fsl_dma.c 31 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008
  1. /*
  2. * Freescale DMA ALSA SoC PCM driver
  3. *
  4. * Author: Timur Tabi <timur@freescale.com>
  5. *
  6. * Copyright 2007-2010 Freescale Semiconductor, Inc.
  7. *
  8. * This file is licensed under the terms of the GNU General Public License
  9. * version 2. This program is licensed "as is" without any warranty of any
  10. * kind, whether express or implied.
  11. *
  12. * This driver implements ASoC support for the Elo DMA controller, which is
  13. * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
  14. * the PCM driver is what handles the DMA buffer.
  15. */
  16. #include <linux/module.h>
  17. #include <linux/init.h>
  18. #include <linux/platform_device.h>
  19. #include <linux/dma-mapping.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/delay.h>
  22. #include <linux/gfp.h>
  23. #include <linux/of_platform.h>
  24. #include <linux/list.h>
  25. #include <linux/slab.h>
  26. #include <sound/core.h>
  27. #include <sound/pcm.h>
  28. #include <sound/pcm_params.h>
  29. #include <sound/soc.h>
  30. #include <asm/io.h>
  31. #include "fsl_dma.h"
  32. #include "fsl_ssi.h" /* For the offset of stx0 and srx0 */
  33. /*
  34. * The formats that the DMA controller supports, which is anything
  35. * that is 8, 16, or 32 bits.
  36. */
  37. #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 | \
  38. SNDRV_PCM_FMTBIT_U8 | \
  39. SNDRV_PCM_FMTBIT_S16_LE | \
  40. SNDRV_PCM_FMTBIT_S16_BE | \
  41. SNDRV_PCM_FMTBIT_U16_LE | \
  42. SNDRV_PCM_FMTBIT_U16_BE | \
  43. SNDRV_PCM_FMTBIT_S24_LE | \
  44. SNDRV_PCM_FMTBIT_S24_BE | \
  45. SNDRV_PCM_FMTBIT_U24_LE | \
  46. SNDRV_PCM_FMTBIT_U24_BE | \
  47. SNDRV_PCM_FMTBIT_S32_LE | \
  48. SNDRV_PCM_FMTBIT_S32_BE | \
  49. SNDRV_PCM_FMTBIT_U32_LE | \
  50. SNDRV_PCM_FMTBIT_U32_BE)
  51. #define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
  52. SNDRV_PCM_RATE_CONTINUOUS)
  53. struct dma_object {
  54. struct snd_soc_platform_driver dai;
  55. dma_addr_t ssi_stx_phys;
  56. dma_addr_t ssi_srx_phys;
  57. unsigned int ssi_fifo_depth;
  58. struct ccsr_dma_channel __iomem *channel;
  59. unsigned int irq;
  60. bool assigned;
  61. char path[1];
  62. };
  63. /*
  64. * The number of DMA links to use. Two is the bare minimum, but if you
  65. * have really small links you might need more.
  66. */
  67. #define NUM_DMA_LINKS 2
  68. /** fsl_dma_private: p-substream DMA data
  69. *
  70. * Each substream has a 1-to-1 association with a DMA channel.
  71. *
  72. * The link[] array is first because it needs to be aligned on a 32-byte
  73. * boundary, so putting it first will ensure alignment without padding the
  74. * structure.
  75. *
  76. * @link[]: array of link descriptors
  77. * @dma_channel: pointer to the DMA channel's registers
  78. * @irq: IRQ for this DMA channel
  79. * @substream: pointer to the substream object, needed by the ISR
  80. * @ssi_sxx_phys: bus address of the STX or SRX register to use
  81. * @ld_buf_phys: physical address of the LD buffer
  82. * @current_link: index into link[] of the link currently being processed
  83. * @dma_buf_phys: physical address of the DMA buffer
  84. * @dma_buf_next: physical address of the next period to process
  85. * @dma_buf_end: physical address of the byte after the end of the DMA
  86. * @buffer period_size: the size of a single period
  87. * @num_periods: the number of periods in the DMA buffer
  88. */
  89. struct fsl_dma_private {
  90. struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
  91. struct ccsr_dma_channel __iomem *dma_channel;
  92. unsigned int irq;
  93. struct snd_pcm_substream *substream;
  94. dma_addr_t ssi_sxx_phys;
  95. unsigned int ssi_fifo_depth;
  96. dma_addr_t ld_buf_phys;
  97. unsigned int current_link;
  98. dma_addr_t dma_buf_phys;
  99. dma_addr_t dma_buf_next;
  100. dma_addr_t dma_buf_end;
  101. size_t period_size;
  102. unsigned int num_periods;
  103. };
  104. /**
  105. * fsl_dma_hardare: define characteristics of the PCM hardware.
  106. *
  107. * The PCM hardware is the Freescale DMA controller. This structure defines
  108. * the capabilities of that hardware.
  109. *
  110. * Since the sampling rate and data format are not controlled by the DMA
  111. * controller, we specify no limits for those values. The only exception is
  112. * period_bytes_min, which is set to a reasonably low value to prevent the
  113. * DMA controller from generating too many interrupts per second.
  114. *
  115. * Since each link descriptor has a 32-bit byte count field, we set
  116. * period_bytes_max to the largest 32-bit number. We also have no maximum
  117. * number of periods.
  118. *
  119. * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
  120. * limitation in the SSI driver requires the sample rates for playback and
  121. * capture to be the same.
  122. */
  123. static const struct snd_pcm_hardware fsl_dma_hardware = {
  124. .info = SNDRV_PCM_INFO_INTERLEAVED |
  125. SNDRV_PCM_INFO_MMAP |
  126. SNDRV_PCM_INFO_MMAP_VALID |
  127. SNDRV_PCM_INFO_JOINT_DUPLEX |
  128. SNDRV_PCM_INFO_PAUSE,
  129. .formats = FSLDMA_PCM_FORMATS,
  130. .rates = FSLDMA_PCM_RATES,
  131. .rate_min = 5512,
  132. .rate_max = 192000,
  133. .period_bytes_min = 512, /* A reasonable limit */
  134. .period_bytes_max = (u32) -1,
  135. .periods_min = NUM_DMA_LINKS,
  136. .periods_max = (unsigned int) -1,
  137. .buffer_bytes_max = 128 * 1024, /* A reasonable limit */
  138. };
  139. /**
  140. * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
  141. *
  142. * This function should be called by the ISR whenever the DMA controller
  143. * halts data transfer.
  144. */
  145. static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
  146. {
  147. unsigned long flags;
  148. snd_pcm_stream_lock_irqsave(substream, flags);
  149. if (snd_pcm_running(substream))
  150. snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
  151. snd_pcm_stream_unlock_irqrestore(substream, flags);
  152. }
  153. /**
  154. * fsl_dma_update_pointers - update LD pointers to point to the next period
  155. *
  156. * As each period is completed, this function changes the the link
  157. * descriptor pointers for that period to point to the next period.
  158. */
  159. static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
  160. {
  161. struct fsl_dma_link_descriptor *link =
  162. &dma_private->link[dma_private->current_link];
  163. /* Update our link descriptors to point to the next period. On a 36-bit
  164. * system, we also need to update the ESAD bits. We also set (keep) the
  165. * snoop bits. See the comments in fsl_dma_hw_params() about snooping.
  166. */
  167. if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
  168. link->source_addr = cpu_to_be32(dma_private->dma_buf_next);
  169. #ifdef CONFIG_PHYS_64BIT
  170. link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
  171. upper_32_bits(dma_private->dma_buf_next));
  172. #endif
  173. } else {
  174. link->dest_addr = cpu_to_be32(dma_private->dma_buf_next);
  175. #ifdef CONFIG_PHYS_64BIT
  176. link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
  177. upper_32_bits(dma_private->dma_buf_next));
  178. #endif
  179. }
  180. /* Update our variables for next time */
  181. dma_private->dma_buf_next += dma_private->period_size;
  182. if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
  183. dma_private->dma_buf_next = dma_private->dma_buf_phys;
  184. if (++dma_private->current_link >= NUM_DMA_LINKS)
  185. dma_private->current_link = 0;
  186. }
  187. /**
  188. * fsl_dma_isr: interrupt handler for the DMA controller
  189. *
  190. * @irq: IRQ of the DMA channel
  191. * @dev_id: pointer to the dma_private structure for this DMA channel
  192. */
  193. static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
  194. {
  195. struct fsl_dma_private *dma_private = dev_id;
  196. struct snd_pcm_substream *substream = dma_private->substream;
  197. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  198. struct device *dev = rtd->platform->dev;
  199. struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
  200. irqreturn_t ret = IRQ_NONE;
  201. u32 sr, sr2 = 0;
  202. /* We got an interrupt, so read the status register to see what we
  203. were interrupted for.
  204. */
  205. sr = in_be32(&dma_channel->sr);
  206. if (sr & CCSR_DMA_SR_TE) {
  207. dev_err(dev, "dma transmit error\n");
  208. fsl_dma_abort_stream(substream);
  209. sr2 |= CCSR_DMA_SR_TE;
  210. ret = IRQ_HANDLED;
  211. }
  212. if (sr & CCSR_DMA_SR_CH)
  213. ret = IRQ_HANDLED;
  214. if (sr & CCSR_DMA_SR_PE) {
  215. dev_err(dev, "dma programming error\n");
  216. fsl_dma_abort_stream(substream);
  217. sr2 |= CCSR_DMA_SR_PE;
  218. ret = IRQ_HANDLED;
  219. }
  220. if (sr & CCSR_DMA_SR_EOLNI) {
  221. sr2 |= CCSR_DMA_SR_EOLNI;
  222. ret = IRQ_HANDLED;
  223. }
  224. if (sr & CCSR_DMA_SR_CB)
  225. ret = IRQ_HANDLED;
  226. if (sr & CCSR_DMA_SR_EOSI) {
  227. /* Tell ALSA we completed a period. */
  228. snd_pcm_period_elapsed(substream);
  229. /*
  230. * Update our link descriptors to point to the next period. We
  231. * only need to do this if the number of periods is not equal to
  232. * the number of links.
  233. */
  234. if (dma_private->num_periods != NUM_DMA_LINKS)
  235. fsl_dma_update_pointers(dma_private);
  236. sr2 |= CCSR_DMA_SR_EOSI;
  237. ret = IRQ_HANDLED;
  238. }
  239. if (sr & CCSR_DMA_SR_EOLSI) {
  240. sr2 |= CCSR_DMA_SR_EOLSI;
  241. ret = IRQ_HANDLED;
  242. }
  243. /* Clear the bits that we set */
  244. if (sr2)
  245. out_be32(&dma_channel->sr, sr2);
  246. return ret;
  247. }
  248. /**
  249. * fsl_dma_new: initialize this PCM driver.
  250. *
  251. * This function is called when the codec driver calls snd_soc_new_pcms(),
  252. * once for each .dai_link in the machine driver's snd_soc_card
  253. * structure.
  254. *
  255. * snd_dma_alloc_pages() is just a front-end to dma_alloc_coherent(), which
  256. * (currently) always allocates the DMA buffer in lowmem, even if GFP_HIGHMEM
  257. * is specified. Therefore, any DMA buffers we allocate will always be in low
  258. * memory, but we support for 36-bit physical addresses anyway.
  259. *
  260. * Regardless of where the memory is actually allocated, since the device can
  261. * technically DMA to any 36-bit address, we do need to set the DMA mask to 36.
  262. */
  263. static int fsl_dma_new(struct snd_card *card, struct snd_soc_dai *dai,
  264. struct snd_pcm *pcm)
  265. {
  266. static u64 fsl_dma_dmamask = DMA_BIT_MASK(36);
  267. int ret;
  268. if (!card->dev->dma_mask)
  269. card->dev->dma_mask = &fsl_dma_dmamask;
  270. if (!card->dev->coherent_dma_mask)
  271. card->dev->coherent_dma_mask = fsl_dma_dmamask;
  272. /* Some codecs have separate DAIs for playback and capture, so we
  273. * should allocate a DMA buffer only for the streams that are valid.
  274. */
  275. if (dai->driver->playback.channels_min) {
  276. ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
  277. fsl_dma_hardware.buffer_bytes_max,
  278. &pcm->streams[0].substream->dma_buffer);
  279. if (ret) {
  280. dev_err(card->dev, "can't alloc playback dma buffer\n");
  281. return ret;
  282. }
  283. }
  284. if (dai->driver->capture.channels_min) {
  285. ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
  286. fsl_dma_hardware.buffer_bytes_max,
  287. &pcm->streams[1].substream->dma_buffer);
  288. if (ret) {
  289. snd_dma_free_pages(&pcm->streams[0].substream->dma_buffer);
  290. dev_err(card->dev, "can't alloc capture dma buffer\n");
  291. return ret;
  292. }
  293. }
  294. return 0;
  295. }
  296. /**
  297. * fsl_dma_open: open a new substream.
  298. *
  299. * Each substream has its own DMA buffer.
  300. *
  301. * ALSA divides the DMA buffer into N periods. We create NUM_DMA_LINKS link
  302. * descriptors that ping-pong from one period to the next. For example, if
  303. * there are six periods and two link descriptors, this is how they look
  304. * before playback starts:
  305. *
  306. * The last link descriptor
  307. * ____________ points back to the first
  308. * | |
  309. * V |
  310. * ___ ___ |
  311. * | |->| |->|
  312. * |___| |___|
  313. * | |
  314. * | |
  315. * V V
  316. * _________________________________________
  317. * | | | | | | | The DMA buffer is
  318. * | | | | | | | divided into 6 parts
  319. * |______|______|______|______|______|______|
  320. *
  321. * and here's how they look after the first period is finished playing:
  322. *
  323. * ____________
  324. * | |
  325. * V |
  326. * ___ ___ |
  327. * | |->| |->|
  328. * |___| |___|
  329. * | |
  330. * |______________
  331. * | |
  332. * V V
  333. * _________________________________________
  334. * | | | | | | |
  335. * | | | | | | |
  336. * |______|______|______|______|______|______|
  337. *
  338. * The first link descriptor now points to the third period. The DMA
  339. * controller is currently playing the second period. When it finishes, it
  340. * will jump back to the first descriptor and play the third period.
  341. *
  342. * There are four reasons we do this:
  343. *
  344. * 1. The only way to get the DMA controller to automatically restart the
  345. * transfer when it gets to the end of the buffer is to use chaining
  346. * mode. Basic direct mode doesn't offer that feature.
  347. * 2. We need to receive an interrupt at the end of every period. The DMA
  348. * controller can generate an interrupt at the end of every link transfer
  349. * (aka segment). Making each period into a DMA segment will give us the
  350. * interrupts we need.
  351. * 3. By creating only two link descriptors, regardless of the number of
  352. * periods, we do not need to reallocate the link descriptors if the
  353. * number of periods changes.
  354. * 4. All of the audio data is still stored in a single, contiguous DMA
  355. * buffer, which is what ALSA expects. We're just dividing it into
  356. * contiguous parts, and creating a link descriptor for each one.
  357. */
  358. static int fsl_dma_open(struct snd_pcm_substream *substream)
  359. {
  360. struct snd_pcm_runtime *runtime = substream->runtime;
  361. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  362. struct device *dev = rtd->platform->dev;
  363. struct dma_object *dma =
  364. container_of(rtd->platform->driver, struct dma_object, dai);
  365. struct fsl_dma_private *dma_private;
  366. struct ccsr_dma_channel __iomem *dma_channel;
  367. dma_addr_t ld_buf_phys;
  368. u64 temp_link; /* Pointer to next link descriptor */
  369. u32 mr;
  370. unsigned int channel;
  371. int ret = 0;
  372. unsigned int i;
  373. /*
  374. * Reject any DMA buffer whose size is not a multiple of the period
  375. * size. We need to make sure that the DMA buffer can be evenly divided
  376. * into periods.
  377. */
  378. ret = snd_pcm_hw_constraint_integer(runtime,
  379. SNDRV_PCM_HW_PARAM_PERIODS);
  380. if (ret < 0) {
  381. dev_err(dev, "invalid buffer size\n");
  382. return ret;
  383. }
  384. channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
  385. if (dma->assigned) {
  386. dev_err(dev, "dma channel already assigned\n");
  387. return -EBUSY;
  388. }
  389. dma_private = dma_alloc_coherent(dev, sizeof(struct fsl_dma_private),
  390. &ld_buf_phys, GFP_KERNEL);
  391. if (!dma_private) {
  392. dev_err(dev, "can't allocate dma private data\n");
  393. return -ENOMEM;
  394. }
  395. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
  396. dma_private->ssi_sxx_phys = dma->ssi_stx_phys;
  397. else
  398. dma_private->ssi_sxx_phys = dma->ssi_srx_phys;
  399. dma_private->ssi_fifo_depth = dma->ssi_fifo_depth;
  400. dma_private->dma_channel = dma->channel;
  401. dma_private->irq = dma->irq;
  402. dma_private->substream = substream;
  403. dma_private->ld_buf_phys = ld_buf_phys;
  404. dma_private->dma_buf_phys = substream->dma_buffer.addr;
  405. ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "DMA", dma_private);
  406. if (ret) {
  407. dev_err(dev, "can't register ISR for IRQ %u (ret=%i)\n",
  408. dma_private->irq, ret);
  409. dma_free_coherent(dev, sizeof(struct fsl_dma_private),
  410. dma_private, dma_private->ld_buf_phys);
  411. return ret;
  412. }
  413. dma->assigned = 1;
  414. snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
  415. snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
  416. runtime->private_data = dma_private;
  417. /* Program the fixed DMA controller parameters */
  418. dma_channel = dma_private->dma_channel;
  419. temp_link = dma_private->ld_buf_phys +
  420. sizeof(struct fsl_dma_link_descriptor);
  421. for (i = 0; i < NUM_DMA_LINKS; i++) {
  422. dma_private->link[i].next = cpu_to_be64(temp_link);
  423. temp_link += sizeof(struct fsl_dma_link_descriptor);
  424. }
  425. /* The last link descriptor points to the first */
  426. dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
  427. /* Tell the DMA controller where the first link descriptor is */
  428. out_be32(&dma_channel->clndar,
  429. CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
  430. out_be32(&dma_channel->eclndar,
  431. CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
  432. /* The manual says the BCR must be clear before enabling EMP */
  433. out_be32(&dma_channel->bcr, 0);
  434. /*
  435. * Program the mode register for interrupts, external master control,
  436. * and source/destination hold. Also clear the Channel Abort bit.
  437. */
  438. mr = in_be32(&dma_channel->mr) &
  439. ~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
  440. /*
  441. * We want External Master Start and External Master Pause enabled,
  442. * because the SSI is controlling the DMA controller. We want the DMA
  443. * controller to be set up in advance, and then we signal only the SSI
  444. * to start transferring.
  445. *
  446. * We want End-Of-Segment Interrupts enabled, because this will generate
  447. * an interrupt at the end of each segment (each link descriptor
  448. * represents one segment). Each DMA segment is the same thing as an
  449. * ALSA period, so this is how we get an interrupt at the end of every
  450. * period.
  451. *
  452. * We want Error Interrupt enabled, so that we can get an error if
  453. * the DMA controller is mis-programmed somehow.
  454. */
  455. mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
  456. CCSR_DMA_MR_EMS_EN;
  457. /* For playback, we want the destination address to be held. For
  458. capture, set the source address to be held. */
  459. mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
  460. CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
  461. out_be32(&dma_channel->mr, mr);
  462. return 0;
  463. }
  464. /**
  465. * fsl_dma_hw_params: continue initializing the DMA links
  466. *
  467. * This function obtains hardware parameters about the opened stream and
  468. * programs the DMA controller accordingly.
  469. *
  470. * One drawback of big-endian is that when copying integers of different
  471. * sizes to a fixed-sized register, the address to which the integer must be
  472. * copied is dependent on the size of the integer.
  473. *
  474. * For example, if P is the address of a 32-bit register, and X is a 32-bit
  475. * integer, then X should be copied to address P. However, if X is a 16-bit
  476. * integer, then it should be copied to P+2. If X is an 8-bit register,
  477. * then it should be copied to P+3.
  478. *
  479. * So for playback of 8-bit samples, the DMA controller must transfer single
  480. * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
  481. * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
  482. *
  483. * For 24-bit samples, the offset is 1 byte. However, the DMA controller
  484. * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
  485. * and 8 bytes at a time). So we do not support packed 24-bit samples.
  486. * 24-bit data must be padded to 32 bits.
  487. */
  488. static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
  489. struct snd_pcm_hw_params *hw_params)
  490. {
  491. struct snd_pcm_runtime *runtime = substream->runtime;
  492. struct fsl_dma_private *dma_private = runtime->private_data;
  493. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  494. struct device *dev = rtd->platform->dev;
  495. /* Number of bits per sample */
  496. unsigned int sample_bits =
  497. snd_pcm_format_physical_width(params_format(hw_params));
  498. /* Number of bytes per frame */
  499. unsigned int sample_bytes = sample_bits / 8;
  500. /* Bus address of SSI STX register */
  501. dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
  502. /* Size of the DMA buffer, in bytes */
  503. size_t buffer_size = params_buffer_bytes(hw_params);
  504. /* Number of bytes per period */
  505. size_t period_size = params_period_bytes(hw_params);
  506. /* Pointer to next period */
  507. dma_addr_t temp_addr = substream->dma_buffer.addr;
  508. /* Pointer to DMA controller */
  509. struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
  510. u32 mr; /* DMA Mode Register */
  511. unsigned int i;
  512. /* Initialize our DMA tracking variables */
  513. dma_private->period_size = period_size;
  514. dma_private->num_periods = params_periods(hw_params);
  515. dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
  516. dma_private->dma_buf_next = dma_private->dma_buf_phys +
  517. (NUM_DMA_LINKS * period_size);
  518. if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
  519. /* This happens if the number of periods == NUM_DMA_LINKS */
  520. dma_private->dma_buf_next = dma_private->dma_buf_phys;
  521. mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
  522. CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
  523. /* Due to a quirk of the SSI's STX register, the target address
  524. * for the DMA operations depends on the sample size. So we calculate
  525. * that offset here. While we're at it, also tell the DMA controller
  526. * how much data to transfer per sample.
  527. */
  528. switch (sample_bits) {
  529. case 8:
  530. mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
  531. ssi_sxx_phys += 3;
  532. break;
  533. case 16:
  534. mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
  535. ssi_sxx_phys += 2;
  536. break;
  537. case 32:
  538. mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
  539. break;
  540. default:
  541. /* We should never get here */
  542. dev_err(dev, "unsupported sample size %u\n", sample_bits);
  543. return -EINVAL;
  544. }
  545. /*
  546. * BWC determines how many bytes are sent/received before the DMA
  547. * controller checks the SSI to see if it needs to stop. BWC should
  548. * always be a multiple of the frame size, so that we always transmit
  549. * whole frames. Each frame occupies two slots in the FIFO. The
  550. * parameter for CCSR_DMA_MR_BWC() is rounded down the next power of two
  551. * (MR[BWC] can only represent even powers of two).
  552. *
  553. * To simplify the process, we set BWC to the largest value that is
  554. * less than or equal to the FIFO watermark. For playback, this ensures
  555. * that we transfer the maximum amount without overrunning the FIFO.
  556. * For capture, this ensures that we transfer the maximum amount without
  557. * underrunning the FIFO.
  558. *
  559. * f = SSI FIFO depth
  560. * w = SSI watermark value (which equals f - 2)
  561. * b = DMA bandwidth count (in bytes)
  562. * s = sample size (in bytes, which equals frame_size * 2)
  563. *
  564. * For playback, we never transmit more than the transmit FIFO
  565. * watermark, otherwise we might write more data than the FIFO can hold.
  566. * The watermark is equal to the FIFO depth minus two.
  567. *
  568. * For capture, two equations must hold:
  569. * w > f - (b / s)
  570. * w >= b / s
  571. *
  572. * So, b > 2 * s, but b must also be <= s * w. To simplify, we set
  573. * b = s * w, which is equal to
  574. * (dma_private->ssi_fifo_depth - 2) * sample_bytes.
  575. */
  576. mr |= CCSR_DMA_MR_BWC((dma_private->ssi_fifo_depth - 2) * sample_bytes);
  577. out_be32(&dma_channel->mr, mr);
  578. for (i = 0; i < NUM_DMA_LINKS; i++) {
  579. struct fsl_dma_link_descriptor *link = &dma_private->link[i];
  580. link->count = cpu_to_be32(period_size);
  581. /* The snoop bit tells the DMA controller whether it should tell
  582. * the ECM to snoop during a read or write to an address. For
  583. * audio, we use DMA to transfer data between memory and an I/O
  584. * device (the SSI's STX0 or SRX0 register). Snooping is only
  585. * needed if there is a cache, so we need to snoop memory
  586. * addresses only. For playback, that means we snoop the source
  587. * but not the destination. For capture, we snoop the
  588. * destination but not the source.
  589. *
  590. * Note that failing to snoop properly is unlikely to cause
  591. * cache incoherency if the period size is larger than the
  592. * size of L1 cache. This is because filling in one period will
  593. * flush out the data for the previous period. So if you
  594. * increased period_bytes_min to a large enough size, you might
  595. * get more performance by not snooping, and you'll still be
  596. * okay. You'll need to update fsl_dma_update_pointers() also.
  597. */
  598. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
  599. link->source_addr = cpu_to_be32(temp_addr);
  600. link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
  601. upper_32_bits(temp_addr));
  602. link->dest_addr = cpu_to_be32(ssi_sxx_phys);
  603. link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
  604. upper_32_bits(ssi_sxx_phys));
  605. } else {
  606. link->source_addr = cpu_to_be32(ssi_sxx_phys);
  607. link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP |
  608. upper_32_bits(ssi_sxx_phys));
  609. link->dest_addr = cpu_to_be32(temp_addr);
  610. link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP |
  611. upper_32_bits(temp_addr));
  612. }
  613. temp_addr += period_size;
  614. }
  615. return 0;
  616. }
  617. /**
  618. * fsl_dma_pointer: determine the current position of the DMA transfer
  619. *
  620. * This function is called by ALSA when ALSA wants to know where in the
  621. * stream buffer the hardware currently is.
  622. *
  623. * For playback, the SAR register contains the physical address of the most
  624. * recent DMA transfer. For capture, the value is in the DAR register.
  625. *
  626. * The base address of the buffer is stored in the source_addr field of the
  627. * first link descriptor.
  628. */
  629. static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
  630. {
  631. struct snd_pcm_runtime *runtime = substream->runtime;
  632. struct fsl_dma_private *dma_private = runtime->private_data;
  633. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  634. struct device *dev = rtd->platform->dev;
  635. struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
  636. dma_addr_t position;
  637. snd_pcm_uframes_t frames;
  638. /* Obtain the current DMA pointer, but don't read the ESAD bits if we
  639. * only have 32-bit DMA addresses. This function is typically called
  640. * in interrupt context, so we need to optimize it.
  641. */
  642. if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
  643. position = in_be32(&dma_channel->sar);
  644. #ifdef CONFIG_PHYS_64BIT
  645. position |= (u64)(in_be32(&dma_channel->satr) &
  646. CCSR_DMA_ATR_ESAD_MASK) << 32;
  647. #endif
  648. } else {
  649. position = in_be32(&dma_channel->dar);
  650. #ifdef CONFIG_PHYS_64BIT
  651. position |= (u64)(in_be32(&dma_channel->datr) &
  652. CCSR_DMA_ATR_ESAD_MASK) << 32;
  653. #endif
  654. }
  655. /*
  656. * When capture is started, the SSI immediately starts to fill its FIFO.
  657. * This means that the DMA controller is not started until the FIFO is
  658. * full. However, ALSA calls this function before that happens, when
  659. * MR.DAR is still zero. In this case, just return zero to indicate
  660. * that nothing has been received yet.
  661. */
  662. if (!position)
  663. return 0;
  664. if ((position < dma_private->dma_buf_phys) ||
  665. (position > dma_private->dma_buf_end)) {
  666. dev_err(dev, "dma pointer is out of range, halting stream\n");
  667. return SNDRV_PCM_POS_XRUN;
  668. }
  669. frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
  670. /*
  671. * If the current address is just past the end of the buffer, wrap it
  672. * around.
  673. */
  674. if (frames == runtime->buffer_size)
  675. frames = 0;
  676. return frames;
  677. }
  678. /**
  679. * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
  680. *
  681. * Release the resources allocated in fsl_dma_hw_params() and de-program the
  682. * registers.
  683. *
  684. * This function can be called multiple times.
  685. */
  686. static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
  687. {
  688. struct snd_pcm_runtime *runtime = substream->runtime;
  689. struct fsl_dma_private *dma_private = runtime->private_data;
  690. if (dma_private) {
  691. struct ccsr_dma_channel __iomem *dma_channel;
  692. dma_channel = dma_private->dma_channel;
  693. /* Stop the DMA */
  694. out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
  695. out_be32(&dma_channel->mr, 0);
  696. /* Reset all the other registers */
  697. out_be32(&dma_channel->sr, -1);
  698. out_be32(&dma_channel->clndar, 0);
  699. out_be32(&dma_channel->eclndar, 0);
  700. out_be32(&dma_channel->satr, 0);
  701. out_be32(&dma_channel->sar, 0);
  702. out_be32(&dma_channel->datr, 0);
  703. out_be32(&dma_channel->dar, 0);
  704. out_be32(&dma_channel->bcr, 0);
  705. out_be32(&dma_channel->nlndar, 0);
  706. out_be32(&dma_channel->enlndar, 0);
  707. }
  708. return 0;
  709. }
  710. /**
  711. * fsl_dma_close: close the stream.
  712. */
  713. static int fsl_dma_close(struct snd_pcm_substream *substream)
  714. {
  715. struct snd_pcm_runtime *runtime = substream->runtime;
  716. struct fsl_dma_private *dma_private = runtime->private_data;
  717. struct snd_soc_pcm_runtime *rtd = substream->private_data;
  718. struct device *dev = rtd->platform->dev;
  719. struct dma_object *dma =
  720. container_of(rtd->platform->driver, struct dma_object, dai);
  721. if (dma_private) {
  722. if (dma_private->irq)
  723. free_irq(dma_private->irq, dma_private);
  724. if (dma_private->ld_buf_phys) {
  725. dma_unmap_single(dev, dma_private->ld_buf_phys,
  726. sizeof(dma_private->link),
  727. DMA_TO_DEVICE);
  728. }
  729. /* Deallocate the fsl_dma_private structure */
  730. dma_free_coherent(dev, sizeof(struct fsl_dma_private),
  731. dma_private, dma_private->ld_buf_phys);
  732. substream->runtime->private_data = NULL;
  733. }
  734. dma->assigned = 0;
  735. return 0;
  736. }
  737. /*
  738. * Remove this PCM driver.
  739. */
  740. static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
  741. {
  742. struct snd_pcm_substream *substream;
  743. unsigned int i;
  744. for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
  745. substream = pcm->streams[i].substream;
  746. if (substream) {
  747. snd_dma_free_pages(&substream->dma_buffer);
  748. substream->dma_buffer.area = NULL;
  749. substream->dma_buffer.addr = 0;
  750. }
  751. }
  752. }
  753. /**
  754. * find_ssi_node -- returns the SSI node that points to his DMA channel node
  755. *
  756. * Although this DMA driver attempts to operate independently of the other
  757. * devices, it still needs to determine some information about the SSI device
  758. * that it's working with. Unfortunately, the device tree does not contain
  759. * a pointer from the DMA channel node to the SSI node -- the pointer goes the
  760. * other way. So we need to scan the device tree for SSI nodes until we find
  761. * the one that points to the given DMA channel node. It's ugly, but at least
  762. * it's contained in this one function.
  763. */
  764. static struct device_node *find_ssi_node(struct device_node *dma_channel_np)
  765. {
  766. struct device_node *ssi_np, *np;
  767. for_each_compatible_node(ssi_np, NULL, "fsl,mpc8610-ssi") {
  768. /* Check each DMA phandle to see if it points to us. We
  769. * assume that device_node pointers are a valid comparison.
  770. */
  771. np = of_parse_phandle(ssi_np, "fsl,playback-dma", 0);
  772. if (np == dma_channel_np)
  773. return ssi_np;
  774. np = of_parse_phandle(ssi_np, "fsl,capture-dma", 0);
  775. if (np == dma_channel_np)
  776. return ssi_np;
  777. }
  778. return NULL;
  779. }
  780. static struct snd_pcm_ops fsl_dma_ops = {
  781. .open = fsl_dma_open,
  782. .close = fsl_dma_close,
  783. .ioctl = snd_pcm_lib_ioctl,
  784. .hw_params = fsl_dma_hw_params,
  785. .hw_free = fsl_dma_hw_free,
  786. .pointer = fsl_dma_pointer,
  787. };
  788. static int __devinit fsl_soc_dma_probe(struct platform_device *pdev)
  789. {
  790. struct dma_object *dma;
  791. struct device_node *np = pdev->dev.of_node;
  792. struct device_node *ssi_np;
  793. struct resource res;
  794. const uint32_t *iprop;
  795. int ret;
  796. /* Find the SSI node that points to us. */
  797. ssi_np = find_ssi_node(np);
  798. if (!ssi_np) {
  799. dev_err(&pdev->dev, "cannot find parent SSI node\n");
  800. return -ENODEV;
  801. }
  802. ret = of_address_to_resource(ssi_np, 0, &res);
  803. if (ret) {
  804. dev_err(&pdev->dev, "could not determine resources for %s\n",
  805. ssi_np->full_name);
  806. of_node_put(ssi_np);
  807. return ret;
  808. }
  809. dma = kzalloc(sizeof(*dma) + strlen(np->full_name), GFP_KERNEL);
  810. if (!dma) {
  811. dev_err(&pdev->dev, "could not allocate dma object\n");
  812. of_node_put(ssi_np);
  813. return -ENOMEM;
  814. }
  815. strcpy(dma->path, np->full_name);
  816. dma->dai.ops = &fsl_dma_ops;
  817. dma->dai.pcm_new = fsl_dma_new;
  818. dma->dai.pcm_free = fsl_dma_free_dma_buffers;
  819. /* Store the SSI-specific information that we need */
  820. dma->ssi_stx_phys = res.start + offsetof(struct ccsr_ssi, stx0);
  821. dma->ssi_srx_phys = res.start + offsetof(struct ccsr_ssi, srx0);
  822. iprop = of_get_property(ssi_np, "fsl,fifo-depth", NULL);
  823. if (iprop)
  824. dma->ssi_fifo_depth = *iprop;
  825. else
  826. /* Older 8610 DTs didn't have the fifo-depth property */
  827. dma->ssi_fifo_depth = 8;
  828. of_node_put(ssi_np);
  829. ret = snd_soc_register_platform(&pdev->dev, &dma->dai);
  830. if (ret) {
  831. dev_err(&pdev->dev, "could not register platform\n");
  832. kfree(dma);
  833. return ret;
  834. }
  835. dma->channel = of_iomap(np, 0);
  836. dma->irq = irq_of_parse_and_map(np, 0);
  837. dev_set_drvdata(&pdev->dev, dma);
  838. return 0;
  839. }
  840. static int __devexit fsl_soc_dma_remove(struct platform_device *pdev)
  841. {
  842. struct dma_object *dma = dev_get_drvdata(&pdev->dev);
  843. snd_soc_unregister_platform(&pdev->dev);
  844. iounmap(dma->channel);
  845. irq_dispose_mapping(dma->irq);
  846. kfree(dma);
  847. return 0;
  848. }
  849. static const struct of_device_id fsl_soc_dma_ids[] = {
  850. { .compatible = "fsl,ssi-dma-channel", },
  851. {}
  852. };
  853. MODULE_DEVICE_TABLE(of, fsl_soc_dma_ids);
  854. static struct platform_driver fsl_soc_dma_driver = {
  855. .driver = {
  856. .name = "fsl-pcm-audio",
  857. .owner = THIS_MODULE,
  858. .of_match_table = fsl_soc_dma_ids,
  859. },
  860. .probe = fsl_soc_dma_probe,
  861. .remove = __devexit_p(fsl_soc_dma_remove),
  862. };
  863. static int __init fsl_soc_dma_init(void)
  864. {
  865. pr_info("Freescale Elo DMA ASoC PCM Driver\n");
  866. return platform_driver_register(&fsl_soc_dma_driver);
  867. }
  868. static void __exit fsl_soc_dma_exit(void)
  869. {
  870. platform_driver_unregister(&fsl_soc_dma_driver);
  871. }
  872. module_init(fsl_soc_dma_init);
  873. module_exit(fsl_soc_dma_exit);
  874. MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
  875. MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM Driver");
  876. MODULE_LICENSE("GPL v2");