buffer_info)
  818. kfree(rxdr->buffer_info);
  819. return;
  820. }
  821. static int
  822. e1000_setup_desc_rings(struct e1000_adapter *adapter)
  823. {
  824. struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
  825. struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
  826. struct pci_dev *pdev = adapter->pdev;
  827. uint32_t rctl;
  828. int size, i, ret_val;
  829. /* Setup Tx descriptor ring and Tx buffers */
  830. if(!txdr->count)
  831. txdr->count = E1000_DEFAULT_TXD;
  832. size = txdr->count * sizeof(struct e1000_buffer);
  833. if(!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
  834. ret_val = 1;
  835. goto err_nomem;
  836. }
  837. memset(txdr->buffer_info, 0, size);
  838. txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
  839. E1000_ROUNDUP(txdr->size, 4096);
  840. if(!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) {
  841. ret_val = 2;
  842. goto err_nomem;
  843. }
  844. memset(txdr->desc, 0, txdr->size);
  845. txdr->next_to_use = txdr->next_to_clean = 0;
  846. E1000_WRITE_REG(&adapter->hw, TDBAL,
  847. ((uint64_t) txdr->dma & 0x00000000FFFFFFFF));
  848. E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32));
  849. E1000_WRITE_REG(&adapter->hw, TDLEN,
  850. txdr->count * sizeof(struct e1000_tx_desc));
  851. E1000_WRITE_REG(&adapter->hw, TDH, 0);
  852. E1000_WRITE_REG(&adapter->hw, TDT, 0);
  853. E1000_WRITE_REG(&adapter->hw, TCTL,
  854. E1000_TCTL_PSP | E1000_TCTL_EN |
  855. E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
  856. E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
  857. for(i = 0; i < txdr->count; i++) {
  858. struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
  859. struct sk_buff *skb;
  860. unsigned int size = 1024;
  861. if(!(skb = alloc_skb(size, GFP_KERNEL))) {
  862. ret_val = 3;
  863. goto err_nomem;
  864. }
  865. skb_put(skb, size);
  866. txdr->buffer_info[i].skb = skb;
  867. txdr->buffer_info[i].length = skb->len;
  868. txdr->buffer_info[i].dma =
  869. pci_map_single(pdev, skb->data, skb->len,
  870. PCI_DMA_TODEVICE);
  871. tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
  872. tx_desc->lower.data = cpu_to_le32(skb->len);
  873. tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
  874. E1000_TXD_CMD_IFCS |
  875. E1000_TXD_CMD_RPS);
  876. tx_desc->upper.data = 0;
  877. }
  878. /* Setup Rx descriptor ring and Rx buffers */
  879. if(!rxdr->count)
  880. rxdr->count = E1000_DEFAULT_RXD;
  881. size = rxdr->count * sizeof(struct e1000_buffer);
  882. if(!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) {
  883. ret_val = 4;
  884. goto err_nomem;
  885. }
  886. memset(rxdr->buffer_info, 0, size);
  887. rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
  888. if(!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) {
  889. ret_val = 5;
  890. goto err_nomem;
  891. }
  892. memset(rxdr->desc, 0, rxdr->size);
  893. rxdr->next_to_use = rxdr->next_to_clean = 0;
  894. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  895. E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN);
  896. E1000_WRITE_REG(&adapter->hw, RDBAL,
  897. ((uint64_t) rxdr->dma & 0xFFFFFFFF));
  898. E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32));
  899. E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size);
  900. E1000_WRITE_REG(&adapter->hw, RDH, 0);
  901. E1000_WRITE_REG(&adapter->hw, RDT, 0);
  902. rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
  903. E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
  904. (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
  905. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  906. for(i = 0; i < rxdr->count; i++) {
  907. struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
  908. struct sk_buff *skb;
  909. if(!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN,
  910. GFP_KERNEL))) {
  911. ret_val = 6;
  912. goto err_nomem;
  913. }
  914. skb_reserve(skb, NET_IP_ALIGN);
  915. rxdr->buffer_info[i].skb = skb;
  916. rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
  917. rxdr->buffer_info[i].dma =
  918. pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048,
  919. PCI_DMA_FROMDEVICE);
  920. rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
  921. memset(skb->data, 0x00, skb->len);
  922. }
  923. return 0;
  924. err_nomem:
  925. e1000_free_desc_rings(adapter);
  926. return ret_val;
  927. }
  928. static void
  929. e1000_phy_disable_receiver(struct e1000_adapter *adapter)
  930. {
  931. /* Write out to PHY registers 29 and 30 to disable the Receiver. */
  932. e1000_write_phy_reg(&adapter->hw, 29, 0x001F);
  933. e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC);
  934. e1000_write_phy_reg(&adapter->hw, 29, 0x001A);
  935. e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0);
  936. }
  937. static void
  938. e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
  939. {
  940. uint16_t phy_reg;
  941. /* Because we reset the PHY above, we need to re-force TX_CLK in the
  942. * Extended PHY Specific Control Register to 25MHz clock. This
  943. * value defaults back to a 2.5MHz clock when the PHY is reset.
  944. */
  945. e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
  946. phy_reg |= M88E1000_EPSCR_TX_CLK_25;
  947. e1000_write_phy_reg(&adapter->hw,
  948. M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
  949. /* In addition, because of the s/w reset above, we need to enable
  950. * CRS on TX. This must be set for both full and half duplex
  951. * operation.
  952. */
  953. e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
  954. phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
  955. e1000_write_phy_reg(&adapter->hw,
  956. M88E1000_PHY_SPEC_CTRL, phy_reg);
  957. }
  958. static int
  959. e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
  960. {
  961. uint32_t ctrl_reg;
  962. uint16_t phy_reg;
  963. /* Setup the Device Control Register for PHY loopback test. */
  964. ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
  965. ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */
  966. E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
  967. E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
  968. E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */
  969. E1000_CTRL_FD); /* Force Duplex to FULL */
  970. E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
  971. /* Read the PHY Specific Control Register (0x10) */
  972. e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
  973. /* Clear Auto-Crossover bits in PHY Specific Control Register
  974. * (bits 6:5).
  975. */
  976. phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
  977. e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
  978. /* Perform software reset on the PHY */
  979. e1000_phy_reset(&adapter->hw);
  980. /* Have to setup TX_CLK and TX_CRS after software reset */
  981. e1000_phy_reset_clk_and_crs(adapter);
  982. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100);
  983. /* Wait for reset to complete. */
  984. udelay(500);
  985. /* Have to setup TX_CLK and TX_CRS after software reset */
  986. e1000_phy_reset_clk_and_crs(adapter);
  987. /* Write out to PHY registers 29 and 30 to disable the Receiver. */
  988. e1000_phy_disable_receiver(adapter);
  989. /* Set the loopback bit in the PHY control register. */
  990. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
  991. phy_reg |= MII_CR_LOOPBACK;
  992. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
  993. /* Setup TX_CLK and TX_CRS one more time. */
  994. e1000_phy_reset_clk_and_crs(adapter);
  995. /* Check Phy Configuration */
  996. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
  997. if(phy_reg != 0x4100)
  998. return 9;
  999. e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
  1000. if(phy_reg != 0x0070)
  1001. return 10;
  1002. e1000_read_phy_reg(&adapter->hw, 29, &phy_reg);
  1003. if(phy_reg != 0x001A)
  1004. return 11;
  1005. return 0;
  1006. }
  1007. static int
  1008. e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
  1009. {
  1010. uint32_t ctrl_reg = 0;
  1011. uint32_t stat_reg = 0;
  1012. adapter->hw.autoneg = FALSE;
  1013. if(adapter->hw.phy_type == e1000_phy_m88) {
  1014. /* Auto-MDI/MDIX Off */
  1015. e1000_write_phy_reg(&adapter->hw,
  1016. M88E1000_PHY_SPEC_CTRL, 0x0808);
  1017. /* reset to update Auto-MDI/MDIX */
  1018. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140);
  1019. /* autoneg off */
  1020. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140);
  1021. }
  1022. /* force 1000, set loopback */
  1023. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140);
  1024. /* Now set up the MAC to the same speed/duplex as the PHY. */
  1025. ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL);
  1026. ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
  1027. ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
  1028. E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
  1029. E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
  1030. E1000_CTRL_FD); /* Force Duplex to FULL */
  1031. if(adapter->hw.media_type == e1000_media_type_copper &&
  1032. adapter->hw.phy_type == e1000_phy_m88) {
  1033. ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
  1034. } else {
  1035. /* Set the ILOS bit on the fiber Nic is half
  1036. * duplex link is detected. */
  1037. stat_reg = E1000_READ_REG(&adapter->hw, STATUS);
  1038. if((stat_reg & E1000_STATUS_FD) == 0)
  1039. ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
  1040. }
  1041. E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg);
  1042. /* Disable the receiver on the PHY so when a cable is plugged in, the
  1043. * PHY does not begin to autoneg when a cable is reconnected to the NIC.
  1044. */
  1045. if(adapter->hw.phy_type == e1000_phy_m88)
  1046. e1000_phy_disable_receiver(adapter);
  1047. udelay(500);
  1048. return 0;
  1049. }
  1050. static int
  1051. e1000_set_phy_loopback(struct e1000_adapter *adapter)
  1052. {
  1053. uint16_t phy_reg = 0;
  1054. uint16_t count = 0;
  1055. switch (adapter->hw.mac_type) {
  1056. case e1000_82543:
  1057. if(adapter->hw.media_type == e1000_media_type_copper) {
  1058. /* Attempt to setup Loopback mode on Non-integrated PHY.
  1059. * Some PHY registers get corrupted at random, so
  1060. * attempt this 10 times.
  1061. */
  1062. while(e1000_nonintegrated_phy_loopback(adapter) &&
  1063. count++ < 10);
  1064. if(count < 11)
  1065. return 0;
  1066. }
  1067. break;
  1068. case e1000_82544:
  1069. case e1000_82540:
  1070. case e1000_82545:
  1071. case e1000_82545_rev_3:
  1072. case e1000_82546:
  1073. case e1000_82546_rev_3:
  1074. case e1000_82541:
  1075. case e1000_82541_rev_2:
  1076. case e1000_82547:
  1077. case e1000_82547_rev_2:
  1078. case e1000_82571:
  1079. case e1000_82572:
  1080. case e1000_82573:
  1081. return e1000_integrated_phy_loopback(adapter);
  1082. break;
  1083. default:
  1084. /* Default PHY loopback work is to read the MII
  1085. * control register and assert bit 14 (loopback mode).
  1086. */
  1087. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
  1088. phy_reg |= MII_CR_LOOPBACK;
  1089. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
  1090. return 0;
  1091. break;
  1092. }
  1093. return 8;
  1094. }
  1095. static int
  1096. e1000_setup_loopback_test(struct e1000_adapter *adapter)
  1097. {
  1098. uint32_t rctl;
  1099. if(adapter->hw.media_type == e1000_media_type_fiber ||
  1100. adapter->hw.media_type == e1000_media_type_internal_serdes) {
  1101. if(adapter->hw.mac_type == e1000_82545 ||
  1102. adapter->hw.mac_type == e1000_82546 ||
  1103. adapter->hw.mac_type == e1000_82545_rev_3 ||
  1104. adapter->hw.mac_type == e1000_82546_rev_3)
  1105. return e1000_set_phy_loopback(adapter);
  1106. else {
  1107. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  1108. rctl |= E1000_RCTL_LBM_TCVR;
  1109. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  1110. return 0;
  1111. }
  1112. } else if(adapter->hw.media_type == e1000_media_type_copper)
  1113. return e1000_set_phy_loopback(adapter);
  1114. return 7;
  1115. }
  1116. static void
  1117. e1000_loopback_cleanup(struct e1000_adapter *adapter)
  1118. {
  1119. uint32_t rctl;
  1120. uint16_t phy_reg;
  1121. rctl = E1000_READ_REG(&adapter->hw, RCTL);
  1122. rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
  1123. E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
  1124. if(adapter->hw.media_type == e1000_media_type_copper ||
  1125. ((adapter->hw.media_type == e1000_media_type_fiber ||
  1126. adapter->hw.media_type == e1000_media_type_internal_serdes) &&
  1127. (adapter->hw.mac_type == e1000_82545 ||
  1128. adapter->hw.mac_type == e1000_82546 ||
  1129. adapter->hw.mac_type == e1000_82545_rev_3 ||
  1130. adapter->hw.mac_type == e1000_82546_rev_3))) {
  1131. adapter->hw.autoneg = TRUE;
  1132. e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg);
  1133. if(phy_reg & MII_CR_LOOPBACK) {
  1134. phy_reg &= ~MII_CR_LOOPBACK;
  1135. e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg);
  1136. e1000_phy_reset(&adapter->hw);
  1137. }
  1138. }
  1139. }
  1140. static void
  1141. e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
  1142. {
  1143. memset(skb->data, 0xFF, frame_size);
  1144. frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size;
  1145. memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
  1146. memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
  1147. memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
  1148. }
  1149. static int
  1150. e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size)
  1151. {
  1152. frame_size = (frame_size % 2) ? (frame_size - 1) : frame_size;
  1153. if(*(skb->data + 3) == 0xFF) {
  1154. if((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
  1155. (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
  1156. return 0;
  1157. }
  1158. }
  1159. return 13;
  1160. }
  1161. static int
  1162. e1000_run_loopback_test(struct e1000_adapter *adapter)
  1163. {
  1164. struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
  1165. struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
  1166. struct pci_dev *pdev = adapter->pdev;
  1167. int i, j, k, l, lc, good_cnt, ret_val=0;
  1168. unsigned long time;
  1169. E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1);
  1170. /* Calculate the loop count based on the largest descriptor ring
  1171. * The idea is to wrap the largest ring a number of times using 64
  1172. * send/receive pairs during each loop
  1173. */
  1174. if(rxdr->count <= txdr->count)
  1175. lc = ((txdr->count / 64) * 2) + 1;
  1176. else
  1177. lc = ((rxdr->count / 64) * 2) + 1;
  1178. k = l = 0;
  1179. for(j = 0; j <= lc; j++) { /* loop count loop */
  1180. for(i = 0; i < 64; i++) { /* send the packets */
  1181. e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
  1182. 1024);
  1183. pci_dma_sync_single_for_device(pdev,
  1184. txdr->buffer_info[k].dma,
  1185. txdr->buffer_info[k].length,
  1186. PCI_DMA_TODEVICE);
  1187. if(unlikely(++k == txdr->count)) k = 0;
  1188. }
  1189. E1000_WRITE_REG(&adapter->hw, TDT, k);
  1190. msec_delay(200);
  1191. time = jiffies; /* set the start time for the receive */
  1192. good_cnt = 0;
  1193. do { /* receive the sent packets */
  1194. pci_dma_sync_single_for_cpu(pdev,
  1195. rxdr->buffer_info[l].dma,
  1196. rxdr->buffer_info[l].length,
  1197. PCI_DMA_FROMDEVICE);
  1198. ret_val = e1000_check_lbtest_frame(
  1199. rxdr->buffer_info[l].skb,
  1200. 1024);
  1201. if(!ret_val)
  1202. good_cnt++;
  1203. if(unlikely(++l == rxdr->count)) l = 0;
  1204. /* time + 20 msecs (200 msecs on 2.4) is more than
  1205. * enough time to complete the receives, if it's
  1206. * exceeded, break and error off
  1207. */
  1208. } while (good_cnt < 64 && jiffies < (time + 20));
  1209. if(good_cnt != 64) {
  1210. ret_val = 13; /* ret_val is the same as mis-compare */
  1211. break;
  1212. }
  1213. if(jiffies >= (time + 2)) {
  1214. ret_val = 14; /* error code for time out error */
  1215. break;
  1216. }
  1217. } /* end loop count loop */
  1218. return ret_val;
  1219. }
  1220. static int
  1221. e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data)
  1222. {
  1223. if((*data = e1000_setup_desc_rings(adapter))) goto err_loopback;
  1224. if((*data = e1000_setup_loopback_test(adapter))) goto err_loopback;
  1225. *data = e1000_run_loopback_test(adapter);
  1226. e1000_loopback_cleanup(adapter);
  1227. e1000_free_desc_rings(adapter);
  1228. err_loopback:
  1229. return *data;
  1230. }
  1231. static int
  1232. e1000_link_test(struct e1000_adapter *adapter, uint64_t *data)
  1233. {
  1234. *data = 0;
  1235. if (adapter->hw.media_type == e1000_media_type_internal_serdes) {
  1236. int i = 0;
  1237. adapter->hw.serdes_link_down = TRUE;
  1238. /* On some blade server designs, link establishment
  1239. * could take as long as 2-3 minutes */
  1240. do {
  1241. e1000_check_for_link(&adapter->hw);
  1242. if (adapter->hw.serdes_link_down == FALSE)
  1243. return *data;
  1244. msec_delay(20);
  1245. } while (i++ < 3750);
  1246. *data = 1;
  1247. } else {
  1248. e1000_check_for_link(&adapter->hw);
  1249. if(adapter->hw.autoneg) /* if auto_neg is set wait for it */
  1250. msec_delay(4000);
  1251. if(!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) {
  1252. *data = 1;
  1253. }
  1254. }
  1255. return *data;
  1256. }
  1257. static int
  1258. e1000_diag_test_count(struct net_device *netdev)
  1259. {
  1260. return E1000_TEST_LEN;
  1261. }
  1262. static void
  1263. e1000_diag_test(struct net_device *netdev,
  1264. struct ethtool_test *eth_test, uint64_t *data)
  1265. {
  1266. struct e1000_adapter *adapter = netdev_priv(netdev);
  1267. boolean_t if_running = netif_running(netdev);
  1268. if(eth_test->flags == ETH_TEST_FL_OFFLINE) {
  1269. /* Offline tests */
  1270. /* save speed, duplex, autoneg settings */
  1271. uint16_t autoneg_advertised = adapter->hw.autoneg_advertised;
  1272. uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex;
  1273. uint8_t autoneg = adapter->hw.autoneg;
  1274. /* Link test performed before hardware reset so autoneg doesn't
  1275. * interfere with test result */
  1276. if(e1000_link_test(adapter, &data[4]))
  1277. eth_test->flags |= ETH_TEST_FL_FAILED;
  1278. if(if_running)
  1279. e1000_down(adapter);
  1280. else
  1281. e1000_reset(adapter);
  1282. if(e1000_reg_test(adapter, &data[0]))
  1283. eth_test->flags |= ETH_TEST_FL_FAILED;
  1284. e1000_reset(adapter);
  1285. if(e1000_eeprom_test(adapter, &data[1]))
  1286. eth_test->flags |= ETH_TEST_FL_FAILED;
  1287. e1000_reset(adapter);
  1288. if(e1000_intr_test(adapter, &data[2]))
  1289. eth_test->flags |= ETH_TEST_FL_FAILED;
  1290. e1000_reset(adapter);
  1291. if(e1000_loopback_test(adapter, &data[3]))
  1292. eth_test->flags |= ETH_TEST_FL_FAILED;
  1293. /* restore speed, duplex, autoneg settings */
  1294. adapter->hw.autoneg_advertised = autoneg_advertised;
  1295. adapter->hw.forced_speed_duplex = forced_speed_duplex;
  1296. adapter->hw.autoneg = autoneg;
  1297. e1000_reset(adapter);
  1298. if(if_running)
  1299. e1000_up(adapter);
  1300. } else {
  1301. /* Online tests */
  1302. if(e1000_link_test(adapter, &data[4]))
  1303. eth_test->flags |= ETH_TEST_FL_FAILED;
  1304. /* Offline tests aren't run; pass by default */
  1305. data[0] = 0;
  1306. data[1] = 0;
  1307. data[2] = 0;
  1308. data[3] = 0;
  1309. }
  1310. msleep_interruptible(4 * 1000);
  1311. }
  1312. static void
  1313. e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
  1314. {
  1315. struct e1000_adapter *adapter = netdev_priv(netdev);
  1316. struct e1000_hw *hw = &adapter->hw;
  1317. switch(adapter->hw.device_id) {
  1318. case E1000_DEV_ID_82542:
  1319. case E1000_DEV_ID_82543GC_FIBER:
  1320. case E1000_DEV_ID_82543GC_COPPER:
  1321. case E1000_DEV_ID_82544EI_FIBER:
  1322. case E1000_DEV_ID_82546EB_QUAD_COPPER:
  1323. case E1000_DEV_ID_82545EM_FIBER:
  1324. case E1000_DEV_ID_82545EM_COPPER:
  1325. wol->supported = 0;
  1326. wol->wolopts = 0;
  1327. return;
  1328. case E1000_DEV_ID_82546EB_FIBER:
  1329. case E1000_DEV_ID_82546GB_FIBER:
  1330. /* Wake events only supported on port A for dual fiber */
  1331. if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) {
  1332. wol->supported = 0;
  1333. wol->wolopts = 0;
  1334. return;
  1335. }
  1336. /* Fall Through */
  1337. default:
  1338. wol->supported = WAKE_UCAST | WAKE_MCAST |
  1339. WAKE_BCAST | WAKE_MAGIC;
  1340. wol->wolopts = 0;
  1341. if(adapter->wol & E1000_WUFC_EX)
  1342. wol->wolopts |= WAKE_UCAST;
  1343. if(adapter->wol & E1000_WUFC_MC)
  1344. wol->wolopts |= WAKE_MCAST;
  1345. if(adapter->wol & E1000_WUFC_BC)
  1346. wol->wolopts |= WAKE_BCAST;
  1347. if(adapter->wol & E1000_WUFC_MAG)
  1348. wol->wolopts |= WAKE_MAGIC;
  1349. return;
  1350. }
  1351. }
  1352. static int
  1353. e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
  1354. {
  1355. struct e1000_adapter *adapter = netdev_priv(netdev);
  1356. struct e1000_hw *hw = &adapter->hw;
  1357. switch(adapter->hw.device_id) {
  1358. case E1000_DEV_ID_82542:
  1359. case E1000_DEV_ID_82543GC_FIBER:
  1360. case E1000_DEV_ID_82543GC_COPPER:
  1361. case E1000_DEV_ID_82544EI_FIBER:
  1362. case E1000_DEV_ID_82546EB_QUAD_COPPER:
  1363. case E1000_DEV_ID_82545EM_FIBER:
  1364. case E1000_DEV_ID_82545EM_COPPER:
  1365. return wol->wolopts ? -EOPNOTSUPP : 0;
  1366. case E1000_DEV_ID_82546EB_FIBER:
  1367. case E1000_DEV_ID_82546GB_FIBER:
  1368. /* Wake events only supported on port A for dual fiber */
  1369. if(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)
  1370. return wol->wolopts ? -EOPNOTSUPP : 0;
  1371. /* Fall Through */
  1372. default:
  1373. if(wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
  1374. return -EOPNOTSUPP;
  1375. adapter->wol = 0;
  1376. if(wol->wolopts & WAKE_UCAST)
  1377. adapter->wol |= E1000_WUFC_EX;
  1378. if(wol->wolopts & WAKE_MCAST)
  1379. adapter->wol |= E1000_WUFC_MC;
  1380. if(wol->wolopts & WAKE_BCAST)
  1381. adapter->wol |= E1000_WUFC_BC;
  1382. if(wol->wolopts & WAKE_MAGIC)
  1383. adapter->wol |= E1000_WUFC_MAG;
  1384. }
  1385. return 0;
  1386. }
  1387. /* toggle LED 4 times per second = 2 "blinks" per second */
  1388. #define E1000_ID_INTERVAL (HZ/4)
  1389. /* bit defines for adapter->led_status */
  1390. #define E1000_LED_ON 0
  1391. static void
  1392. e1000_led_blink_callback(unsigned long data)
  1393. {
  1394. struct e1000_adapter *adapter = (struct e1000_adapter *) data;
  1395. if(test_and_change_bit(E1000_LED_ON, &adapter->led_status))
  1396. e1000_led_off(&adapter->hw);
  1397. else
  1398. e1000_led_on(&adapter->hw);
  1399. mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL);
  1400. }
  1401. static int
  1402. e1000_phys_id(struct net_device *netdev, uint32_t data)
  1403. {
  1404. struct e1000_adapter *adapter = netdev_priv(netdev);
  1405. if(!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ))
  1406. data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ);
  1407. if(adapter->hw.mac_type < e1000_82571) {
  1408. if(!adapter->blink_timer.function) {
  1409. init_timer(&adapter->blink_timer);
  1410. adapter->blink_timer.function = e1000_led_blink_callback;
  1411. adapter->blink_timer.data = (unsigned long) adapter;
  1412. }
  1413. e1000_setup_led(&adapter->hw);
  1414. mod_timer(&adapter->blink_timer, jiffies);
  1415. msleep_interruptible(data * 1000);
  1416. del_timer_sync(&adapter->blink_timer);
  1417. }
  1418. else {
  1419. E1000_WRITE_REG(&adapter->hw, LEDCTL, (E1000_LEDCTL_LED2_BLINK_RATE |
  1420. E1000_LEDCTL_LED1_BLINK | E1000_LEDCTL_LED2_BLINK |
  1421. (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) |
  1422. (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED1_MODE_SHIFT) |
  1423. (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT)));
  1424. msleep_interruptible(data * 1000);
  1425. }
  1426. e1000_led_off(&adapter->hw);
  1427. clear_bit(E1000_LED_ON, &adapter->led_status);
  1428. e1000_cleanup_led(&adapter->hw);
  1429. return 0;
  1430. }
  1431. static int
  1432. e1000_nway_reset(struct net_device *netdev)
  1433. {
  1434. struct e1000_adapter *adapter = netdev_priv(netdev);
  1435. if(netif_running(netdev)) {
  1436. e1000_down(adapter);
  1437. e1000_up(adapter);
  1438. }
  1439. return 0;
  1440. }
  1441. static int
  1442. e1000_get_stats_count(struct net_device *netdev)
  1443. {
  1444. return E1000_STATS_LEN;
  1445. }
  1446. static void
  1447. e1000_get_ethtool_stats(struct net_device *netdev,
  1448. struct ethtool_stats *stats, uint64_t *data)
  1449. {
  1450. struct e1000_adapter *adapter = netdev_priv(netdev);
  1451. int i;
  1452. e1000_update_stats(adapter);
  1453. for(i = 0; i < E1000_STATS_LEN; i++) {
  1454. char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset;
  1455. data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
  1456. sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
  1457. }
  1458. }
  1459. static void
  1460. e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data)
  1461. {
  1462. int i;
  1463. switch(stringset) {
  1464. case ETH_SS_TEST:
  1465. memcpy(data, *e1000_gstrings_test,
  1466. E1000_TEST_LEN*ETH_GSTRING_LEN);
  1467. break;
  1468. case ETH_SS_STATS:
  1469. for (i=0; i < E1000_STATS_LEN; i++) {
  1470. memcpy(data + i * ETH_GSTRING_LEN,
  1471. e1000_gstrings_stats[i].stat_string,
  1472. ETH_GSTRING_LEN);
  1473. }
  1474. break;
  1475. }
  1476. }
  1477. struct ethtool_ops e1000_ethtool_ops = {
  1478. .get_settings = e1000_get_settings,
  1479. .set_settings = e1000_set_settings,
  1480. .get_drvinfo = e1000_get_drvinfo,
  1481. .get_regs_len = e1000_get_regs_len,
  1482. .get_regs = e1000_get_regs,
  1483. .get_wol = e1000_get_wol,
  1484. .set_wol = e1000_set_wol,
  1485. .get_msglevel = e1000_get_msglevel,
  1486. .set_msglevel = e1000_set_msglevel,
  1487. .nway_reset = e1000_nway_reset,
  1488. .get_link = ethtool_op_get_link,
  1489. .get_eeprom_len = e1000_get_eeprom_len,
  1490. .get_eeprom = e1000_get_eeprom,
  1491. .set_eeprom = e1000_set_eeprom,
  1492. .get_ringparam = e1000_get_ringparam,
  1493. .set_ringparam = e1000_set_ringparam,
  1494. .get_pauseparam = e1000_get_pauseparam,
  1495. .set_pauseparam = e1000_set_pauseparam,
  1496. .get_rx_csum = e1000_get_rx_csum,
  1497. .set_rx_csum = e1000_set_rx_csum,
  1498. .get_tx_csum = e1000_get_tx_csum,
  1499. .set_tx_csum = e1000_set_tx_csum,
  1500. .get_sg = ethtool_op_get_sg,
  1501. .set_sg = ethtool_op_set_sg,
  1502. #ifdef NETIF_F_TSO
  1503. .get_tso = ethtool_op_get_tso,
  1504. .set_tso = e1000_set_tso,
  1505. #endif
  1506. .self_test_count = e1000_diag_test_count,
  1507. .self_test = e1000_diag_test,
  1508. .get_strings = e1000_get_strings,
  1509. .phys_id = e1000_phys_id,
  1510. .get_stats_count = e1000_get_stats_count,
  1511. .get_ethtool_stats = e1000_get_ethtool_stats,
  1512. .get_perm_addr = ethtool_op_get_perm_addr,
  1513. };
  1514. void e1000_set_ethtool_ops(struct net_device *netdev)
  1515. {
  1516. SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
  1517. }