ctatc.c 41 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709
  1. /**
  2. * Copyright (C) 2008, Creative Technology Ltd. All Rights Reserved.
  3. *
  4. * This source file is released under GPL v2 license (no other versions).
  5. * See the COPYING file included in the main directory of this source
  6. * distribution for the license terms and conditions.
  7. *
  8. * @File ctatc.c
  9. *
  10. * @Brief
  11. * This file contains the implementation of the device resource management
  12. * object.
  13. *
  14. * @Author Liu Chun
  15. * @Date Mar 28 2008
  16. */
  17. #include "ctatc.h"
  18. #include "ctpcm.h"
  19. #include "ctmixer.h"
  20. #include "cthardware.h"
  21. #include "ctsrc.h"
  22. #include "ctamixer.h"
  23. #include "ctdaio.h"
  24. #include "cttimer.h"
  25. #include <linux/delay.h>
  26. #include <linux/slab.h>
  27. #include <sound/pcm.h>
  28. #include <sound/control.h>
  29. #include <sound/asoundef.h>
  30. #define MONO_SUM_SCALE 0x19a8 /* 2^(-0.5) in 14-bit floating format */
  31. #define DAIONUM 7
  32. #define MAX_MULTI_CHN 8
  33. #define IEC958_DEFAULT_CON ((IEC958_AES0_NONAUDIO \
  34. | IEC958_AES0_CON_NOT_COPYRIGHT) \
  35. | ((IEC958_AES1_CON_MIXER \
  36. | IEC958_AES1_CON_ORIGINAL) << 8) \
  37. | (0x10 << 16) \
  38. | ((IEC958_AES3_CON_FS_48000) << 24))
  39. static struct snd_pci_quirk __devinitdata subsys_20k1_list[] = {
  40. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x0022, "SB055x", CTSB055X),
  41. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x002f, "SB055x", CTSB055X),
  42. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x0029, "SB073x", CTSB073X),
  43. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, 0x0031, "SB073x", CTSB073X),
  44. SND_PCI_QUIRK_MASK(PCI_VENDOR_ID_CREATIVE, 0xf000, 0x6000,
  45. "UAA", CTUAA),
  46. { } /* terminator */
  47. };
  48. static struct snd_pci_quirk __devinitdata subsys_20k2_list[] = {
  49. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB0760,
  50. "SB0760", CTSB0760),
  51. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB08801,
  52. "SB0880", CTSB0880),
  53. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB08802,
  54. "SB0880", CTSB0880),
  55. SND_PCI_QUIRK(PCI_VENDOR_ID_CREATIVE, PCI_SUBDEVICE_ID_CREATIVE_SB08803,
  56. "SB0880", CTSB0880),
  57. SND_PCI_QUIRK_MASK(PCI_VENDOR_ID_CREATIVE, 0xf000,
  58. PCI_SUBDEVICE_ID_CREATIVE_HENDRIX, "HENDRIX",
  59. CTHENDRIX),
  60. { } /* terminator */
  61. };
  62. static const char *ct_subsys_name[NUM_CTCARDS] = {
  63. /* 20k1 models */
  64. [CTSB055X] = "SB055x",
  65. [CTSB073X] = "SB073x",
  66. [CTUAA] = "UAA",
  67. [CT20K1_UNKNOWN] = "Unknown",
  68. /* 20k2 models */
  69. [CTSB0760] = "SB076x",
  70. [CTHENDRIX] = "Hendrix",
  71. [CTSB0880] = "SB0880",
  72. [CT20K2_UNKNOWN] = "Unknown",
  73. };
  74. static struct {
  75. int (*create)(struct ct_atc *atc,
  76. enum CTALSADEVS device, const char *device_name);
  77. int (*destroy)(void *alsa_dev);
  78. const char *public_name;
  79. } alsa_dev_funcs[NUM_CTALSADEVS] = {
  80. [FRONT] = { .create = ct_alsa_pcm_create,
  81. .destroy = NULL,
  82. .public_name = "Front/WaveIn"},
  83. [SURROUND] = { .create = ct_alsa_pcm_create,
  84. .destroy = NULL,
  85. .public_name = "Surround"},
  86. [CLFE] = { .create = ct_alsa_pcm_create,
  87. .destroy = NULL,
  88. .public_name = "Center/LFE"},
  89. [SIDE] = { .create = ct_alsa_pcm_create,
  90. .destroy = NULL,
  91. .public_name = "Side"},
  92. [IEC958] = { .create = ct_alsa_pcm_create,
  93. .destroy = NULL,
  94. .public_name = "IEC958 Non-audio"},
  95. [MIXER] = { .create = ct_alsa_mix_create,
  96. .destroy = NULL,
  97. .public_name = "Mixer"}
  98. };
  99. typedef int (*create_t)(void *, void **);
  100. typedef int (*destroy_t)(void *);
  101. static struct {
  102. int (*create)(void *hw, void **rmgr);
  103. int (*destroy)(void *mgr);
  104. } rsc_mgr_funcs[NUM_RSCTYP] = {
  105. [SRC] = { .create = (create_t)src_mgr_create,
  106. .destroy = (destroy_t)src_mgr_destroy },
  107. [SRCIMP] = { .create = (create_t)srcimp_mgr_create,
  108. .destroy = (destroy_t)srcimp_mgr_destroy },
  109. [AMIXER] = { .create = (create_t)amixer_mgr_create,
  110. .destroy = (destroy_t)amixer_mgr_destroy },
  111. [SUM] = { .create = (create_t)sum_mgr_create,
  112. .destroy = (destroy_t)sum_mgr_destroy },
  113. [DAIO] = { .create = (create_t)daio_mgr_create,
  114. .destroy = (destroy_t)daio_mgr_destroy }
  115. };
  116. static int
  117. atc_pcm_release_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm);
  118. /* *
  119. * Only mono and interleaved modes are supported now.
  120. * Always allocates a contiguous channel block.
  121. * */
  122. static int ct_map_audio_buffer(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  123. {
  124. struct snd_pcm_runtime *runtime;
  125. struct ct_vm *vm;
  126. if (!apcm->substream)
  127. return 0;
  128. runtime = apcm->substream->runtime;
  129. vm = atc->vm;
  130. apcm->vm_block = vm->map(vm, apcm->substream, runtime->dma_bytes);
  131. if (!apcm->vm_block)
  132. return -ENOENT;
  133. return 0;
  134. }
  135. static void ct_unmap_audio_buffer(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  136. {
  137. struct ct_vm *vm;
  138. if (!apcm->vm_block)
  139. return;
  140. vm = atc->vm;
  141. vm->unmap(vm, apcm->vm_block);
  142. apcm->vm_block = NULL;
  143. }
  144. static unsigned long atc_get_ptp_phys(struct ct_atc *atc, int index)
  145. {
  146. return atc->vm->get_ptp_phys(atc->vm, index);
  147. }
  148. static unsigned int convert_format(snd_pcm_format_t snd_format)
  149. {
  150. switch (snd_format) {
  151. case SNDRV_PCM_FORMAT_U8:
  152. return SRC_SF_U8;
  153. case SNDRV_PCM_FORMAT_S16_LE:
  154. return SRC_SF_S16;
  155. case SNDRV_PCM_FORMAT_S24_3LE:
  156. return SRC_SF_S24;
  157. case SNDRV_PCM_FORMAT_S32_LE:
  158. return SRC_SF_S32;
  159. case SNDRV_PCM_FORMAT_FLOAT_LE:
  160. return SRC_SF_F32;
  161. default:
  162. printk(KERN_ERR "ctxfi: not recognized snd format is %d \n",
  163. snd_format);
  164. return SRC_SF_S16;
  165. }
  166. }
  167. static unsigned int
  168. atc_get_pitch(unsigned int input_rate, unsigned int output_rate)
  169. {
  170. unsigned int pitch;
  171. int b;
  172. /* get pitch and convert to fixed-point 8.24 format. */
  173. pitch = (input_rate / output_rate) << 24;
  174. input_rate %= output_rate;
  175. input_rate /= 100;
  176. output_rate /= 100;
  177. for (b = 31; ((b >= 0) && !(input_rate >> b)); )
  178. b--;
  179. if (b >= 0) {
  180. input_rate <<= (31 - b);
  181. input_rate /= output_rate;
  182. b = 24 - (31 - b);
  183. if (b >= 0)
  184. input_rate <<= b;
  185. else
  186. input_rate >>= -b;
  187. pitch |= input_rate;
  188. }
  189. return pitch;
  190. }
  191. static int select_rom(unsigned int pitch)
  192. {
  193. if (pitch > 0x00428f5c && pitch < 0x01b851ec) {
  194. /* 0.26 <= pitch <= 1.72 */
  195. return 1;
  196. } else if (pitch == 0x01d66666 || pitch == 0x01d66667) {
  197. /* pitch == 1.8375 */
  198. return 2;
  199. } else if (pitch == 0x02000000) {
  200. /* pitch == 2 */
  201. return 3;
  202. } else if (pitch <= 0x08000000) {
  203. /* 0 <= pitch <= 8 */
  204. return 0;
  205. } else {
  206. return -ENOENT;
  207. }
  208. }
  209. static int atc_pcm_playback_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  210. {
  211. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  212. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  213. struct src_desc desc = {0};
  214. struct amixer_desc mix_dsc = {0};
  215. struct src *src;
  216. struct amixer *amixer;
  217. int err;
  218. int n_amixer = apcm->substream->runtime->channels, i = 0;
  219. int device = apcm->substream->pcm->device;
  220. unsigned int pitch;
  221. /* first release old resources */
  222. atc_pcm_release_resources(atc, apcm);
  223. /* Get SRC resource */
  224. desc.multi = apcm->substream->runtime->channels;
  225. desc.msr = atc->msr;
  226. desc.mode = MEMRD;
  227. err = src_mgr->get_src(src_mgr, &desc, (struct src **)&apcm->src);
  228. if (err)
  229. goto error1;
  230. pitch = atc_get_pitch(apcm->substream->runtime->rate,
  231. (atc->rsr * atc->msr));
  232. src = apcm->src;
  233. src->ops->set_pitch(src, pitch);
  234. src->ops->set_rom(src, select_rom(pitch));
  235. src->ops->set_sf(src, convert_format(apcm->substream->runtime->format));
  236. src->ops->set_pm(src, (src->ops->next_interleave(src) != NULL));
  237. /* Get AMIXER resource */
  238. n_amixer = (n_amixer < 2) ? 2 : n_amixer;
  239. apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL);
  240. if (!apcm->amixers) {
  241. err = -ENOMEM;
  242. goto error1;
  243. }
  244. mix_dsc.msr = atc->msr;
  245. for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) {
  246. err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc,
  247. (struct amixer **)&apcm->amixers[i]);
  248. if (err)
  249. goto error1;
  250. apcm->n_amixer++;
  251. }
  252. /* Set up device virtual mem map */
  253. err = ct_map_audio_buffer(atc, apcm);
  254. if (err < 0)
  255. goto error1;
  256. /* Connect resources */
  257. src = apcm->src;
  258. for (i = 0; i < n_amixer; i++) {
  259. amixer = apcm->amixers[i];
  260. mutex_lock(&atc->atc_mutex);
  261. amixer->ops->setup(amixer, &src->rsc,
  262. INIT_VOL, atc->pcm[i+device*2]);
  263. mutex_unlock(&atc->atc_mutex);
  264. src = src->ops->next_interleave(src);
  265. if (!src)
  266. src = apcm->src;
  267. }
  268. ct_timer_prepare(apcm->timer);
  269. return 0;
  270. error1:
  271. atc_pcm_release_resources(atc, apcm);
  272. return err;
  273. }
  274. static int
  275. atc_pcm_release_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  276. {
  277. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  278. struct srcimp_mgr *srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  279. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  280. struct sum_mgr *sum_mgr = atc->rsc_mgrs[SUM];
  281. struct srcimp *srcimp;
  282. int i;
  283. if (apcm->srcimps) {
  284. for (i = 0; i < apcm->n_srcimp; i++) {
  285. srcimp = apcm->srcimps[i];
  286. srcimp->ops->unmap(srcimp);
  287. srcimp_mgr->put_srcimp(srcimp_mgr, srcimp);
  288. apcm->srcimps[i] = NULL;
  289. }
  290. kfree(apcm->srcimps);
  291. apcm->srcimps = NULL;
  292. }
  293. if (apcm->srccs) {
  294. for (i = 0; i < apcm->n_srcc; i++) {
  295. src_mgr->put_src(src_mgr, apcm->srccs[i]);
  296. apcm->srccs[i] = NULL;
  297. }
  298. kfree(apcm->srccs);
  299. apcm->srccs = NULL;
  300. }
  301. if (apcm->amixers) {
  302. for (i = 0; i < apcm->n_amixer; i++) {
  303. amixer_mgr->put_amixer(amixer_mgr, apcm->amixers[i]);
  304. apcm->amixers[i] = NULL;
  305. }
  306. kfree(apcm->amixers);
  307. apcm->amixers = NULL;
  308. }
  309. if (apcm->mono) {
  310. sum_mgr->put_sum(sum_mgr, apcm->mono);
  311. apcm->mono = NULL;
  312. }
  313. if (apcm->src) {
  314. src_mgr->put_src(src_mgr, apcm->src);
  315. apcm->src = NULL;
  316. }
  317. if (apcm->vm_block) {
  318. /* Undo device virtual mem map */
  319. ct_unmap_audio_buffer(atc, apcm);
  320. apcm->vm_block = NULL;
  321. }
  322. return 0;
  323. }
  324. static int atc_pcm_playback_start(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  325. {
  326. unsigned int max_cisz;
  327. struct src *src = apcm->src;
  328. if (apcm->started)
  329. return 0;
  330. apcm->started = 1;
  331. max_cisz = src->multi * src->rsc.msr;
  332. max_cisz = 0x80 * (max_cisz < 8 ? max_cisz : 8);
  333. src->ops->set_sa(src, apcm->vm_block->addr);
  334. src->ops->set_la(src, apcm->vm_block->addr + apcm->vm_block->size);
  335. src->ops->set_ca(src, apcm->vm_block->addr + max_cisz);
  336. src->ops->set_cisz(src, max_cisz);
  337. src->ops->set_bm(src, 1);
  338. src->ops->set_state(src, SRC_STATE_INIT);
  339. src->ops->commit_write(src);
  340. ct_timer_start(apcm->timer);
  341. return 0;
  342. }
  343. static int atc_pcm_stop(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  344. {
  345. struct src *src;
  346. int i;
  347. ct_timer_stop(apcm->timer);
  348. src = apcm->src;
  349. src->ops->set_bm(src, 0);
  350. src->ops->set_state(src, SRC_STATE_OFF);
  351. src->ops->commit_write(src);
  352. if (apcm->srccs) {
  353. for (i = 0; i < apcm->n_srcc; i++) {
  354. src = apcm->srccs[i];
  355. src->ops->set_bm(src, 0);
  356. src->ops->set_state(src, SRC_STATE_OFF);
  357. src->ops->commit_write(src);
  358. }
  359. }
  360. apcm->started = 0;
  361. return 0;
  362. }
  363. static int
  364. atc_pcm_playback_position(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  365. {
  366. struct src *src = apcm->src;
  367. u32 size, max_cisz;
  368. int position;
  369. if (!src)
  370. return 0;
  371. position = src->ops->get_ca(src);
  372. size = apcm->vm_block->size;
  373. max_cisz = src->multi * src->rsc.msr;
  374. max_cisz = 128 * (max_cisz < 8 ? max_cisz : 8);
  375. return (position + size - max_cisz - apcm->vm_block->addr) % size;
  376. }
  377. struct src_node_conf_t {
  378. unsigned int pitch;
  379. unsigned int msr:8;
  380. unsigned int mix_msr:8;
  381. unsigned int imp_msr:8;
  382. unsigned int vo:1;
  383. };
  384. static void setup_src_node_conf(struct ct_atc *atc, struct ct_atc_pcm *apcm,
  385. struct src_node_conf_t *conf, int *n_srcc)
  386. {
  387. unsigned int pitch;
  388. /* get pitch and convert to fixed-point 8.24 format. */
  389. pitch = atc_get_pitch((atc->rsr * atc->msr),
  390. apcm->substream->runtime->rate);
  391. *n_srcc = 0;
  392. if (1 == atc->msr) {
  393. *n_srcc = apcm->substream->runtime->channels;
  394. conf[0].pitch = pitch;
  395. conf[0].mix_msr = conf[0].imp_msr = conf[0].msr = 1;
  396. conf[0].vo = 1;
  397. } else if (2 == atc->msr) {
  398. if (0x8000000 < pitch) {
  399. /* Need two-stage SRCs, SRCIMPs and
  400. * AMIXERs for converting format */
  401. conf[0].pitch = (atc->msr << 24);
  402. conf[0].msr = conf[0].mix_msr = 1;
  403. conf[0].imp_msr = atc->msr;
  404. conf[0].vo = 0;
  405. conf[1].pitch = atc_get_pitch(atc->rsr,
  406. apcm->substream->runtime->rate);
  407. conf[1].msr = conf[1].mix_msr = conf[1].imp_msr = 1;
  408. conf[1].vo = 1;
  409. *n_srcc = apcm->substream->runtime->channels * 2;
  410. } else if (0x1000000 < pitch) {
  411. /* Need one-stage SRCs, SRCIMPs and
  412. * AMIXERs for converting format */
  413. conf[0].pitch = pitch;
  414. conf[0].msr = conf[0].mix_msr
  415. = conf[0].imp_msr = atc->msr;
  416. conf[0].vo = 1;
  417. *n_srcc = apcm->substream->runtime->channels;
  418. }
  419. }
  420. }
  421. static int
  422. atc_pcm_capture_get_resources(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  423. {
  424. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  425. struct srcimp_mgr *srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  426. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  427. struct sum_mgr *sum_mgr = atc->rsc_mgrs[SUM];
  428. struct src_desc src_dsc = {0};
  429. struct src *src;
  430. struct srcimp_desc srcimp_dsc = {0};
  431. struct srcimp *srcimp;
  432. struct amixer_desc mix_dsc = {0};
  433. struct sum_desc sum_dsc = {0};
  434. unsigned int pitch;
  435. int multi, err, i;
  436. int n_srcimp, n_amixer, n_srcc, n_sum;
  437. struct src_node_conf_t src_node_conf[2] = {{0} };
  438. /* first release old resources */
  439. atc_pcm_release_resources(atc, apcm);
  440. /* The numbers of converting SRCs and SRCIMPs should be determined
  441. * by pitch value. */
  442. multi = apcm->substream->runtime->channels;
  443. /* get pitch and convert to fixed-point 8.24 format. */
  444. pitch = atc_get_pitch((atc->rsr * atc->msr),
  445. apcm->substream->runtime->rate);
  446. setup_src_node_conf(atc, apcm, src_node_conf, &n_srcc);
  447. n_sum = (1 == multi) ? 1 : 0;
  448. n_amixer = n_sum * 2 + n_srcc;
  449. n_srcimp = n_srcc;
  450. if ((multi > 1) && (0x8000000 >= pitch)) {
  451. /* Need extra AMIXERs and SRCIMPs for special treatment
  452. * of interleaved recording of conjugate channels */
  453. n_amixer += multi * atc->msr;
  454. n_srcimp += multi * atc->msr;
  455. } else {
  456. n_srcimp += multi;
  457. }
  458. if (n_srcc) {
  459. apcm->srccs = kzalloc(sizeof(void *)*n_srcc, GFP_KERNEL);
  460. if (!apcm->srccs)
  461. return -ENOMEM;
  462. }
  463. if (n_amixer) {
  464. apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL);
  465. if (!apcm->amixers) {
  466. err = -ENOMEM;
  467. goto error1;
  468. }
  469. }
  470. apcm->srcimps = kzalloc(sizeof(void *)*n_srcimp, GFP_KERNEL);
  471. if (!apcm->srcimps) {
  472. err = -ENOMEM;
  473. goto error1;
  474. }
  475. /* Allocate SRCs for sample rate conversion if needed */
  476. src_dsc.multi = 1;
  477. src_dsc.mode = ARCRW;
  478. for (i = 0, apcm->n_srcc = 0; i < n_srcc; i++) {
  479. src_dsc.msr = src_node_conf[i/multi].msr;
  480. err = src_mgr->get_src(src_mgr, &src_dsc,
  481. (struct src **)&apcm->srccs[i]);
  482. if (err)
  483. goto error1;
  484. src = apcm->srccs[i];
  485. pitch = src_node_conf[i/multi].pitch;
  486. src->ops->set_pitch(src, pitch);
  487. src->ops->set_rom(src, select_rom(pitch));
  488. src->ops->set_vo(src, src_node_conf[i/multi].vo);
  489. apcm->n_srcc++;
  490. }
  491. /* Allocate AMIXERs for routing SRCs of conversion if needed */
  492. for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) {
  493. if (i < (n_sum*2))
  494. mix_dsc.msr = atc->msr;
  495. else if (i < (n_sum*2+n_srcc))
  496. mix_dsc.msr = src_node_conf[(i-n_sum*2)/multi].mix_msr;
  497. else
  498. mix_dsc.msr = 1;
  499. err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc,
  500. (struct amixer **)&apcm->amixers[i]);
  501. if (err)
  502. goto error1;
  503. apcm->n_amixer++;
  504. }
  505. /* Allocate a SUM resource to mix all input channels together */
  506. sum_dsc.msr = atc->msr;
  507. err = sum_mgr->get_sum(sum_mgr, &sum_dsc, (struct sum **)&apcm->mono);
  508. if (err)
  509. goto error1;
  510. pitch = atc_get_pitch((atc->rsr * atc->msr),
  511. apcm->substream->runtime->rate);
  512. /* Allocate SRCIMP resources */
  513. for (i = 0, apcm->n_srcimp = 0; i < n_srcimp; i++) {
  514. if (i < (n_srcc))
  515. srcimp_dsc.msr = src_node_conf[i/multi].imp_msr;
  516. else if (1 == multi)
  517. srcimp_dsc.msr = (pitch <= 0x8000000) ? atc->msr : 1;
  518. else
  519. srcimp_dsc.msr = 1;
  520. err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc, &srcimp);
  521. if (err)
  522. goto error1;
  523. apcm->srcimps[i] = srcimp;
  524. apcm->n_srcimp++;
  525. }
  526. /* Allocate a SRC for writing data to host memory */
  527. src_dsc.multi = apcm->substream->runtime->channels;
  528. src_dsc.msr = 1;
  529. src_dsc.mode = MEMWR;
  530. err = src_mgr->get_src(src_mgr, &src_dsc, (struct src **)&apcm->src);
  531. if (err)
  532. goto error1;
  533. src = apcm->src;
  534. src->ops->set_pitch(src, pitch);
  535. /* Set up device virtual mem map */
  536. err = ct_map_audio_buffer(atc, apcm);
  537. if (err < 0)
  538. goto error1;
  539. return 0;
  540. error1:
  541. atc_pcm_release_resources(atc, apcm);
  542. return err;
  543. }
  544. static int atc_pcm_capture_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  545. {
  546. struct src *src;
  547. struct amixer *amixer;
  548. struct srcimp *srcimp;
  549. struct ct_mixer *mixer = atc->mixer;
  550. struct sum *mono;
  551. struct rsc *out_ports[8] = {NULL};
  552. int err, i, j, n_sum, multi;
  553. unsigned int pitch;
  554. int mix_base = 0, imp_base = 0;
  555. atc_pcm_release_resources(atc, apcm);
  556. /* Get needed resources. */
  557. err = atc_pcm_capture_get_resources(atc, apcm);
  558. if (err)
  559. return err;
  560. /* Connect resources */
  561. mixer->get_output_ports(mixer, MIX_PCMO_FRONT,
  562. &out_ports[0], &out_ports[1]);
  563. multi = apcm->substream->runtime->channels;
  564. if (1 == multi) {
  565. mono = apcm->mono;
  566. for (i = 0; i < 2; i++) {
  567. amixer = apcm->amixers[i];
  568. amixer->ops->setup(amixer, out_ports[i],
  569. MONO_SUM_SCALE, mono);
  570. }
  571. out_ports[0] = &mono->rsc;
  572. n_sum = 1;
  573. mix_base = n_sum * 2;
  574. }
  575. for (i = 0; i < apcm->n_srcc; i++) {
  576. src = apcm->srccs[i];
  577. srcimp = apcm->srcimps[imp_base+i];
  578. amixer = apcm->amixers[mix_base+i];
  579. srcimp->ops->map(srcimp, src, out_ports[i%multi]);
  580. amixer->ops->setup(amixer, &src->rsc, INIT_VOL, NULL);
  581. out_ports[i%multi] = &amixer->rsc;
  582. }
  583. pitch = atc_get_pitch((atc->rsr * atc->msr),
  584. apcm->substream->runtime->rate);
  585. if ((multi > 1) && (pitch <= 0x8000000)) {
  586. /* Special connection for interleaved
  587. * recording with conjugate channels */
  588. for (i = 0; i < multi; i++) {
  589. out_ports[i]->ops->master(out_ports[i]);
  590. for (j = 0; j < atc->msr; j++) {
  591. amixer = apcm->amixers[apcm->n_srcc+j*multi+i];
  592. amixer->ops->set_input(amixer, out_ports[i]);
  593. amixer->ops->set_scale(amixer, INIT_VOL);
  594. amixer->ops->set_sum(amixer, NULL);
  595. amixer->ops->commit_raw_write(amixer);
  596. out_ports[i]->ops->next_conj(out_ports[i]);
  597. srcimp = apcm->srcimps[apcm->n_srcc+j*multi+i];
  598. srcimp->ops->map(srcimp, apcm->src,
  599. &amixer->rsc);
  600. }
  601. }
  602. } else {
  603. for (i = 0; i < multi; i++) {
  604. srcimp = apcm->srcimps[apcm->n_srcc+i];
  605. srcimp->ops->map(srcimp, apcm->src, out_ports[i]);
  606. }
  607. }
  608. ct_timer_prepare(apcm->timer);
  609. return 0;
  610. }
  611. static int atc_pcm_capture_start(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  612. {
  613. struct src *src;
  614. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  615. int i, multi;
  616. if (apcm->started)
  617. return 0;
  618. apcm->started = 1;
  619. multi = apcm->substream->runtime->channels;
  620. /* Set up converting SRCs */
  621. for (i = 0; i < apcm->n_srcc; i++) {
  622. src = apcm->srccs[i];
  623. src->ops->set_pm(src, ((i%multi) != (multi-1)));
  624. src_mgr->src_disable(src_mgr, src);
  625. }
  626. /* Set up recording SRC */
  627. src = apcm->src;
  628. src->ops->set_sf(src, convert_format(apcm->substream->runtime->format));
  629. src->ops->set_sa(src, apcm->vm_block->addr);
  630. src->ops->set_la(src, apcm->vm_block->addr + apcm->vm_block->size);
  631. src->ops->set_ca(src, apcm->vm_block->addr);
  632. src_mgr->src_disable(src_mgr, src);
  633. /* Disable relevant SRCs firstly */
  634. src_mgr->commit_write(src_mgr);
  635. /* Enable SRCs respectively */
  636. for (i = 0; i < apcm->n_srcc; i++) {
  637. src = apcm->srccs[i];
  638. src->ops->set_state(src, SRC_STATE_RUN);
  639. src->ops->commit_write(src);
  640. src_mgr->src_enable_s(src_mgr, src);
  641. }
  642. src = apcm->src;
  643. src->ops->set_bm(src, 1);
  644. src->ops->set_state(src, SRC_STATE_RUN);
  645. src->ops->commit_write(src);
  646. src_mgr->src_enable_s(src_mgr, src);
  647. /* Enable relevant SRCs synchronously */
  648. src_mgr->commit_write(src_mgr);
  649. ct_timer_start(apcm->timer);
  650. return 0;
  651. }
  652. static int
  653. atc_pcm_capture_position(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  654. {
  655. struct src *src = apcm->src;
  656. if (!src)
  657. return 0;
  658. return src->ops->get_ca(src) - apcm->vm_block->addr;
  659. }
  660. static int spdif_passthru_playback_get_resources(struct ct_atc *atc,
  661. struct ct_atc_pcm *apcm)
  662. {
  663. struct src_mgr *src_mgr = atc->rsc_mgrs[SRC];
  664. struct amixer_mgr *amixer_mgr = atc->rsc_mgrs[AMIXER];
  665. struct src_desc desc = {0};
  666. struct amixer_desc mix_dsc = {0};
  667. struct src *src;
  668. int err;
  669. int n_amixer = apcm->substream->runtime->channels, i;
  670. unsigned int pitch, rsr = atc->pll_rate;
  671. /* first release old resources */
  672. atc_pcm_release_resources(atc, apcm);
  673. /* Get SRC resource */
  674. desc.multi = apcm->substream->runtime->channels;
  675. desc.msr = 1;
  676. while (apcm->substream->runtime->rate > (rsr * desc.msr))
  677. desc.msr <<= 1;
  678. desc.mode = MEMRD;
  679. err = src_mgr->get_src(src_mgr, &desc, (struct src **)&apcm->src);
  680. if (err)
  681. goto error1;
  682. pitch = atc_get_pitch(apcm->substream->runtime->rate, (rsr * desc.msr));
  683. src = apcm->src;
  684. src->ops->set_pitch(src, pitch);
  685. src->ops->set_rom(src, select_rom(pitch));
  686. src->ops->set_sf(src, convert_format(apcm->substream->runtime->format));
  687. src->ops->set_pm(src, (src->ops->next_interleave(src) != NULL));
  688. src->ops->set_bp(src, 1);
  689. /* Get AMIXER resource */
  690. n_amixer = (n_amixer < 2) ? 2 : n_amixer;
  691. apcm->amixers = kzalloc(sizeof(void *)*n_amixer, GFP_KERNEL);
  692. if (!apcm->amixers) {
  693. err = -ENOMEM;
  694. goto error1;
  695. }
  696. mix_dsc.msr = desc.msr;
  697. for (i = 0, apcm->n_amixer = 0; i < n_amixer; i++) {
  698. err = amixer_mgr->get_amixer(amixer_mgr, &mix_dsc,
  699. (struct amixer **)&apcm->amixers[i]);
  700. if (err)
  701. goto error1;
  702. apcm->n_amixer++;
  703. }
  704. /* Set up device virtual mem map */
  705. err = ct_map_audio_buffer(atc, apcm);
  706. if (err < 0)
  707. goto error1;
  708. return 0;
  709. error1:
  710. atc_pcm_release_resources(atc, apcm);
  711. return err;
  712. }
  713. static int atc_pll_init(struct ct_atc *atc, int rate)
  714. {
  715. struct hw *hw = atc->hw;
  716. int err;
  717. err = hw->pll_init(hw, rate);
  718. atc->pll_rate = err ? 0 : rate;
  719. return err;
  720. }
  721. static int
  722. spdif_passthru_playback_setup(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  723. {
  724. struct dao *dao = container_of(atc->daios[SPDIFOO], struct dao, daio);
  725. unsigned int rate = apcm->substream->runtime->rate;
  726. unsigned int status;
  727. int err = 0;
  728. unsigned char iec958_con_fs;
  729. switch (rate) {
  730. case 48000:
  731. iec958_con_fs = IEC958_AES3_CON_FS_48000;
  732. break;
  733. case 44100:
  734. iec958_con_fs = IEC958_AES3_CON_FS_44100;
  735. break;
  736. case 32000:
  737. iec958_con_fs = IEC958_AES3_CON_FS_32000;
  738. break;
  739. default:
  740. return -ENOENT;
  741. }
  742. mutex_lock(&atc->atc_mutex);
  743. dao->ops->get_spos(dao, &status);
  744. if (((status >> 24) & IEC958_AES3_CON_FS) != iec958_con_fs) {
  745. status &= ~(IEC958_AES3_CON_FS << 24);
  746. status |= (iec958_con_fs << 24);
  747. dao->ops->set_spos(dao, status);
  748. dao->ops->commit_write(dao);
  749. }
  750. if ((rate != atc->pll_rate) && (32000 != rate))
  751. err = atc_pll_init(atc, rate);
  752. mutex_unlock(&atc->atc_mutex);
  753. return err;
  754. }
  755. static int
  756. spdif_passthru_playback_prepare(struct ct_atc *atc, struct ct_atc_pcm *apcm)
  757. {
  758. struct src *src;
  759. struct amixer *amixer;
  760. struct dao *dao;
  761. int err;
  762. int i;
  763. atc_pcm_release_resources(atc, apcm);
  764. /* Configure SPDIFOO and PLL to passthrough mode;
  765. * determine pll_rate. */
  766. err = spdif_passthru_playback_setup(atc, apcm);
  767. if (err)
  768. return err;
  769. /* Get needed resources. */
  770. err = spdif_passthru_playback_get_resources(atc, apcm);
  771. if (err)
  772. return err;
  773. /* Connect resources */
  774. src = apcm->src;
  775. for (i = 0; i < apcm->n_amixer; i++) {
  776. amixer = apcm->amixers[i];
  777. amixer->ops->setup(amixer, &src->rsc, INIT_VOL, NULL);
  778. src = src->ops->next_interleave(src);
  779. if (!src)
  780. src = apcm->src;
  781. }
  782. /* Connect to SPDIFOO */
  783. mutex_lock(&atc->atc_mutex);
  784. dao = container_of(atc->daios[SPDIFOO], struct dao, daio);
  785. amixer = apcm->amixers[0];
  786. dao->ops->set_left_input(dao, &amixer->rsc);
  787. amixer = apcm->amixers[1];
  788. dao->ops->set_right_input(dao, &amixer->rsc);
  789. mutex_unlock(&atc->atc_mutex);
  790. ct_timer_prepare(apcm->timer);
  791. return 0;
  792. }
  793. static int atc_select_line_in(struct ct_atc *atc)
  794. {
  795. struct hw *hw = atc->hw;
  796. struct ct_mixer *mixer = atc->mixer;
  797. struct src *src;
  798. if (hw->is_adc_source_selected(hw, ADC_LINEIN))
  799. return 0;
  800. mixer->set_input_left(mixer, MIX_MIC_IN, NULL);
  801. mixer->set_input_right(mixer, MIX_MIC_IN, NULL);
  802. hw->select_adc_source(hw, ADC_LINEIN);
  803. src = atc->srcs[2];
  804. mixer->set_input_left(mixer, MIX_LINE_IN, &src->rsc);
  805. src = atc->srcs[3];
  806. mixer->set_input_right(mixer, MIX_LINE_IN, &src->rsc);
  807. return 0;
  808. }
  809. static int atc_select_mic_in(struct ct_atc *atc)
  810. {
  811. struct hw *hw = atc->hw;
  812. struct ct_mixer *mixer = atc->mixer;
  813. struct src *src;
  814. if (hw->is_adc_source_selected(hw, ADC_MICIN))
  815. return 0;
  816. mixer->set_input_left(mixer, MIX_LINE_IN, NULL);
  817. mixer->set_input_right(mixer, MIX_LINE_IN, NULL);
  818. hw->select_adc_source(hw, ADC_MICIN);
  819. src = atc->srcs[2];
  820. mixer->set_input_left(mixer, MIX_MIC_IN, &src->rsc);
  821. src = atc->srcs[3];
  822. mixer->set_input_right(mixer, MIX_MIC_IN, &src->rsc);
  823. return 0;
  824. }
  825. static int atc_have_digit_io_switch(struct ct_atc *atc)
  826. {
  827. struct hw *hw = atc->hw;
  828. return hw->have_digit_io_switch(hw);
  829. }
  830. static int atc_select_digit_io(struct ct_atc *atc)
  831. {
  832. struct hw *hw = atc->hw;
  833. if (hw->is_adc_source_selected(hw, ADC_NONE))
  834. return 0;
  835. hw->select_adc_source(hw, ADC_NONE);
  836. return 0;
  837. }
  838. static int atc_daio_unmute(struct ct_atc *atc, unsigned char state, int type)
  839. {
  840. struct daio_mgr *daio_mgr = atc->rsc_mgrs[DAIO];
  841. if (state)
  842. daio_mgr->daio_enable(daio_mgr, atc->daios[type]);
  843. else
  844. daio_mgr->daio_disable(daio_mgr, atc->daios[type]);
  845. daio_mgr->commit_write(daio_mgr);
  846. return 0;
  847. }
  848. static int
  849. atc_dao_get_status(struct ct_atc *atc, unsigned int *status, int type)
  850. {
  851. struct dao *dao = container_of(atc->daios[type], struct dao, daio);
  852. return dao->ops->get_spos(dao, status);
  853. }
  854. static int
  855. atc_dao_set_status(struct ct_atc *atc, unsigned int status, int type)
  856. {
  857. struct dao *dao = container_of(atc->daios[type], struct dao, daio);
  858. dao->ops->set_spos(dao, status);
  859. dao->ops->commit_write(dao);
  860. return 0;
  861. }
  862. static int atc_line_front_unmute(struct ct_atc *atc, unsigned char state)
  863. {
  864. return atc_daio_unmute(atc, state, LINEO1);
  865. }
  866. static int atc_line_surround_unmute(struct ct_atc *atc, unsigned char state)
  867. {
  868. return atc_daio_unmute(atc, state, LINEO2);
  869. }
  870. static int atc_line_clfe_unmute(struct ct_atc *atc, unsigned char state)
  871. {
  872. return atc_daio_unmute(atc, state, LINEO3);
  873. }
  874. static int atc_line_rear_unmute(struct ct_atc *atc, unsigned char state)
  875. {
  876. return atc_daio_unmute(atc, state, LINEO4);
  877. }
  878. static int atc_line_in_unmute(struct ct_atc *atc, unsigned char state)
  879. {
  880. return atc_daio_unmute(atc, state, LINEIM);
  881. }
  882. static int atc_spdif_out_unmute(struct ct_atc *atc, unsigned char state)
  883. {
  884. return atc_daio_unmute(atc, state, SPDIFOO);
  885. }
  886. static int atc_spdif_in_unmute(struct ct_atc *atc, unsigned char state)
  887. {
  888. return atc_daio_unmute(atc, state, SPDIFIO);
  889. }
  890. static int atc_spdif_out_get_status(struct ct_atc *atc, unsigned int *status)
  891. {
  892. return atc_dao_get_status(atc, status, SPDIFOO);
  893. }
  894. static int atc_spdif_out_set_status(struct ct_atc *atc, unsigned int status)
  895. {
  896. return atc_dao_set_status(atc, status, SPDIFOO);
  897. }
  898. static int atc_spdif_out_passthru(struct ct_atc *atc, unsigned char state)
  899. {
  900. struct dao_desc da_dsc = {0};
  901. struct dao *dao;
  902. int err;
  903. struct ct_mixer *mixer = atc->mixer;
  904. struct rsc *rscs[2] = {NULL};
  905. unsigned int spos = 0;
  906. mutex_lock(&atc->atc_mutex);
  907. dao = container_of(atc->daios[SPDIFOO], struct dao, daio);
  908. da_dsc.msr = state ? 1 : atc->msr;
  909. da_dsc.passthru = state ? 1 : 0;
  910. err = dao->ops->reinit(dao, &da_dsc);
  911. if (state) {
  912. spos = IEC958_DEFAULT_CON;
  913. } else {
  914. mixer->get_output_ports(mixer, MIX_SPDIF_OUT,
  915. &rscs[0], &rscs[1]);
  916. dao->ops->set_left_input(dao, rscs[0]);
  917. dao->ops->set_right_input(dao, rscs[1]);
  918. /* Restore PLL to atc->rsr if needed. */
  919. if (atc->pll_rate != atc->rsr)
  920. err = atc_pll_init(atc, atc->rsr);
  921. }
  922. dao->ops->set_spos(dao, spos);
  923. dao->ops->commit_write(dao);
  924. mutex_unlock(&atc->atc_mutex);
  925. return err;
  926. }
  927. static int atc_release_resources(struct ct_atc *atc)
  928. {
  929. int i;
  930. struct daio_mgr *daio_mgr = NULL;
  931. struct dao *dao = NULL;
  932. struct dai *dai = NULL;
  933. struct daio *daio = NULL;
  934. struct sum_mgr *sum_mgr = NULL;
  935. struct src_mgr *src_mgr = NULL;
  936. struct srcimp_mgr *srcimp_mgr = NULL;
  937. struct srcimp *srcimp = NULL;
  938. struct ct_mixer *mixer = NULL;
  939. /* disconnect internal mixer objects */
  940. if (atc->mixer) {
  941. mixer = atc->mixer;
  942. mixer->set_input_left(mixer, MIX_LINE_IN, NULL);
  943. mixer->set_input_right(mixer, MIX_LINE_IN, NULL);
  944. mixer->set_input_left(mixer, MIX_MIC_IN, NULL);
  945. mixer->set_input_right(mixer, MIX_MIC_IN, NULL);
  946. mixer->set_input_left(mixer, MIX_SPDIF_IN, NULL);
  947. mixer->set_input_right(mixer, MIX_SPDIF_IN, NULL);
  948. }
  949. if (atc->daios) {
  950. daio_mgr = (struct daio_mgr *)atc->rsc_mgrs[DAIO];
  951. for (i = 0; i < atc->n_daio; i++) {
  952. daio = atc->daios[i];
  953. if (daio->type < LINEIM) {
  954. dao = container_of(daio, struct dao, daio);
  955. dao->ops->clear_left_input(dao);
  956. dao->ops->clear_right_input(dao);
  957. } else {
  958. dai = container_of(daio, struct dai, daio);
  959. /* some thing to do for dai ... */
  960. }
  961. daio_mgr->put_daio(daio_mgr, daio);
  962. }
  963. kfree(atc->daios);
  964. atc->daios = NULL;
  965. }
  966. if (atc->pcm) {
  967. sum_mgr = atc->rsc_mgrs[SUM];
  968. for (i = 0; i < atc->n_pcm; i++)
  969. sum_mgr->put_sum(sum_mgr, atc->pcm[i]);
  970. kfree(atc->pcm);
  971. atc->pcm = NULL;
  972. }
  973. if (atc->srcs) {
  974. src_mgr = atc->rsc_mgrs[SRC];
  975. for (i = 0; i < atc->n_src; i++)
  976. src_mgr->put_src(src_mgr, atc->srcs[i]);
  977. kfree(atc->srcs);
  978. atc->srcs = NULL;
  979. }
  980. if (atc->srcimps) {
  981. srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  982. for (i = 0; i < atc->n_srcimp; i++) {
  983. srcimp = atc->srcimps[i];
  984. srcimp->ops->unmap(srcimp);
  985. srcimp_mgr->put_srcimp(srcimp_mgr, atc->srcimps[i]);
  986. }
  987. kfree(atc->srcimps);
  988. atc->srcimps = NULL;
  989. }
  990. return 0;
  991. }
  992. static int ct_atc_destroy(struct ct_atc *atc)
  993. {
  994. int i = 0;
  995. if (!atc)
  996. return 0;
  997. if (atc->timer) {
  998. ct_timer_free(atc->timer);
  999. atc->timer = NULL;
  1000. }
  1001. atc_release_resources(atc);
  1002. /* Destroy internal mixer objects */
  1003. if (atc->mixer)
  1004. ct_mixer_destroy(atc->mixer);
  1005. for (i = 0; i < NUM_RSCTYP; i++) {
  1006. if (rsc_mgr_funcs[i].destroy && atc->rsc_mgrs[i])
  1007. rsc_mgr_funcs[i].destroy(atc->rsc_mgrs[i]);
  1008. }
  1009. if (atc->hw)
  1010. destroy_hw_obj((struct hw *)atc->hw);
  1011. /* Destroy device virtual memory manager object */
  1012. if (atc->vm) {
  1013. ct_vm_destroy(atc->vm);
  1014. atc->vm = NULL;
  1015. }
  1016. kfree(atc);
  1017. return 0;
  1018. }
  1019. static int atc_dev_free(struct snd_device *dev)
  1020. {
  1021. struct ct_atc *atc = dev->device_data;
  1022. return ct_atc_destroy(atc);
  1023. }
  1024. static int __devinit atc_identify_card(struct ct_atc *atc, unsigned int ssid)
  1025. {
  1026. const struct snd_pci_quirk *p;
  1027. const struct snd_pci_quirk *list;
  1028. u16 vendor_id, device_id;
  1029. switch (atc->chip_type) {
  1030. case ATC20K1:
  1031. atc->chip_name = "20K1";
  1032. list = subsys_20k1_list;
  1033. break;
  1034. case ATC20K2:
  1035. atc->chip_name = "20K2";
  1036. list = subsys_20k2_list;
  1037. break;
  1038. default:
  1039. return -ENOENT;
  1040. }
  1041. if (ssid) {
  1042. vendor_id = ssid >> 16;
  1043. device_id = ssid & 0xffff;
  1044. } else {
  1045. vendor_id = atc->pci->subsystem_vendor;
  1046. device_id = atc->pci->subsystem_device;
  1047. }
  1048. p = snd_pci_quirk_lookup_id(vendor_id, device_id, list);
  1049. if (p) {
  1050. if (p->value < 0) {
  1051. printk(KERN_ERR "ctxfi: "
  1052. "Device %04x:%04x is black-listed\n",
  1053. vendor_id, device_id);
  1054. return -ENOENT;
  1055. }
  1056. atc->model = p->value;
  1057. } else {
  1058. if (atc->chip_type == ATC20K1)
  1059. atc->model = CT20K1_UNKNOWN;
  1060. else
  1061. atc->model = CT20K2_UNKNOWN;
  1062. }
  1063. atc->model_name = ct_subsys_name[atc->model];
  1064. snd_printd("ctxfi: chip %s model %s (%04x:%04x) is found\n",
  1065. atc->chip_name, atc->model_name,
  1066. vendor_id, device_id);
  1067. return 0;
  1068. }
  1069. int __devinit ct_atc_create_alsa_devs(struct ct_atc *atc)
  1070. {
  1071. enum CTALSADEVS i;
  1072. int err;
  1073. alsa_dev_funcs[MIXER].public_name = atc->chip_name;
  1074. for (i = 0; i < NUM_CTALSADEVS; i++) {
  1075. if (!alsa_dev_funcs[i].create)
  1076. continue;
  1077. err = alsa_dev_funcs[i].create(atc, i,
  1078. alsa_dev_funcs[i].public_name);
  1079. if (err) {
  1080. printk(KERN_ERR "ctxfi: "
  1081. "Creating alsa device %d failed!\n", i);
  1082. return err;
  1083. }
  1084. }
  1085. return 0;
  1086. }
  1087. static int __devinit atc_create_hw_devs(struct ct_atc *atc)
  1088. {
  1089. struct hw *hw;
  1090. struct card_conf info = {0};
  1091. int i, err;
  1092. err = create_hw_obj(atc->pci, atc->chip_type, atc->model, &hw);
  1093. if (err) {
  1094. printk(KERN_ERR "Failed to create hw obj!!!\n");
  1095. return err;
  1096. }
  1097. atc->hw = hw;
  1098. /* Initialize card hardware. */
  1099. info.rsr = atc->rsr;
  1100. info.msr = atc->msr;
  1101. info.vm_pgt_phys = atc_get_ptp_phys(atc, 0);
  1102. err = hw->card_init(hw, &info);
  1103. if (err < 0)
  1104. return err;
  1105. for (i = 0; i < NUM_RSCTYP; i++) {
  1106. if (!rsc_mgr_funcs[i].create)
  1107. continue;
  1108. err = rsc_mgr_funcs[i].create(atc->hw, &atc->rsc_mgrs[i]);
  1109. if (err) {
  1110. printk(KERN_ERR "ctxfi: "
  1111. "Failed to create rsc_mgr %d!!!\n", i);
  1112. return err;
  1113. }
  1114. }
  1115. return 0;
  1116. }
  1117. static int atc_get_resources(struct ct_atc *atc)
  1118. {
  1119. struct daio_desc da_desc = {0};
  1120. struct daio_mgr *daio_mgr;
  1121. struct src_desc src_dsc = {0};
  1122. struct src_mgr *src_mgr;
  1123. struct srcimp_desc srcimp_dsc = {0};
  1124. struct srcimp_mgr *srcimp_mgr;
  1125. struct sum_desc sum_dsc = {0};
  1126. struct sum_mgr *sum_mgr;
  1127. int err, i;
  1128. atc->daios = kzalloc(sizeof(void *)*(DAIONUM), GFP_KERNEL);
  1129. if (!atc->daios)
  1130. return -ENOMEM;
  1131. atc->srcs = kzalloc(sizeof(void *)*(2*2), GFP_KERNEL);
  1132. if (!atc->srcs)
  1133. return -ENOMEM;
  1134. atc->srcimps = kzalloc(sizeof(void *)*(2*2), GFP_KERNEL);
  1135. if (!atc->srcimps)
  1136. return -ENOMEM;
  1137. atc->pcm = kzalloc(sizeof(void *)*(2*4), GFP_KERNEL);
  1138. if (!atc->pcm)
  1139. return -ENOMEM;
  1140. daio_mgr = (struct daio_mgr *)atc->rsc_mgrs[DAIO];
  1141. da_desc.msr = atc->msr;
  1142. for (i = 0, atc->n_daio = 0; i < DAIONUM-1; i++) {
  1143. da_desc.type = i;
  1144. err = daio_mgr->get_daio(daio_mgr, &da_desc,
  1145. (struct daio **)&atc->daios[i]);
  1146. if (err) {
  1147. printk(KERN_ERR "ctxfi: Failed to get DAIO "
  1148. "resource %d!!!\n", i);
  1149. return err;
  1150. }
  1151. atc->n_daio++;
  1152. }
  1153. if (atc->model == CTSB073X)
  1154. da_desc.type = SPDIFI1;
  1155. else
  1156. da_desc.type = SPDIFIO;
  1157. err = daio_mgr->get_daio(daio_mgr, &da_desc,
  1158. (struct daio **)&atc->daios[i]);
  1159. if (err) {
  1160. printk(KERN_ERR "ctxfi: Failed to get S/PDIF-in resource!!!\n");
  1161. return err;
  1162. }
  1163. atc->n_daio++;
  1164. src_mgr = atc->rsc_mgrs[SRC];
  1165. src_dsc.multi = 1;
  1166. src_dsc.msr = atc->msr;
  1167. src_dsc.mode = ARCRW;
  1168. for (i = 0, atc->n_src = 0; i < (2*2); i++) {
  1169. err = src_mgr->get_src(src_mgr, &src_dsc,
  1170. (struct src **)&atc->srcs[i]);
  1171. if (err)
  1172. return err;
  1173. atc->n_src++;
  1174. }
  1175. srcimp_mgr = atc->rsc_mgrs[SRCIMP];
  1176. srcimp_dsc.msr = 8; /* SRCIMPs for S/PDIFIn SRT */
  1177. for (i = 0, atc->n_srcimp = 0; i < (2*1); i++) {
  1178. err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc,
  1179. (struct srcimp **)&atc->srcimps[i]);
  1180. if (err)
  1181. return err;
  1182. atc->n_srcimp++;
  1183. }
  1184. srcimp_dsc.msr = 8; /* SRCIMPs for LINE/MICIn SRT */
  1185. for (i = 0; i < (2*1); i++) {
  1186. err = srcimp_mgr->get_srcimp(srcimp_mgr, &srcimp_dsc,
  1187. (struct srcimp **)&atc->srcimps[2*1+i]);
  1188. if (err)
  1189. return err;
  1190. atc->n_srcimp++;
  1191. }
  1192. sum_mgr = atc->rsc_mgrs[SUM];
  1193. sum_dsc.msr = atc->msr;
  1194. for (i = 0, atc->n_pcm = 0; i < (2*4); i++) {
  1195. err = sum_mgr->get_sum(sum_mgr, &sum_dsc,
  1196. (struct sum **)&atc->pcm[i]);
  1197. if (err)
  1198. return err;
  1199. atc->n_pcm++;
  1200. }
  1201. return 0;
  1202. }
  1203. static void
  1204. atc_connect_dai(struct src_mgr *src_mgr, struct dai *dai,
  1205. struct src **srcs, struct srcimp **srcimps)
  1206. {
  1207. struct rsc *rscs[2] = {NULL};
  1208. struct src *src;
  1209. struct srcimp *srcimp;
  1210. int i = 0;
  1211. rscs[0] = &dai->daio.rscl;
  1212. rscs[1] = &dai->daio.rscr;
  1213. for (i = 0; i < 2; i++) {
  1214. src = srcs[i];
  1215. srcimp = srcimps[i];
  1216. srcimp->ops->map(srcimp, src, rscs[i]);
  1217. src_mgr->src_disable(src_mgr, src);
  1218. }
  1219. src_mgr->commit_write(src_mgr); /* Actually disable SRCs */
  1220. src = srcs[0];
  1221. src->ops->set_pm(src, 1);
  1222. for (i = 0; i < 2; i++) {
  1223. src = srcs[i];
  1224. src->ops->set_state(src, SRC_STATE_RUN);
  1225. src->ops->commit_write(src);
  1226. src_mgr->src_enable_s(src_mgr, src);
  1227. }
  1228. dai->ops->set_srt_srcl(dai, &(srcs[0]->rsc));
  1229. dai->ops->set_srt_srcr(dai, &(srcs[1]->rsc));
  1230. dai->ops->set_enb_src(dai, 1);
  1231. dai->ops->set_enb_srt(dai, 1);
  1232. dai->ops->commit_write(dai);
  1233. src_mgr->commit_write(src_mgr); /* Synchronously enable SRCs */
  1234. }
  1235. static void atc_connect_resources(struct ct_atc *atc)
  1236. {
  1237. struct dai *dai;
  1238. struct dao *dao;
  1239. struct src *src;
  1240. struct sum *sum;
  1241. struct ct_mixer *mixer;
  1242. struct rsc *rscs[2] = {NULL};
  1243. int i, j;
  1244. mixer = atc->mixer;
  1245. for (i = MIX_WAVE_FRONT, j = LINEO1; i <= MIX_SPDIF_OUT; i++, j++) {
  1246. mixer->get_output_ports(mixer, i, &rscs[0], &rscs[1]);
  1247. dao = container_of(atc->daios[j], struct dao, daio);
  1248. dao->ops->set_left_input(dao, rscs[0]);
  1249. dao->ops->set_right_input(dao, rscs[1]);
  1250. }
  1251. dai = container_of(atc->daios[LINEIM], struct dai, daio);
  1252. atc_connect_dai(atc->rsc_mgrs[SRC], dai,
  1253. (struct src **)&atc->srcs[2],
  1254. (struct srcimp **)&atc->srcimps[2]);
  1255. src = atc->srcs[2];
  1256. mixer->set_input_left(mixer, MIX_LINE_IN, &src->rsc);
  1257. src = atc->srcs[3];
  1258. mixer->set_input_right(mixer, MIX_LINE_IN, &src->rsc);
  1259. dai = container_of(atc->daios[SPDIFIO], struct dai, daio);
  1260. atc_connect_dai(atc->rsc_mgrs[SRC], dai,
  1261. (struct src **)&atc->srcs[0],
  1262. (struct srcimp **)&atc->srcimps[0]);
  1263. src = atc->srcs[0];
  1264. mixer->set_input_left(mixer, MIX_SPDIF_IN, &src->rsc);
  1265. src = atc->srcs[1];
  1266. mixer->set_input_right(mixer, MIX_SPDIF_IN, &src->rsc);
  1267. for (i = MIX_PCMI_FRONT, j = 0; i <= MIX_PCMI_SURROUND; i++, j += 2) {
  1268. sum = atc->pcm[j];
  1269. mixer->set_input_left(mixer, i, &sum->rsc);
  1270. sum = atc->pcm[j+1];
  1271. mixer->set_input_right(mixer, i, &sum->rsc);
  1272. }
  1273. }
  1274. #ifdef CONFIG_PM
  1275. static int atc_suspend(struct ct_atc *atc, pm_message_t state)
  1276. {
  1277. int i;
  1278. struct hw *hw = atc->hw;
  1279. snd_power_change_state(atc->card, SNDRV_CTL_POWER_D3hot);
  1280. for (i = FRONT; i < NUM_PCMS; i++) {
  1281. if (!atc->pcms[i])
  1282. continue;
  1283. snd_pcm_suspend_all(atc->pcms[i]);
  1284. }
  1285. atc_release_resources(atc);
  1286. hw->suspend(hw, state);
  1287. return 0;
  1288. }
  1289. static int atc_hw_resume(struct ct_atc *atc)
  1290. {
  1291. struct hw *hw = atc->hw;
  1292. struct card_conf info = {0};
  1293. /* Re-initialize card hardware. */
  1294. info.rsr = atc->rsr;
  1295. info.msr = atc->msr;
  1296. info.vm_pgt_phys = atc_get_ptp_phys(atc, 0);
  1297. return hw->resume(hw, &info);
  1298. }
  1299. static int atc_resources_resume(struct ct_atc *atc)
  1300. {
  1301. struct ct_mixer *mixer;
  1302. int err = 0;
  1303. /* Get resources */
  1304. err = atc_get_resources(atc);
  1305. if (err < 0) {
  1306. atc_release_resources(atc);
  1307. return err;
  1308. }
  1309. /* Build topology */
  1310. atc_connect_resources(atc);
  1311. mixer = atc->mixer;
  1312. mixer->resume(mixer);
  1313. return 0;
  1314. }
  1315. static int atc_resume(struct ct_atc *atc)
  1316. {
  1317. int err = 0;
  1318. /* Do hardware resume. */
  1319. err = atc_hw_resume(atc);
  1320. if (err < 0) {
  1321. printk(KERN_ERR "ctxfi: pci_enable_device failed, "
  1322. "disabling device\n");
  1323. snd_card_disconnect(atc->card);
  1324. return err;
  1325. }
  1326. err = atc_resources_resume(atc);
  1327. if (err < 0)
  1328. return err;
  1329. snd_power_change_state(atc->card, SNDRV_CTL_POWER_D0);
  1330. return 0;
  1331. }
  1332. #endif
  1333. static struct ct_atc atc_preset __devinitdata = {
  1334. .map_audio_buffer = ct_map_audio_buffer,
  1335. .unmap_audio_buffer = ct_unmap_audio_buffer,
  1336. .pcm_playback_prepare = atc_pcm_playback_prepare,
  1337. .pcm_release_resources = atc_pcm_release_resources,
  1338. .pcm_playback_start = atc_pcm_playback_start,
  1339. .pcm_playback_stop = atc_pcm_stop,
  1340. .pcm_playback_position = atc_pcm_playback_position,
  1341. .pcm_capture_prepare = atc_pcm_capture_prepare,
  1342. .pcm_capture_start = atc_pcm_capture_start,
  1343. .pcm_capture_stop = atc_pcm_stop,
  1344. .pcm_capture_position = atc_pcm_capture_position,
  1345. .spdif_passthru_playback_prepare = spdif_passthru_playback_prepare,
  1346. .get_ptp_phys = atc_get_ptp_phys,
  1347. .select_line_in = atc_select_line_in,
  1348. .select_mic_in = atc_select_mic_in,
  1349. .select_digit_io = atc_select_digit_io,
  1350. .line_front_unmute = atc_line_front_unmute,
  1351. .line_surround_unmute = atc_line_surround_unmute,
  1352. .line_clfe_unmute = atc_line_clfe_unmute,
  1353. .line_rear_unmute = atc_line_rear_unmute,
  1354. .line_in_unmute = atc_line_in_unmute,
  1355. .spdif_out_unmute = atc_spdif_out_unmute,
  1356. .spdif_in_unmute = atc_spdif_in_unmute,
  1357. .spdif_out_get_status = atc_spdif_out_get_status,
  1358. .spdif_out_set_status = atc_spdif_out_set_status,
  1359. .spdif_out_passthru = atc_spdif_out_passthru,
  1360. .have_digit_io_switch = atc_have_digit_io_switch,
  1361. #ifdef CONFIG_PM
  1362. .suspend = atc_suspend,
  1363. .resume = atc_resume,
  1364. #endif
  1365. };
  1366. /**
  1367. * ct_atc_create - create and initialize a hardware manager
  1368. * @card: corresponding alsa card object
  1369. * @pci: corresponding kernel pci device object
  1370. * @ratc: return created object address in it
  1371. *
  1372. * Creates and initializes a hardware manager.
  1373. *
  1374. * Creates kmallocated ct_atc structure. Initializes hardware.
  1375. * Returns 0 if suceeds, or negative error code if fails.
  1376. */
  1377. int __devinit ct_atc_create(struct snd_card *card, struct pci_dev *pci,
  1378. unsigned int rsr, unsigned int msr,
  1379. int chip_type, unsigned int ssid,
  1380. struct ct_atc **ratc)
  1381. {
  1382. struct ct_atc *atc;
  1383. static struct snd_device_ops ops = {
  1384. .dev_free = atc_dev_free,
  1385. };
  1386. int err;
  1387. *ratc = NULL;
  1388. atc = kzalloc(sizeof(*atc), GFP_KERNEL);
  1389. if (!atc)
  1390. return -ENOMEM;
  1391. /* Set operations */
  1392. *atc = atc_preset;
  1393. atc->card = card;
  1394. atc->pci = pci;
  1395. atc->rsr = rsr;
  1396. atc->msr = msr;
  1397. atc->chip_type = chip_type;
  1398. mutex_init(&atc->atc_mutex);
  1399. /* Find card model */
  1400. err = atc_identify_card(atc, ssid);
  1401. if (err < 0) {
  1402. printk(KERN_ERR "ctatc: Card not recognised\n");
  1403. goto error1;
  1404. }
  1405. /* Set up device virtual memory management object */
  1406. err = ct_vm_create(&atc->vm, pci);
  1407. if (err < 0)
  1408. goto error1;
  1409. /* Create all atc hw devices */
  1410. err = atc_create_hw_devs(atc);
  1411. if (err < 0)
  1412. goto error1;
  1413. err = ct_mixer_create(atc, (struct ct_mixer **)&atc->mixer);
  1414. if (err) {
  1415. printk(KERN_ERR "ctxfi: Failed to create mixer obj!!!\n");
  1416. goto error1;
  1417. }
  1418. /* Get resources */
  1419. err = atc_get_resources(atc);
  1420. if (err < 0)
  1421. goto error1;
  1422. /* Build topology */
  1423. atc_connect_resources(atc);
  1424. atc->timer = ct_timer_new(atc);
  1425. if (!atc->timer)
  1426. goto error1;
  1427. err = snd_device_new(card, SNDRV_DEV_LOWLEVEL, atc, &ops);
  1428. if (err < 0)
  1429. goto error1;
  1430. snd_card_set_dev(card, &pci->dev);
  1431. *ratc = atc;
  1432. return 0;
  1433. error1:
  1434. ct_atc_destroy(atc);
  1435. printk(KERN_ERR "ctxfi: Something wrong!!!\n");
  1436. return err;
  1437. }