dma.c 26 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087
  1. /*
  2. * Filename: dma.c
  3. *
  4. *
  5. * Authors: Joshua Morris <josh.h.morris@us.ibm.com>
  6. * Philip Kelleher <pjk1939@linux.vnet.ibm.com>
  7. *
  8. * (C) Copyright 2013 IBM Corporation
  9. *
  10. * This program is free software; you can redistribute it and/or
  11. * modify it under the terms of the GNU General Public License as
  12. * published by the Free Software Foundation; either version 2 of the
  13. * License, or (at your option) any later version.
  14. *
  15. * This program is distributed in the hope that it will be useful, but
  16. * WITHOUT ANY WARRANTY; without even the implied warranty of
  17. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  18. * General Public License for more details.
  19. *
  20. * You should have received a copy of the GNU General Public License
  21. * along with this program; if not, write to the Free Software Foundation,
  22. * Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  23. */
  24. #include <linux/slab.h>
  25. #include "rsxx_priv.h"
  26. struct rsxx_dma {
  27. struct list_head list;
  28. u8 cmd;
  29. unsigned int laddr; /* Logical address */
  30. struct {
  31. u32 off;
  32. u32 cnt;
  33. } sub_page;
  34. dma_addr_t dma_addr;
  35. struct page *page;
  36. unsigned int pg_off; /* Page Offset */
  37. rsxx_dma_cb cb;
  38. void *cb_data;
  39. };
  40. /* This timeout is used to detect a stalled DMA channel */
  41. #define DMA_ACTIVITY_TIMEOUT msecs_to_jiffies(10000)
  42. struct hw_status {
  43. u8 status;
  44. u8 tag;
  45. __le16 count;
  46. __le32 _rsvd2;
  47. __le64 _rsvd3;
  48. } __packed;
  49. enum rsxx_dma_status {
  50. DMA_SW_ERR = 0x1,
  51. DMA_HW_FAULT = 0x2,
  52. DMA_CANCELLED = 0x4,
  53. };
  54. struct hw_cmd {
  55. u8 command;
  56. u8 tag;
  57. u8 _rsvd;
  58. u8 sub_page; /* Bit[0:2]: 512byte offset */
  59. /* Bit[4:6]: 512byte count */
  60. __le32 device_addr;
  61. __le64 host_addr;
  62. } __packed;
  63. enum rsxx_hw_cmd {
  64. HW_CMD_BLK_DISCARD = 0x70,
  65. HW_CMD_BLK_WRITE = 0x80,
  66. HW_CMD_BLK_READ = 0xC0,
  67. HW_CMD_BLK_RECON_READ = 0xE0,
  68. };
  69. enum rsxx_hw_status {
  70. HW_STATUS_CRC = 0x01,
  71. HW_STATUS_HARD_ERR = 0x02,
  72. HW_STATUS_SOFT_ERR = 0x04,
  73. HW_STATUS_FAULT = 0x08,
  74. };
  75. static struct kmem_cache *rsxx_dma_pool;
  76. struct dma_tracker {
  77. int next_tag;
  78. struct rsxx_dma *dma;
  79. };
  80. #define DMA_TRACKER_LIST_SIZE8 (sizeof(struct dma_tracker_list) + \
  81. (sizeof(struct dma_tracker) * RSXX_MAX_OUTSTANDING_CMDS))
  82. struct dma_tracker_list {
  83. spinlock_t lock;
  84. int head;
  85. struct dma_tracker list[0];
  86. };
  87. /*----------------- Misc Utility Functions -------------------*/
  88. static unsigned int rsxx_addr8_to_laddr(u64 addr8, struct rsxx_cardinfo *card)
  89. {
  90. unsigned long long tgt_addr8;
  91. tgt_addr8 = ((addr8 >> card->_stripe.upper_shift) &
  92. card->_stripe.upper_mask) |
  93. ((addr8) & card->_stripe.lower_mask);
  94. do_div(tgt_addr8, RSXX_HW_BLK_SIZE);
  95. return tgt_addr8;
  96. }
  97. static unsigned int rsxx_get_dma_tgt(struct rsxx_cardinfo *card, u64 addr8)
  98. {
  99. unsigned int tgt;
  100. tgt = (addr8 >> card->_stripe.target_shift) & card->_stripe.target_mask;
  101. return tgt;
  102. }
  103. void rsxx_dma_queue_reset(struct rsxx_cardinfo *card)
  104. {
  105. /* Reset all DMA Command/Status Queues */
  106. iowrite32(DMA_QUEUE_RESET, card->regmap + RESET);
  107. }
  108. static unsigned int get_dma_size(struct rsxx_dma *dma)
  109. {
  110. if (dma->sub_page.cnt)
  111. return dma->sub_page.cnt << 9;
  112. else
  113. return RSXX_HW_BLK_SIZE;
  114. }
  115. /*----------------- DMA Tracker -------------------*/
  116. static void set_tracker_dma(struct dma_tracker_list *trackers,
  117. int tag,
  118. struct rsxx_dma *dma)
  119. {
  120. trackers->list[tag].dma = dma;
  121. }
  122. static struct rsxx_dma *get_tracker_dma(struct dma_tracker_list *trackers,
  123. int tag)
  124. {
  125. return trackers->list[tag].dma;
  126. }
  127. static int pop_tracker(struct dma_tracker_list *trackers)
  128. {
  129. int tag;
  130. spin_lock(&trackers->lock);
  131. tag = trackers->head;
  132. if (tag != -1) {
  133. trackers->head = trackers->list[tag].next_tag;
  134. trackers->list[tag].next_tag = -1;
  135. }
  136. spin_unlock(&trackers->lock);
  137. return tag;
  138. }
  139. static void push_tracker(struct dma_tracker_list *trackers, int tag)
  140. {
  141. spin_lock(&trackers->lock);
  142. trackers->list[tag].next_tag = trackers->head;
  143. trackers->head = tag;
  144. trackers->list[tag].dma = NULL;
  145. spin_unlock(&trackers->lock);
  146. }
  147. /*----------------- Interrupt Coalescing -------------*/
  148. /*
  149. * Interrupt Coalescing Register Format:
  150. * Interrupt Timer (64ns units) [15:0]
  151. * Interrupt Count [24:16]
  152. * Reserved [31:25]
  153. */
  154. #define INTR_COAL_LATENCY_MASK (0x0000ffff)
  155. #define INTR_COAL_COUNT_SHIFT 16
  156. #define INTR_COAL_COUNT_BITS 9
  157. #define INTR_COAL_COUNT_MASK (((1 << INTR_COAL_COUNT_BITS) - 1) << \
  158. INTR_COAL_COUNT_SHIFT)
  159. #define INTR_COAL_LATENCY_UNITS_NS 64
  160. static u32 dma_intr_coal_val(u32 mode, u32 count, u32 latency)
  161. {
  162. u32 latency_units = latency / INTR_COAL_LATENCY_UNITS_NS;
  163. if (mode == RSXX_INTR_COAL_DISABLED)
  164. return 0;
  165. return ((count << INTR_COAL_COUNT_SHIFT) & INTR_COAL_COUNT_MASK) |
  166. (latency_units & INTR_COAL_LATENCY_MASK);
  167. }
  168. static void dma_intr_coal_auto_tune(struct rsxx_cardinfo *card)
  169. {
  170. int i;
  171. u32 q_depth = 0;
  172. u32 intr_coal;
  173. if (card->config.data.intr_coal.mode != RSXX_INTR_COAL_AUTO_TUNE ||
  174. unlikely(card->eeh_state))
  175. return;
  176. for (i = 0; i < card->n_targets; i++)
  177. q_depth += atomic_read(&card->ctrl[i].stats.hw_q_depth);
  178. intr_coal = dma_intr_coal_val(card->config.data.intr_coal.mode,
  179. q_depth / 2,
  180. card->config.data.intr_coal.latency);
  181. iowrite32(intr_coal, card->regmap + INTR_COAL);
  182. }
  183. /*----------------- RSXX DMA Handling -------------------*/
  184. static void rsxx_complete_dma(struct rsxx_dma_ctrl *ctrl,
  185. struct rsxx_dma *dma,
  186. unsigned int status)
  187. {
  188. if (status & DMA_SW_ERR)
  189. ctrl->stats.dma_sw_err++;
  190. if (status & DMA_HW_FAULT)
  191. ctrl->stats.dma_hw_fault++;
  192. if (status & DMA_CANCELLED)
  193. ctrl->stats.dma_cancelled++;
  194. if (dma->dma_addr)
  195. pci_unmap_page(ctrl->card->dev, dma->dma_addr,
  196. get_dma_size(dma),
  197. dma->cmd == HW_CMD_BLK_WRITE ?
  198. PCI_DMA_TODEVICE :
  199. PCI_DMA_FROMDEVICE);
  200. if (dma->cb)
  201. dma->cb(ctrl->card, dma->cb_data, status ? 1 : 0);
  202. kmem_cache_free(rsxx_dma_pool, dma);
  203. }
  204. static void rsxx_requeue_dma(struct rsxx_dma_ctrl *ctrl,
  205. struct rsxx_dma *dma)
  206. {
  207. /*
  208. * Requeued DMAs go to the front of the queue so they are issued
  209. * first.
  210. */
  211. spin_lock(&ctrl->queue_lock);
  212. list_add(&dma->list, &ctrl->queue);
  213. spin_unlock(&ctrl->queue_lock);
  214. }
  215. static void rsxx_handle_dma_error(struct rsxx_dma_ctrl *ctrl,
  216. struct rsxx_dma *dma,
  217. u8 hw_st)
  218. {
  219. unsigned int status = 0;
  220. int requeue_cmd = 0;
  221. dev_dbg(CARD_TO_DEV(ctrl->card),
  222. "Handling DMA error(cmd x%02x, laddr x%08x st:x%02x)\n",
  223. dma->cmd, dma->laddr, hw_st);
  224. if (hw_st & HW_STATUS_CRC)
  225. ctrl->stats.crc_errors++;
  226. if (hw_st & HW_STATUS_HARD_ERR)
  227. ctrl->stats.hard_errors++;
  228. if (hw_st & HW_STATUS_SOFT_ERR)
  229. ctrl->stats.soft_errors++;
  230. switch (dma->cmd) {
  231. case HW_CMD_BLK_READ:
  232. if (hw_st & (HW_STATUS_CRC | HW_STATUS_HARD_ERR)) {
  233. if (ctrl->card->scrub_hard) {
  234. dma->cmd = HW_CMD_BLK_RECON_READ;
  235. requeue_cmd = 1;
  236. ctrl->stats.reads_retried++;
  237. } else {
  238. status |= DMA_HW_FAULT;
  239. ctrl->stats.reads_failed++;
  240. }
  241. } else if (hw_st & HW_STATUS_FAULT) {
  242. status |= DMA_HW_FAULT;
  243. ctrl->stats.reads_failed++;
  244. }
  245. break;
  246. case HW_CMD_BLK_RECON_READ:
  247. if (hw_st & (HW_STATUS_CRC | HW_STATUS_HARD_ERR)) {
  248. /* Data could not be reconstructed. */
  249. status |= DMA_HW_FAULT;
  250. ctrl->stats.reads_failed++;
  251. }
  252. break;
  253. case HW_CMD_BLK_WRITE:
  254. status |= DMA_HW_FAULT;
  255. ctrl->stats.writes_failed++;
  256. break;
  257. case HW_CMD_BLK_DISCARD:
  258. status |= DMA_HW_FAULT;
  259. ctrl->stats.discards_failed++;
  260. break;
  261. default:
  262. dev_err(CARD_TO_DEV(ctrl->card),
  263. "Unknown command in DMA!(cmd: x%02x "
  264. "laddr x%08x st: x%02x\n",
  265. dma->cmd, dma->laddr, hw_st);
  266. status |= DMA_SW_ERR;
  267. break;
  268. }
  269. if (requeue_cmd)
  270. rsxx_requeue_dma(ctrl, dma);
  271. else
  272. rsxx_complete_dma(ctrl, dma, status);
  273. }
  274. static void dma_engine_stalled(unsigned long data)
  275. {
  276. struct rsxx_dma_ctrl *ctrl = (struct rsxx_dma_ctrl *)data;
  277. if (atomic_read(&ctrl->stats.hw_q_depth) == 0 ||
  278. unlikely(ctrl->card->eeh_state))
  279. return;
  280. if (ctrl->cmd.idx != ioread32(ctrl->regmap + SW_CMD_IDX)) {
  281. /*
  282. * The dma engine was stalled because the SW_CMD_IDX write
  283. * was lost. Issue it again to recover.
  284. */
  285. dev_warn(CARD_TO_DEV(ctrl->card),
  286. "SW_CMD_IDX write was lost, re-writing...\n");
  287. iowrite32(ctrl->cmd.idx, ctrl->regmap + SW_CMD_IDX);
  288. mod_timer(&ctrl->activity_timer,
  289. jiffies + DMA_ACTIVITY_TIMEOUT);
  290. } else {
  291. dev_warn(CARD_TO_DEV(ctrl->card),
  292. "DMA channel %d has stalled, faulting interface.\n",
  293. ctrl->id);
  294. ctrl->card->dma_fault = 1;
  295. }
  296. }
  297. static void rsxx_issue_dmas(struct work_struct *work)
  298. {
  299. struct rsxx_dma_ctrl *ctrl;
  300. struct rsxx_dma *dma;
  301. int tag;
  302. int cmds_pending = 0;
  303. struct hw_cmd *hw_cmd_buf;
  304. ctrl = container_of(work, struct rsxx_dma_ctrl, issue_dma_work);
  305. hw_cmd_buf = ctrl->cmd.buf;
  306. if (unlikely(ctrl->card->halt) ||
  307. unlikely(ctrl->card->eeh_state))
  308. return;
  309. while (1) {
  310. spin_lock(&ctrl->queue_lock);
  311. if (list_empty(&ctrl->queue)) {
  312. spin_unlock(&ctrl->queue_lock);
  313. break;
  314. }
  315. spin_unlock(&ctrl->queue_lock);
  316. tag = pop_tracker(ctrl->trackers);
  317. if (tag == -1)
  318. break;
  319. spin_lock(&ctrl->queue_lock);
  320. dma = list_entry(ctrl->queue.next, struct rsxx_dma, list);
  321. list_del(&dma->list);
  322. ctrl->stats.sw_q_depth--;
  323. spin_unlock(&ctrl->queue_lock);
  324. /*
  325. * This will catch any DMAs that slipped in right before the
  326. * fault, but was queued after all the other DMAs were
  327. * cancelled.
  328. */
  329. if (unlikely(ctrl->card->dma_fault)) {
  330. push_tracker(ctrl->trackers, tag);
  331. rsxx_complete_dma(ctrl, dma, DMA_CANCELLED);
  332. continue;
  333. }
  334. set_tracker_dma(ctrl->trackers, tag, dma);
  335. hw_cmd_buf[ctrl->cmd.idx].command = dma->cmd;
  336. hw_cmd_buf[ctrl->cmd.idx].tag = tag;
  337. hw_cmd_buf[ctrl->cmd.idx]._rsvd = 0;
  338. hw_cmd_buf[ctrl->cmd.idx].sub_page =
  339. ((dma->sub_page.cnt & 0x7) << 4) |
  340. (dma->sub_page.off & 0x7);
  341. hw_cmd_buf[ctrl->cmd.idx].device_addr =
  342. cpu_to_le32(dma->laddr);
  343. hw_cmd_buf[ctrl->cmd.idx].host_addr =
  344. cpu_to_le64(dma->dma_addr);
  345. dev_dbg(CARD_TO_DEV(ctrl->card),
  346. "Issue DMA%d(laddr %d tag %d) to idx %d\n",
  347. ctrl->id, dma->laddr, tag, ctrl->cmd.idx);
  348. ctrl->cmd.idx = (ctrl->cmd.idx + 1) & RSXX_CS_IDX_MASK;
  349. cmds_pending++;
  350. if (dma->cmd == HW_CMD_BLK_WRITE)
  351. ctrl->stats.writes_issued++;
  352. else if (dma->cmd == HW_CMD_BLK_DISCARD)
  353. ctrl->stats.discards_issued++;
  354. else
  355. ctrl->stats.reads_issued++;
  356. }
  357. /* Let HW know we've queued commands. */
  358. if (cmds_pending) {
  359. atomic_add(cmds_pending, &ctrl->stats.hw_q_depth);
  360. mod_timer(&ctrl->activity_timer,
  361. jiffies + DMA_ACTIVITY_TIMEOUT);
  362. if (unlikely(ctrl->card->eeh_state)) {
  363. del_timer_sync(&ctrl->activity_timer);
  364. return;
  365. }
  366. iowrite32(ctrl->cmd.idx, ctrl->regmap + SW_CMD_IDX);
  367. }
  368. }
  369. static void rsxx_dma_done(struct work_struct *work)
  370. {
  371. struct rsxx_dma_ctrl *ctrl;
  372. struct rsxx_dma *dma;
  373. unsigned long flags;
  374. u16 count;
  375. u8 status;
  376. u8 tag;
  377. struct hw_status *hw_st_buf;
  378. ctrl = container_of(work, struct rsxx_dma_ctrl, dma_done_work);
  379. hw_st_buf = ctrl->status.buf;
  380. if (unlikely(ctrl->card->halt) ||
  381. unlikely(ctrl->card->dma_fault) ||
  382. unlikely(ctrl->card->eeh_state))
  383. return;
  384. count = le16_to_cpu(hw_st_buf[ctrl->status.idx].count);
  385. while (count == ctrl->e_cnt) {
  386. /*
  387. * The read memory-barrier is necessary to keep aggressive
  388. * processors/optimizers (such as the PPC Apple G5) from
  389. * reordering the following status-buffer tag & status read
  390. * *before* the count read on subsequent iterations of the
  391. * loop!
  392. */
  393. rmb();
  394. status = hw_st_buf[ctrl->status.idx].status;
  395. tag = hw_st_buf[ctrl->status.idx].tag;
  396. dma = get_tracker_dma(ctrl->trackers, tag);
  397. if (dma == NULL) {
  398. spin_lock_irqsave(&ctrl->card->irq_lock, flags);
  399. rsxx_disable_ier(ctrl->card, CR_INTR_DMA_ALL);
  400. spin_unlock_irqrestore(&ctrl->card->irq_lock, flags);
  401. dev_err(CARD_TO_DEV(ctrl->card),
  402. "No tracker for tag %d "
  403. "(idx %d id %d)\n",
  404. tag, ctrl->status.idx, ctrl->id);
  405. return;
  406. }
  407. dev_dbg(CARD_TO_DEV(ctrl->card),
  408. "Completing DMA%d"
  409. "(laddr x%x tag %d st: x%x cnt: x%04x) from idx %d.\n",
  410. ctrl->id, dma->laddr, tag, status, count,
  411. ctrl->status.idx);
  412. atomic_dec(&ctrl->stats.hw_q_depth);
  413. mod_timer(&ctrl->activity_timer,
  414. jiffies + DMA_ACTIVITY_TIMEOUT);
  415. if (status)
  416. rsxx_handle_dma_error(ctrl, dma, status);
  417. else
  418. rsxx_complete_dma(ctrl, dma, 0);
  419. push_tracker(ctrl->trackers, tag);
  420. ctrl->status.idx = (ctrl->status.idx + 1) &
  421. RSXX_CS_IDX_MASK;
  422. ctrl->e_cnt++;
  423. count = le16_to_cpu(hw_st_buf[ctrl->status.idx].count);
  424. }
  425. dma_intr_coal_auto_tune(ctrl->card);
  426. if (atomic_read(&ctrl->stats.hw_q_depth) == 0)
  427. del_timer_sync(&ctrl->activity_timer);
  428. spin_lock_irqsave(&ctrl->card->irq_lock, flags);
  429. rsxx_enable_ier(ctrl->card, CR_INTR_DMA(ctrl->id));
  430. spin_unlock_irqrestore(&ctrl->card->irq_lock, flags);
  431. spin_lock(&ctrl->queue_lock);
  432. if (ctrl->stats.sw_q_depth)
  433. queue_work(ctrl->issue_wq, &ctrl->issue_dma_work);
  434. spin_unlock(&ctrl->queue_lock);
  435. }
  436. static int rsxx_cleanup_dma_queue(struct rsxx_cardinfo *card,
  437. struct list_head *q)
  438. {
  439. struct rsxx_dma *dma;
  440. struct rsxx_dma *tmp;
  441. int cnt = 0;
  442. list_for_each_entry_safe(dma, tmp, q, list) {
  443. list_del(&dma->list);
  444. if (dma->dma_addr)
  445. pci_unmap_page(card->dev, dma->dma_addr,
  446. get_dma_size(dma),
  447. (dma->cmd == HW_CMD_BLK_WRITE) ?
  448. PCI_DMA_TODEVICE :
  449. PCI_DMA_FROMDEVICE);
  450. kmem_cache_free(rsxx_dma_pool, dma);
  451. cnt++;
  452. }
  453. return cnt;
  454. }
  455. static int rsxx_queue_discard(struct rsxx_cardinfo *card,
  456. struct list_head *q,
  457. unsigned int laddr,
  458. rsxx_dma_cb cb,
  459. void *cb_data)
  460. {
  461. struct rsxx_dma *dma;
  462. dma = kmem_cache_alloc(rsxx_dma_pool, GFP_KERNEL);
  463. if (!dma)
  464. return -ENOMEM;
  465. dma->cmd = HW_CMD_BLK_DISCARD;
  466. dma->laddr = laddr;
  467. dma->dma_addr = 0;
  468. dma->sub_page.off = 0;
  469. dma->sub_page.cnt = 0;
  470. dma->page = NULL;
  471. dma->pg_off = 0;
  472. dma->cb = cb;
  473. dma->cb_data = cb_data;
  474. dev_dbg(CARD_TO_DEV(card), "Queuing[D] laddr %x\n", dma->laddr);
  475. list_add_tail(&dma->list, q);
  476. return 0;
  477. }
  478. static int rsxx_queue_dma(struct rsxx_cardinfo *card,
  479. struct list_head *q,
  480. int dir,
  481. unsigned int dma_off,
  482. unsigned int dma_len,
  483. unsigned int laddr,
  484. struct page *page,
  485. unsigned int pg_off,
  486. rsxx_dma_cb cb,
  487. void *cb_data)
  488. {
  489. struct rsxx_dma *dma;
  490. dma = kmem_cache_alloc(rsxx_dma_pool, GFP_KERNEL);
  491. if (!dma)
  492. return -ENOMEM;
  493. dma->dma_addr = pci_map_page(card->dev, page, pg_off, dma_len,
  494. dir ? PCI_DMA_TODEVICE :
  495. PCI_DMA_FROMDEVICE);
  496. if (!dma->dma_addr) {
  497. kmem_cache_free(rsxx_dma_pool, dma);
  498. return -ENOMEM;
  499. }
  500. dma->cmd = dir ? HW_CMD_BLK_WRITE : HW_CMD_BLK_READ;
  501. dma->laddr = laddr;
  502. dma->sub_page.off = (dma_off >> 9);
  503. dma->sub_page.cnt = (dma_len >> 9);
  504. dma->page = page;
  505. dma->pg_off = pg_off;
  506. dma->cb = cb;
  507. dma->cb_data = cb_data;
  508. dev_dbg(CARD_TO_DEV(card),
  509. "Queuing[%c] laddr %x off %d cnt %d page %p pg_off %d\n",
  510. dir ? 'W' : 'R', dma->laddr, dma->sub_page.off,
  511. dma->sub_page.cnt, dma->page, dma->pg_off);
  512. /* Queue the DMA */
  513. list_add_tail(&dma->list, q);
  514. return 0;
  515. }
  516. int rsxx_dma_queue_bio(struct rsxx_cardinfo *card,
  517. struct bio *bio,
  518. atomic_t *n_dmas,
  519. rsxx_dma_cb cb,
  520. void *cb_data)
  521. {
  522. struct list_head dma_list[RSXX_MAX_TARGETS];
  523. struct bio_vec *bvec;
  524. unsigned long long addr8;
  525. unsigned int laddr;
  526. unsigned int bv_len;
  527. unsigned int bv_off;
  528. unsigned int dma_off;
  529. unsigned int dma_len;
  530. int dma_cnt[RSXX_MAX_TARGETS];
  531. int tgt;
  532. int st;
  533. int i;
  534. addr8 = bio->bi_sector << 9; /* sectors are 512 bytes */
  535. atomic_set(n_dmas, 0);
  536. for (i = 0; i < card->n_targets; i++) {
  537. INIT_LIST_HEAD(&dma_list[i]);
  538. dma_cnt[i] = 0;
  539. }
  540. if (bio->bi_rw & REQ_DISCARD) {
  541. bv_len = bio->bi_size;
  542. while (bv_len > 0) {
  543. tgt = rsxx_get_dma_tgt(card, addr8);
  544. laddr = rsxx_addr8_to_laddr(addr8, card);
  545. st = rsxx_queue_discard(card, &dma_list[tgt], laddr,
  546. cb, cb_data);
  547. if (st)
  548. goto bvec_err;
  549. dma_cnt[tgt]++;
  550. atomic_inc(n_dmas);
  551. addr8 += RSXX_HW_BLK_SIZE;
  552. bv_len -= RSXX_HW_BLK_SIZE;
  553. }
  554. } else {
  555. bio_for_each_segment(bvec, bio, i) {
  556. bv_len = bvec->bv_len;
  557. bv_off = bvec->bv_offset;
  558. while (bv_len > 0) {
  559. tgt = rsxx_get_dma_tgt(card, addr8);
  560. laddr = rsxx_addr8_to_laddr(addr8, card);
  561. dma_off = addr8 & RSXX_HW_BLK_MASK;
  562. dma_len = min(bv_len,
  563. RSXX_HW_BLK_SIZE - dma_off);
  564. st = rsxx_queue_dma(card, &dma_list[tgt],
  565. bio_data_dir(bio),
  566. dma_off, dma_len,
  567. laddr, bvec->bv_page,
  568. bv_off, cb, cb_data);
  569. if (st)
  570. goto bvec_err;
  571. dma_cnt[tgt]++;
  572. atomic_inc(n_dmas);
  573. addr8 += dma_len;
  574. bv_off += dma_len;
  575. bv_len -= dma_len;
  576. }
  577. }
  578. }
  579. for (i = 0; i < card->n_targets; i++) {
  580. if (!list_empty(&dma_list[i])) {
  581. spin_lock(&card->ctrl[i].queue_lock);
  582. card->ctrl[i].stats.sw_q_depth += dma_cnt[i];
  583. list_splice_tail(&dma_list[i], &card->ctrl[i].queue);
  584. spin_unlock(&card->ctrl[i].queue_lock);
  585. queue_work(card->ctrl[i].issue_wq,
  586. &card->ctrl[i].issue_dma_work);
  587. }
  588. }
  589. return 0;
  590. bvec_err:
  591. for (i = 0; i < card->n_targets; i++)
  592. rsxx_cleanup_dma_queue(card, &dma_list[i]);
  593. return st;
  594. }
  595. /*----------------- DMA Engine Initialization & Setup -------------------*/
  596. int rsxx_hw_buffers_init(struct pci_dev *dev, struct rsxx_dma_ctrl *ctrl)
  597. {
  598. ctrl->status.buf = pci_alloc_consistent(dev, STATUS_BUFFER_SIZE8,
  599. &ctrl->status.dma_addr);
  600. ctrl->cmd.buf = pci_alloc_consistent(dev, COMMAND_BUFFER_SIZE8,
  601. &ctrl->cmd.dma_addr);
  602. if (ctrl->status.buf == NULL || ctrl->cmd.buf == NULL)
  603. return -ENOMEM;
  604. memset(ctrl->status.buf, 0xac, STATUS_BUFFER_SIZE8);
  605. iowrite32(lower_32_bits(ctrl->status.dma_addr),
  606. ctrl->regmap + SB_ADD_LO);
  607. iowrite32(upper_32_bits(ctrl->status.dma_addr),
  608. ctrl->regmap + SB_ADD_HI);
  609. memset(ctrl->cmd.buf, 0x83, COMMAND_BUFFER_SIZE8);
  610. iowrite32(lower_32_bits(ctrl->cmd.dma_addr), ctrl->regmap + CB_ADD_LO);
  611. iowrite32(upper_32_bits(ctrl->cmd.dma_addr), ctrl->regmap + CB_ADD_HI);
  612. ctrl->status.idx = ioread32(ctrl->regmap + HW_STATUS_CNT);
  613. if (ctrl->status.idx > RSXX_MAX_OUTSTANDING_CMDS) {
  614. dev_crit(&dev->dev, "Failed reading status cnt x%x\n",
  615. ctrl->status.idx);
  616. return -EINVAL;
  617. }
  618. iowrite32(ctrl->status.idx, ctrl->regmap + HW_STATUS_CNT);
  619. iowrite32(ctrl->status.idx, ctrl->regmap + SW_STATUS_CNT);
  620. ctrl->cmd.idx = ioread32(ctrl->regmap + HW_CMD_IDX);
  621. if (ctrl->cmd.idx > RSXX_MAX_OUTSTANDING_CMDS) {
  622. dev_crit(&dev->dev, "Failed reading cmd cnt x%x\n",
  623. ctrl->status.idx);
  624. return -EINVAL;
  625. }
  626. iowrite32(ctrl->cmd.idx, ctrl->regmap + HW_CMD_IDX);
  627. iowrite32(ctrl->cmd.idx, ctrl->regmap + SW_CMD_IDX);
  628. return 0;
  629. }
  630. static int rsxx_dma_ctrl_init(struct pci_dev *dev,
  631. struct rsxx_dma_ctrl *ctrl)
  632. {
  633. int i;
  634. int st;
  635. memset(&ctrl->stats, 0, sizeof(ctrl->stats));
  636. ctrl->trackers = vmalloc(DMA_TRACKER_LIST_SIZE8);
  637. if (!ctrl->trackers)
  638. return -ENOMEM;
  639. ctrl->trackers->head = 0;
  640. for (i = 0; i < RSXX_MAX_OUTSTANDING_CMDS; i++) {
  641. ctrl->trackers->list[i].next_tag = i + 1;
  642. ctrl->trackers->list[i].dma = NULL;
  643. }
  644. ctrl->trackers->list[RSXX_MAX_OUTSTANDING_CMDS-1].next_tag = -1;
  645. spin_lock_init(&ctrl->trackers->lock);
  646. spin_lock_init(&ctrl->queue_lock);
  647. INIT_LIST_HEAD(&ctrl->queue);
  648. setup_timer(&ctrl->activity_timer, dma_engine_stalled,
  649. (unsigned long)ctrl);
  650. ctrl->issue_wq = alloc_ordered_workqueue(DRIVER_NAME"_issue", 0);
  651. if (!ctrl->issue_wq)
  652. return -ENOMEM;
  653. ctrl->done_wq = alloc_ordered_workqueue(DRIVER_NAME"_done", 0);
  654. if (!ctrl->done_wq)
  655. return -ENOMEM;
  656. INIT_WORK(&ctrl->issue_dma_work, rsxx_issue_dmas);
  657. INIT_WORK(&ctrl->dma_done_work, rsxx_dma_done);
  658. st = rsxx_hw_buffers_init(dev, ctrl);
  659. if (st)
  660. return st;
  661. return 0;
  662. }
  663. static int rsxx_dma_stripe_setup(struct rsxx_cardinfo *card,
  664. unsigned int stripe_size8)
  665. {
  666. if (!is_power_of_2(stripe_size8)) {
  667. dev_err(CARD_TO_DEV(card),
  668. "stripe_size is NOT a power of 2!\n");
  669. return -EINVAL;
  670. }
  671. card->_stripe.lower_mask = stripe_size8 - 1;
  672. card->_stripe.upper_mask = ~(card->_stripe.lower_mask);
  673. card->_stripe.upper_shift = ffs(card->n_targets) - 1;
  674. card->_stripe.target_mask = card->n_targets - 1;
  675. card->_stripe.target_shift = ffs(stripe_size8) - 1;
  676. dev_dbg(CARD_TO_DEV(card), "_stripe.lower_mask = x%016llx\n",
  677. card->_stripe.lower_mask);
  678. dev_dbg(CARD_TO_DEV(card), "_stripe.upper_shift = x%016llx\n",
  679. card->_stripe.upper_shift);
  680. dev_dbg(CARD_TO_DEV(card), "_stripe.upper_mask = x%016llx\n",
  681. card->_stripe.upper_mask);
  682. dev_dbg(CARD_TO_DEV(card), "_stripe.target_mask = x%016llx\n",
  683. card->_stripe.target_mask);
  684. dev_dbg(CARD_TO_DEV(card), "_stripe.target_shift = x%016llx\n",
  685. card->_stripe.target_shift);
  686. return 0;
  687. }
  688. int rsxx_dma_configure(struct rsxx_cardinfo *card)
  689. {
  690. u32 intr_coal;
  691. intr_coal = dma_intr_coal_val(card->config.data.intr_coal.mode,
  692. card->config.data.intr_coal.count,
  693. card->config.data.intr_coal.latency);
  694. iowrite32(intr_coal, card->regmap + INTR_COAL);
  695. return rsxx_dma_stripe_setup(card, card->config.data.stripe_size);
  696. }
  697. int rsxx_dma_setup(struct rsxx_cardinfo *card)
  698. {
  699. unsigned long flags;
  700. int st;
  701. int i;
  702. dev_info(CARD_TO_DEV(card),
  703. "Initializing %d DMA targets\n",
  704. card->n_targets);
  705. /* Regmap is divided up into 4K chunks. One for each DMA channel */
  706. for (i = 0; i < card->n_targets; i++)
  707. card->ctrl[i].regmap = card->regmap + (i * 4096);
  708. card->dma_fault = 0;
  709. /* Reset the DMA queues */
  710. rsxx_dma_queue_reset(card);
  711. /************* Setup DMA Control *************/
  712. for (i = 0; i < card->n_targets; i++) {
  713. st = rsxx_dma_ctrl_init(card->dev, &card->ctrl[i]);
  714. if (st)
  715. goto failed_dma_setup;
  716. card->ctrl[i].card = card;
  717. card->ctrl[i].id = i;
  718. }
  719. card->scrub_hard = 1;
  720. if (card->config_valid)
  721. rsxx_dma_configure(card);
  722. /* Enable the interrupts after all setup has completed. */
  723. for (i = 0; i < card->n_targets; i++) {
  724. spin_lock_irqsave(&card->irq_lock, flags);
  725. rsxx_enable_ier_and_isr(card, CR_INTR_DMA(i));
  726. spin_unlock_irqrestore(&card->irq_lock, flags);
  727. }
  728. return 0;
  729. failed_dma_setup:
  730. for (i = 0; i < card->n_targets; i++) {
  731. struct rsxx_dma_ctrl *ctrl = &card->ctrl[i];
  732. if (ctrl->issue_wq) {
  733. destroy_workqueue(ctrl->issue_wq);
  734. ctrl->issue_wq = NULL;
  735. }
  736. if (ctrl->done_wq) {
  737. destroy_workqueue(ctrl->done_wq);
  738. ctrl->done_wq = NULL;
  739. }
  740. if (ctrl->trackers)
  741. vfree(ctrl->trackers);
  742. if (ctrl->status.buf)
  743. pci_free_consistent(card->dev, STATUS_BUFFER_SIZE8,
  744. ctrl->status.buf,
  745. ctrl->status.dma_addr);
  746. if (ctrl->cmd.buf)
  747. pci_free_consistent(card->dev, COMMAND_BUFFER_SIZE8,
  748. ctrl->cmd.buf, ctrl->cmd.dma_addr);
  749. }
  750. return st;
  751. }
  752. void rsxx_dma_destroy(struct rsxx_cardinfo *card)
  753. {
  754. struct rsxx_dma_ctrl *ctrl;
  755. struct rsxx_dma *dma;
  756. int i, j;
  757. int cnt = 0;
  758. for (i = 0; i < card->n_targets; i++) {
  759. ctrl = &card->ctrl[i];
  760. if (ctrl->issue_wq) {
  761. destroy_workqueue(ctrl->issue_wq);
  762. ctrl->issue_wq = NULL;
  763. }
  764. if (ctrl->done_wq) {
  765. destroy_workqueue(ctrl->done_wq);
  766. ctrl->done_wq = NULL;
  767. }
  768. if (timer_pending(&ctrl->activity_timer))
  769. del_timer_sync(&ctrl->activity_timer);
  770. /* Clean up the DMA queue */
  771. spin_lock(&ctrl->queue_lock);
  772. cnt = rsxx_cleanup_dma_queue(card, &ctrl->queue);
  773. spin_unlock(&ctrl->queue_lock);
  774. if (cnt)
  775. dev_info(CARD_TO_DEV(card),
  776. "Freed %d queued DMAs on channel %d\n",
  777. cnt, i);
  778. /* Clean up issued DMAs */
  779. for (j = 0; j < RSXX_MAX_OUTSTANDING_CMDS; j++) {
  780. dma = get_tracker_dma(ctrl->trackers, j);
  781. if (dma) {
  782. pci_unmap_page(card->dev, dma->dma_addr,
  783. get_dma_size(dma),
  784. (dma->cmd == HW_CMD_BLK_WRITE) ?
  785. PCI_DMA_TODEVICE :
  786. PCI_DMA_FROMDEVICE);
  787. kmem_cache_free(rsxx_dma_pool, dma);
  788. cnt++;
  789. }
  790. }
  791. if (cnt)
  792. dev_info(CARD_TO_DEV(card),
  793. "Freed %d pending DMAs on channel %d\n",
  794. cnt, i);
  795. vfree(ctrl->trackers);
  796. pci_free_consistent(card->dev, STATUS_BUFFER_SIZE8,
  797. ctrl->status.buf, ctrl->status.dma_addr);
  798. pci_free_consistent(card->dev, COMMAND_BUFFER_SIZE8,
  799. ctrl->cmd.buf, ctrl->cmd.dma_addr);
  800. }
  801. }
  802. void rsxx_eeh_save_issued_dmas(struct rsxx_cardinfo *card)
  803. {
  804. int i;
  805. int j;
  806. int cnt;
  807. struct rsxx_dma *dma;
  808. struct list_head issued_dmas[card->n_targets];
  809. for (i = 0; i < card->n_targets; i++) {
  810. INIT_LIST_HEAD(&issued_dmas[i]);
  811. cnt = 0;
  812. for (j = 0; j < RSXX_MAX_OUTSTANDING_CMDS; j++) {
  813. dma = get_tracker_dma(card->ctrl[i].trackers, j);
  814. if (dma == NULL)
  815. continue;
  816. if (dma->cmd == HW_CMD_BLK_WRITE)
  817. card->ctrl[i].stats.writes_issued--;
  818. else if (dma->cmd == HW_CMD_BLK_DISCARD)
  819. card->ctrl[i].stats.discards_issued--;
  820. else
  821. card->ctrl[i].stats.reads_issued--;
  822. list_add_tail(&dma->list, &issued_dmas[i]);
  823. push_tracker(card->ctrl[i].trackers, j);
  824. cnt++;
  825. }
  826. spin_lock(&card->ctrl[i].queue_lock);
  827. list_splice(&issued_dmas[i], &card->ctrl[i].queue);
  828. atomic_sub(cnt, &card->ctrl[i].stats.hw_q_depth);
  829. card->ctrl[i].stats.sw_q_depth += cnt;
  830. card->ctrl[i].e_cnt = 0;
  831. list_for_each_entry(dma, &card->ctrl[i].queue, list) {
  832. if (dma->dma_addr)
  833. pci_unmap_page(card->dev, dma->dma_addr,
  834. get_dma_size(dma),
  835. dma->cmd == HW_CMD_BLK_WRITE ?
  836. PCI_DMA_TODEVICE :
  837. PCI_DMA_FROMDEVICE);
  838. }
  839. spin_unlock(&card->ctrl[i].queue_lock);
  840. }
  841. }
  842. void rsxx_eeh_cancel_dmas(struct rsxx_cardinfo *card)
  843. {
  844. struct rsxx_dma *dma;
  845. struct rsxx_dma *tmp;
  846. int i;
  847. for (i = 0; i < card->n_targets; i++) {
  848. spin_lock(&card->ctrl[i].queue_lock);
  849. list_for_each_entry_safe(dma, tmp, &card->ctrl[i].queue, list) {
  850. list_del(&dma->list);
  851. rsxx_complete_dma(&card->ctrl[i], dma, DMA_CANCELLED);
  852. }
  853. spin_unlock(&card->ctrl[i].queue_lock);
  854. }
  855. }
  856. int rsxx_eeh_remap_dmas(struct rsxx_cardinfo *card)
  857. {
  858. struct rsxx_dma *dma;
  859. struct rsxx_dma *tmp;
  860. int i;
  861. for (i = 0; i < card->n_targets; i++) {
  862. spin_lock(&card->ctrl[i].queue_lock);
  863. list_for_each_entry(dma, &card->ctrl[i].queue, list) {
  864. dma->dma_addr = pci_map_page(card->dev, dma->page,
  865. dma->pg_off, get_dma_size(dma),
  866. dma->cmd == HW_CMD_BLK_WRITE ?
  867. PCI_DMA_TODEVICE :
  868. PCI_DMA_FROMDEVICE);
  869. if (!dma->dma_addr) {
  870. spin_unlock(&card->ctrl[i].queue_lock);
  871. kmem_cache_free(rsxx_dma_pool, dma);
  872. return -ENOMEM;
  873. }
  874. }
  875. spin_unlock(&card->ctrl[i].queue_lock);
  876. }
  877. return 0;
  878. }
  879. int rsxx_dma_init(void)
  880. {
  881. rsxx_dma_pool = KMEM_CACHE(rsxx_dma, SLAB_HWCACHE_ALIGN);
  882. if (!rsxx_dma_pool)
  883. return -ENOMEM;
  884. return 0;
  885. }
  886. void rsxx_dma_cleanup(void)
  887. {
  888. kmem_cache_destroy(rsxx_dma_pool);
  889. }