slab.c 120 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663
  1. /*
  2. * linux/mm/slab.c
  3. * Written by Mark Hemment, 1996/97.
  4. * (markhe@nextd.demon.co.uk)
  5. *
  6. * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
  7. *
  8. * Major cleanup, different bufctl logic, per-cpu arrays
  9. * (c) 2000 Manfred Spraul
  10. *
  11. * Cleanup, make the head arrays unconditional, preparation for NUMA
  12. * (c) 2002 Manfred Spraul
  13. *
  14. * An implementation of the Slab Allocator as described in outline in;
  15. * UNIX Internals: The New Frontiers by Uresh Vahalia
  16. * Pub: Prentice Hall ISBN 0-13-101908-2
  17. * or with a little more detail in;
  18. * The Slab Allocator: An Object-Caching Kernel Memory Allocator
  19. * Jeff Bonwick (Sun Microsystems).
  20. * Presented at: USENIX Summer 1994 Technical Conference
  21. *
  22. * The memory is organized in caches, one cache for each object type.
  23. * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
  24. * Each cache consists out of many slabs (they are small (usually one
  25. * page long) and always contiguous), and each slab contains multiple
  26. * initialized objects.
  27. *
  28. * This means, that your constructor is used only for newly allocated
  29. * slabs and you must pass objects with the same initializations to
  30. * kmem_cache_free.
  31. *
  32. * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
  33. * normal). If you need a special memory type, then must create a new
  34. * cache for that memory type.
  35. *
  36. * In order to reduce fragmentation, the slabs are sorted in 3 groups:
  37. * full slabs with 0 free objects
  38. * partial slabs
  39. * empty slabs with no allocated objects
  40. *
  41. * If partial slabs exist, then new allocations come from these slabs,
  42. * otherwise from empty slabs or new slabs are allocated.
  43. *
  44. * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
  45. * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
  46. *
  47. * Each cache has a short per-cpu head array, most allocs
  48. * and frees go into that array, and if that array overflows, then 1/2
  49. * of the entries in the array are given back into the global cache.
  50. * The head array is strictly LIFO and should improve the cache hit rates.
  51. * On SMP, it additionally reduces the spinlock operations.
  52. *
  53. * The c_cpuarray may not be read with enabled local interrupts -
  54. * it's changed with a smp_call_function().
  55. *
  56. * SMP synchronization:
  57. * constructors and destructors are called without any locking.
  58. * Several members in struct kmem_cache and struct slab never change, they
  59. * are accessed without any locking.
  60. * The per-cpu arrays are never accessed from the wrong cpu, no locking,
  61. * and local interrupts are disabled so slab code is preempt-safe.
  62. * The non-constant members are protected with a per-cache irq spinlock.
  63. *
  64. * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
  65. * in 2000 - many ideas in the current implementation are derived from
  66. * his patch.
  67. *
  68. * Further notes from the original documentation:
  69. *
  70. * 11 April '97. Started multi-threading - markhe
  71. * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
  72. * The sem is only needed when accessing/extending the cache-chain, which
  73. * can never happen inside an interrupt (kmem_cache_create(),
  74. * kmem_cache_shrink() and kmem_cache_reap()).
  75. *
  76. * At present, each engine can be growing a cache. This should be blocked.
  77. *
  78. * 15 March 2005. NUMA slab allocator.
  79. * Shai Fultheim <shai@scalex86.org>.
  80. * Shobhit Dayal <shobhit@calsoftinc.com>
  81. * Alok N Kataria <alokk@calsoftinc.com>
  82. * Christoph Lameter <christoph@lameter.com>
  83. *
  84. * Modified the slab allocator to be node aware on NUMA systems.
  85. * Each node has its own list of partial, free and full slabs.
  86. * All object allocations for a node occur from node specific slab lists.
  87. */
  88. #include <linux/slab.h>
  89. #include <linux/mm.h>
  90. #include <linux/poison.h>
  91. #include <linux/swap.h>
  92. #include <linux/cache.h>
  93. #include <linux/interrupt.h>
  94. #include <linux/init.h>
  95. #include <linux/compiler.h>
  96. #include <linux/cpuset.h>
  97. #include <linux/proc_fs.h>
  98. #include <linux/seq_file.h>
  99. #include <linux/notifier.h>
  100. #include <linux/kallsyms.h>
  101. #include <linux/cpu.h>
  102. #include <linux/sysctl.h>
  103. #include <linux/module.h>
  104. #include <linux/rcupdate.h>
  105. #include <linux/string.h>
  106. #include <linux/uaccess.h>
  107. #include <linux/nodemask.h>
  108. #include <linux/kmemleak.h>
  109. #include <linux/mempolicy.h>
  110. #include <linux/mutex.h>
  111. #include <linux/fault-inject.h>
  112. #include <linux/rtmutex.h>
  113. #include <linux/reciprocal_div.h>
  114. #include <linux/debugobjects.h>
  115. #include <linux/kmemcheck.h>
  116. #include <linux/memory.h>
  117. #include <linux/prefetch.h>
  118. #include <asm/cacheflush.h>
  119. #include <asm/tlbflush.h>
  120. #include <asm/page.h>
  121. #include <trace/events/kmem.h>
  122. /*
  123. * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
  124. * 0 for faster, smaller code (especially in the critical paths).
  125. *
  126. * STATS - 1 to collect stats for /proc/slabinfo.
  127. * 0 for faster, smaller code (especially in the critical paths).
  128. *
  129. * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
  130. */
  131. #ifdef CONFIG_DEBUG_SLAB
  132. #define DEBUG 1
  133. #define STATS 1
  134. #define FORCED_DEBUG 1
  135. #else
  136. #define DEBUG 0
  137. #define STATS 0
  138. #define FORCED_DEBUG 0
  139. #endif
  140. /* Shouldn't this be in a header file somewhere? */
  141. #define BYTES_PER_WORD sizeof(void *)
  142. #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
  143. #ifndef ARCH_KMALLOC_FLAGS
  144. #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
  145. #endif
  146. /* Legal flag mask for kmem_cache_create(). */
  147. #if DEBUG
  148. # define CREATE_MASK (SLAB_RED_ZONE | \
  149. SLAB_POISON | SLAB_HWCACHE_ALIGN | \
  150. SLAB_CACHE_DMA | \
  151. SLAB_STORE_USER | \
  152. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  153. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
  154. SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
  155. #else
  156. # define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
  157. SLAB_CACHE_DMA | \
  158. SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
  159. SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD | \
  160. SLAB_DEBUG_OBJECTS | SLAB_NOLEAKTRACE | SLAB_NOTRACK)
  161. #endif
  162. /*
  163. * kmem_bufctl_t:
  164. *
  165. * Bufctl's are used for linking objs within a slab
  166. * linked offsets.
  167. *
  168. * This implementation relies on "struct page" for locating the cache &
  169. * slab an object belongs to.
  170. * This allows the bufctl structure to be small (one int), but limits
  171. * the number of objects a slab (not a cache) can contain when off-slab
  172. * bufctls are used. The limit is the size of the largest general cache
  173. * that does not use off-slab slabs.
  174. * For 32bit archs with 4 kB pages, is this 56.
  175. * This is not serious, as it is only for large objects, when it is unwise
  176. * to have too many per slab.
  177. * Note: This limit can be raised by introducing a general cache whose size
  178. * is less than 512 (PAGE_SIZE<<3), but greater than 256.
  179. */
  180. typedef unsigned int kmem_bufctl_t;
  181. #define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
  182. #define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
  183. #define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
  184. #define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
  185. /*
  186. * struct slab_rcu
  187. *
  188. * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
  189. * arrange for kmem_freepages to be called via RCU. This is useful if
  190. * we need to approach a kernel structure obliquely, from its address
  191. * obtained without the usual locking. We can lock the structure to
  192. * stabilize it and check it's still at the given address, only if we
  193. * can be sure that the memory has not been meanwhile reused for some
  194. * other kind of object (which our subsystem's lock might corrupt).
  195. *
  196. * rcu_read_lock before reading the address, then rcu_read_unlock after
  197. * taking the spinlock within the structure expected at that address.
  198. */
  199. struct slab_rcu {
  200. struct rcu_head head;
  201. struct kmem_cache *cachep;
  202. void *addr;
  203. };
  204. /*
  205. * struct slab
  206. *
  207. * Manages the objs in a slab. Placed either at the beginning of mem allocated
  208. * for a slab, or allocated from an general cache.
  209. * Slabs are chained into three list: fully used, partial, fully free slabs.
  210. */
  211. struct slab {
  212. union {
  213. struct {
  214. struct list_head list;
  215. unsigned long colouroff;
  216. void *s_mem; /* including colour offset */
  217. unsigned int inuse; /* num of objs active in slab */
  218. kmem_bufctl_t free;
  219. unsigned short nodeid;
  220. };
  221. struct slab_rcu __slab_cover_slab_rcu;
  222. };
  223. };
  224. /*
  225. * struct array_cache
  226. *
  227. * Purpose:
  228. * - LIFO ordering, to hand out cache-warm objects from _alloc
  229. * - reduce the number of linked list operations
  230. * - reduce spinlock operations
  231. *
  232. * The limit is stored in the per-cpu structure to reduce the data cache
  233. * footprint.
  234. *
  235. */
  236. struct array_cache {
  237. unsigned int avail;
  238. unsigned int limit;
  239. unsigned int batchcount;
  240. unsigned int touched;
  241. spinlock_t lock;
  242. void *entry[]; /*
  243. * Must have this definition in here for the proper
  244. * alignment of array_cache. Also simplifies accessing
  245. * the entries.
  246. */
  247. };
  248. /*
  249. * bootstrap: The caches do not work without cpuarrays anymore, but the
  250. * cpuarrays are allocated from the generic caches...
  251. */
  252. #define BOOT_CPUCACHE_ENTRIES 1
  253. struct arraycache_init {
  254. struct array_cache cache;
  255. void *entries[BOOT_CPUCACHE_ENTRIES];
  256. };
  257. /*
  258. * The slab lists for all objects.
  259. */
  260. struct kmem_list3 {
  261. struct list_head slabs_partial; /* partial list first, better asm code */
  262. struct list_head slabs_full;
  263. struct list_head slabs_free;
  264. unsigned long free_objects;
  265. unsigned int free_limit;
  266. unsigned int colour_next; /* Per-node cache coloring */
  267. spinlock_t list_lock;
  268. struct array_cache *shared; /* shared per node */
  269. struct array_cache **alien; /* on other nodes */
  270. unsigned long next_reap; /* updated without locking */
  271. int free_touched; /* updated without locking */
  272. };
  273. /*
  274. * Need this for bootstrapping a per node allocator.
  275. */
  276. #define NUM_INIT_LISTS (3 * MAX_NUMNODES)
  277. static struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
  278. #define CACHE_CACHE 0
  279. #define SIZE_AC MAX_NUMNODES
  280. #define SIZE_L3 (2 * MAX_NUMNODES)
  281. static int drain_freelist(struct kmem_cache *cache,
  282. struct kmem_list3 *l3, int tofree);
  283. static void free_block(struct kmem_cache *cachep, void **objpp, int len,
  284. int node);
  285. static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
  286. static void cache_reap(struct work_struct *unused);
  287. /*
  288. * This function must be completely optimized away if a constant is passed to
  289. * it. Mostly the same as what is in linux/slab.h except it returns an index.
  290. */
  291. static __always_inline int index_of(const size_t size)
  292. {
  293. extern void __bad_size(void);
  294. if (__builtin_constant_p(size)) {
  295. int i = 0;
  296. #define CACHE(x) \
  297. if (size <=x) \
  298. return i; \
  299. else \
  300. i++;
  301. #include <linux/kmalloc_sizes.h>
  302. #undef CACHE
  303. __bad_size();
  304. } else
  305. __bad_size();
  306. return 0;
  307. }
  308. static int slab_early_init = 1;
  309. #define INDEX_AC index_of(sizeof(struct arraycache_init))
  310. #define INDEX_L3 index_of(sizeof(struct kmem_list3))
  311. static void kmem_list3_init(struct kmem_list3 *parent)
  312. {
  313. INIT_LIST_HEAD(&parent->slabs_full);
  314. INIT_LIST_HEAD(&parent->slabs_partial);
  315. INIT_LIST_HEAD(&parent->slabs_free);
  316. parent->shared = NULL;
  317. parent->alien = NULL;
  318. parent->colour_next = 0;
  319. spin_lock_init(&parent->list_lock);
  320. parent->free_objects = 0;
  321. parent->free_touched = 0;
  322. }
  323. #define MAKE_LIST(cachep, listp, slab, nodeid) \
  324. do { \
  325. INIT_LIST_HEAD(listp); \
  326. list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
  327. } while (0)
  328. #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
  329. do { \
  330. MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
  331. MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
  332. MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
  333. } while (0)
  334. #define CFLGS_OFF_SLAB (0x80000000UL)
  335. #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
  336. #define BATCHREFILL_LIMIT 16
  337. /*
  338. * Optimization question: fewer reaps means less probability for unnessary
  339. * cpucache drain/refill cycles.
  340. *
  341. * OTOH the cpuarrays can contain lots of objects,
  342. * which could lock up otherwise freeable slabs.
  343. */
  344. #define REAPTIMEOUT_CPUC (2*HZ)
  345. #define REAPTIMEOUT_LIST3 (4*HZ)
  346. #if STATS
  347. #define STATS_INC_ACTIVE(x) ((x)->num_active++)
  348. #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
  349. #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
  350. #define STATS_INC_GROWN(x) ((x)->grown++)
  351. #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
  352. #define STATS_SET_HIGH(x) \
  353. do { \
  354. if ((x)->num_active > (x)->high_mark) \
  355. (x)->high_mark = (x)->num_active; \
  356. } while (0)
  357. #define STATS_INC_ERR(x) ((x)->errors++)
  358. #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
  359. #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
  360. #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
  361. #define STATS_SET_FREEABLE(x, i) \
  362. do { \
  363. if ((x)->max_freeable < i) \
  364. (x)->max_freeable = i; \
  365. } while (0)
  366. #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
  367. #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
  368. #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
  369. #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
  370. #else
  371. #define STATS_INC_ACTIVE(x) do { } while (0)
  372. #define STATS_DEC_ACTIVE(x) do { } while (0)
  373. #define STATS_INC_ALLOCED(x) do { } while (0)
  374. #define STATS_INC_GROWN(x) do { } while (0)
  375. #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
  376. #define STATS_SET_HIGH(x) do { } while (0)
  377. #define STATS_INC_ERR(x) do { } while (0)
  378. #define STATS_INC_NODEALLOCS(x) do { } while (0)
  379. #define STATS_INC_NODEFREES(x) do { } while (0)
  380. #define STATS_INC_ACOVERFLOW(x) do { } while (0)
  381. #define STATS_SET_FREEABLE(x, i) do { } while (0)
  382. #define STATS_INC_ALLOCHIT(x) do { } while (0)
  383. #define STATS_INC_ALLOCMISS(x) do { } while (0)
  384. #define STATS_INC_FREEHIT(x) do { } while (0)
  385. #define STATS_INC_FREEMISS(x) do { } while (0)
  386. #endif
  387. #if DEBUG
  388. /*
  389. * memory layout of objects:
  390. * 0 : objp
  391. * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
  392. * the end of an object is aligned with the end of the real
  393. * allocation. Catches writes behind the end of the allocation.
  394. * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
  395. * redzone word.
  396. * cachep->obj_offset: The real object.
  397. * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
  398. * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
  399. * [BYTES_PER_WORD long]
  400. */
  401. static int obj_offset(struct kmem_cache *cachep)
  402. {
  403. return cachep->obj_offset;
  404. }
  405. static int obj_size(struct kmem_cache *cachep)
  406. {
  407. return cachep->obj_size;
  408. }
  409. static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
  410. {
  411. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  412. return (unsigned long long*) (objp + obj_offset(cachep) -
  413. sizeof(unsigned long long));
  414. }
  415. static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
  416. {
  417. BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
  418. if (cachep->flags & SLAB_STORE_USER)
  419. return (unsigned long long *)(objp + cachep->buffer_size -
  420. sizeof(unsigned long long) -
  421. REDZONE_ALIGN);
  422. return (unsigned long long *) (objp + cachep->buffer_size -
  423. sizeof(unsigned long long));
  424. }
  425. static void **dbg_userword(struct kmem_cache *cachep, void *objp)
  426. {
  427. BUG_ON(!(cachep->flags & SLAB_STORE_USER));
  428. return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
  429. }
  430. #else
  431. #define obj_offset(x) 0
  432. #define obj_size(cachep) (cachep->buffer_size)
  433. #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
  434. #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
  435. #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
  436. #endif
  437. #ifdef CONFIG_TRACING
  438. size_t slab_buffer_size(struct kmem_cache *cachep)
  439. {
  440. return cachep->buffer_size;
  441. }
  442. EXPORT_SYMBOL(slab_buffer_size);
  443. #endif
  444. /*
  445. * Do not go above this order unless 0 objects fit into the slab or
  446. * overridden on the command line.
  447. */
  448. #define SLAB_MAX_ORDER_HI 1
  449. #define SLAB_MAX_ORDER_LO 0
  450. static int slab_max_order = SLAB_MAX_ORDER_LO;
  451. static bool slab_max_order_set __initdata;
  452. static inline struct kmem_cache *page_get_cache(struct page *page)
  453. {
  454. page = compound_head(page);
  455. BUG_ON(!PageSlab(page));
  456. return page->slab_cache;
  457. }
  458. static inline struct kmem_cache *virt_to_cache(const void *obj)
  459. {
  460. struct page *page = virt_to_head_page(obj);
  461. return page->slab_cache;
  462. }
  463. static inline struct slab *virt_to_slab(const void *obj)
  464. {
  465. struct page *page = virt_to_head_page(obj);
  466. VM_BUG_ON(!PageSlab(page));
  467. return page->slab_page;
  468. }
  469. static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
  470. unsigned int idx)
  471. {
  472. return slab->s_mem + cache->buffer_size * idx;
  473. }
  474. /*
  475. * We want to avoid an expensive divide : (offset / cache->buffer_size)
  476. * Using the fact that buffer_size is a constant for a particular cache,
  477. * we can replace (offset / cache->buffer_size) by
  478. * reciprocal_divide(offset, cache->reciprocal_buffer_size)
  479. */
  480. static inline unsigned int obj_to_index(const struct kmem_cache *cache,
  481. const struct slab *slab, void *obj)
  482. {
  483. u32 offset = (obj - slab->s_mem);
  484. return reciprocal_divide(offset, cache->reciprocal_buffer_size);
  485. }
  486. /*
  487. * These are the default caches for kmalloc. Custom caches can have other sizes.
  488. */
  489. struct cache_sizes malloc_sizes[] = {
  490. #define CACHE(x) { .cs_size = (x) },
  491. #include <linux/kmalloc_sizes.h>
  492. CACHE(ULONG_MAX)
  493. #undef CACHE
  494. };
  495. EXPORT_SYMBOL(malloc_sizes);
  496. /* Must match cache_sizes above. Out of line to keep cache footprint low. */
  497. struct cache_names {
  498. char *name;
  499. char *name_dma;
  500. };
  501. static struct cache_names __initdata cache_names[] = {
  502. #define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
  503. #include <linux/kmalloc_sizes.h>
  504. {NULL,}
  505. #undef CACHE
  506. };
  507. static struct arraycache_init initarray_cache __initdata =
  508. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  509. static struct arraycache_init initarray_generic =
  510. { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
  511. /* internal cache of cache description objs */
  512. static struct kmem_list3 *cache_cache_nodelists[MAX_NUMNODES];
  513. static struct kmem_cache cache_cache = {
  514. .nodelists = cache_cache_nodelists,
  515. .batchcount = 1,
  516. .limit = BOOT_CPUCACHE_ENTRIES,
  517. .shared = 1,
  518. .buffer_size = sizeof(struct kmem_cache),
  519. .name = "kmem_cache",
  520. };
  521. #define BAD_ALIEN_MAGIC 0x01020304ul
  522. /*
  523. * chicken and egg problem: delay the per-cpu array allocation
  524. * until the general caches are up.
  525. */
  526. static enum {
  527. NONE,
  528. PARTIAL_AC,
  529. PARTIAL_L3,
  530. EARLY,
  531. LATE,
  532. FULL
  533. } g_cpucache_up;
  534. /*
  535. * used by boot code to determine if it can use slab based allocator
  536. */
  537. int slab_is_available(void)
  538. {
  539. return g_cpucache_up >= EARLY;
  540. }
  541. #ifdef CONFIG_LOCKDEP
  542. /*
  543. * Slab sometimes uses the kmalloc slabs to store the slab headers
  544. * for other slabs "off slab".
  545. * The locking for this is tricky in that it nests within the locks
  546. * of all other slabs in a few places; to deal with this special
  547. * locking we put on-slab caches into a separate lock-class.
  548. *
  549. * We set lock class for alien array caches which are up during init.
  550. * The lock annotation will be lost if all cpus of a node goes down and
  551. * then comes back up during hotplug
  552. */
  553. static struct lock_class_key on_slab_l3_key;
  554. static struct lock_class_key on_slab_alc_key;
  555. static struct lock_class_key debugobj_l3_key;
  556. static struct lock_class_key debugobj_alc_key;
  557. static void slab_set_lock_classes(struct kmem_cache *cachep,
  558. struct lock_class_key *l3_key, struct lock_class_key *alc_key,
  559. int q)
  560. {
  561. struct array_cache **alc;
  562. struct kmem_list3 *l3;
  563. int r;
  564. l3 = cachep->nodelists[q];
  565. if (!l3)
  566. return;
  567. lockdep_set_class(&l3->list_lock, l3_key);
  568. alc = l3->alien;
  569. /*
  570. * FIXME: This check for BAD_ALIEN_MAGIC
  571. * should go away when common slab code is taught to
  572. * work even without alien caches.
  573. * Currently, non NUMA code returns BAD_ALIEN_MAGIC
  574. * for alloc_alien_cache,
  575. */
  576. if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
  577. return;
  578. for_each_node(r) {
  579. if (alc[r])
  580. lockdep_set_class(&alc[r]->lock, alc_key);
  581. }
  582. }
  583. static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
  584. {
  585. slab_set_lock_classes(cachep, &debugobj_l3_key, &debugobj_alc_key, node);
  586. }
  587. static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
  588. {
  589. int node;
  590. for_each_online_node(node)
  591. slab_set_debugobj_lock_classes_node(cachep, node);
  592. }
  593. static void init_node_lock_keys(int q)
  594. {
  595. struct cache_sizes *s = malloc_sizes;
  596. if (g_cpucache_up < LATE)
  597. return;
  598. for (s = malloc_sizes; s->cs_size != ULONG_MAX; s++) {
  599. struct kmem_list3 *l3;
  600. l3 = s->cs_cachep->nodelists[q];
  601. if (!l3 || OFF_SLAB(s->cs_cachep))
  602. continue;
  603. slab_set_lock_classes(s->cs_cachep, &on_slab_l3_key,
  604. &on_slab_alc_key, q);
  605. }
  606. }
  607. static inline void init_lock_keys(void)
  608. {
  609. int node;
  610. for_each_node(node)
  611. init_node_lock_keys(node);
  612. }
  613. #else
  614. static void init_node_lock_keys(int q)
  615. {
  616. }
  617. static inline void init_lock_keys(void)
  618. {
  619. }
  620. static void slab_set_debugobj_lock_classes_node(struct kmem_cache *cachep, int node)
  621. {
  622. }
  623. static void slab_set_debugobj_lock_classes(struct kmem_cache *cachep)
  624. {
  625. }
  626. #endif
  627. /*
  628. * Guard access to the cache-chain.
  629. */
  630. static DEFINE_MUTEX(cache_chain_mutex);
  631. static struct list_head cache_chain;
  632. static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
  633. static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
  634. {
  635. return cachep->array[smp_processor_id()];
  636. }
  637. static inline struct kmem_cache *__find_general_cachep(size_t size,
  638. gfp_t gfpflags)
  639. {
  640. struct cache_sizes *csizep = malloc_sizes;
  641. #if DEBUG
  642. /* This happens if someone tries to call
  643. * kmem_cache_create(), or __kmalloc(), before
  644. * the generic caches are initialized.
  645. */
  646. BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
  647. #endif
  648. if (!size)
  649. return ZERO_SIZE_PTR;
  650. while (size > csizep->cs_size)
  651. csizep++;
  652. /*
  653. * Really subtle: The last entry with cs->cs_size==ULONG_MAX
  654. * has cs_{dma,}cachep==NULL. Thus no special case
  655. * for large kmalloc calls required.
  656. */
  657. #ifdef CONFIG_ZONE_DMA
  658. if (unlikely(gfpflags & GFP_DMA))
  659. return csizep->cs_dmacachep;
  660. #endif
  661. return csizep->cs_cachep;
  662. }
  663. static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
  664. {
  665. return __find_general_cachep(size, gfpflags);
  666. }
  667. static size_t slab_mgmt_size(size_t nr_objs, size_t align)
  668. {
  669. return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
  670. }
  671. /*
  672. * Calculate the number of objects and left-over bytes for a given buffer size.
  673. */
  674. static void cache_estimate(unsigned long gfporder, size_t buffer_size,
  675. size_t align, int flags, size_t *left_over,
  676. unsigned int *num)
  677. {
  678. int nr_objs;
  679. size_t mgmt_size;
  680. size_t slab_size = PAGE_SIZE << gfporder;
  681. /*
  682. * The slab management structure can be either off the slab or
  683. * on it. For the latter case, the memory allocated for a
  684. * slab is used for:
  685. *
  686. * - The struct slab
  687. * - One kmem_bufctl_t for each object
  688. * - Padding to respect alignment of @align
  689. * - @buffer_size bytes for each object
  690. *
  691. * If the slab management structure is off the slab, then the
  692. * alignment will already be calculated into the size. Because
  693. * the slabs are all pages aligned, the objects will be at the
  694. * correct alignment when allocated.
  695. */
  696. if (flags & CFLGS_OFF_SLAB) {
  697. mgmt_size = 0;
  698. nr_objs = slab_size / buffer_size;
  699. if (nr_objs > SLAB_LIMIT)
  700. nr_objs = SLAB_LIMIT;
  701. } else {
  702. /*
  703. * Ignore padding for the initial guess. The padding
  704. * is at most @align-1 bytes, and @buffer_size is at
  705. * least @align. In the worst case, this result will
  706. * be one greater than the number of objects that fit
  707. * into the memory allocation when taking the padding
  708. * into account.
  709. */
  710. nr_objs = (slab_size - sizeof(struct slab)) /
  711. (buffer_size + sizeof(kmem_bufctl_t));
  712. /*
  713. * This calculated number will be either the right
  714. * amount, or one greater than what we want.
  715. */
  716. if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
  717. > slab_size)
  718. nr_objs--;
  719. if (nr_objs > SLAB_LIMIT)
  720. nr_objs = SLAB_LIMIT;
  721. mgmt_size = slab_mgmt_size(nr_objs, align);
  722. }
  723. *num = nr_objs;
  724. *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
  725. }
  726. #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
  727. static void __slab_error(const char *function, struct kmem_cache *cachep,
  728. char *msg)
  729. {
  730. printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
  731. function, cachep->name, msg);
  732. dump_stack();
  733. }
  734. /*
  735. * By default on NUMA we use alien caches to stage the freeing of
  736. * objects allocated from other nodes. This causes massive memory
  737. * inefficiencies when using fake NUMA setup to split memory into a
  738. * large number of small nodes, so it can be disabled on the command
  739. * line
  740. */
  741. static int use_alien_caches __read_mostly = 1;
  742. static int __init noaliencache_setup(char *s)
  743. {
  744. use_alien_caches = 0;
  745. return 1;
  746. }
  747. __setup("noaliencache", noaliencache_setup);
  748. static int __init slab_max_order_setup(char *str)
  749. {
  750. get_option(&str, &slab_max_order);
  751. slab_max_order = slab_max_order < 0 ? 0 :
  752. min(slab_max_order, MAX_ORDER - 1);
  753. slab_max_order_set = true;
  754. return 1;
  755. }
  756. __setup("slab_max_order=", slab_max_order_setup);
  757. #ifdef CONFIG_NUMA
  758. /*
  759. * Special reaping functions for NUMA systems called from cache_reap().
  760. * These take care of doing round robin flushing of alien caches (containing
  761. * objects freed on different nodes from which they were allocated) and the
  762. * flushing of remote pcps by calling drain_node_pages.
  763. */
  764. static DEFINE_PER_CPU(unsigned long, slab_reap_node);
  765. static void init_reap_node(int cpu)
  766. {
  767. int node;
  768. node = next_node(cpu_to_mem(cpu), node_online_map);
  769. if (node == MAX_NUMNODES)
  770. node = first_node(node_online_map);
  771. per_cpu(slab_reap_node, cpu) = node;
  772. }
  773. static void next_reap_node(void)
  774. {
  775. int node = __this_cpu_read(slab_reap_node);
  776. node = next_node(node, node_online_map);
  777. if (unlikely(node >= MAX_NUMNODES))
  778. node = first_node(node_online_map);
  779. __this_cpu_write(slab_reap_node, node);
  780. }
  781. #else
  782. #define init_reap_node(cpu) do { } while (0)
  783. #define next_reap_node(void) do { } while (0)
  784. #endif
  785. /*
  786. * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
  787. * via the workqueue/eventd.
  788. * Add the CPU number into the expiration time to minimize the possibility of
  789. * the CPUs getting into lockstep and contending for the global cache chain
  790. * lock.
  791. */
  792. static void __cpuinit start_cpu_timer(int cpu)
  793. {
  794. struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
  795. /*
  796. * When this gets called from do_initcalls via cpucache_init(),
  797. * init_workqueues() has already run, so keventd will be setup
  798. * at that time.
  799. */
  800. if (keventd_up() && reap_work->work.func == NULL) {
  801. init_reap_node(cpu);
  802. INIT_DELAYED_WORK_DEFERRABLE(reap_work, cache_reap);
  803. schedule_delayed_work_on(cpu, reap_work,
  804. __round_jiffies_relative(HZ, cpu));
  805. }
  806. }
  807. static struct array_cache *alloc_arraycache(int node, int entries,
  808. int batchcount, gfp_t gfp)
  809. {
  810. int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
  811. struct array_cache *nc = NULL;
  812. nc = kmalloc_node(memsize, gfp, node);
  813. /*
  814. * The array_cache structures contain pointers to free object.
  815. * However, when such objects are allocated or transferred to another
  816. * cache the pointers are not cleared and they could be counted as
  817. * valid references during a kmemleak scan. Therefore, kmemleak must
  818. * not scan such objects.
  819. */
  820. kmemleak_no_scan(nc);
  821. if (nc) {
  822. nc->avail = 0;
  823. nc->limit = entries;
  824. nc->batchcount = batchcount;
  825. nc->touched = 0;
  826. spin_lock_init(&nc->lock);
  827. }
  828. return nc;
  829. }
  830. /*
  831. * Transfer objects in one arraycache to another.
  832. * Locking must be handled by the caller.
  833. *
  834. * Return the number of entries transferred.
  835. */
  836. static int transfer_objects(struct array_cache *to,
  837. struct array_cache *from, unsigned int max)
  838. {
  839. /* Figure out how many entries to transfer */
  840. int nr = min3(from->avail, max, to->limit - to->avail);
  841. if (!nr)
  842. return 0;
  843. memcpy(to->entry + to->avail, from->entry + from->avail -nr,
  844. sizeof(void *) *nr);
  845. from->avail -= nr;
  846. to->avail += nr;
  847. return nr;
  848. }
  849. #ifndef CONFIG_NUMA
  850. #define drain_alien_cache(cachep, alien) do { } while (0)
  851. #define reap_alien(cachep, l3) do { } while (0)
  852. static inline struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
  853. {
  854. return (struct array_cache **)BAD_ALIEN_MAGIC;
  855. }
  856. static inline void free_alien_cache(struct array_cache **ac_ptr)
  857. {
  858. }
  859. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  860. {
  861. return 0;
  862. }
  863. static inline void *alternate_node_alloc(struct kmem_cache *cachep,
  864. gfp_t flags)
  865. {
  866. return NULL;
  867. }
  868. static inline void *____cache_alloc_node(struct kmem_cache *cachep,
  869. gfp_t flags, int nodeid)
  870. {
  871. return NULL;
  872. }
  873. #else /* CONFIG_NUMA */
  874. static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
  875. static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
  876. static struct array_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
  877. {
  878. struct array_cache **ac_ptr;
  879. int memsize = sizeof(void *) * nr_node_ids;
  880. int i;
  881. if (limit > 1)
  882. limit = 12;
  883. ac_ptr = kzalloc_node(memsize, gfp, node);
  884. if (ac_ptr) {
  885. for_each_node(i) {
  886. if (i == node || !node_online(i))
  887. continue;
  888. ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d, gfp);
  889. if (!ac_ptr[i]) {
  890. for (i--; i >= 0; i--)
  891. kfree(ac_ptr[i]);
  892. kfree(ac_ptr);
  893. return NULL;
  894. }
  895. }
  896. }
  897. return ac_ptr;
  898. }
  899. static void free_alien_cache(struct array_cache **ac_ptr)
  900. {
  901. int i;
  902. if (!ac_ptr)
  903. return;
  904. for_each_node(i)
  905. kfree(ac_ptr[i]);
  906. kfree(ac_ptr);
  907. }
  908. static void __drain_alien_cache(struct kmem_cache *cachep,
  909. struct array_cache *ac, int node)
  910. {
  911. struct kmem_list3 *rl3 = cachep->nodelists[node];
  912. if (ac->avail) {
  913. spin_lock(&rl3->list_lock);
  914. /*
  915. * Stuff objects into the remote nodes shared array first.
  916. * That way we could avoid the overhead of putting the objects
  917. * into the free lists and getting them back later.
  918. */
  919. if (rl3->shared)
  920. transfer_objects(rl3->shared, ac, ac->limit);
  921. free_block(cachep, ac->entry, ac->avail, node);
  922. ac->avail = 0;
  923. spin_unlock(&rl3->list_lock);
  924. }
  925. }
  926. /*
  927. * Called from cache_reap() to regularly drain alien caches round robin.
  928. */
  929. static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
  930. {
  931. int node = __this_cpu_read(slab_reap_node);
  932. if (l3->alien) {
  933. struct array_cache *ac = l3->alien[node];
  934. if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
  935. __drain_alien_cache(cachep, ac, node);
  936. spin_unlock_irq(&ac->lock);
  937. }
  938. }
  939. }
  940. static void drain_alien_cache(struct kmem_cache *cachep,
  941. struct array_cache **alien)
  942. {
  943. int i = 0;
  944. struct array_cache *ac;
  945. unsigned long flags;
  946. for_each_online_node(i) {
  947. ac = alien[i];
  948. if (ac) {
  949. spin_lock_irqsave(&ac->lock, flags);
  950. __drain_alien_cache(cachep, ac, i);
  951. spin_unlock_irqrestore(&ac->lock, flags);
  952. }
  953. }
  954. }
  955. static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
  956. {
  957. struct slab *slabp = virt_to_slab(objp);
  958. int nodeid = slabp->nodeid;
  959. struct kmem_list3 *l3;
  960. struct array_cache *alien = NULL;
  961. int node;
  962. node = numa_mem_id();
  963. /*
  964. * Make sure we are not freeing a object from another node to the array
  965. * cache on this cpu.
  966. */
  967. if (likely(slabp->nodeid == node))
  968. return 0;
  969. l3 = cachep->nodelists[node];
  970. STATS_INC_NODEFREES(cachep);
  971. if (l3->alien && l3->alien[nodeid]) {
  972. alien = l3->alien[nodeid];
  973. spin_lock(&alien->lock);
  974. if (unlikely(alien->avail == alien->limit)) {
  975. STATS_INC_ACOVERFLOW(cachep);
  976. __drain_alien_cache(cachep, alien, nodeid);
  977. }
  978. alien->entry[alien->avail++] = objp;
  979. spin_unlock(&alien->lock);
  980. } else {
  981. spin_lock(&(cachep->nodelists[nodeid])->list_lock);
  982. free_block(cachep, &objp, 1, nodeid);
  983. spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
  984. }
  985. return 1;
  986. }
  987. #endif
  988. /*
  989. * Allocates and initializes nodelists for a node on each slab cache, used for
  990. * either memory or cpu hotplug. If memory is being hot-added, the kmem_list3
  991. * will be allocated off-node since memory is not yet online for the new node.
  992. * When hotplugging memory or a cpu, existing nodelists are not replaced if
  993. * already in use.
  994. *
  995. * Must hold cache_chain_mutex.
  996. */
  997. static int init_cache_nodelists_node(int node)
  998. {
  999. struct kmem_cache *cachep;
  1000. struct kmem_list3 *l3;
  1001. const int memsize = sizeof(struct kmem_list3);
  1002. list_for_each_entry(cachep, &cache_chain, next) {
  1003. /*
  1004. * Set up the size64 kmemlist for cpu before we can
  1005. * begin anything. Make sure some other cpu on this
  1006. * node has not already allocated this
  1007. */
  1008. if (!cachep->nodelists[node]) {
  1009. l3 = kmalloc_node(memsize, GFP_KERNEL, node);
  1010. if (!l3)
  1011. return -ENOMEM;
  1012. kmem_list3_init(l3);
  1013. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  1014. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1015. /*
  1016. * The l3s don't come and go as CPUs come and
  1017. * go. cache_chain_mutex is sufficient
  1018. * protection here.
  1019. */
  1020. cachep->nodelists[node] = l3;
  1021. }
  1022. spin_lock_irq(&cachep->nodelists[node]->list_lock);
  1023. cachep->nodelists[node]->free_limit =
  1024. (1 + nr_cpus_node(node)) *
  1025. cachep->batchcount + cachep->num;
  1026. spin_unlock_irq(&cachep->nodelists[node]->list_lock);
  1027. }
  1028. return 0;
  1029. }
  1030. static void __cpuinit cpuup_canceled(long cpu)
  1031. {
  1032. struct kmem_cache *cachep;
  1033. struct kmem_list3 *l3 = NULL;
  1034. int node = cpu_to_mem(cpu);
  1035. const struct cpumask *mask = cpumask_of_node(node);
  1036. list_for_each_entry(cachep, &cache_chain, next) {
  1037. struct array_cache *nc;
  1038. struct array_cache *shared;
  1039. struct array_cache **alien;
  1040. /* cpu is dead; no one can alloc from it. */
  1041. nc = cachep->array[cpu];
  1042. cachep->array[cpu] = NULL;
  1043. l3 = cachep->nodelists[node];
  1044. if (!l3)
  1045. goto free_array_cache;
  1046. spin_lock_irq(&l3->list_lock);
  1047. /* Free limit for this kmem_list3 */
  1048. l3->free_limit -= cachep->batchcount;
  1049. if (nc)
  1050. free_block(cachep, nc->entry, nc->avail, node);
  1051. if (!cpumask_empty(mask)) {
  1052. spin_unlock_irq(&l3->list_lock);
  1053. goto free_array_cache;
  1054. }
  1055. shared = l3->shared;
  1056. if (shared) {
  1057. free_block(cachep, shared->entry,
  1058. shared->avail, node);
  1059. l3->shared = NULL;
  1060. }
  1061. alien = l3->alien;
  1062. l3->alien = NULL;
  1063. spin_unlock_irq(&l3->list_lock);
  1064. kfree(shared);
  1065. if (alien) {
  1066. drain_alien_cache(cachep, alien);
  1067. free_alien_cache(alien);
  1068. }
  1069. free_array_cache:
  1070. kfree(nc);
  1071. }
  1072. /*
  1073. * In the previous loop, all the objects were freed to
  1074. * the respective cache's slabs, now we can go ahead and
  1075. * shrink each nodelist to its limit.
  1076. */
  1077. list_for_each_entry(cachep, &cache_chain, next) {
  1078. l3 = cachep->nodelists[node];
  1079. if (!l3)
  1080. continue;
  1081. drain_freelist(cachep, l3, l3->free_objects);
  1082. }
  1083. }
  1084. static int __cpuinit cpuup_prepare(long cpu)
  1085. {
  1086. struct kmem_cache *cachep;
  1087. struct kmem_list3 *l3 = NULL;
  1088. int node = cpu_to_mem(cpu);
  1089. int err;
  1090. /*
  1091. * We need to do this right in the beginning since
  1092. * alloc_arraycache's are going to use this list.
  1093. * kmalloc_node allows us to add the slab to the right
  1094. * kmem_list3 and not this cpu's kmem_list3
  1095. */
  1096. err = init_cache_nodelists_node(node);
  1097. if (err < 0)
  1098. goto bad;
  1099. /*
  1100. * Now we can go ahead with allocating the shared arrays and
  1101. * array caches
  1102. */
  1103. list_for_each_entry(cachep, &cache_chain, next) {
  1104. struct array_cache *nc;
  1105. struct array_cache *shared = NULL;
  1106. struct array_cache **alien = NULL;
  1107. nc = alloc_arraycache(node, cachep->limit,
  1108. cachep->batchcount, GFP_KERNEL);
  1109. if (!nc)
  1110. goto bad;
  1111. if (cachep->shared) {
  1112. shared = alloc_arraycache(node,
  1113. cachep->shared * cachep->batchcount,
  1114. 0xbaadf00d, GFP_KERNEL);
  1115. if (!shared) {
  1116. kfree(nc);
  1117. goto bad;
  1118. }
  1119. }
  1120. if (use_alien_caches) {
  1121. alien = alloc_alien_cache(node, cachep->limit, GFP_KERNEL);
  1122. if (!alien) {
  1123. kfree(shared);
  1124. kfree(nc);
  1125. goto bad;
  1126. }
  1127. }
  1128. cachep->array[cpu] = nc;
  1129. l3 = cachep->nodelists[node];
  1130. BUG_ON(!l3);
  1131. spin_lock_irq(&l3->list_lock);
  1132. if (!l3->shared) {
  1133. /*
  1134. * We are serialised from CPU_DEAD or
  1135. * CPU_UP_CANCELLED by the cpucontrol lock
  1136. */
  1137. l3->shared = shared;
  1138. shared = NULL;
  1139. }
  1140. #ifdef CONFIG_NUMA
  1141. if (!l3->alien) {
  1142. l3->alien = alien;
  1143. alien = NULL;
  1144. }
  1145. #endif
  1146. spin_unlock_irq(&l3->list_lock);
  1147. kfree(shared);
  1148. free_alien_cache(alien);
  1149. if (cachep->flags & SLAB_DEBUG_OBJECTS)
  1150. slab_set_debugobj_lock_classes_node(cachep, node);
  1151. }
  1152. init_node_lock_keys(node);
  1153. return 0;
  1154. bad:
  1155. cpuup_canceled(cpu);
  1156. return -ENOMEM;
  1157. }
  1158. static int __cpuinit cpuup_callback(struct notifier_block *nfb,
  1159. unsigned long action, void *hcpu)
  1160. {
  1161. long cpu = (long)hcpu;
  1162. int err = 0;
  1163. switch (action) {
  1164. case CPU_UP_PREPARE:
  1165. case CPU_UP_PREPARE_FROZEN:
  1166. mutex_lock(&cache_chain_mutex);
  1167. err = cpuup_prepare(cpu);
  1168. mutex_unlock(&cache_chain_mutex);
  1169. break;
  1170. case CPU_ONLINE:
  1171. case CPU_ONLINE_FROZEN:
  1172. start_cpu_timer(cpu);
  1173. break;
  1174. #ifdef CONFIG_HOTPLUG_CPU
  1175. case CPU_DOWN_PREPARE:
  1176. case CPU_DOWN_PREPARE_FROZEN:
  1177. /*
  1178. * Shutdown cache reaper. Note that the cache_chain_mutex is
  1179. * held so that if cache_reap() is invoked it cannot do
  1180. * anything expensive but will only modify reap_work
  1181. * and reschedule the timer.
  1182. */
  1183. cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
  1184. /* Now the cache_reaper is guaranteed to be not running. */
  1185. per_cpu(slab_reap_work, cpu).work.func = NULL;
  1186. break;
  1187. case CPU_DOWN_FAILED:
  1188. case CPU_DOWN_FAILED_FROZEN:
  1189. start_cpu_timer(cpu);
  1190. break;
  1191. case CPU_DEAD:
  1192. case CPU_DEAD_FROZEN:
  1193. /*
  1194. * Even if all the cpus of a node are down, we don't free the
  1195. * kmem_list3 of any cache. This to avoid a race between
  1196. * cpu_down, and a kmalloc allocation from another cpu for
  1197. * memory from the node of the cpu going down. The list3
  1198. * structure is usually allocated from kmem_cache_create() and
  1199. * gets destroyed at kmem_cache_destroy().
  1200. */
  1201. /* fall through */
  1202. #endif
  1203. case CPU_UP_CANCELED:
  1204. case CPU_UP_CANCELED_FROZEN:
  1205. mutex_lock(&cache_chain_mutex);
  1206. cpuup_canceled(cpu);
  1207. mutex_unlock(&cache_chain_mutex);
  1208. break;
  1209. }
  1210. return notifier_from_errno(err);
  1211. }
  1212. static struct notifier_block __cpuinitdata cpucache_notifier = {
  1213. &cpuup_callback, NULL, 0
  1214. };
  1215. #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
  1216. /*
  1217. * Drains freelist for a node on each slab cache, used for memory hot-remove.
  1218. * Returns -EBUSY if all objects cannot be drained so that the node is not
  1219. * removed.
  1220. *
  1221. * Must hold cache_chain_mutex.
  1222. */
  1223. static int __meminit drain_cache_nodelists_node(int node)
  1224. {
  1225. struct kmem_cache *cachep;
  1226. int ret = 0;
  1227. list_for_each_entry(cachep, &cache_chain, next) {
  1228. struct kmem_list3 *l3;
  1229. l3 = cachep->nodelists[node];
  1230. if (!l3)
  1231. continue;
  1232. drain_freelist(cachep, l3, l3->free_objects);
  1233. if (!list_empty(&l3->slabs_full) ||
  1234. !list_empty(&l3->slabs_partial)) {
  1235. ret = -EBUSY;
  1236. break;
  1237. }
  1238. }
  1239. return ret;
  1240. }
  1241. static int __meminit slab_memory_callback(struct notifier_block *self,
  1242. unsigned long action, void *arg)
  1243. {
  1244. struct memory_notify *mnb = arg;
  1245. int ret = 0;
  1246. int nid;
  1247. nid = mnb->status_change_nid;
  1248. if (nid < 0)
  1249. goto out;
  1250. switch (action) {
  1251. case MEM_GOING_ONLINE:
  1252. mutex_lock(&cache_chain_mutex);
  1253. ret = init_cache_nodelists_node(nid);
  1254. mutex_unlock(&cache_chain_mutex);
  1255. break;
  1256. case MEM_GOING_OFFLINE:
  1257. mutex_lock(&cache_chain_mutex);
  1258. ret = drain_cache_nodelists_node(nid);
  1259. mutex_unlock(&cache_chain_mutex);
  1260. break;
  1261. case MEM_ONLINE:
  1262. case MEM_OFFLINE:
  1263. case MEM_CANCEL_ONLINE:
  1264. case MEM_CANCEL_OFFLINE:
  1265. break;
  1266. }
  1267. out:
  1268. return notifier_from_errno(ret);
  1269. }
  1270. #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
  1271. /*
  1272. * swap the static kmem_list3 with kmalloced memory
  1273. */
  1274. static void __init init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
  1275. int nodeid)
  1276. {
  1277. struct kmem_list3 *ptr;
  1278. ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_NOWAIT, nodeid);
  1279. BUG_ON(!ptr);
  1280. memcpy(ptr, list, sizeof(struct kmem_list3));
  1281. /*
  1282. * Do not assume that spinlocks can be initialized via memcpy:
  1283. */
  1284. spin_lock_init(&ptr->list_lock);
  1285. MAKE_ALL_LISTS(cachep, ptr, nodeid);
  1286. cachep->nodelists[nodeid] = ptr;
  1287. }
  1288. /*
  1289. * For setting up all the kmem_list3s for cache whose buffer_size is same as
  1290. * size of kmem_list3.
  1291. */
  1292. static void __init set_up_list3s(struct kmem_cache *cachep, int index)
  1293. {
  1294. int node;
  1295. for_each_online_node(node) {
  1296. cachep->nodelists[node] = &initkmem_list3[index + node];
  1297. cachep->nodelists[node]->next_reap = jiffies +
  1298. REAPTIMEOUT_LIST3 +
  1299. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1300. }
  1301. }
  1302. /*
  1303. * Initialisation. Called after the page allocator have been initialised and
  1304. * before smp_init().
  1305. */
  1306. void __init kmem_cache_init(void)
  1307. {
  1308. size_t left_over;
  1309. struct cache_sizes *sizes;
  1310. struct cache_names *names;
  1311. int i;
  1312. int order;
  1313. int node;
  1314. if (num_possible_nodes() == 1)
  1315. use_alien_caches = 0;
  1316. for (i = 0; i < NUM_INIT_LISTS; i++) {
  1317. kmem_list3_init(&initkmem_list3[i]);
  1318. if (i < MAX_NUMNODES)
  1319. cache_cache.nodelists[i] = NULL;
  1320. }
  1321. set_up_list3s(&cache_cache, CACHE_CACHE);
  1322. /*
  1323. * Fragmentation resistance on low memory - only use bigger
  1324. * page orders on machines with more than 32MB of memory if
  1325. * not overridden on the command line.
  1326. */
  1327. if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
  1328. slab_max_order = SLAB_MAX_ORDER_HI;
  1329. /* Bootstrap is tricky, because several objects are allocated
  1330. * from caches that do not exist yet:
  1331. * 1) initialize the cache_cache cache: it contains the struct
  1332. * kmem_cache structures of all caches, except cache_cache itself:
  1333. * cache_cache is statically allocated.
  1334. * Initially an __init data area is used for the head array and the
  1335. * kmem_list3 structures, it's replaced with a kmalloc allocated
  1336. * array at the end of the bootstrap.
  1337. * 2) Create the first kmalloc cache.
  1338. * The struct kmem_cache for the new cache is allocated normally.
  1339. * An __init data area is used for the head array.
  1340. * 3) Create the remaining kmalloc caches, with minimally sized
  1341. * head arrays.
  1342. * 4) Replace the __init data head arrays for cache_cache and the first
  1343. * kmalloc cache with kmalloc allocated arrays.
  1344. * 5) Replace the __init data for kmem_list3 for cache_cache and
  1345. * the other cache's with kmalloc allocated memory.
  1346. * 6) Resize the head arrays of the kmalloc caches to their final sizes.
  1347. */
  1348. node = numa_mem_id();
  1349. /* 1) create the cache_cache */
  1350. INIT_LIST_HEAD(&cache_chain);
  1351. list_add(&cache_cache.next, &cache_chain);
  1352. cache_cache.colour_off = cache_line_size();
  1353. cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
  1354. cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE + node];
  1355. /*
  1356. * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
  1357. */
  1358. cache_cache.buffer_size = offsetof(struct kmem_cache, array[nr_cpu_ids]) +
  1359. nr_node_ids * sizeof(struct kmem_list3 *);
  1360. #if DEBUG
  1361. cache_cache.obj_size = cache_cache.buffer_size;
  1362. #endif
  1363. cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
  1364. cache_line_size());
  1365. cache_cache.reciprocal_buffer_size =
  1366. reciprocal_value(cache_cache.buffer_size);
  1367. for (order = 0; order < MAX_ORDER; order++) {
  1368. cache_estimate(order, cache_cache.buffer_size,
  1369. cache_line_size(), 0, &left_over, &cache_cache.num);
  1370. if (cache_cache.num)
  1371. break;
  1372. }
  1373. BUG_ON(!cache_cache.num);
  1374. cache_cache.gfporder = order;
  1375. cache_cache.colour = left_over / cache_cache.colour_off;
  1376. cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
  1377. sizeof(struct slab), cache_line_size());
  1378. /* 2+3) create the kmalloc caches */
  1379. sizes = malloc_sizes;
  1380. names = cache_names;
  1381. /*
  1382. * Initialize the caches that provide memory for the array cache and the
  1383. * kmem_list3 structures first. Without this, further allocations will
  1384. * bug.
  1385. */
  1386. sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
  1387. sizes[INDEX_AC].cs_size,
  1388. ARCH_KMALLOC_MINALIGN,
  1389. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1390. NULL);
  1391. if (INDEX_AC != INDEX_L3) {
  1392. sizes[INDEX_L3].cs_cachep =
  1393. kmem_cache_create(names[INDEX_L3].name,
  1394. sizes[INDEX_L3].cs_size,
  1395. ARCH_KMALLOC_MINALIGN,
  1396. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1397. NULL);
  1398. }
  1399. slab_early_init = 0;
  1400. while (sizes->cs_size != ULONG_MAX) {
  1401. /*
  1402. * For performance, all the general caches are L1 aligned.
  1403. * This should be particularly beneficial on SMP boxes, as it
  1404. * eliminates "false sharing".
  1405. * Note for systems short on memory removing the alignment will
  1406. * allow tighter packing of the smaller caches.
  1407. */
  1408. if (!sizes->cs_cachep) {
  1409. sizes->cs_cachep = kmem_cache_create(names->name,
  1410. sizes->cs_size,
  1411. ARCH_KMALLOC_MINALIGN,
  1412. ARCH_KMALLOC_FLAGS|SLAB_PANIC,
  1413. NULL);
  1414. }
  1415. #ifdef CONFIG_ZONE_DMA
  1416. sizes->cs_dmacachep = kmem_cache_create(
  1417. names->name_dma,
  1418. sizes->cs_size,
  1419. ARCH_KMALLOC_MINALIGN,
  1420. ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
  1421. SLAB_PANIC,
  1422. NULL);
  1423. #endif
  1424. sizes++;
  1425. names++;
  1426. }
  1427. /* 4) Replace the bootstrap head arrays */
  1428. {
  1429. struct array_cache *ptr;
  1430. ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
  1431. BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
  1432. memcpy(ptr, cpu_cache_get(&cache_cache),
  1433. sizeof(struct arraycache_init));
  1434. /*
  1435. * Do not assume that spinlocks can be initialized via memcpy:
  1436. */
  1437. spin_lock_init(&ptr->lock);
  1438. cache_cache.array[smp_processor_id()] = ptr;
  1439. ptr = kmalloc(sizeof(struct arraycache_init), GFP_NOWAIT);
  1440. BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
  1441. != &initarray_generic.cache);
  1442. memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
  1443. sizeof(struct arraycache_init));
  1444. /*
  1445. * Do not assume that spinlocks can be initialized via memcpy:
  1446. */
  1447. spin_lock_init(&ptr->lock);
  1448. malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
  1449. ptr;
  1450. }
  1451. /* 5) Replace the bootstrap kmem_list3's */
  1452. {
  1453. int nid;
  1454. for_each_online_node(nid) {
  1455. init_list(&cache_cache, &initkmem_list3[CACHE_CACHE + nid], nid);
  1456. init_list(malloc_sizes[INDEX_AC].cs_cachep,
  1457. &initkmem_list3[SIZE_AC + nid], nid);
  1458. if (INDEX_AC != INDEX_L3) {
  1459. init_list(malloc_sizes[INDEX_L3].cs_cachep,
  1460. &initkmem_list3[SIZE_L3 + nid], nid);
  1461. }
  1462. }
  1463. }
  1464. g_cpucache_up = EARLY;
  1465. }
  1466. void __init kmem_cache_init_late(void)
  1467. {
  1468. struct kmem_cache *cachep;
  1469. g_cpucache_up = LATE;
  1470. /* Annotate slab for lockdep -- annotate the malloc caches */
  1471. init_lock_keys();
  1472. /* 6) resize the head arrays to their final sizes */
  1473. mutex_lock(&cache_chain_mutex);
  1474. list_for_each_entry(cachep, &cache_chain, next)
  1475. if (enable_cpucache(cachep, GFP_NOWAIT))
  1476. BUG();
  1477. mutex_unlock(&cache_chain_mutex);
  1478. /* Done! */
  1479. g_cpucache_up = FULL;
  1480. /*
  1481. * Register a cpu startup notifier callback that initializes
  1482. * cpu_cache_get for all new cpus
  1483. */
  1484. register_cpu_notifier(&cpucache_notifier);
  1485. #ifdef CONFIG_NUMA
  1486. /*
  1487. * Register a memory hotplug callback that initializes and frees
  1488. * nodelists.
  1489. */
  1490. hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
  1491. #endif
  1492. /*
  1493. * The reap timers are started later, with a module init call: That part
  1494. * of the kernel is not yet operational.
  1495. */
  1496. }
  1497. static int __init cpucache_init(void)
  1498. {
  1499. int cpu;
  1500. /*
  1501. * Register the timers that return unneeded pages to the page allocator
  1502. */
  1503. for_each_online_cpu(cpu)
  1504. start_cpu_timer(cpu);
  1505. return 0;
  1506. }
  1507. __initcall(cpucache_init);
  1508. static noinline void
  1509. slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
  1510. {
  1511. struct kmem_list3 *l3;
  1512. struct slab *slabp;
  1513. unsigned long flags;
  1514. int node;
  1515. printk(KERN_WARNING
  1516. "SLAB: Unable to allocate memory on node %d (gfp=0x%x)\n",
  1517. nodeid, gfpflags);
  1518. printk(KERN_WARNING " cache: %s, object size: %d, order: %d\n",
  1519. cachep->name, cachep->buffer_size, cachep->gfporder);
  1520. for_each_online_node(node) {
  1521. unsigned long active_objs = 0, num_objs = 0, free_objects = 0;
  1522. unsigned long active_slabs = 0, num_slabs = 0;
  1523. l3 = cachep->nodelists[node];
  1524. if (!l3)
  1525. continue;
  1526. spin_lock_irqsave(&l3->list_lock, flags);
  1527. list_for_each_entry(slabp, &l3->slabs_full, list) {
  1528. active_objs += cachep->num;
  1529. active_slabs++;
  1530. }
  1531. list_for_each_entry(slabp, &l3->slabs_partial, list) {
  1532. active_objs += slabp->inuse;
  1533. active_slabs++;
  1534. }
  1535. list_for_each_entry(slabp, &l3->slabs_free, list)
  1536. num_slabs++;
  1537. free_objects += l3->free_objects;
  1538. spin_unlock_irqrestore(&l3->list_lock, flags);
  1539. num_slabs += active_slabs;
  1540. num_objs = num_slabs * cachep->num;
  1541. printk(KERN_WARNING
  1542. " node %d: slabs: %ld/%ld, objs: %ld/%ld, free: %ld\n",
  1543. node, active_slabs, num_slabs, active_objs, num_objs,
  1544. free_objects);
  1545. }
  1546. }
  1547. /*
  1548. * Interface to system's page allocator. No need to hold the cache-lock.
  1549. *
  1550. * If we requested dmaable memory, we will get it. Even if we
  1551. * did not request dmaable memory, we might get it, but that
  1552. * would be relatively rare and ignorable.
  1553. */
  1554. static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  1555. {
  1556. struct page *page;
  1557. int nr_pages;
  1558. int i;
  1559. #ifndef CONFIG_MMU
  1560. /*
  1561. * Nommu uses slab's for process anonymous memory allocations, and thus
  1562. * requires __GFP_COMP to properly refcount higher order allocations
  1563. */
  1564. flags |= __GFP_COMP;
  1565. #endif
  1566. flags |= cachep->gfpflags;
  1567. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1568. flags |= __GFP_RECLAIMABLE;
  1569. page = alloc_pages_exact_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
  1570. if (!page) {
  1571. if (!(flags & __GFP_NOWARN) && printk_ratelimit())
  1572. slab_out_of_memory(cachep, flags, nodeid);
  1573. return NULL;
  1574. }
  1575. nr_pages = (1 << cachep->gfporder);
  1576. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1577. add_zone_page_state(page_zone(page),
  1578. NR_SLAB_RECLAIMABLE, nr_pages);
  1579. else
  1580. add_zone_page_state(page_zone(page),
  1581. NR_SLAB_UNRECLAIMABLE, nr_pages);
  1582. for (i = 0; i < nr_pages; i++)
  1583. __SetPageSlab(page + i);
  1584. if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
  1585. kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
  1586. if (cachep->ctor)
  1587. kmemcheck_mark_uninitialized_pages(page, nr_pages);
  1588. else
  1589. kmemcheck_mark_unallocated_pages(page, nr_pages);
  1590. }
  1591. return page_address(page);
  1592. }
  1593. /*
  1594. * Interface to system's page release.
  1595. */
  1596. static void kmem_freepages(struct kmem_cache *cachep, void *addr)
  1597. {
  1598. unsigned long i = (1 << cachep->gfporder);
  1599. struct page *page = virt_to_page(addr);
  1600. const unsigned long nr_freed = i;
  1601. kmemcheck_free_shadow(page, cachep->gfporder);
  1602. if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
  1603. sub_zone_page_state(page_zone(page),
  1604. NR_SLAB_RECLAIMABLE, nr_freed);
  1605. else
  1606. sub_zone_page_state(page_zone(page),
  1607. NR_SLAB_UNRECLAIMABLE, nr_freed);
  1608. while (i--) {
  1609. BUG_ON(!PageSlab(page));
  1610. __ClearPageSlab(page);
  1611. page++;
  1612. }
  1613. if (current->reclaim_state)
  1614. current->reclaim_state->reclaimed_slab += nr_freed;
  1615. free_pages((unsigned long)addr, cachep->gfporder);
  1616. }
  1617. static void kmem_rcu_free(struct rcu_head *head)
  1618. {
  1619. struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
  1620. struct kmem_cache *cachep = slab_rcu->cachep;
  1621. kmem_freepages(cachep, slab_rcu->addr);
  1622. if (OFF_SLAB(cachep))
  1623. kmem_cache_free(cachep->slabp_cache, slab_rcu);
  1624. }
  1625. #if DEBUG
  1626. #ifdef CONFIG_DEBUG_PAGEALLOC
  1627. static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
  1628. unsigned long caller)
  1629. {
  1630. int size = obj_size(cachep);
  1631. addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
  1632. if (size < 5 * sizeof(unsigned long))
  1633. return;
  1634. *addr++ = 0x12345678;
  1635. *addr++ = caller;
  1636. *addr++ = smp_processor_id();
  1637. size -= 3 * sizeof(unsigned long);
  1638. {
  1639. unsigned long *sptr = &caller;
  1640. unsigned long svalue;
  1641. while (!kstack_end(sptr)) {
  1642. svalue = *sptr++;
  1643. if (kernel_text_address(svalue)) {
  1644. *addr++ = svalue;
  1645. size -= sizeof(unsigned long);
  1646. if (size <= sizeof(unsigned long))
  1647. break;
  1648. }
  1649. }
  1650. }
  1651. *addr++ = 0x87654321;
  1652. }
  1653. #endif
  1654. static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
  1655. {
  1656. int size = obj_size(cachep);
  1657. addr = &((char *)addr)[obj_offset(cachep)];
  1658. memset(addr, val, size);
  1659. *(unsigned char *)(addr + size - 1) = POISON_END;
  1660. }
  1661. static void dump_line(char *data, int offset, int limit)
  1662. {
  1663. int i;
  1664. unsigned char error = 0;
  1665. int bad_count = 0;
  1666. printk(KERN_ERR "%03x: ", offset);
  1667. for (i = 0; i < limit; i++) {
  1668. if (data[offset + i] != POISON_FREE) {
  1669. error = data[offset + i];
  1670. bad_count++;
  1671. }
  1672. }
  1673. print_hex_dump(KERN_CONT, "", 0, 16, 1,
  1674. &data[offset], limit, 1);
  1675. if (bad_count == 1) {
  1676. error ^= POISON_FREE;
  1677. if (!(error & (error - 1))) {
  1678. printk(KERN_ERR "Single bit error detected. Probably "
  1679. "bad RAM.\n");
  1680. #ifdef CONFIG_X86
  1681. printk(KERN_ERR "Run memtest86+ or a similar memory "
  1682. "test tool.\n");
  1683. #else
  1684. printk(KERN_ERR "Run a memory test tool.\n");
  1685. #endif
  1686. }
  1687. }
  1688. }
  1689. #endif
  1690. #if DEBUG
  1691. static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
  1692. {
  1693. int i, size;
  1694. char *realobj;
  1695. if (cachep->flags & SLAB_RED_ZONE) {
  1696. printk(KERN_ERR "Redzone: 0x%llx/0x%llx.\n",
  1697. *dbg_redzone1(cachep, objp),
  1698. *dbg_redzone2(cachep, objp));
  1699. }
  1700. if (cachep->flags & SLAB_STORE_USER) {
  1701. printk(KERN_ERR "Last user: [<%p>]",
  1702. *dbg_userword(cachep, objp));
  1703. print_symbol("(%s)",
  1704. (unsigned long)*dbg_userword(cachep, objp));
  1705. printk("\n");
  1706. }
  1707. realobj = (char *)objp + obj_offset(cachep);
  1708. size = obj_size(cachep);
  1709. for (i = 0; i < size && lines; i += 16, lines--) {
  1710. int limit;
  1711. limit = 16;
  1712. if (i + limit > size)
  1713. limit = size - i;
  1714. dump_line(realobj, i, limit);
  1715. }
  1716. }
  1717. static void check_poison_obj(struct kmem_cache *cachep, void *objp)
  1718. {
  1719. char *realobj;
  1720. int size, i;
  1721. int lines = 0;
  1722. realobj = (char *)objp + obj_offset(cachep);
  1723. size = obj_size(cachep);
  1724. for (i = 0; i < size; i++) {
  1725. char exp = POISON_FREE;
  1726. if (i == size - 1)
  1727. exp = POISON_END;
  1728. if (realobj[i] != exp) {
  1729. int limit;
  1730. /* Mismatch ! */
  1731. /* Print header */
  1732. if (lines == 0) {
  1733. printk(KERN_ERR
  1734. "Slab corruption (%s): %s start=%p, len=%d\n",
  1735. print_tainted(), cachep->name, realobj, size);
  1736. print_objinfo(cachep, objp, 0);
  1737. }
  1738. /* Hexdump the affected line */
  1739. i = (i / 16) * 16;
  1740. limit = 16;
  1741. if (i + limit > size)
  1742. limit = size - i;
  1743. dump_line(realobj, i, limit);
  1744. i += 16;
  1745. lines++;
  1746. /* Limit to 5 lines */
  1747. if (lines > 5)
  1748. break;
  1749. }
  1750. }
  1751. if (lines != 0) {
  1752. /* Print some data about the neighboring objects, if they
  1753. * exist:
  1754. */
  1755. struct slab *slabp = virt_to_slab(objp);
  1756. unsigned int objnr;
  1757. objnr = obj_to_index(cachep, slabp, objp);
  1758. if (objnr) {
  1759. objp = index_to_obj(cachep, slabp, objnr - 1);
  1760. realobj = (char *)objp + obj_offset(cachep);
  1761. printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
  1762. realobj, size);
  1763. print_objinfo(cachep, objp, 2);
  1764. }
  1765. if (objnr + 1 < cachep->num) {
  1766. objp = index_to_obj(cachep, slabp, objnr + 1);
  1767. realobj = (char *)objp + obj_offset(cachep);
  1768. printk(KERN_ERR "Next obj: start=%p, len=%d\n",
  1769. realobj, size);
  1770. print_objinfo(cachep, objp, 2);
  1771. }
  1772. }
  1773. }
  1774. #endif
  1775. #if DEBUG
  1776. static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
  1777. {
  1778. int i;
  1779. for (i = 0; i < cachep->num; i++) {
  1780. void *objp = index_to_obj(cachep, slabp, i);
  1781. if (cachep->flags & SLAB_POISON) {
  1782. #ifdef CONFIG_DEBUG_PAGEALLOC
  1783. if (cachep->buffer_size % PAGE_SIZE == 0 &&
  1784. OFF_SLAB(cachep))
  1785. kernel_map_pages(virt_to_page(objp),
  1786. cachep->buffer_size / PAGE_SIZE, 1);
  1787. else
  1788. check_poison_obj(cachep, objp);
  1789. #else
  1790. check_poison_obj(cachep, objp);
  1791. #endif
  1792. }
  1793. if (cachep->flags & SLAB_RED_ZONE) {
  1794. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  1795. slab_error(cachep, "start of a freed object "
  1796. "was overwritten");
  1797. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  1798. slab_error(cachep, "end of a freed object "
  1799. "was overwritten");
  1800. }
  1801. }
  1802. }
  1803. #else
  1804. static void slab_destroy_debugcheck(struct kmem_cache *cachep, struct slab *slabp)
  1805. {
  1806. }
  1807. #endif
  1808. /**
  1809. * slab_destroy - destroy and release all objects in a slab
  1810. * @cachep: cache pointer being destroyed
  1811. * @slabp: slab pointer being destroyed
  1812. *
  1813. * Destroy all the objs in a slab, and release the mem back to the system.
  1814. * Before calling the slab must have been unlinked from the cache. The
  1815. * cache-lock is not held/needed.
  1816. */
  1817. static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
  1818. {
  1819. void *addr = slabp->s_mem - slabp->colouroff;
  1820. slab_destroy_debugcheck(cachep, slabp);
  1821. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
  1822. struct slab_rcu *slab_rcu;
  1823. slab_rcu = (struct slab_rcu *)slabp;
  1824. slab_rcu->cachep = cachep;
  1825. slab_rcu->addr = addr;
  1826. call_rcu(&slab_rcu->head, kmem_rcu_free);
  1827. } else {
  1828. kmem_freepages(cachep, addr);
  1829. if (OFF_SLAB(cachep))
  1830. kmem_cache_free(cachep->slabp_cache, slabp);
  1831. }
  1832. }
  1833. static void __kmem_cache_destroy(struct kmem_cache *cachep)
  1834. {
  1835. int i;
  1836. struct kmem_list3 *l3;
  1837. for_each_online_cpu(i)
  1838. kfree(cachep->array[i]);
  1839. /* NUMA: free the list3 structures */
  1840. for_each_online_node(i) {
  1841. l3 = cachep->nodelists[i];
  1842. if (l3) {
  1843. kfree(l3->shared);
  1844. free_alien_cache(l3->alien);
  1845. kfree(l3);
  1846. }
  1847. }
  1848. kmem_cache_free(&cache_cache, cachep);
  1849. }
  1850. /**
  1851. * calculate_slab_order - calculate size (page order) of slabs
  1852. * @cachep: pointer to the cache that is being created
  1853. * @size: size of objects to be created in this cache.
  1854. * @align: required alignment for the objects.
  1855. * @flags: slab allocation flags
  1856. *
  1857. * Also calculates the number of objects per slab.
  1858. *
  1859. * This could be made much more intelligent. For now, try to avoid using
  1860. * high order pages for slabs. When the gfp() functions are more friendly
  1861. * towards high-order requests, this should be changed.
  1862. */
  1863. static size_t calculate_slab_order(struct kmem_cache *cachep,
  1864. size_t size, size_t align, unsigned long flags)
  1865. {
  1866. unsigned long offslab_limit;
  1867. size_t left_over = 0;
  1868. int gfporder;
  1869. for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
  1870. unsigned int num;
  1871. size_t remainder;
  1872. cache_estimate(gfporder, size, align, flags, &remainder, &num);
  1873. if (!num)
  1874. continue;
  1875. if (flags & CFLGS_OFF_SLAB) {
  1876. /*
  1877. * Max number of objs-per-slab for caches which
  1878. * use off-slab slabs. Needed to avoid a possible
  1879. * looping condition in cache_grow().
  1880. */
  1881. offslab_limit = size - sizeof(struct slab);
  1882. offslab_limit /= sizeof(kmem_bufctl_t);
  1883. if (num > offslab_limit)
  1884. break;
  1885. }
  1886. /* Found something acceptable - save it away */
  1887. cachep->num = num;
  1888. cachep->gfporder = gfporder;
  1889. left_over = remainder;
  1890. /*
  1891. * A VFS-reclaimable slab tends to have most allocations
  1892. * as GFP_NOFS and we really don't want to have to be allocating
  1893. * higher-order pages when we are unable to shrink dcache.
  1894. */
  1895. if (flags & SLAB_RECLAIM_ACCOUNT)
  1896. break;
  1897. /*
  1898. * Large number of objects is good, but very large slabs are
  1899. * currently bad for the gfp()s.
  1900. */
  1901. if (gfporder >= slab_max_order)
  1902. break;
  1903. /*
  1904. * Acceptable internal fragmentation?
  1905. */
  1906. if (left_over * 8 <= (PAGE_SIZE << gfporder))
  1907. break;
  1908. }
  1909. return left_over;
  1910. }
  1911. static int __init_refok setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
  1912. {
  1913. if (g_cpucache_up == FULL)
  1914. return enable_cpucache(cachep, gfp);
  1915. if (g_cpucache_up == NONE) {
  1916. /*
  1917. * Note: the first kmem_cache_create must create the cache
  1918. * that's used by kmalloc(24), otherwise the creation of
  1919. * further caches will BUG().
  1920. */
  1921. cachep->array[smp_processor_id()] = &initarray_generic.cache;
  1922. /*
  1923. * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
  1924. * the first cache, then we need to set up all its list3s,
  1925. * otherwise the creation of further caches will BUG().
  1926. */
  1927. set_up_list3s(cachep, SIZE_AC);
  1928. if (INDEX_AC == INDEX_L3)
  1929. g_cpucache_up = PARTIAL_L3;
  1930. else
  1931. g_cpucache_up = PARTIAL_AC;
  1932. } else {
  1933. cachep->array[smp_processor_id()] =
  1934. kmalloc(sizeof(struct arraycache_init), gfp);
  1935. if (g_cpucache_up == PARTIAL_AC) {
  1936. set_up_list3s(cachep, SIZE_L3);
  1937. g_cpucache_up = PARTIAL_L3;
  1938. } else {
  1939. int node;
  1940. for_each_online_node(node) {
  1941. cachep->nodelists[node] =
  1942. kmalloc_node(sizeof(struct kmem_list3),
  1943. gfp, node);
  1944. BUG_ON(!cachep->nodelists[node]);
  1945. kmem_list3_init(cachep->nodelists[node]);
  1946. }
  1947. }
  1948. }
  1949. cachep->nodelists[numa_mem_id()]->next_reap =
  1950. jiffies + REAPTIMEOUT_LIST3 +
  1951. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  1952. cpu_cache_get(cachep)->avail = 0;
  1953. cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
  1954. cpu_cache_get(cachep)->batchcount = 1;
  1955. cpu_cache_get(cachep)->touched = 0;
  1956. cachep->batchcount = 1;
  1957. cachep->limit = BOOT_CPUCACHE_ENTRIES;
  1958. return 0;
  1959. }
  1960. /**
  1961. * kmem_cache_create - Create a cache.
  1962. * @name: A string which is used in /proc/slabinfo to identify this cache.
  1963. * @size: The size of objects to be created in this cache.
  1964. * @align: The required alignment for the objects.
  1965. * @flags: SLAB flags
  1966. * @ctor: A constructor for the objects.
  1967. *
  1968. * Returns a ptr to the cache on success, NULL on failure.
  1969. * Cannot be called within a int, but can be interrupted.
  1970. * The @ctor is run when new pages are allocated by the cache.
  1971. *
  1972. * @name must be valid until the cache is destroyed. This implies that
  1973. * the module calling this has to destroy the cache before getting unloaded.
  1974. *
  1975. * The flags are
  1976. *
  1977. * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
  1978. * to catch references to uninitialised memory.
  1979. *
  1980. * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
  1981. * for buffer overruns.
  1982. *
  1983. * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
  1984. * cacheline. This can be beneficial if you're counting cycles as closely
  1985. * as davem.
  1986. */
  1987. struct kmem_cache *
  1988. kmem_cache_create (const char *name, size_t size, size_t align,
  1989. unsigned long flags, void (*ctor)(void *))
  1990. {
  1991. size_t left_over, slab_size, ralign;
  1992. struct kmem_cache *cachep = NULL, *pc;
  1993. gfp_t gfp;
  1994. /*
  1995. * Sanity checks... these are all serious usage bugs.
  1996. */
  1997. if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
  1998. size > KMALLOC_MAX_SIZE) {
  1999. printk(KERN_ERR "%s: Early error in slab %s\n", __func__,
  2000. name);
  2001. BUG();
  2002. }
  2003. /*
  2004. * We use cache_chain_mutex to ensure a consistent view of
  2005. * cpu_online_mask as well. Please see cpuup_callback
  2006. */
  2007. if (slab_is_available()) {
  2008. get_online_cpus();
  2009. mutex_lock(&cache_chain_mutex);
  2010. }
  2011. list_for_each_entry(pc, &cache_chain, next) {
  2012. char tmp;
  2013. int res;
  2014. /*
  2015. * This happens when the module gets unloaded and doesn't
  2016. * destroy its slab cache and no-one else reuses the vmalloc
  2017. * area of the module. Print a warning.
  2018. */
  2019. res = probe_kernel_address(pc->name, tmp);
  2020. if (res) {
  2021. printk(KERN_ERR
  2022. "SLAB: cache with size %d has lost its name\n",
  2023. pc->buffer_size);
  2024. continue;
  2025. }
  2026. if (!strcmp(pc->name, name)) {
  2027. printk(KERN_ERR
  2028. "kmem_cache_create: duplicate cache %s\n", name);
  2029. dump_stack();
  2030. goto oops;
  2031. }
  2032. }
  2033. #if DEBUG
  2034. WARN_ON(strchr(name, ' ')); /* It confuses parsers */
  2035. #if FORCED_DEBUG
  2036. /*
  2037. * Enable redzoning and last user accounting, except for caches with
  2038. * large objects, if the increased size would increase the object size
  2039. * above the next power of two: caches with object sizes just above a
  2040. * power of two have a significant amount of internal fragmentation.
  2041. */
  2042. if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
  2043. 2 * sizeof(unsigned long long)))
  2044. flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
  2045. if (!(flags & SLAB_DESTROY_BY_RCU))
  2046. flags |= SLAB_POISON;
  2047. #endif
  2048. if (flags & SLAB_DESTROY_BY_RCU)
  2049. BUG_ON(flags & SLAB_POISON);
  2050. #endif
  2051. /*
  2052. * Always checks flags, a caller might be expecting debug support which
  2053. * isn't available.
  2054. */
  2055. BUG_ON(flags & ~CREATE_MASK);
  2056. /*
  2057. * Check that size is in terms of words. This is needed to avoid
  2058. * unaligned accesses for some archs when redzoning is used, and makes
  2059. * sure any on-slab bufctl's are also correctly aligned.
  2060. */
  2061. if (size & (BYTES_PER_WORD - 1)) {
  2062. size += (BYTES_PER_WORD - 1);
  2063. size &= ~(BYTES_PER_WORD - 1);
  2064. }
  2065. /* calculate the final buffer alignment: */
  2066. /* 1) arch recommendation: can be overridden for debug */
  2067. if (flags & SLAB_HWCACHE_ALIGN) {
  2068. /*
  2069. * Default alignment: as specified by the arch code. Except if
  2070. * an object is really small, then squeeze multiple objects into
  2071. * one cacheline.
  2072. */
  2073. ralign = cache_line_size();
  2074. while (size <= ralign / 2)
  2075. ralign /= 2;
  2076. } else {
  2077. ralign = BYTES_PER_WORD;
  2078. }
  2079. /*
  2080. * Redzoning and user store require word alignment or possibly larger.
  2081. * Note this will be overridden by architecture or caller mandated
  2082. * alignment if either is greater than BYTES_PER_WORD.
  2083. */
  2084. if (flags & SLAB_STORE_USER)
  2085. ralign = BYTES_PER_WORD;
  2086. if (flags & SLAB_RED_ZONE) {
  2087. ralign = REDZONE_ALIGN;
  2088. /* If redzoning, ensure that the second redzone is suitably
  2089. * aligned, by adjusting the object size accordingly. */
  2090. size += REDZONE_ALIGN - 1;
  2091. size &= ~(REDZONE_ALIGN - 1);
  2092. }
  2093. /* 2) arch mandated alignment */
  2094. if (ralign < ARCH_SLAB_MINALIGN) {
  2095. ralign = ARCH_SLAB_MINALIGN;
  2096. }
  2097. /* 3) caller mandated alignment */
  2098. if (ralign < align) {
  2099. ralign = align;
  2100. }
  2101. /* disable debug if necessary */
  2102. if (ralign > __alignof__(unsigned long long))
  2103. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  2104. /*
  2105. * 4) Store it.
  2106. */
  2107. align = ralign;
  2108. if (slab_is_available())
  2109. gfp = GFP_KERNEL;
  2110. else
  2111. gfp = GFP_NOWAIT;
  2112. /* Get cache's description obj. */
  2113. cachep = kmem_cache_zalloc(&cache_cache, gfp);
  2114. if (!cachep)
  2115. goto oops;
  2116. cachep->nodelists = (struct kmem_list3 **)&cachep->array[nr_cpu_ids];
  2117. #if DEBUG
  2118. cachep->obj_size = size;
  2119. /*
  2120. * Both debugging options require word-alignment which is calculated
  2121. * into align above.
  2122. */
  2123. if (flags & SLAB_RED_ZONE) {
  2124. /* add space for red zone words */
  2125. cachep->obj_offset += sizeof(unsigned long long);
  2126. size += 2 * sizeof(unsigned long long);
  2127. }
  2128. if (flags & SLAB_STORE_USER) {
  2129. /* user store requires one word storage behind the end of
  2130. * the real object. But if the second red zone needs to be
  2131. * aligned to 64 bits, we must allow that much space.
  2132. */
  2133. if (flags & SLAB_RED_ZONE)
  2134. size += REDZONE_ALIGN;
  2135. else
  2136. size += BYTES_PER_WORD;
  2137. }
  2138. #if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
  2139. if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
  2140. && cachep->obj_size > cache_line_size() && ALIGN(size, align) < PAGE_SIZE) {
  2141. cachep->obj_offset += PAGE_SIZE - ALIGN(size, align);
  2142. size = PAGE_SIZE;
  2143. }
  2144. #endif
  2145. #endif
  2146. /*
  2147. * Determine if the slab management is 'on' or 'off' slab.
  2148. * (bootstrapping cannot cope with offslab caches so don't do
  2149. * it too early on. Always use on-slab management when
  2150. * SLAB_NOLEAKTRACE to avoid recursive calls into kmemleak)
  2151. */
  2152. if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init &&
  2153. !(flags & SLAB_NOLEAKTRACE))
  2154. /*
  2155. * Size is large, assume best to place the slab management obj
  2156. * off-slab (should allow better packing of objs).
  2157. */
  2158. flags |= CFLGS_OFF_SLAB;
  2159. size = ALIGN(size, align);
  2160. left_over = calculate_slab_order(cachep, size, align, flags);
  2161. if (!cachep->num) {
  2162. printk(KERN_ERR
  2163. "kmem_cache_create: couldn't create cache %s.\n", name);
  2164. kmem_cache_free(&cache_cache, cachep);
  2165. cachep = NULL;
  2166. goto oops;
  2167. }
  2168. slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
  2169. + sizeof(struct slab), align);
  2170. /*
  2171. * If the slab has been placed off-slab, and we have enough space then
  2172. * move it on-slab. This is at the expense of any extra colouring.
  2173. */
  2174. if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
  2175. flags &= ~CFLGS_OFF_SLAB;
  2176. left_over -= slab_size;
  2177. }
  2178. if (flags & CFLGS_OFF_SLAB) {
  2179. /* really off slab. No need for manual alignment */
  2180. slab_size =
  2181. cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
  2182. #ifdef CONFIG_PAGE_POISONING
  2183. /* If we're going to use the generic kernel_map_pages()
  2184. * poisoning, then it's going to smash the contents of
  2185. * the redzone and userword anyhow, so switch them off.
  2186. */
  2187. if (size % PAGE_SIZE == 0 && flags & SLAB_POISON)
  2188. flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
  2189. #endif
  2190. }
  2191. cachep->colour_off = cache_line_size();
  2192. /* Offset must be a multiple of the alignment. */
  2193. if (cachep->colour_off < align)
  2194. cachep->colour_off = align;
  2195. cachep->colour = left_over / cachep->colour_off;
  2196. cachep->slab_size = slab_size;
  2197. cachep->flags = flags;
  2198. cachep->gfpflags = 0;
  2199. if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
  2200. cachep->gfpflags |= GFP_DMA;
  2201. cachep->buffer_size = size;
  2202. cachep->reciprocal_buffer_size = reciprocal_value(size);
  2203. if (flags & CFLGS_OFF_SLAB) {
  2204. cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
  2205. /*
  2206. * This is a possibility for one of the malloc_sizes caches.
  2207. * But since we go off slab only for object size greater than
  2208. * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
  2209. * this should not happen at all.
  2210. * But leave a BUG_ON for some lucky dude.
  2211. */
  2212. BUG_ON(ZERO_OR_NULL_PTR(cachep->slabp_cache));
  2213. }
  2214. cachep->ctor = ctor;
  2215. cachep->name = name;
  2216. if (setup_cpu_cache(cachep, gfp)) {
  2217. __kmem_cache_destroy(cachep);
  2218. cachep = NULL;
  2219. goto oops;
  2220. }
  2221. if (flags & SLAB_DEBUG_OBJECTS) {
  2222. /*
  2223. * Would deadlock through slab_destroy()->call_rcu()->
  2224. * debug_object_activate()->kmem_cache_alloc().
  2225. */
  2226. WARN_ON_ONCE(flags & SLAB_DESTROY_BY_RCU);
  2227. slab_set_debugobj_lock_classes(cachep);
  2228. }
  2229. /* cache setup completed, link it into the list */
  2230. list_add(&cachep->next, &cache_chain);
  2231. oops:
  2232. if (!cachep && (flags & SLAB_PANIC))
  2233. panic("kmem_cache_create(): failed to create slab `%s'\n",
  2234. name);
  2235. if (slab_is_available()) {
  2236. mutex_unlock(&cache_chain_mutex);
  2237. put_online_cpus();
  2238. }
  2239. return cachep;
  2240. }
  2241. EXPORT_SYMBOL(kmem_cache_create);
  2242. #if DEBUG
  2243. static void check_irq_off(void)
  2244. {
  2245. BUG_ON(!irqs_disabled());
  2246. }
  2247. static void check_irq_on(void)
  2248. {
  2249. BUG_ON(irqs_disabled());
  2250. }
  2251. static void check_spinlock_acquired(struct kmem_cache *cachep)
  2252. {
  2253. #ifdef CONFIG_SMP
  2254. check_irq_off();
  2255. assert_spin_locked(&cachep->nodelists[numa_mem_id()]->list_lock);
  2256. #endif
  2257. }
  2258. static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
  2259. {
  2260. #ifdef CONFIG_SMP
  2261. check_irq_off();
  2262. assert_spin_locked(&cachep->nodelists[node]->list_lock);
  2263. #endif
  2264. }
  2265. #else
  2266. #define check_irq_off() do { } while(0)
  2267. #define check_irq_on() do { } while(0)
  2268. #define check_spinlock_acquired(x) do { } while(0)
  2269. #define check_spinlock_acquired_node(x, y) do { } while(0)
  2270. #endif
  2271. static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  2272. struct array_cache *ac,
  2273. int force, int node);
  2274. static void do_drain(void *arg)
  2275. {
  2276. struct kmem_cache *cachep = arg;
  2277. struct array_cache *ac;
  2278. int node = numa_mem_id();
  2279. check_irq_off();
  2280. ac = cpu_cache_get(cachep);
  2281. spin_lock(&cachep->nodelists[node]->list_lock);
  2282. free_block(cachep, ac->entry, ac->avail, node);
  2283. spin_unlock(&cachep->nodelists[node]->list_lock);
  2284. ac->avail = 0;
  2285. }
  2286. static void drain_cpu_caches(struct kmem_cache *cachep)
  2287. {
  2288. struct kmem_list3 *l3;
  2289. int node;
  2290. on_each_cpu(do_drain, cachep, 1);
  2291. check_irq_on();
  2292. for_each_online_node(node) {
  2293. l3 = cachep->nodelists[node];
  2294. if (l3 && l3->alien)
  2295. drain_alien_cache(cachep, l3->alien);
  2296. }
  2297. for_each_online_node(node) {
  2298. l3 = cachep->nodelists[node];
  2299. if (l3)
  2300. drain_array(cachep, l3, l3->shared, 1, node);
  2301. }
  2302. }
  2303. /*
  2304. * Remove slabs from the list of free slabs.
  2305. * Specify the number of slabs to drain in tofree.
  2306. *
  2307. * Returns the actual number of slabs released.
  2308. */
  2309. static int drain_freelist(struct kmem_cache *cache,
  2310. struct kmem_list3 *l3, int tofree)
  2311. {
  2312. struct list_head *p;
  2313. int nr_freed;
  2314. struct slab *slabp;
  2315. nr_freed = 0;
  2316. while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
  2317. spin_lock_irq(&l3->list_lock);
  2318. p = l3->slabs_free.prev;
  2319. if (p == &l3->slabs_free) {
  2320. spin_unlock_irq(&l3->list_lock);
  2321. goto out;
  2322. }
  2323. slabp = list_entry(p, struct slab, list);
  2324. #if DEBUG
  2325. BUG_ON(slabp->inuse);
  2326. #endif
  2327. list_del(&slabp->list);
  2328. /*
  2329. * Safe to drop the lock. The slab is no longer linked
  2330. * to the cache.
  2331. */
  2332. l3->free_objects -= cache->num;
  2333. spin_unlock_irq(&l3->list_lock);
  2334. slab_destroy(cache, slabp);
  2335. nr_freed++;
  2336. }
  2337. out:
  2338. return nr_freed;
  2339. }
  2340. /* Called with cache_chain_mutex held to protect against cpu hotplug */
  2341. static int __cache_shrink(struct kmem_cache *cachep)
  2342. {
  2343. int ret = 0, i = 0;
  2344. struct kmem_list3 *l3;
  2345. drain_cpu_caches(cachep);
  2346. check_irq_on();
  2347. for_each_online_node(i) {
  2348. l3 = cachep->nodelists[i];
  2349. if (!l3)
  2350. continue;
  2351. drain_freelist(cachep, l3, l3->free_objects);
  2352. ret += !list_empty(&l3->slabs_full) ||
  2353. !list_empty(&l3->slabs_partial);
  2354. }
  2355. return (ret ? 1 : 0);
  2356. }
  2357. /**
  2358. * kmem_cache_shrink - Shrink a cache.
  2359. * @cachep: The cache to shrink.
  2360. *
  2361. * Releases as many slabs as possible for a cache.
  2362. * To help debugging, a zero exit status indicates all slabs were released.
  2363. */
  2364. int kmem_cache_shrink(struct kmem_cache *cachep)
  2365. {
  2366. int ret;
  2367. BUG_ON(!cachep || in_interrupt());
  2368. get_online_cpus();
  2369. mutex_lock(&cache_chain_mutex);
  2370. ret = __cache_shrink(cachep);
  2371. mutex_unlock(&cache_chain_mutex);
  2372. put_online_cpus();
  2373. return ret;
  2374. }
  2375. EXPORT_SYMBOL(kmem_cache_shrink);
  2376. /**
  2377. * kmem_cache_destroy - delete a cache
  2378. * @cachep: the cache to destroy
  2379. *
  2380. * Remove a &struct kmem_cache object from the slab cache.
  2381. *
  2382. * It is expected this function will be called by a module when it is
  2383. * unloaded. This will remove the cache completely, and avoid a duplicate
  2384. * cache being allocated each time a module is loaded and unloaded, if the
  2385. * module doesn't have persistent in-kernel storage across loads and unloads.
  2386. *
  2387. * The cache must be empty before calling this function.
  2388. *
  2389. * The caller must guarantee that no one will allocate memory from the cache
  2390. * during the kmem_cache_destroy().
  2391. */
  2392. void kmem_cache_destroy(struct kmem_cache *cachep)
  2393. {
  2394. BUG_ON(!cachep || in_interrupt());
  2395. /* Find the cache in the chain of caches. */
  2396. get_online_cpus();
  2397. mutex_lock(&cache_chain_mutex);
  2398. /*
  2399. * the chain is never empty, cache_cache is never destroyed
  2400. */
  2401. list_del(&cachep->next);
  2402. if (__cache_shrink(cachep)) {
  2403. slab_error(cachep, "Can't free all objects");
  2404. list_add(&cachep->next, &cache_chain);
  2405. mutex_unlock(&cache_chain_mutex);
  2406. put_online_cpus();
  2407. return;
  2408. }
  2409. if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
  2410. rcu_barrier();
  2411. __kmem_cache_destroy(cachep);
  2412. mutex_unlock(&cache_chain_mutex);
  2413. put_online_cpus();
  2414. }
  2415. EXPORT_SYMBOL(kmem_cache_destroy);
  2416. /*
  2417. * Get the memory for a slab management obj.
  2418. * For a slab cache when the slab descriptor is off-slab, slab descriptors
  2419. * always come from malloc_sizes caches. The slab descriptor cannot
  2420. * come from the same cache which is getting created because,
  2421. * when we are searching for an appropriate cache for these
  2422. * descriptors in kmem_cache_create, we search through the malloc_sizes array.
  2423. * If we are creating a malloc_sizes cache here it would not be visible to
  2424. * kmem_find_general_cachep till the initialization is complete.
  2425. * Hence we cannot have slabp_cache same as the original cache.
  2426. */
  2427. static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
  2428. int colour_off, gfp_t local_flags,
  2429. int nodeid)
  2430. {
  2431. struct slab *slabp;
  2432. if (OFF_SLAB(cachep)) {
  2433. /* Slab management obj is off-slab. */
  2434. slabp = kmem_cache_alloc_node(cachep->slabp_cache,
  2435. local_flags, nodeid);
  2436. /*
  2437. * If the first object in the slab is leaked (it's allocated
  2438. * but no one has a reference to it), we want to make sure
  2439. * kmemleak does not treat the ->s_mem pointer as a reference
  2440. * to the object. Otherwise we will not report the leak.
  2441. */
  2442. kmemleak_scan_area(&slabp->list, sizeof(struct list_head),
  2443. local_flags);
  2444. if (!slabp)
  2445. return NULL;
  2446. } else {
  2447. slabp = objp + colour_off;
  2448. colour_off += cachep->slab_size;
  2449. }
  2450. slabp->inuse = 0;
  2451. slabp->colouroff = colour_off;
  2452. slabp->s_mem = objp + colour_off;
  2453. slabp->nodeid = nodeid;
  2454. slabp->free = 0;
  2455. return slabp;
  2456. }
  2457. static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
  2458. {
  2459. return (kmem_bufctl_t *) (slabp + 1);
  2460. }
  2461. static void cache_init_objs(struct kmem_cache *cachep,
  2462. struct slab *slabp)
  2463. {
  2464. int i;
  2465. for (i = 0; i < cachep->num; i++) {
  2466. void *objp = index_to_obj(cachep, slabp, i);
  2467. #if DEBUG
  2468. /* need to poison the objs? */
  2469. if (cachep->flags & SLAB_POISON)
  2470. poison_obj(cachep, objp, POISON_FREE);
  2471. if (cachep->flags & SLAB_STORE_USER)
  2472. *dbg_userword(cachep, objp) = NULL;
  2473. if (cachep->flags & SLAB_RED_ZONE) {
  2474. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2475. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2476. }
  2477. /*
  2478. * Constructors are not allowed to allocate memory from the same
  2479. * cache which they are a constructor for. Otherwise, deadlock.
  2480. * They must also be threaded.
  2481. */
  2482. if (cachep->ctor && !(cachep->flags & SLAB_POISON))
  2483. cachep->ctor(objp + obj_offset(cachep));
  2484. if (cachep->flags & SLAB_RED_ZONE) {
  2485. if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
  2486. slab_error(cachep, "constructor overwrote the"
  2487. " end of an object");
  2488. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
  2489. slab_error(cachep, "constructor overwrote the"
  2490. " start of an object");
  2491. }
  2492. if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
  2493. OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
  2494. kernel_map_pages(virt_to_page(objp),
  2495. cachep->buffer_size / PAGE_SIZE, 0);
  2496. #else
  2497. if (cachep->ctor)
  2498. cachep->ctor(objp);
  2499. #endif
  2500. slab_bufctl(slabp)[i] = i + 1;
  2501. }
  2502. slab_bufctl(slabp)[i - 1] = BUFCTL_END;
  2503. }
  2504. static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
  2505. {
  2506. if (CONFIG_ZONE_DMA_FLAG) {
  2507. if (flags & GFP_DMA)
  2508. BUG_ON(!(cachep->gfpflags & GFP_DMA));
  2509. else
  2510. BUG_ON(cachep->gfpflags & GFP_DMA);
  2511. }
  2512. }
  2513. static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
  2514. int nodeid)
  2515. {
  2516. void *objp = index_to_obj(cachep, slabp, slabp->free);
  2517. kmem_bufctl_t next;
  2518. slabp->inuse++;
  2519. next = slab_bufctl(slabp)[slabp->free];
  2520. #if DEBUG
  2521. slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
  2522. WARN_ON(slabp->nodeid != nodeid);
  2523. #endif
  2524. slabp->free = next;
  2525. return objp;
  2526. }
  2527. static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
  2528. void *objp, int nodeid)
  2529. {
  2530. unsigned int objnr = obj_to_index(cachep, slabp, objp);
  2531. #if DEBUG
  2532. /* Verify that the slab belongs to the intended node */
  2533. WARN_ON(slabp->nodeid != nodeid);
  2534. if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
  2535. printk(KERN_ERR "slab: double free detected in cache "
  2536. "'%s', objp %p\n", cachep->name, objp);
  2537. BUG();
  2538. }
  2539. #endif
  2540. slab_bufctl(slabp)[objnr] = slabp->free;
  2541. slabp->free = objnr;
  2542. slabp->inuse--;
  2543. }
  2544. /*
  2545. * Map pages beginning at addr to the given cache and slab. This is required
  2546. * for the slab allocator to be able to lookup the cache and slab of a
  2547. * virtual address for kfree, ksize, and slab debugging.
  2548. */
  2549. static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
  2550. void *addr)
  2551. {
  2552. int nr_pages;
  2553. struct page *page;
  2554. page = virt_to_page(addr);
  2555. nr_pages = 1;
  2556. if (likely(!PageCompound(page)))
  2557. nr_pages <<= cache->gfporder;
  2558. do {
  2559. page->slab_cache = cache;
  2560. page->slab_page = slab;
  2561. page++;
  2562. } while (--nr_pages);
  2563. }
  2564. /*
  2565. * Grow (by 1) the number of slabs within a cache. This is called by
  2566. * kmem_cache_alloc() when there are no active objs left in a cache.
  2567. */
  2568. static int cache_grow(struct kmem_cache *cachep,
  2569. gfp_t flags, int nodeid, void *objp)
  2570. {
  2571. struct slab *slabp;
  2572. size_t offset;
  2573. gfp_t local_flags;
  2574. struct kmem_list3 *l3;
  2575. /*
  2576. * Be lazy and only check for valid flags here, keeping it out of the
  2577. * critical path in kmem_cache_alloc().
  2578. */
  2579. BUG_ON(flags & GFP_SLAB_BUG_MASK);
  2580. local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
  2581. /* Take the l3 list lock to change the colour_next on this node */
  2582. check_irq_off();
  2583. l3 = cachep->nodelists[nodeid];
  2584. spin_lock(&l3->list_lock);
  2585. /* Get colour for the slab, and cal the next value. */
  2586. offset = l3->colour_next;
  2587. l3->colour_next++;
  2588. if (l3->colour_next >= cachep->colour)
  2589. l3->colour_next = 0;
  2590. spin_unlock(&l3->list_lock);
  2591. offset *= cachep->colour_off;
  2592. if (local_flags & __GFP_WAIT)
  2593. local_irq_enable();
  2594. /*
  2595. * The test for missing atomic flag is performed here, rather than
  2596. * the more obvious place, simply to reduce the critical path length
  2597. * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
  2598. * will eventually be caught here (where it matters).
  2599. */
  2600. kmem_flagcheck(cachep, flags);
  2601. /*
  2602. * Get mem for the objs. Attempt to allocate a physical page from
  2603. * 'nodeid'.
  2604. */
  2605. if (!objp)
  2606. objp = kmem_getpages(cachep, local_flags, nodeid);
  2607. if (!objp)
  2608. goto failed;
  2609. /* Get slab management. */
  2610. slabp = alloc_slabmgmt(cachep, objp, offset,
  2611. local_flags & ~GFP_CONSTRAINT_MASK, nodeid);
  2612. if (!slabp)
  2613. goto opps1;
  2614. slab_map_pages(cachep, slabp, objp);
  2615. cache_init_objs(cachep, slabp);
  2616. if (local_flags & __GFP_WAIT)
  2617. local_irq_disable();
  2618. check_irq_off();
  2619. spin_lock(&l3->list_lock);
  2620. /* Make slab active. */
  2621. list_add_tail(&slabp->list, &(l3->slabs_free));
  2622. STATS_INC_GROWN(cachep);
  2623. l3->free_objects += cachep->num;
  2624. spin_unlock(&l3->list_lock);
  2625. return 1;
  2626. opps1:
  2627. kmem_freepages(cachep, objp);
  2628. failed:
  2629. if (local_flags & __GFP_WAIT)
  2630. local_irq_disable();
  2631. return 0;
  2632. }
  2633. #if DEBUG
  2634. /*
  2635. * Perform extra freeing checks:
  2636. * - detect bad pointers.
  2637. * - POISON/RED_ZONE checking
  2638. */
  2639. static void kfree_debugcheck(const void *objp)
  2640. {
  2641. if (!virt_addr_valid(objp)) {
  2642. printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
  2643. (unsigned long)objp);
  2644. BUG();
  2645. }
  2646. }
  2647. static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
  2648. {
  2649. unsigned long long redzone1, redzone2;
  2650. redzone1 = *dbg_redzone1(cache, obj);
  2651. redzone2 = *dbg_redzone2(cache, obj);
  2652. /*
  2653. * Redzone is ok.
  2654. */
  2655. if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
  2656. return;
  2657. if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
  2658. slab_error(cache, "double free detected");
  2659. else
  2660. slab_error(cache, "memory outside object was overwritten");
  2661. printk(KERN_ERR "%p: redzone 1:0x%llx, redzone 2:0x%llx.\n",
  2662. obj, redzone1, redzone2);
  2663. }
  2664. static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
  2665. void *caller)
  2666. {
  2667. struct page *page;
  2668. unsigned int objnr;
  2669. struct slab *slabp;
  2670. BUG_ON(virt_to_cache(objp) != cachep);
  2671. objp -= obj_offset(cachep);
  2672. kfree_debugcheck(objp);
  2673. page = virt_to_head_page(objp);
  2674. slabp = page->slab_page;
  2675. if (cachep->flags & SLAB_RED_ZONE) {
  2676. verify_redzone_free(cachep, objp);
  2677. *dbg_redzone1(cachep, objp) = RED_INACTIVE;
  2678. *dbg_redzone2(cachep, objp) = RED_INACTIVE;
  2679. }
  2680. if (cachep->flags & SLAB_STORE_USER)
  2681. *dbg_userword(cachep, objp) = caller;
  2682. objnr = obj_to_index(cachep, slabp, objp);
  2683. BUG_ON(objnr >= cachep->num);
  2684. BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
  2685. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2686. slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
  2687. #endif
  2688. if (cachep->flags & SLAB_POISON) {
  2689. #ifdef CONFIG_DEBUG_PAGEALLOC
  2690. if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
  2691. store_stackinfo(cachep, objp, (unsigned long)caller);
  2692. kernel_map_pages(virt_to_page(objp),
  2693. cachep->buffer_size / PAGE_SIZE, 0);
  2694. } else {
  2695. poison_obj(cachep, objp, POISON_FREE);
  2696. }
  2697. #else
  2698. poison_obj(cachep, objp, POISON_FREE);
  2699. #endif
  2700. }
  2701. return objp;
  2702. }
  2703. static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
  2704. {
  2705. kmem_bufctl_t i;
  2706. int entries = 0;
  2707. /* Check slab's freelist to see if this obj is there. */
  2708. for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
  2709. entries++;
  2710. if (entries > cachep->num || i >= cachep->num)
  2711. goto bad;
  2712. }
  2713. if (entries != cachep->num - slabp->inuse) {
  2714. bad:
  2715. printk(KERN_ERR "slab: Internal list corruption detected in "
  2716. "cache '%s'(%d), slabp %p(%d). Tainted(%s). Hexdump:\n",
  2717. cachep->name, cachep->num, slabp, slabp->inuse,
  2718. print_tainted());
  2719. print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, slabp,
  2720. sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t),
  2721. 1);
  2722. BUG();
  2723. }
  2724. }
  2725. #else
  2726. #define kfree_debugcheck(x) do { } while(0)
  2727. #define cache_free_debugcheck(x,objp,z) (objp)
  2728. #define check_slabp(x,y) do { } while(0)
  2729. #endif
  2730. static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
  2731. {
  2732. int batchcount;
  2733. struct kmem_list3 *l3;
  2734. struct array_cache *ac;
  2735. int node;
  2736. retry:
  2737. check_irq_off();
  2738. node = numa_mem_id();
  2739. ac = cpu_cache_get(cachep);
  2740. batchcount = ac->batchcount;
  2741. if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
  2742. /*
  2743. * If there was little recent activity on this cache, then
  2744. * perform only a partial refill. Otherwise we could generate
  2745. * refill bouncing.
  2746. */
  2747. batchcount = BATCHREFILL_LIMIT;
  2748. }
  2749. l3 = cachep->nodelists[node];
  2750. BUG_ON(ac->avail > 0 || !l3);
  2751. spin_lock(&l3->list_lock);
  2752. /* See if we can refill from the shared array */
  2753. if (l3->shared && transfer_objects(ac, l3->shared, batchcount)) {
  2754. l3->shared->touched = 1;
  2755. goto alloc_done;
  2756. }
  2757. while (batchcount > 0) {
  2758. struct list_head *entry;
  2759. struct slab *slabp;
  2760. /* Get slab alloc is to come from. */
  2761. entry = l3->slabs_partial.next;
  2762. if (entry == &l3->slabs_partial) {
  2763. l3->free_touched = 1;
  2764. entry = l3->slabs_free.next;
  2765. if (entry == &l3->slabs_free)
  2766. goto must_grow;
  2767. }
  2768. slabp = list_entry(entry, struct slab, list);
  2769. check_slabp(cachep, slabp);
  2770. check_spinlock_acquired(cachep);
  2771. /*
  2772. * The slab was either on partial or free list so
  2773. * there must be at least one object available for
  2774. * allocation.
  2775. */
  2776. BUG_ON(slabp->inuse >= cachep->num);
  2777. while (slabp->inuse < cachep->num && batchcount--) {
  2778. STATS_INC_ALLOCED(cachep);
  2779. STATS_INC_ACTIVE(cachep);
  2780. STATS_SET_HIGH(cachep);
  2781. ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
  2782. node);
  2783. }
  2784. check_slabp(cachep, slabp);
  2785. /* move slabp to correct slabp list: */
  2786. list_del(&slabp->list);
  2787. if (slabp->free == BUFCTL_END)
  2788. list_add(&slabp->list, &l3->slabs_full);
  2789. else
  2790. list_add(&slabp->list, &l3->slabs_partial);
  2791. }
  2792. must_grow:
  2793. l3->free_objects -= ac->avail;
  2794. alloc_done:
  2795. spin_unlock(&l3->list_lock);
  2796. if (unlikely(!ac->avail)) {
  2797. int x;
  2798. x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
  2799. /* cache_grow can reenable interrupts, then ac could change. */
  2800. ac = cpu_cache_get(cachep);
  2801. if (!x && ac->avail == 0) /* no objects in sight? abort */
  2802. return NULL;
  2803. if (!ac->avail) /* objects refilled by interrupt? */
  2804. goto retry;
  2805. }
  2806. ac->touched = 1;
  2807. return ac->entry[--ac->avail];
  2808. }
  2809. static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
  2810. gfp_t flags)
  2811. {
  2812. might_sleep_if(flags & __GFP_WAIT);
  2813. #if DEBUG
  2814. kmem_flagcheck(cachep, flags);
  2815. #endif
  2816. }
  2817. #if DEBUG
  2818. static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
  2819. gfp_t flags, void *objp, void *caller)
  2820. {
  2821. if (!objp)
  2822. return objp;
  2823. if (cachep->flags & SLAB_POISON) {
  2824. #ifdef CONFIG_DEBUG_PAGEALLOC
  2825. if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
  2826. kernel_map_pages(virt_to_page(objp),
  2827. cachep->buffer_size / PAGE_SIZE, 1);
  2828. else
  2829. check_poison_obj(cachep, objp);
  2830. #else
  2831. check_poison_obj(cachep, objp);
  2832. #endif
  2833. poison_obj(cachep, objp, POISON_INUSE);
  2834. }
  2835. if (cachep->flags & SLAB_STORE_USER)
  2836. *dbg_userword(cachep, objp) = caller;
  2837. if (cachep->flags & SLAB_RED_ZONE) {
  2838. if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
  2839. *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
  2840. slab_error(cachep, "double free, or memory outside"
  2841. " object was overwritten");
  2842. printk(KERN_ERR
  2843. "%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
  2844. objp, *dbg_redzone1(cachep, objp),
  2845. *dbg_redzone2(cachep, objp));
  2846. }
  2847. *dbg_redzone1(cachep, objp) = RED_ACTIVE;
  2848. *dbg_redzone2(cachep, objp) = RED_ACTIVE;
  2849. }
  2850. #ifdef CONFIG_DEBUG_SLAB_LEAK
  2851. {
  2852. struct slab *slabp;
  2853. unsigned objnr;
  2854. slabp = virt_to_head_page(objp)->slab_page;
  2855. objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
  2856. slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
  2857. }
  2858. #endif
  2859. objp += obj_offset(cachep);
  2860. if (cachep->ctor && cachep->flags & SLAB_POISON)
  2861. cachep->ctor(objp);
  2862. if (ARCH_SLAB_MINALIGN &&
  2863. ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
  2864. printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
  2865. objp, (int)ARCH_SLAB_MINALIGN);
  2866. }
  2867. return objp;
  2868. }
  2869. #else
  2870. #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
  2871. #endif
  2872. static bool slab_should_failslab(struct kmem_cache *cachep, gfp_t flags)
  2873. {
  2874. if (cachep == &cache_cache)
  2875. return false;
  2876. return should_failslab(obj_size(cachep), flags, cachep->flags);
  2877. }
  2878. static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  2879. {
  2880. void *objp;
  2881. struct array_cache *ac;
  2882. check_irq_off();
  2883. ac = cpu_cache_get(cachep);
  2884. if (likely(ac->avail)) {
  2885. STATS_INC_ALLOCHIT(cachep);
  2886. ac->touched = 1;
  2887. objp = ac->entry[--ac->avail];
  2888. } else {
  2889. STATS_INC_ALLOCMISS(cachep);
  2890. objp = cache_alloc_refill(cachep, flags);
  2891. /*
  2892. * the 'ac' may be updated by cache_alloc_refill(),
  2893. * and kmemleak_erase() requires its correct value.
  2894. */
  2895. ac = cpu_cache_get(cachep);
  2896. }
  2897. /*
  2898. * To avoid a false negative, if an object that is in one of the
  2899. * per-CPU caches is leaked, we need to make sure kmemleak doesn't
  2900. * treat the array pointers as a reference to the object.
  2901. */
  2902. if (objp)
  2903. kmemleak_erase(&ac->entry[ac->avail]);
  2904. return objp;
  2905. }
  2906. #ifdef CONFIG_NUMA
  2907. /*
  2908. * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
  2909. *
  2910. * If we are in_interrupt, then process context, including cpusets and
  2911. * mempolicy, may not apply and should not be used for allocation policy.
  2912. */
  2913. static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
  2914. {
  2915. int nid_alloc, nid_here;
  2916. if (in_interrupt() || (flags & __GFP_THISNODE))
  2917. return NULL;
  2918. nid_alloc = nid_here = numa_mem_id();
  2919. if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
  2920. nid_alloc = cpuset_slab_spread_node();
  2921. else if (current->mempolicy)
  2922. nid_alloc = slab_node(current->mempolicy);
  2923. if (nid_alloc != nid_here)
  2924. return ____cache_alloc_node(cachep, flags, nid_alloc);
  2925. return NULL;
  2926. }
  2927. /*
  2928. * Fallback function if there was no memory available and no objects on a
  2929. * certain node and fall back is permitted. First we scan all the
  2930. * available nodelists for available objects. If that fails then we
  2931. * perform an allocation without specifying a node. This allows the page
  2932. * allocator to do its reclaim / fallback magic. We then insert the
  2933. * slab into the proper nodelist and then allocate from it.
  2934. */
  2935. static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
  2936. {
  2937. struct zonelist *zonelist;
  2938. gfp_t local_flags;
  2939. struct zoneref *z;
  2940. struct zone *zone;
  2941. enum zone_type high_zoneidx = gfp_zone(flags);
  2942. void *obj = NULL;
  2943. int nid;
  2944. unsigned int cpuset_mems_cookie;
  2945. if (flags & __GFP_THISNODE)
  2946. return NULL;
  2947. local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
  2948. retry_cpuset:
  2949. cpuset_mems_cookie = get_mems_allowed();
  2950. zonelist = node_zonelist(slab_node(current->mempolicy), flags);
  2951. retry:
  2952. /*
  2953. * Look through allowed nodes for objects available
  2954. * from existing per node queues.
  2955. */
  2956. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
  2957. nid = zone_to_nid(zone);
  2958. if (cpuset_zone_allowed_hardwall(zone, flags) &&
  2959. cache->nodelists[nid] &&
  2960. cache->nodelists[nid]->free_objects) {
  2961. obj = ____cache_alloc_node(cache,
  2962. flags | GFP_THISNODE, nid);
  2963. if (obj)
  2964. break;
  2965. }
  2966. }
  2967. if (!obj) {
  2968. /*
  2969. * This allocation will be performed within the constraints
  2970. * of the current cpuset / memory policy requirements.
  2971. * We may trigger various forms of reclaim on the allowed
  2972. * set and go into memory reserves if necessary.
  2973. */
  2974. if (local_flags & __GFP_WAIT)
  2975. local_irq_enable();
  2976. kmem_flagcheck(cache, flags);
  2977. obj = kmem_getpages(cache, local_flags, numa_mem_id());
  2978. if (local_flags & __GFP_WAIT)
  2979. local_irq_disable();
  2980. if (obj) {
  2981. /*
  2982. * Insert into the appropriate per node queues
  2983. */
  2984. nid = page_to_nid(virt_to_page(obj));
  2985. if (cache_grow(cache, flags, nid, obj)) {
  2986. obj = ____cache_alloc_node(cache,
  2987. flags | GFP_THISNODE, nid);
  2988. if (!obj)
  2989. /*
  2990. * Another processor may allocate the
  2991. * objects in the slab since we are
  2992. * not holding any locks.
  2993. */
  2994. goto retry;
  2995. } else {
  2996. /* cache_grow already freed obj */
  2997. obj = NULL;
  2998. }
  2999. }
  3000. }
  3001. if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !obj))
  3002. goto retry_cpuset;
  3003. return obj;
  3004. }
  3005. /*
  3006. * A interface to enable slab creation on nodeid
  3007. */
  3008. static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
  3009. int nodeid)
  3010. {
  3011. struct list_head *entry;
  3012. struct slab *slabp;
  3013. struct kmem_list3 *l3;
  3014. void *obj;
  3015. int x;
  3016. l3 = cachep->nodelists[nodeid];
  3017. BUG_ON(!l3);
  3018. retry:
  3019. check_irq_off();
  3020. spin_lock(&l3->list_lock);
  3021. entry = l3->slabs_partial.next;
  3022. if (entry == &l3->slabs_partial) {
  3023. l3->free_touched = 1;
  3024. entry = l3->slabs_free.next;
  3025. if (entry == &l3->slabs_free)
  3026. goto must_grow;
  3027. }
  3028. slabp = list_entry(entry, struct slab, list);
  3029. check_spinlock_acquired_node(cachep, nodeid);
  3030. check_slabp(cachep, slabp);
  3031. STATS_INC_NODEALLOCS(cachep);
  3032. STATS_INC_ACTIVE(cachep);
  3033. STATS_SET_HIGH(cachep);
  3034. BUG_ON(slabp->inuse == cachep->num);
  3035. obj = slab_get_obj(cachep, slabp, nodeid);
  3036. check_slabp(cachep, slabp);
  3037. l3->free_objects--;
  3038. /* move slabp to correct slabp list: */
  3039. list_del(&slabp->list);
  3040. if (slabp->free == BUFCTL_END)
  3041. list_add(&slabp->list, &l3->slabs_full);
  3042. else
  3043. list_add(&slabp->list, &l3->slabs_partial);
  3044. spin_unlock(&l3->list_lock);
  3045. goto done;
  3046. must_grow:
  3047. spin_unlock(&l3->list_lock);
  3048. x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
  3049. if (x)
  3050. goto retry;
  3051. return fallback_alloc(cachep, flags);
  3052. done:
  3053. return obj;
  3054. }
  3055. /**
  3056. * kmem_cache_alloc_node - Allocate an object on the specified node
  3057. * @cachep: The cache to allocate from.
  3058. * @flags: See kmalloc().
  3059. * @nodeid: node number of the target node.
  3060. * @caller: return address of caller, used for debug information
  3061. *
  3062. * Identical to kmem_cache_alloc but it will allocate memory on the given
  3063. * node, which can improve the performance for cpu bound structures.
  3064. *
  3065. * Fallback to other node is possible if __GFP_THISNODE is not set.
  3066. */
  3067. static __always_inline void *
  3068. __cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
  3069. void *caller)
  3070. {
  3071. unsigned long save_flags;
  3072. void *ptr;
  3073. int slab_node = numa_mem_id();
  3074. flags &= gfp_allowed_mask;
  3075. lockdep_trace_alloc(flags);
  3076. if (slab_should_failslab(cachep, flags))
  3077. return NULL;
  3078. cache_alloc_debugcheck_before(cachep, flags);
  3079. local_irq_save(save_flags);
  3080. if (nodeid == NUMA_NO_NODE)
  3081. nodeid = slab_node;
  3082. if (unlikely(!cachep->nodelists[nodeid])) {
  3083. /* Node not bootstrapped yet */
  3084. ptr = fallback_alloc(cachep, flags);
  3085. goto out;
  3086. }
  3087. if (nodeid == slab_node) {
  3088. /*
  3089. * Use the locally cached objects if possible.
  3090. * However ____cache_alloc does not allow fallback
  3091. * to other nodes. It may fail while we still have
  3092. * objects on other nodes available.
  3093. */
  3094. ptr = ____cache_alloc(cachep, flags);
  3095. if (ptr)
  3096. goto out;
  3097. }
  3098. /* ___cache_alloc_node can fall back to other nodes */
  3099. ptr = ____cache_alloc_node(cachep, flags, nodeid);
  3100. out:
  3101. local_irq_restore(save_flags);
  3102. ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
  3103. kmemleak_alloc_recursive(ptr, obj_size(cachep), 1, cachep->flags,
  3104. flags);
  3105. if (likely(ptr))
  3106. kmemcheck_slab_alloc(cachep, flags, ptr, obj_size(cachep));
  3107. if (unlikely((flags & __GFP_ZERO) && ptr))
  3108. memset(ptr, 0, obj_size(cachep));
  3109. return ptr;
  3110. }
  3111. static __always_inline void *
  3112. __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
  3113. {
  3114. void *objp;
  3115. if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
  3116. objp = alternate_node_alloc(cache, flags);
  3117. if (objp)
  3118. goto out;
  3119. }
  3120. objp = ____cache_alloc(cache, flags);
  3121. /*
  3122. * We may just have run out of memory on the local node.
  3123. * ____cache_alloc_node() knows how to locate memory on other nodes
  3124. */
  3125. if (!objp)
  3126. objp = ____cache_alloc_node(cache, flags, numa_mem_id());
  3127. out:
  3128. return objp;
  3129. }
  3130. #else
  3131. static __always_inline void *
  3132. __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  3133. {
  3134. return ____cache_alloc(cachep, flags);
  3135. }
  3136. #endif /* CONFIG_NUMA */
  3137. static __always_inline void *
  3138. __cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
  3139. {
  3140. unsigned long save_flags;
  3141. void *objp;
  3142. flags &= gfp_allowed_mask;
  3143. lockdep_trace_alloc(flags);
  3144. if (slab_should_failslab(cachep, flags))
  3145. return NULL;
  3146. cache_alloc_debugcheck_before(cachep, flags);
  3147. local_irq_save(save_flags);
  3148. objp = __do_cache_alloc(cachep, flags);
  3149. local_irq_restore(save_flags);
  3150. objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
  3151. kmemleak_alloc_recursive(objp, obj_size(cachep), 1, cachep->flags,
  3152. flags);
  3153. prefetchw(objp);
  3154. if (likely(objp))
  3155. kmemcheck_slab_alloc(cachep, flags, objp, obj_size(cachep));
  3156. if (unlikely((flags & __GFP_ZERO) && objp))
  3157. memset(objp, 0, obj_size(cachep));
  3158. return objp;
  3159. }
  3160. /*
  3161. * Caller needs to acquire correct kmem_list's list_lock
  3162. */
  3163. static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
  3164. int node)
  3165. {
  3166. int i;
  3167. struct kmem_list3 *l3;
  3168. for (i = 0; i < nr_objects; i++) {
  3169. void *objp = objpp[i];
  3170. struct slab *slabp;
  3171. slabp = virt_to_slab(objp);
  3172. l3 = cachep->nodelists[node];
  3173. list_del(&slabp->list);
  3174. check_spinlock_acquired_node(cachep, node);
  3175. check_slabp(cachep, slabp);
  3176. slab_put_obj(cachep, slabp, objp, node);
  3177. STATS_DEC_ACTIVE(cachep);
  3178. l3->free_objects++;
  3179. check_slabp(cachep, slabp);
  3180. /* fixup slab chains */
  3181. if (slabp->inuse == 0) {
  3182. if (l3->free_objects > l3->free_limit) {
  3183. l3->free_objects -= cachep->num;
  3184. /* No need to drop any previously held
  3185. * lock here, even if we have a off-slab slab
  3186. * descriptor it is guaranteed to come from
  3187. * a different cache, refer to comments before
  3188. * alloc_slabmgmt.
  3189. */
  3190. slab_destroy(cachep, slabp);
  3191. } else {
  3192. list_add(&slabp->list, &l3->slabs_free);
  3193. }
  3194. } else {
  3195. /* Unconditionally move a slab to the end of the
  3196. * partial list on free - maximum time for the
  3197. * other objects to be freed, too.
  3198. */
  3199. list_add_tail(&slabp->list, &l3->slabs_partial);
  3200. }
  3201. }
  3202. }
  3203. static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
  3204. {
  3205. int batchcount;
  3206. struct kmem_list3 *l3;
  3207. int node = numa_mem_id();
  3208. batchcount = ac->batchcount;
  3209. #if DEBUG
  3210. BUG_ON(!batchcount || batchcount > ac->avail);
  3211. #endif
  3212. check_irq_off();
  3213. l3 = cachep->nodelists[node];
  3214. spin_lock(&l3->list_lock);
  3215. if (l3->shared) {
  3216. struct array_cache *shared_array = l3->shared;
  3217. int max = shared_array->limit - shared_array->avail;
  3218. if (max) {
  3219. if (batchcount > max)
  3220. batchcount = max;
  3221. memcpy(&(shared_array->entry[shared_array->avail]),
  3222. ac->entry, sizeof(void *) * batchcount);
  3223. shared_array->avail += batchcount;
  3224. goto free_done;
  3225. }
  3226. }
  3227. free_block(cachep, ac->entry, batchcount, node);
  3228. free_done:
  3229. #if STATS
  3230. {
  3231. int i = 0;
  3232. struct list_head *p;
  3233. p = l3->slabs_free.next;
  3234. while (p != &(l3->slabs_free)) {
  3235. struct slab *slabp;
  3236. slabp = list_entry(p, struct slab, list);
  3237. BUG_ON(slabp->inuse);
  3238. i++;
  3239. p = p->next;
  3240. }
  3241. STATS_SET_FREEABLE(cachep, i);
  3242. }
  3243. #endif
  3244. spin_unlock(&l3->list_lock);
  3245. ac->avail -= batchcount;
  3246. memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
  3247. }
  3248. /*
  3249. * Release an obj back to its cache. If the obj has a constructed state, it must
  3250. * be in this state _before_ it is released. Called with disabled ints.
  3251. */
  3252. static inline void __cache_free(struct kmem_cache *cachep, void *objp,
  3253. void *caller)
  3254. {
  3255. struct array_cache *ac = cpu_cache_get(cachep);
  3256. check_irq_off();
  3257. kmemleak_free_recursive(objp, cachep->flags);
  3258. objp = cache_free_debugcheck(cachep, objp, caller);
  3259. kmemcheck_slab_free(cachep, objp, obj_size(cachep));
  3260. /*
  3261. * Skip calling cache_free_alien() when the platform is not numa.
  3262. * This will avoid cache misses that happen while accessing slabp (which
  3263. * is per page memory reference) to get nodeid. Instead use a global
  3264. * variable to skip the call, which is mostly likely to be present in
  3265. * the cache.
  3266. */
  3267. if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
  3268. return;
  3269. if (likely(ac->avail < ac->limit)) {
  3270. STATS_INC_FREEHIT(cachep);
  3271. } else {
  3272. STATS_INC_FREEMISS(cachep);
  3273. cache_flusharray(cachep, ac);
  3274. }
  3275. ac->entry[ac->avail++] = objp;
  3276. }
  3277. /**
  3278. * kmem_cache_alloc - Allocate an object
  3279. * @cachep: The cache to allocate from.
  3280. * @flags: See kmalloc().
  3281. *
  3282. * Allocate an object from this cache. The flags are only relevant
  3283. * if the cache has no available objects.
  3284. */
  3285. void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
  3286. {
  3287. void *ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
  3288. trace_kmem_cache_alloc(_RET_IP_, ret,
  3289. obj_size(cachep), cachep->buffer_size, flags);
  3290. return ret;
  3291. }
  3292. EXPORT_SYMBOL(kmem_cache_alloc);
  3293. #ifdef CONFIG_TRACING
  3294. void *
  3295. kmem_cache_alloc_trace(size_t size, struct kmem_cache *cachep, gfp_t flags)
  3296. {
  3297. void *ret;
  3298. ret = __cache_alloc(cachep, flags, __builtin_return_address(0));
  3299. trace_kmalloc(_RET_IP_, ret,
  3300. size, slab_buffer_size(cachep), flags);
  3301. return ret;
  3302. }
  3303. EXPORT_SYMBOL(kmem_cache_alloc_trace);
  3304. #endif
  3305. #ifdef CONFIG_NUMA
  3306. void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
  3307. {
  3308. void *ret = __cache_alloc_node(cachep, flags, nodeid,
  3309. __builtin_return_address(0));
  3310. trace_kmem_cache_alloc_node(_RET_IP_, ret,
  3311. obj_size(cachep), cachep->buffer_size,
  3312. flags, nodeid);
  3313. return ret;
  3314. }
  3315. EXPORT_SYMBOL(kmem_cache_alloc_node);
  3316. #ifdef CONFIG_TRACING
  3317. void *kmem_cache_alloc_node_trace(size_t size,
  3318. struct kmem_cache *cachep,
  3319. gfp_t flags,
  3320. int nodeid)
  3321. {
  3322. void *ret;
  3323. ret = __cache_alloc_node(cachep, flags, nodeid,
  3324. __builtin_return_address(0));
  3325. trace_kmalloc_node(_RET_IP_, ret,
  3326. size, slab_buffer_size(cachep),
  3327. flags, nodeid);
  3328. return ret;
  3329. }
  3330. EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
  3331. #endif
  3332. static __always_inline void *
  3333. __do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
  3334. {
  3335. struct kmem_cache *cachep;
  3336. cachep = kmem_find_general_cachep(size, flags);
  3337. if (unlikely(ZERO_OR_NULL_PTR(cachep)))
  3338. return cachep;
  3339. return kmem_cache_alloc_node_trace(size, cachep, flags, node);
  3340. }
  3341. #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
  3342. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  3343. {
  3344. return __do_kmalloc_node(size, flags, node,
  3345. __builtin_return_address(0));
  3346. }
  3347. EXPORT_SYMBOL(__kmalloc_node);
  3348. void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
  3349. int node, unsigned long caller)
  3350. {
  3351. return __do_kmalloc_node(size, flags, node, (void *)caller);
  3352. }
  3353. EXPORT_SYMBOL(__kmalloc_node_track_caller);
  3354. #else
  3355. void *__kmalloc_node(size_t size, gfp_t flags, int node)
  3356. {
  3357. return __do_kmalloc_node(size, flags, node, NULL);
  3358. }
  3359. EXPORT_SYMBOL(__kmalloc_node);
  3360. #endif /* CONFIG_DEBUG_SLAB || CONFIG_TRACING */
  3361. #endif /* CONFIG_NUMA */
  3362. /**
  3363. * __do_kmalloc - allocate memory
  3364. * @size: how many bytes of memory are required.
  3365. * @flags: the type of memory to allocate (see kmalloc).
  3366. * @caller: function caller for debug tracking of the caller
  3367. */
  3368. static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
  3369. void *caller)
  3370. {
  3371. struct kmem_cache *cachep;
  3372. void *ret;
  3373. /* If you want to save a few bytes .text space: replace
  3374. * __ with kmem_.
  3375. * Then kmalloc uses the uninlined functions instead of the inline
  3376. * functions.
  3377. */
  3378. cachep = __find_general_cachep(size, flags);
  3379. if (unlikely(ZERO_OR_NULL_PTR(cachep)))
  3380. return cachep;
  3381. ret = __cache_alloc(cachep, flags, caller);
  3382. trace_kmalloc((unsigned long) caller, ret,
  3383. size, cachep->buffer_size, flags);
  3384. return ret;
  3385. }
  3386. #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_TRACING)
  3387. void *__kmalloc(size_t size, gfp_t flags)
  3388. {
  3389. return __do_kmalloc(size, flags, __builtin_return_address(0));
  3390. }
  3391. EXPORT_SYMBOL(__kmalloc);
  3392. void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
  3393. {
  3394. return __do_kmalloc(size, flags, (void *)caller);
  3395. }
  3396. EXPORT_SYMBOL(__kmalloc_track_caller);
  3397. #else
  3398. void *__kmalloc(size_t size, gfp_t flags)
  3399. {
  3400. return __do_kmalloc(size, flags, NULL);
  3401. }
  3402. EXPORT_SYMBOL(__kmalloc);
  3403. #endif
  3404. /**
  3405. * kmem_cache_free - Deallocate an object
  3406. * @cachep: The cache the allocation was from.
  3407. * @objp: The previously allocated object.
  3408. *
  3409. * Free an object which was previously allocated from this
  3410. * cache.
  3411. */
  3412. void kmem_cache_free(struct kmem_cache *cachep, void *objp)
  3413. {
  3414. unsigned long flags;
  3415. local_irq_save(flags);
  3416. debug_check_no_locks_freed(objp, obj_size(cachep));
  3417. if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
  3418. debug_check_no_obj_freed(objp, obj_size(cachep));
  3419. __cache_free(cachep, objp, __builtin_return_address(0));
  3420. local_irq_restore(flags);
  3421. trace_kmem_cache_free(_RET_IP_, objp);
  3422. }
  3423. EXPORT_SYMBOL(kmem_cache_free);
  3424. /**
  3425. * kfree - free previously allocated memory
  3426. * @objp: pointer returned by kmalloc.
  3427. *
  3428. * If @objp is NULL, no operation is performed.
  3429. *
  3430. * Don't free memory not originally allocated by kmalloc()
  3431. * or you will run into trouble.
  3432. */
  3433. void kfree(const void *objp)
  3434. {
  3435. struct kmem_cache *c;
  3436. unsigned long flags;
  3437. trace_kfree(_RET_IP_, objp);
  3438. if (unlikely(ZERO_OR_NULL_PTR(objp)))
  3439. return;
  3440. local_irq_save(flags);
  3441. kfree_debugcheck(objp);
  3442. c = virt_to_cache(objp);
  3443. debug_check_no_locks_freed(objp, obj_size(c));
  3444. debug_check_no_obj_freed(objp, obj_size(c));
  3445. __cache_free(c, (void *)objp, __builtin_return_address(0));
  3446. local_irq_restore(flags);
  3447. }
  3448. EXPORT_SYMBOL(kfree);
  3449. unsigned int kmem_cache_size(struct kmem_cache *cachep)
  3450. {
  3451. return obj_size(cachep);
  3452. }
  3453. EXPORT_SYMBOL(kmem_cache_size);
  3454. /*
  3455. * This initializes kmem_list3 or resizes various caches for all nodes.
  3456. */
  3457. static int alloc_kmemlist(struct kmem_cache *cachep, gfp_t gfp)
  3458. {
  3459. int node;
  3460. struct kmem_list3 *l3;
  3461. struct array_cache *new_shared;
  3462. struct array_cache **new_alien = NULL;
  3463. for_each_online_node(node) {
  3464. if (use_alien_caches) {
  3465. new_alien = alloc_alien_cache(node, cachep->limit, gfp);
  3466. if (!new_alien)
  3467. goto fail;
  3468. }
  3469. new_shared = NULL;
  3470. if (cachep->shared) {
  3471. new_shared = alloc_arraycache(node,
  3472. cachep->shared*cachep->batchcount,
  3473. 0xbaadf00d, gfp);
  3474. if (!new_shared) {
  3475. free_alien_cache(new_alien);
  3476. goto fail;
  3477. }
  3478. }
  3479. l3 = cachep->nodelists[node];
  3480. if (l3) {
  3481. struct array_cache *shared = l3->shared;
  3482. spin_lock_irq(&l3->list_lock);
  3483. if (shared)
  3484. free_block(cachep, shared->entry,
  3485. shared->avail, node);
  3486. l3->shared = new_shared;
  3487. if (!l3->alien) {
  3488. l3->alien = new_alien;
  3489. new_alien = NULL;
  3490. }
  3491. l3->free_limit = (1 + nr_cpus_node(node)) *
  3492. cachep->batchcount + cachep->num;
  3493. spin_unlock_irq(&l3->list_lock);
  3494. kfree(shared);
  3495. free_alien_cache(new_alien);
  3496. continue;
  3497. }
  3498. l3 = kmalloc_node(sizeof(struct kmem_list3), gfp, node);
  3499. if (!l3) {
  3500. free_alien_cache(new_alien);
  3501. kfree(new_shared);
  3502. goto fail;
  3503. }
  3504. kmem_list3_init(l3);
  3505. l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
  3506. ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
  3507. l3->shared = new_shared;
  3508. l3->alien = new_alien;
  3509. l3->free_limit = (1 + nr_cpus_node(node)) *
  3510. cachep->batchcount + cachep->num;
  3511. cachep->nodelists[node] = l3;
  3512. }
  3513. return 0;
  3514. fail:
  3515. if (!cachep->next.next) {
  3516. /* Cache is not active yet. Roll back what we did */
  3517. node--;
  3518. while (node >= 0) {
  3519. if (cachep->nodelists[node]) {
  3520. l3 = cachep->nodelists[node];
  3521. kfree(l3->shared);
  3522. free_alien_cache(l3->alien);
  3523. kfree(l3);
  3524. cachep->nodelists[node] = NULL;
  3525. }
  3526. node--;
  3527. }
  3528. }
  3529. return -ENOMEM;
  3530. }
  3531. struct ccupdate_struct {
  3532. struct kmem_cache *cachep;
  3533. struct array_cache *new[0];
  3534. };
  3535. static void do_ccupdate_local(void *info)
  3536. {
  3537. struct ccupdate_struct *new = info;
  3538. struct array_cache *old;
  3539. check_irq_off();
  3540. old = cpu_cache_get(new->cachep);
  3541. new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
  3542. new->new[smp_processor_id()] = old;
  3543. }
  3544. /* Always called with the cache_chain_mutex held */
  3545. static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
  3546. int batchcount, int shared, gfp_t gfp)
  3547. {
  3548. struct ccupdate_struct *new;
  3549. int i;
  3550. new = kzalloc(sizeof(*new) + nr_cpu_ids * sizeof(struct array_cache *),
  3551. gfp);
  3552. if (!new)
  3553. return -ENOMEM;
  3554. for_each_online_cpu(i) {
  3555. new->new[i] = alloc_arraycache(cpu_to_mem(i), limit,
  3556. batchcount, gfp);
  3557. if (!new->new[i]) {
  3558. for (i--; i >= 0; i--)
  3559. kfree(new->new[i]);
  3560. kfree(new);
  3561. return -ENOMEM;
  3562. }
  3563. }
  3564. new->cachep = cachep;
  3565. on_each_cpu(do_ccupdate_local, (void *)new, 1);
  3566. check_irq_on();
  3567. cachep->batchcount = batchcount;
  3568. cachep->limit = limit;
  3569. cachep->shared = shared;
  3570. for_each_online_cpu(i) {
  3571. struct array_cache *ccold = new->new[i];
  3572. if (!ccold)
  3573. continue;
  3574. spin_lock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
  3575. free_block(cachep, ccold->entry, ccold->avail, cpu_to_mem(i));
  3576. spin_unlock_irq(&cachep->nodelists[cpu_to_mem(i)]->list_lock);
  3577. kfree(ccold);
  3578. }
  3579. kfree(new);
  3580. return alloc_kmemlist(cachep, gfp);
  3581. }
  3582. /* Called with cache_chain_mutex held always */
  3583. static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
  3584. {
  3585. int err;
  3586. int limit, shared;
  3587. /*
  3588. * The head array serves three purposes:
  3589. * - create a LIFO ordering, i.e. return objects that are cache-warm
  3590. * - reduce the number of spinlock operations.
  3591. * - reduce the number of linked list operations on the slab and
  3592. * bufctl chains: array operations are cheaper.
  3593. * The numbers are guessed, we should auto-tune as described by
  3594. * Bonwick.
  3595. */
  3596. if (cachep->buffer_size > 131072)
  3597. limit = 1;
  3598. else if (cachep->buffer_size > PAGE_SIZE)
  3599. limit = 8;
  3600. else if (cachep->buffer_size > 1024)
  3601. limit = 24;
  3602. else if (cachep->buffer_size > 256)
  3603. limit = 54;
  3604. else
  3605. limit = 120;
  3606. /*
  3607. * CPU bound tasks (e.g. network routing) can exhibit cpu bound
  3608. * allocation behaviour: Most allocs on one cpu, most free operations
  3609. * on another cpu. For these cases, an efficient object passing between
  3610. * cpus is necessary. This is provided by a shared array. The array
  3611. * replaces Bonwick's magazine layer.
  3612. * On uniprocessor, it's functionally equivalent (but less efficient)
  3613. * to a larger limit. Thus disabled by default.
  3614. */
  3615. shared = 0;
  3616. if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
  3617. shared = 8;
  3618. #if DEBUG
  3619. /*
  3620. * With debugging enabled, large batchcount lead to excessively long
  3621. * periods with disabled local interrupts. Limit the batchcount
  3622. */
  3623. if (limit > 32)
  3624. limit = 32;
  3625. #endif
  3626. err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared, gfp);
  3627. if (err)
  3628. printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
  3629. cachep->name, -err);
  3630. return err;
  3631. }
  3632. /*
  3633. * Drain an array if it contains any elements taking the l3 lock only if
  3634. * necessary. Note that the l3 listlock also protects the array_cache
  3635. * if drain_array() is used on the shared array.
  3636. */
  3637. static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
  3638. struct array_cache *ac, int force, int node)
  3639. {
  3640. int tofree;
  3641. if (!ac || !ac->avail)
  3642. return;
  3643. if (ac->touched && !force) {
  3644. ac->touched = 0;
  3645. } else {
  3646. spin_lock_irq(&l3->list_lock);
  3647. if (ac->avail) {
  3648. tofree = force ? ac->avail : (ac->limit + 4) / 5;
  3649. if (tofree > ac->avail)
  3650. tofree = (ac->avail + 1) / 2;
  3651. free_block(cachep, ac->entry, tofree, node);
  3652. ac->avail -= tofree;
  3653. memmove(ac->entry, &(ac->entry[tofree]),
  3654. sizeof(void *) * ac->avail);
  3655. }
  3656. spin_unlock_irq(&l3->list_lock);
  3657. }
  3658. }
  3659. /**
  3660. * cache_reap - Reclaim memory from caches.
  3661. * @w: work descriptor
  3662. *
  3663. * Called from workqueue/eventd every few seconds.
  3664. * Purpose:
  3665. * - clear the per-cpu caches for this CPU.
  3666. * - return freeable pages to the main free memory pool.
  3667. *
  3668. * If we cannot acquire the cache chain mutex then just give up - we'll try
  3669. * again on the next iteration.
  3670. */
  3671. static void cache_reap(struct work_struct *w)
  3672. {
  3673. struct kmem_cache *searchp;
  3674. struct kmem_list3 *l3;
  3675. int node = numa_mem_id();
  3676. struct delayed_work *work = to_delayed_work(w);
  3677. if (!mutex_trylock(&cache_chain_mutex))
  3678. /* Give up. Setup the next iteration. */
  3679. goto out;
  3680. list_for_each_entry(searchp, &cache_chain, next) {
  3681. check_irq_on();
  3682. /*
  3683. * We only take the l3 lock if absolutely necessary and we
  3684. * have established with reasonable certainty that
  3685. * we can do some work if the lock was obtained.
  3686. */
  3687. l3 = searchp->nodelists[node];
  3688. reap_alien(searchp, l3);
  3689. drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
  3690. /*
  3691. * These are racy checks but it does not matter
  3692. * if we skip one check or scan twice.
  3693. */
  3694. if (time_after(l3->next_reap, jiffies))
  3695. goto next;
  3696. l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
  3697. drain_array(searchp, l3, l3->shared, 0, node);
  3698. if (l3->free_touched)
  3699. l3->free_touched = 0;
  3700. else {
  3701. int freed;
  3702. freed = drain_freelist(searchp, l3, (l3->free_limit +
  3703. 5 * searchp->num - 1) / (5 * searchp->num));
  3704. STATS_ADD_REAPED(searchp, freed);
  3705. }
  3706. next:
  3707. cond_resched();
  3708. }
  3709. check_irq_on();
  3710. mutex_unlock(&cache_chain_mutex);
  3711. next_reap_node();
  3712. out:
  3713. /* Set up the next iteration */
  3714. schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
  3715. }
  3716. #ifdef CONFIG_SLABINFO
  3717. static void print_slabinfo_header(struct seq_file *m)
  3718. {
  3719. /*
  3720. * Output format version, so at least we can change it
  3721. * without _too_ many complaints.
  3722. */
  3723. #if STATS
  3724. seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
  3725. #else
  3726. seq_puts(m, "slabinfo - version: 2.1\n");
  3727. #endif
  3728. seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
  3729. "<objperslab> <pagesperslab>");
  3730. seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
  3731. seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
  3732. #if STATS
  3733. seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
  3734. "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
  3735. seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
  3736. #endif
  3737. seq_putc(m, '\n');
  3738. }
  3739. static void *s_start(struct seq_file *m, loff_t *pos)
  3740. {
  3741. loff_t n = *pos;
  3742. mutex_lock(&cache_chain_mutex);
  3743. if (!n)
  3744. print_slabinfo_header(m);
  3745. return seq_list_start(&cache_chain, *pos);
  3746. }
  3747. static void *s_next(struct seq_file *m, void *p, loff_t *pos)
  3748. {
  3749. return seq_list_next(p, &cache_chain, pos);
  3750. }
  3751. static void s_stop(struct seq_file *m, void *p)
  3752. {
  3753. mutex_unlock(&cache_chain_mutex);
  3754. }
  3755. static int s_show(struct seq_file *m, void *p)
  3756. {
  3757. struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
  3758. struct slab *slabp;
  3759. unsigned long active_objs;
  3760. unsigned long num_objs;
  3761. unsigned long active_slabs = 0;
  3762. unsigned long num_slabs, free_objects = 0, shared_avail = 0;
  3763. const char *name;
  3764. char *error = NULL;
  3765. int node;
  3766. struct kmem_list3 *l3;
  3767. active_objs = 0;
  3768. num_slabs = 0;
  3769. for_each_online_node(node) {
  3770. l3 = cachep->nodelists[node];
  3771. if (!l3)
  3772. continue;
  3773. check_irq_on();
  3774. spin_lock_irq(&l3->list_lock);
  3775. list_for_each_entry(slabp, &l3->slabs_full, list) {
  3776. if (slabp->inuse != cachep->num && !error)
  3777. error = "slabs_full accounting error";
  3778. active_objs += cachep->num;
  3779. active_slabs++;
  3780. }
  3781. list_for_each_entry(slabp, &l3->slabs_partial, list) {
  3782. if (slabp->inuse == cachep->num && !error)
  3783. error = "slabs_partial inuse accounting error";
  3784. if (!slabp->inuse && !error)
  3785. error = "slabs_partial/inuse accounting error";
  3786. active_objs += slabp->inuse;
  3787. active_slabs++;
  3788. }
  3789. list_for_each_entry(slabp, &l3->slabs_free, list) {
  3790. if (slabp->inuse && !error)
  3791. error = "slabs_free/inuse accounting error";
  3792. num_slabs++;
  3793. }
  3794. free_objects += l3->free_objects;
  3795. if (l3->shared)
  3796. shared_avail += l3->shared->avail;
  3797. spin_unlock_irq(&l3->list_lock);
  3798. }
  3799. num_slabs += active_slabs;
  3800. num_objs = num_slabs * cachep->num;
  3801. if (num_objs - active_objs != free_objects && !error)
  3802. error = "free_objects accounting error";
  3803. name = cachep->name;
  3804. if (error)
  3805. printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
  3806. seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
  3807. name, active_objs, num_objs, cachep->buffer_size,
  3808. cachep->num, (1 << cachep->gfporder));
  3809. seq_printf(m, " : tunables %4u %4u %4u",
  3810. cachep->limit, cachep->batchcount, cachep->shared);
  3811. seq_printf(m, " : slabdata %6lu %6lu %6lu",
  3812. active_slabs, num_slabs, shared_avail);
  3813. #if STATS
  3814. { /* list3 stats */
  3815. unsigned long high = cachep->high_mark;
  3816. unsigned long allocs = cachep->num_allocations;
  3817. unsigned long grown = cachep->grown;
  3818. unsigned long reaped = cachep->reaped;
  3819. unsigned long errors = cachep->errors;
  3820. unsigned long max_freeable = cachep->max_freeable;
  3821. unsigned long node_allocs = cachep->node_allocs;
  3822. unsigned long node_frees = cachep->node_frees;
  3823. unsigned long overflows = cachep->node_overflow;
  3824. seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu "
  3825. "%4lu %4lu %4lu %4lu %4lu",
  3826. allocs, high, grown,
  3827. reaped, errors, max_freeable, node_allocs,
  3828. node_frees, overflows);
  3829. }
  3830. /* cpu stats */
  3831. {
  3832. unsigned long allochit = atomic_read(&cachep->allochit);
  3833. unsigned long allocmiss = atomic_read(&cachep->allocmiss);
  3834. unsigned long freehit = atomic_read(&cachep->freehit);
  3835. unsigned long freemiss = atomic_read(&cachep->freemiss);
  3836. seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
  3837. allochit, allocmiss, freehit, freemiss);
  3838. }
  3839. #endif
  3840. seq_putc(m, '\n');
  3841. return 0;
  3842. }
  3843. /*
  3844. * slabinfo_op - iterator that generates /proc/slabinfo
  3845. *
  3846. * Output layout:
  3847. * cache-name
  3848. * num-active-objs
  3849. * total-objs
  3850. * object size
  3851. * num-active-slabs
  3852. * total-slabs
  3853. * num-pages-per-slab
  3854. * + further values on SMP and with statistics enabled
  3855. */
  3856. static const struct seq_operations slabinfo_op = {
  3857. .start = s_start,
  3858. .next = s_next,
  3859. .stop = s_stop,
  3860. .show = s_show,
  3861. };
  3862. #define MAX_SLABINFO_WRITE 128
  3863. /**
  3864. * slabinfo_write - Tuning for the slab allocator
  3865. * @file: unused
  3866. * @buffer: user buffer
  3867. * @count: data length
  3868. * @ppos: unused
  3869. */
  3870. static ssize_t slabinfo_write(struct file *file, const char __user *buffer,
  3871. size_t count, loff_t *ppos)
  3872. {
  3873. char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
  3874. int limit, batchcount, shared, res;
  3875. struct kmem_cache *cachep;
  3876. if (count > MAX_SLABINFO_WRITE)
  3877. return -EINVAL;
  3878. if (copy_from_user(&kbuf, buffer, count))
  3879. return -EFAULT;
  3880. kbuf[MAX_SLABINFO_WRITE] = '\0';
  3881. tmp = strchr(kbuf, ' ');
  3882. if (!tmp)
  3883. return -EINVAL;
  3884. *tmp = '\0';
  3885. tmp++;
  3886. if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
  3887. return -EINVAL;
  3888. /* Find the cache in the chain of caches. */
  3889. mutex_lock(&cache_chain_mutex);
  3890. res = -EINVAL;
  3891. list_for_each_entry(cachep, &cache_chain, next) {
  3892. if (!strcmp(cachep->name, kbuf)) {
  3893. if (limit < 1 || batchcount < 1 ||
  3894. batchcount > limit || shared < 0) {
  3895. res = 0;
  3896. } else {
  3897. res = do_tune_cpucache(cachep, limit,
  3898. batchcount, shared,
  3899. GFP_KERNEL);
  3900. }
  3901. break;
  3902. }
  3903. }
  3904. mutex_unlock(&cache_chain_mutex);
  3905. if (res >= 0)
  3906. res = count;
  3907. return res;
  3908. }
  3909. static int slabinfo_open(struct inode *inode, struct file *file)
  3910. {
  3911. return seq_open(file, &slabinfo_op);
  3912. }
  3913. static const struct file_operations proc_slabinfo_operations = {
  3914. .open = slabinfo_open,
  3915. .read = seq_read,
  3916. .write = slabinfo_write,
  3917. .llseek = seq_lseek,
  3918. .release = seq_release,
  3919. };
  3920. #ifdef CONFIG_DEBUG_SLAB_LEAK
  3921. static void *leaks_start(struct seq_file *m, loff_t *pos)
  3922. {
  3923. mutex_lock(&cache_chain_mutex);
  3924. return seq_list_start(&cache_chain, *pos);
  3925. }
  3926. static inline int add_caller(unsigned long *n, unsigned long v)
  3927. {
  3928. unsigned long *p;
  3929. int l;
  3930. if (!v)
  3931. return 1;
  3932. l = n[1];
  3933. p = n + 2;
  3934. while (l) {
  3935. int i = l/2;
  3936. unsigned long *q = p + 2 * i;
  3937. if (*q == v) {
  3938. q[1]++;
  3939. return 1;
  3940. }
  3941. if (*q > v) {
  3942. l = i;
  3943. } else {
  3944. p = q + 2;
  3945. l -= i + 1;
  3946. }
  3947. }
  3948. if (++n[1] == n[0])
  3949. return 0;
  3950. memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
  3951. p[0] = v;
  3952. p[1] = 1;
  3953. return 1;
  3954. }
  3955. static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
  3956. {
  3957. void *p;
  3958. int i;
  3959. if (n[0] == n[1])
  3960. return;
  3961. for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
  3962. if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
  3963. continue;
  3964. if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
  3965. return;
  3966. }
  3967. }
  3968. static void show_symbol(struct seq_file *m, unsigned long address)
  3969. {
  3970. #ifdef CONFIG_KALLSYMS
  3971. unsigned long offset, size;
  3972. char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
  3973. if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
  3974. seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
  3975. if (modname[0])
  3976. seq_printf(m, " [%s]", modname);
  3977. return;
  3978. }
  3979. #endif
  3980. seq_printf(m, "%p", (void *)address);
  3981. }
  3982. static int leaks_show(struct seq_file *m, void *p)
  3983. {
  3984. struct kmem_cache *cachep = list_entry(p, struct kmem_cache, next);
  3985. struct slab *slabp;
  3986. struct kmem_list3 *l3;
  3987. const char *name;
  3988. unsigned long *n = m->private;
  3989. int node;
  3990. int i;
  3991. if (!(cachep->flags & SLAB_STORE_USER))
  3992. return 0;
  3993. if (!(cachep->flags & SLAB_RED_ZONE))
  3994. return 0;
  3995. /* OK, we can do it */
  3996. n[1] = 0;
  3997. for_each_online_node(node) {
  3998. l3 = cachep->nodelists[node];
  3999. if (!l3)
  4000. continue;
  4001. check_irq_on();
  4002. spin_lock_irq(&l3->list_lock);
  4003. list_for_each_entry(slabp, &l3->slabs_full, list)
  4004. handle_slab(n, cachep, slabp);
  4005. list_for_each_entry(slabp, &l3->slabs_partial, list)
  4006. handle_slab(n, cachep, slabp);
  4007. spin_unlock_irq(&l3->list_lock);
  4008. }
  4009. name = cachep->name;
  4010. if (n[0] == n[1]) {
  4011. /* Increase the buffer size */
  4012. mutex_unlock(&cache_chain_mutex);
  4013. m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
  4014. if (!m->private) {
  4015. /* Too bad, we are really out */
  4016. m->private = n;
  4017. mutex_lock(&cache_chain_mutex);
  4018. return -ENOMEM;
  4019. }
  4020. *(unsigned long *)m->private = n[0] * 2;
  4021. kfree(n);
  4022. mutex_lock(&cache_chain_mutex);
  4023. /* Now make sure this entry will be retried */
  4024. m->count = m->size;
  4025. return 0;
  4026. }
  4027. for (i = 0; i < n[1]; i++) {
  4028. seq_printf(m, "%s: %lu ", name, n[2*i+3]);
  4029. show_symbol(m, n[2*i+2]);
  4030. seq_putc(m, '\n');
  4031. }
  4032. return 0;
  4033. }
  4034. static const struct seq_operations slabstats_op = {
  4035. .start = leaks_start,
  4036. .next = s_next,
  4037. .stop = s_stop,
  4038. .show = leaks_show,
  4039. };
  4040. static int slabstats_open(struct inode *inode, struct file *file)
  4041. {
  4042. unsigned long *n = kzalloc(PAGE_SIZE, GFP_KERNEL);
  4043. int ret = -ENOMEM;
  4044. if (n) {
  4045. ret = seq_open(file, &slabstats_op);
  4046. if (!ret) {
  4047. struct seq_file *m = file->private_data;
  4048. *n = PAGE_SIZE / (2 * sizeof(unsigned long));
  4049. m->private = n;
  4050. n = NULL;
  4051. }
  4052. kfree(n);
  4053. }
  4054. return ret;
  4055. }
  4056. static const struct file_operations proc_slabstats_operations = {
  4057. .open = slabstats_open,
  4058. .read = seq_read,
  4059. .llseek = seq_lseek,
  4060. .release = seq_release_private,
  4061. };
  4062. #endif
  4063. static int __init slab_proc_init(void)
  4064. {
  4065. proc_create("slabinfo",S_IWUSR|S_IRUSR,NULL,&proc_slabinfo_operations);
  4066. #ifdef CONFIG_DEBUG_SLAB_LEAK
  4067. proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
  4068. #endif
  4069. return 0;
  4070. }
  4071. module_init(slab_proc_init);
  4072. #endif
  4073. /**
  4074. * ksize - get the actual amount of memory allocated for a given object
  4075. * @objp: Pointer to the object
  4076. *
  4077. * kmalloc may internally round up allocations and return more memory
  4078. * than requested. ksize() can be used to determine the actual amount of
  4079. * memory allocated. The caller may use this additional memory, even though
  4080. * a smaller amount of memory was initially specified with the kmalloc call.
  4081. * The caller must guarantee that objp points to a valid object previously
  4082. * allocated with either kmalloc() or kmem_cache_alloc(). The object
  4083. * must not be freed during the duration of the call.
  4084. */
  4085. size_t ksize(const void *objp)
  4086. {
  4087. BUG_ON(!objp);
  4088. if (unlikely(objp == ZERO_SIZE_PTR))
  4089. return 0;
  4090. return obj_size(virt_to_cache(objp));
  4091. }
  4092. EXPORT_SYMBOL(ksize);