device_cgroup.c 12 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553
  1. /*
  2. * device_cgroup.c - device cgroup subsystem
  3. *
  4. * Copyright 2007 IBM Corp
  5. */
  6. #include <linux/device_cgroup.h>
  7. #include <linux/cgroup.h>
  8. #include <linux/ctype.h>
  9. #include <linux/list.h>
  10. #include <linux/uaccess.h>
  11. #include <linux/seq_file.h>
  12. #include <linux/slab.h>
  13. #include <linux/rcupdate.h>
  14. #include <linux/mutex.h>
  15. #define ACC_MKNOD 1
  16. #define ACC_READ 2
  17. #define ACC_WRITE 4
  18. #define ACC_MASK (ACC_MKNOD | ACC_READ | ACC_WRITE)
  19. #define DEV_BLOCK 1
  20. #define DEV_CHAR 2
  21. #define DEV_ALL 4 /* this represents all devices */
  22. static DEFINE_MUTEX(devcgroup_mutex);
  23. /*
  24. * whitelist locking rules:
  25. * hold devcgroup_mutex for update/read.
  26. * hold rcu_read_lock() for read.
  27. */
  28. struct dev_whitelist_item {
  29. u32 major, minor;
  30. short type;
  31. short access;
  32. struct list_head list;
  33. struct rcu_head rcu;
  34. };
  35. struct dev_cgroup {
  36. struct cgroup_subsys_state css;
  37. struct list_head whitelist;
  38. };
  39. static inline struct dev_cgroup *css_to_devcgroup(struct cgroup_subsys_state *s)
  40. {
  41. return container_of(s, struct dev_cgroup, css);
  42. }
  43. static inline struct dev_cgroup *cgroup_to_devcgroup(struct cgroup *cgroup)
  44. {
  45. return css_to_devcgroup(cgroup_subsys_state(cgroup, devices_subsys_id));
  46. }
  47. static inline struct dev_cgroup *task_devcgroup(struct task_struct *task)
  48. {
  49. return css_to_devcgroup(task_subsys_state(task, devices_subsys_id));
  50. }
  51. struct cgroup_subsys devices_subsys;
  52. static int devcgroup_can_attach(struct cgroup_subsys *ss,
  53. struct cgroup *new_cgroup, struct task_struct *task,
  54. bool threadgroup)
  55. {
  56. if (current != task && !capable(CAP_SYS_ADMIN))
  57. return -EPERM;
  58. return 0;
  59. }
  60. /*
  61. * called under devcgroup_mutex
  62. */
  63. static int dev_whitelist_copy(struct list_head *dest, struct list_head *orig)
  64. {
  65. struct dev_whitelist_item *wh, *tmp, *new;
  66. list_for_each_entry(wh, orig, list) {
  67. new = kmemdup(wh, sizeof(*wh), GFP_KERNEL);
  68. if (!new)
  69. goto free_and_exit;
  70. list_add_tail(&new->list, dest);
  71. }
  72. return 0;
  73. free_and_exit:
  74. list_for_each_entry_safe(wh, tmp, dest, list) {
  75. list_del(&wh->list);
  76. kfree(wh);
  77. }
  78. return -ENOMEM;
  79. }
  80. /* Stupid prototype - don't bother combining existing entries */
  81. /*
  82. * called under devcgroup_mutex
  83. */
  84. static int dev_whitelist_add(struct dev_cgroup *dev_cgroup,
  85. struct dev_whitelist_item *wh)
  86. {
  87. struct dev_whitelist_item *whcopy, *walk;
  88. whcopy = kmemdup(wh, sizeof(*wh), GFP_KERNEL);
  89. if (!whcopy)
  90. return -ENOMEM;
  91. list_for_each_entry(walk, &dev_cgroup->whitelist, list) {
  92. if (walk->type != wh->type)
  93. continue;
  94. if (walk->major != wh->major)
  95. continue;
  96. if (walk->minor != wh->minor)
  97. continue;
  98. walk->access |= wh->access;
  99. kfree(whcopy);
  100. whcopy = NULL;
  101. }
  102. if (whcopy != NULL)
  103. list_add_tail_rcu(&whcopy->list, &dev_cgroup->whitelist);
  104. return 0;
  105. }
  106. static void whitelist_item_free(struct rcu_head *rcu)
  107. {
  108. struct dev_whitelist_item *item;
  109. item = container_of(rcu, struct dev_whitelist_item, rcu);
  110. kfree(item);
  111. }
  112. /*
  113. * called under devcgroup_mutex
  114. */
  115. static void dev_whitelist_rm(struct dev_cgroup *dev_cgroup,
  116. struct dev_whitelist_item *wh)
  117. {
  118. struct dev_whitelist_item *walk, *tmp;
  119. list_for_each_entry_safe(walk, tmp, &dev_cgroup->whitelist, list) {
  120. if (walk->type == DEV_ALL)
  121. goto remove;
  122. if (walk->type != wh->type)
  123. continue;
  124. if (walk->major != ~0 && walk->major != wh->major)
  125. continue;
  126. if (walk->minor != ~0 && walk->minor != wh->minor)
  127. continue;
  128. remove:
  129. walk->access &= ~wh->access;
  130. if (!walk->access) {
  131. list_del_rcu(&walk->list);
  132. call_rcu(&walk->rcu, whitelist_item_free);
  133. }
  134. }
  135. }
  136. /*
  137. * called from kernel/cgroup.c with cgroup_lock() held.
  138. */
  139. static struct cgroup_subsys_state *devcgroup_create(struct cgroup_subsys *ss,
  140. struct cgroup *cgroup)
  141. {
  142. struct dev_cgroup *dev_cgroup, *parent_dev_cgroup;
  143. struct cgroup *parent_cgroup;
  144. int ret;
  145. dev_cgroup = kzalloc(sizeof(*dev_cgroup), GFP_KERNEL);
  146. if (!dev_cgroup)
  147. return ERR_PTR(-ENOMEM);
  148. INIT_LIST_HEAD(&dev_cgroup->whitelist);
  149. parent_cgroup = cgroup->parent;
  150. if (parent_cgroup == NULL) {
  151. struct dev_whitelist_item *wh;
  152. wh = kmalloc(sizeof(*wh), GFP_KERNEL);
  153. if (!wh) {
  154. kfree(dev_cgroup);
  155. return ERR_PTR(-ENOMEM);
  156. }
  157. wh->minor = wh->major = ~0;
  158. wh->type = DEV_ALL;
  159. wh->access = ACC_MASK;
  160. list_add(&wh->list, &dev_cgroup->whitelist);
  161. } else {
  162. parent_dev_cgroup = cgroup_to_devcgroup(parent_cgroup);
  163. mutex_lock(&devcgroup_mutex);
  164. ret = dev_whitelist_copy(&dev_cgroup->whitelist,
  165. &parent_dev_cgroup->whitelist);
  166. mutex_unlock(&devcgroup_mutex);
  167. if (ret) {
  168. kfree(dev_cgroup);
  169. return ERR_PTR(ret);
  170. }
  171. }
  172. return &dev_cgroup->css;
  173. }
  174. static void devcgroup_destroy(struct cgroup_subsys *ss,
  175. struct cgroup *cgroup)
  176. {
  177. struct dev_cgroup *dev_cgroup;
  178. struct dev_whitelist_item *wh, *tmp;
  179. dev_cgroup = cgroup_to_devcgroup(cgroup);
  180. list_for_each_entry_safe(wh, tmp, &dev_cgroup->whitelist, list) {
  181. list_del(&wh->list);
  182. kfree(wh);
  183. }
  184. kfree(dev_cgroup);
  185. }
  186. #define DEVCG_ALLOW 1
  187. #define DEVCG_DENY 2
  188. #define DEVCG_LIST 3
  189. #define MAJMINLEN 13
  190. #define ACCLEN 4
  191. static void set_access(char *acc, short access)
  192. {
  193. int idx = 0;
  194. memset(acc, 0, ACCLEN);
  195. if (access & ACC_READ)
  196. acc[idx++] = 'r';
  197. if (access & ACC_WRITE)
  198. acc[idx++] = 'w';
  199. if (access & ACC_MKNOD)
  200. acc[idx++] = 'm';
  201. }
  202. static char type_to_char(short type)
  203. {
  204. if (type == DEV_ALL)
  205. return 'a';
  206. if (type == DEV_CHAR)
  207. return 'c';
  208. if (type == DEV_BLOCK)
  209. return 'b';
  210. return 'X';
  211. }
  212. static void set_majmin(char *str, unsigned m)
  213. {
  214. if (m == ~0)
  215. strcpy(str, "*");
  216. else
  217. sprintf(str, "%u", m);
  218. }
  219. static int devcgroup_seq_read(struct cgroup *cgroup, struct cftype *cft,
  220. struct seq_file *m)
  221. {
  222. struct dev_cgroup *devcgroup = cgroup_to_devcgroup(cgroup);
  223. struct dev_whitelist_item *wh;
  224. char maj[MAJMINLEN], min[MAJMINLEN], acc[ACCLEN];
  225. rcu_read_lock();
  226. list_for_each_entry_rcu(wh, &devcgroup->whitelist, list) {
  227. set_access(acc, wh->access);
  228. set_majmin(maj, wh->major);
  229. set_majmin(min, wh->minor);
  230. seq_printf(m, "%c %s:%s %s\n", type_to_char(wh->type),
  231. maj, min, acc);
  232. }
  233. rcu_read_unlock();
  234. return 0;
  235. }
  236. /*
  237. * may_access_whitelist:
  238. * does the access granted to dev_cgroup c contain the access
  239. * requested in whitelist item refwh.
  240. * return 1 if yes, 0 if no.
  241. * call with devcgroup_mutex held
  242. */
  243. static int may_access_whitelist(struct dev_cgroup *c,
  244. struct dev_whitelist_item *refwh)
  245. {
  246. struct dev_whitelist_item *whitem;
  247. list_for_each_entry(whitem, &c->whitelist, list) {
  248. if (whitem->type & DEV_ALL)
  249. return 1;
  250. if ((refwh->type & DEV_BLOCK) && !(whitem->type & DEV_BLOCK))
  251. continue;
  252. if ((refwh->type & DEV_CHAR) && !(whitem->type & DEV_CHAR))
  253. continue;
  254. if (whitem->major != ~0 && whitem->major != refwh->major)
  255. continue;
  256. if (whitem->minor != ~0 && whitem->minor != refwh->minor)
  257. continue;
  258. if (refwh->access & (~whitem->access))
  259. continue;
  260. return 1;
  261. }
  262. return 0;
  263. }
  264. /*
  265. * parent_has_perm:
  266. * when adding a new allow rule to a device whitelist, the rule
  267. * must be allowed in the parent device
  268. */
  269. static int parent_has_perm(struct dev_cgroup *childcg,
  270. struct dev_whitelist_item *wh)
  271. {
  272. struct cgroup *pcg = childcg->css.cgroup->parent;
  273. struct dev_cgroup *parent;
  274. if (!pcg)
  275. return 1;
  276. parent = cgroup_to_devcgroup(pcg);
  277. return may_access_whitelist(parent, wh);
  278. }
  279. /*
  280. * Modify the whitelist using allow/deny rules.
  281. * CAP_SYS_ADMIN is needed for this. It's at least separate from CAP_MKNOD
  282. * so we can give a container CAP_MKNOD to let it create devices but not
  283. * modify the whitelist.
  284. * It seems likely we'll want to add a CAP_CONTAINER capability to allow
  285. * us to also grant CAP_SYS_ADMIN to containers without giving away the
  286. * device whitelist controls, but for now we'll stick with CAP_SYS_ADMIN
  287. *
  288. * Taking rules away is always allowed (given CAP_SYS_ADMIN). Granting
  289. * new access is only allowed if you're in the top-level cgroup, or your
  290. * parent cgroup has the access you're asking for.
  291. */
  292. static int devcgroup_update_access(struct dev_cgroup *devcgroup,
  293. int filetype, const char *buffer)
  294. {
  295. const char *b;
  296. char *endp;
  297. int count;
  298. struct dev_whitelist_item wh;
  299. if (!capable(CAP_SYS_ADMIN))
  300. return -EPERM;
  301. memset(&wh, 0, sizeof(wh));
  302. b = buffer;
  303. switch (*b) {
  304. case 'a':
  305. wh.type = DEV_ALL;
  306. wh.access = ACC_MASK;
  307. wh.major = ~0;
  308. wh.minor = ~0;
  309. goto handle;
  310. case 'b':
  311. wh.type = DEV_BLOCK;
  312. break;
  313. case 'c':
  314. wh.type = DEV_CHAR;
  315. break;
  316. default:
  317. return -EINVAL;
  318. }
  319. b++;
  320. if (!isspace(*b))
  321. return -EINVAL;
  322. b++;
  323. if (*b == '*') {
  324. wh.major = ~0;
  325. b++;
  326. } else if (isdigit(*b)) {
  327. wh.major = simple_strtoul(b, &endp, 10);
  328. b = endp;
  329. } else {
  330. return -EINVAL;
  331. }
  332. if (*b != ':')
  333. return -EINVAL;
  334. b++;
  335. /* read minor */
  336. if (*b == '*') {
  337. wh.minor = ~0;
  338. b++;
  339. } else if (isdigit(*b)) {
  340. wh.minor = simple_strtoul(b, &endp, 10);
  341. b = endp;
  342. } else {
  343. return -EINVAL;
  344. }
  345. if (!isspace(*b))
  346. return -EINVAL;
  347. for (b++, count = 0; count < 3; count++, b++) {
  348. switch (*b) {
  349. case 'r':
  350. wh.access |= ACC_READ;
  351. break;
  352. case 'w':
  353. wh.access |= ACC_WRITE;
  354. break;
  355. case 'm':
  356. wh.access |= ACC_MKNOD;
  357. break;
  358. case '\n':
  359. case '\0':
  360. count = 3;
  361. break;
  362. default:
  363. return -EINVAL;
  364. }
  365. }
  366. handle:
  367. switch (filetype) {
  368. case DEVCG_ALLOW:
  369. if (!parent_has_perm(devcgroup, &wh))
  370. return -EPERM;
  371. return dev_whitelist_add(devcgroup, &wh);
  372. case DEVCG_DENY:
  373. dev_whitelist_rm(devcgroup, &wh);
  374. break;
  375. default:
  376. return -EINVAL;
  377. }
  378. return 0;
  379. }
  380. static int devcgroup_access_write(struct cgroup *cgrp, struct cftype *cft,
  381. const char *buffer)
  382. {
  383. int retval;
  384. mutex_lock(&devcgroup_mutex);
  385. retval = devcgroup_update_access(cgroup_to_devcgroup(cgrp),
  386. cft->private, buffer);
  387. mutex_unlock(&devcgroup_mutex);
  388. return retval;
  389. }
  390. static struct cftype dev_cgroup_files[] = {
  391. {
  392. .name = "allow",
  393. .write_string = devcgroup_access_write,
  394. .private = DEVCG_ALLOW,
  395. },
  396. {
  397. .name = "deny",
  398. .write_string = devcgroup_access_write,
  399. .private = DEVCG_DENY,
  400. },
  401. {
  402. .name = "list",
  403. .read_seq_string = devcgroup_seq_read,
  404. .private = DEVCG_LIST,
  405. },
  406. };
  407. static int devcgroup_populate(struct cgroup_subsys *ss,
  408. struct cgroup *cgroup)
  409. {
  410. return cgroup_add_files(cgroup, ss, dev_cgroup_files,
  411. ARRAY_SIZE(dev_cgroup_files));
  412. }
  413. struct cgroup_subsys devices_subsys = {
  414. .name = "devices",
  415. .can_attach = devcgroup_can_attach,
  416. .create = devcgroup_create,
  417. .destroy = devcgroup_destroy,
  418. .populate = devcgroup_populate,
  419. .subsys_id = devices_subsys_id,
  420. };
  421. int devcgroup_inode_permission(struct inode *inode, int mask)
  422. {
  423. struct dev_cgroup *dev_cgroup;
  424. struct dev_whitelist_item *wh;
  425. dev_t device = inode->i_rdev;
  426. if (!device)
  427. return 0;
  428. if (!S_ISBLK(inode->i_mode) && !S_ISCHR(inode->i_mode))
  429. return 0;
  430. rcu_read_lock();
  431. dev_cgroup = task_devcgroup(current);
  432. list_for_each_entry_rcu(wh, &dev_cgroup->whitelist, list) {
  433. if (wh->type & DEV_ALL)
  434. goto found;
  435. if ((wh->type & DEV_BLOCK) && !S_ISBLK(inode->i_mode))
  436. continue;
  437. if ((wh->type & DEV_CHAR) && !S_ISCHR(inode->i_mode))
  438. continue;
  439. if (wh->major != ~0 && wh->major != imajor(inode))
  440. continue;
  441. if (wh->minor != ~0 && wh->minor != iminor(inode))
  442. continue;
  443. if ((mask & MAY_WRITE) && !(wh->access & ACC_WRITE))
  444. continue;
  445. if ((mask & MAY_READ) && !(wh->access & ACC_READ))
  446. continue;
  447. found:
  448. rcu_read_unlock();
  449. return 0;
  450. }
  451. rcu_read_unlock();
  452. return -EPERM;
  453. }
  454. int devcgroup_inode_mknod(int mode, dev_t dev)
  455. {
  456. struct dev_cgroup *dev_cgroup;
  457. struct dev_whitelist_item *wh;
  458. if (!S_ISBLK(mode) && !S_ISCHR(mode))
  459. return 0;
  460. rcu_read_lock();
  461. dev_cgroup = task_devcgroup(current);
  462. list_for_each_entry_rcu(wh, &dev_cgroup->whitelist, list) {
  463. if (wh->type & DEV_ALL)
  464. goto found;
  465. if ((wh->type & DEV_BLOCK) && !S_ISBLK(mode))
  466. continue;
  467. if ((wh->type & DEV_CHAR) && !S_ISCHR(mode))
  468. continue;
  469. if (wh->major != ~0 && wh->major != MAJOR(dev))
  470. continue;
  471. if (wh->minor != ~0 && wh->minor != MINOR(dev))
  472. continue;
  473. if (!(wh->access & ACC_MKNOD))
  474. continue;
  475. found:
  476. rcu_read_unlock();
  477. return 0;
  478. }
  479. rcu_read_unlock();
  480. return -EPERM;
  481. }