tcp_input.c 168 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941
  1. /*
  2. * INET An implementation of the TCP/IP protocol suite for the LINUX
  3. * operating system. INET is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * Implementation of the Transmission Control Protocol(TCP).
  7. *
  8. * Authors: Ross Biro
  9. * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
  10. * Mark Evans, <evansmp@uhura.aston.ac.uk>
  11. * Corey Minyard <wf-rch!minyard@relay.EU.net>
  12. * Florian La Roche, <flla@stud.uni-sb.de>
  13. * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
  14. * Linus Torvalds, <torvalds@cs.helsinki.fi>
  15. * Alan Cox, <gw4pts@gw4pts.ampr.org>
  16. * Matthew Dillon, <dillon@apollo.west.oic.com>
  17. * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
  18. * Jorge Cwik, <jorge@laser.satlink.net>
  19. */
  20. /*
  21. * Changes:
  22. * Pedro Roque : Fast Retransmit/Recovery.
  23. * Two receive queues.
  24. * Retransmit queue handled by TCP.
  25. * Better retransmit timer handling.
  26. * New congestion avoidance.
  27. * Header prediction.
  28. * Variable renaming.
  29. *
  30. * Eric : Fast Retransmit.
  31. * Randy Scott : MSS option defines.
  32. * Eric Schenk : Fixes to slow start algorithm.
  33. * Eric Schenk : Yet another double ACK bug.
  34. * Eric Schenk : Delayed ACK bug fixes.
  35. * Eric Schenk : Floyd style fast retrans war avoidance.
  36. * David S. Miller : Don't allow zero congestion window.
  37. * Eric Schenk : Fix retransmitter so that it sends
  38. * next packet on ack of previous packet.
  39. * Andi Kleen : Moved open_request checking here
  40. * and process RSTs for open_requests.
  41. * Andi Kleen : Better prune_queue, and other fixes.
  42. * Andrey Savochkin: Fix RTT measurements in the presence of
  43. * timestamps.
  44. * Andrey Savochkin: Check sequence numbers correctly when
  45. * removing SACKs due to in sequence incoming
  46. * data segments.
  47. * Andi Kleen: Make sure we never ack data there is not
  48. * enough room for. Also make this condition
  49. * a fatal error if it might still happen.
  50. * Andi Kleen: Add tcp_measure_rcv_mss to make
  51. * connections with MSS<min(MTU,ann. MSS)
  52. * work without delayed acks.
  53. * Andi Kleen: Process packets with PSH set in the
  54. * fast path.
  55. * J Hadi Salim: ECN support
  56. * Andrei Gurtov,
  57. * Pasi Sarolahti,
  58. * Panu Kuhlberg: Experimental audit of TCP (re)transmission
  59. * engine. Lots of bugs are found.
  60. * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
  61. */
  62. #include <linux/mm.h>
  63. #include <linux/slab.h>
  64. #include <linux/module.h>
  65. #include <linux/sysctl.h>
  66. #include <linux/kernel.h>
  67. #include <net/dst.h>
  68. #include <net/tcp.h>
  69. #include <net/inet_common.h>
  70. #include <linux/ipsec.h>
  71. #include <asm/unaligned.h>
  72. #include <net/netdma.h>
  73. int sysctl_tcp_timestamps __read_mostly = 1;
  74. int sysctl_tcp_window_scaling __read_mostly = 1;
  75. int sysctl_tcp_sack __read_mostly = 1;
  76. int sysctl_tcp_fack __read_mostly = 1;
  77. int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
  78. EXPORT_SYMBOL(sysctl_tcp_reordering);
  79. int sysctl_tcp_ecn __read_mostly = 2;
  80. EXPORT_SYMBOL(sysctl_tcp_ecn);
  81. int sysctl_tcp_dsack __read_mostly = 1;
  82. int sysctl_tcp_app_win __read_mostly = 31;
  83. int sysctl_tcp_adv_win_scale __read_mostly = 2;
  84. EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
  85. int sysctl_tcp_stdurg __read_mostly;
  86. int sysctl_tcp_rfc1337 __read_mostly;
  87. int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
  88. int sysctl_tcp_frto __read_mostly = 2;
  89. int sysctl_tcp_frto_response __read_mostly;
  90. int sysctl_tcp_nometrics_save __read_mostly;
  91. int sysctl_tcp_thin_dupack __read_mostly;
  92. int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
  93. int sysctl_tcp_abc __read_mostly;
  94. #define FLAG_DATA 0x01 /* Incoming frame contained data. */
  95. #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
  96. #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
  97. #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
  98. #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
  99. #define FLAG_DATA_SACKED 0x20 /* New SACK. */
  100. #define FLAG_ECE 0x40 /* ECE in this ACK */
  101. #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
  102. #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
  103. #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
  104. #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
  105. #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
  106. #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
  107. #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
  108. #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
  109. #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
  110. #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
  111. #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
  112. #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
  113. #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
  114. #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
  115. /* Adapt the MSS value used to make delayed ack decision to the
  116. * real world.
  117. */
  118. static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
  119. {
  120. struct inet_connection_sock *icsk = inet_csk(sk);
  121. const unsigned int lss = icsk->icsk_ack.last_seg_size;
  122. unsigned int len;
  123. icsk->icsk_ack.last_seg_size = 0;
  124. /* skb->len may jitter because of SACKs, even if peer
  125. * sends good full-sized frames.
  126. */
  127. len = skb_shinfo(skb)->gso_size ? : skb->len;
  128. if (len >= icsk->icsk_ack.rcv_mss) {
  129. icsk->icsk_ack.rcv_mss = len;
  130. } else {
  131. /* Otherwise, we make more careful check taking into account,
  132. * that SACKs block is variable.
  133. *
  134. * "len" is invariant segment length, including TCP header.
  135. */
  136. len += skb->data - skb_transport_header(skb);
  137. if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
  138. /* If PSH is not set, packet should be
  139. * full sized, provided peer TCP is not badly broken.
  140. * This observation (if it is correct 8)) allows
  141. * to handle super-low mtu links fairly.
  142. */
  143. (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
  144. !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
  145. /* Subtract also invariant (if peer is RFC compliant),
  146. * tcp header plus fixed timestamp option length.
  147. * Resulting "len" is MSS free of SACK jitter.
  148. */
  149. len -= tcp_sk(sk)->tcp_header_len;
  150. icsk->icsk_ack.last_seg_size = len;
  151. if (len == lss) {
  152. icsk->icsk_ack.rcv_mss = len;
  153. return;
  154. }
  155. }
  156. if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
  157. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
  158. icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
  159. }
  160. }
  161. static void tcp_incr_quickack(struct sock *sk)
  162. {
  163. struct inet_connection_sock *icsk = inet_csk(sk);
  164. unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
  165. if (quickacks == 0)
  166. quickacks = 2;
  167. if (quickacks > icsk->icsk_ack.quick)
  168. icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
  169. }
  170. static void tcp_enter_quickack_mode(struct sock *sk)
  171. {
  172. struct inet_connection_sock *icsk = inet_csk(sk);
  173. tcp_incr_quickack(sk);
  174. icsk->icsk_ack.pingpong = 0;
  175. icsk->icsk_ack.ato = TCP_ATO_MIN;
  176. }
  177. /* Send ACKs quickly, if "quick" count is not exhausted
  178. * and the session is not interactive.
  179. */
  180. static inline int tcp_in_quickack_mode(const struct sock *sk)
  181. {
  182. const struct inet_connection_sock *icsk = inet_csk(sk);
  183. return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
  184. }
  185. static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
  186. {
  187. if (tp->ecn_flags & TCP_ECN_OK)
  188. tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
  189. }
  190. static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
  191. {
  192. if (tcp_hdr(skb)->cwr)
  193. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  194. }
  195. static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
  196. {
  197. tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
  198. }
  199. static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
  200. {
  201. if (tp->ecn_flags & TCP_ECN_OK) {
  202. if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
  203. tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
  204. /* Funny extension: if ECT is not set on a segment,
  205. * it is surely retransmit. It is not in ECN RFC,
  206. * but Linux follows this rule. */
  207. else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
  208. tcp_enter_quickack_mode((struct sock *)tp);
  209. }
  210. }
  211. static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
  212. {
  213. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
  214. tp->ecn_flags &= ~TCP_ECN_OK;
  215. }
  216. static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
  217. {
  218. if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
  219. tp->ecn_flags &= ~TCP_ECN_OK;
  220. }
  221. static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
  222. {
  223. if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
  224. return 1;
  225. return 0;
  226. }
  227. /* Buffer size and advertised window tuning.
  228. *
  229. * 1. Tuning sk->sk_sndbuf, when connection enters established state.
  230. */
  231. static void tcp_fixup_sndbuf(struct sock *sk)
  232. {
  233. int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
  234. sizeof(struct sk_buff);
  235. if (sk->sk_sndbuf < 3 * sndmem) {
  236. sk->sk_sndbuf = 3 * sndmem;
  237. if (sk->sk_sndbuf > sysctl_tcp_wmem[2])
  238. sk->sk_sndbuf = sysctl_tcp_wmem[2];
  239. }
  240. }
  241. /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
  242. *
  243. * All tcp_full_space() is split to two parts: "network" buffer, allocated
  244. * forward and advertised in receiver window (tp->rcv_wnd) and
  245. * "application buffer", required to isolate scheduling/application
  246. * latencies from network.
  247. * window_clamp is maximal advertised window. It can be less than
  248. * tcp_full_space(), in this case tcp_full_space() - window_clamp
  249. * is reserved for "application" buffer. The less window_clamp is
  250. * the smoother our behaviour from viewpoint of network, but the lower
  251. * throughput and the higher sensitivity of the connection to losses. 8)
  252. *
  253. * rcv_ssthresh is more strict window_clamp used at "slow start"
  254. * phase to predict further behaviour of this connection.
  255. * It is used for two goals:
  256. * - to enforce header prediction at sender, even when application
  257. * requires some significant "application buffer". It is check #1.
  258. * - to prevent pruning of receive queue because of misprediction
  259. * of receiver window. Check #2.
  260. *
  261. * The scheme does not work when sender sends good segments opening
  262. * window and then starts to feed us spaghetti. But it should work
  263. * in common situations. Otherwise, we have to rely on queue collapsing.
  264. */
  265. /* Slow part of check#2. */
  266. static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
  267. {
  268. struct tcp_sock *tp = tcp_sk(sk);
  269. /* Optimize this! */
  270. int truesize = tcp_win_from_space(skb->truesize) >> 1;
  271. int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
  272. while (tp->rcv_ssthresh <= window) {
  273. if (truesize <= skb->len)
  274. return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
  275. truesize >>= 1;
  276. window >>= 1;
  277. }
  278. return 0;
  279. }
  280. static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
  281. {
  282. struct tcp_sock *tp = tcp_sk(sk);
  283. /* Check #1 */
  284. if (tp->rcv_ssthresh < tp->window_clamp &&
  285. (int)tp->rcv_ssthresh < tcp_space(sk) &&
  286. !tcp_memory_pressure) {
  287. int incr;
  288. /* Check #2. Increase window, if skb with such overhead
  289. * will fit to rcvbuf in future.
  290. */
  291. if (tcp_win_from_space(skb->truesize) <= skb->len)
  292. incr = 2 * tp->advmss;
  293. else
  294. incr = __tcp_grow_window(sk, skb);
  295. if (incr) {
  296. tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
  297. tp->window_clamp);
  298. inet_csk(sk)->icsk_ack.quick |= 1;
  299. }
  300. }
  301. }
  302. /* 3. Tuning rcvbuf, when connection enters established state. */
  303. static void tcp_fixup_rcvbuf(struct sock *sk)
  304. {
  305. struct tcp_sock *tp = tcp_sk(sk);
  306. int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
  307. /* Try to select rcvbuf so that 4 mss-sized segments
  308. * will fit to window and corresponding skbs will fit to our rcvbuf.
  309. * (was 3; 4 is minimum to allow fast retransmit to work.)
  310. */
  311. while (tcp_win_from_space(rcvmem) < tp->advmss)
  312. rcvmem += 128;
  313. if (sk->sk_rcvbuf < 4 * rcvmem)
  314. sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
  315. }
  316. /* 4. Try to fixup all. It is made immediately after connection enters
  317. * established state.
  318. */
  319. static void tcp_init_buffer_space(struct sock *sk)
  320. {
  321. struct tcp_sock *tp = tcp_sk(sk);
  322. int maxwin;
  323. if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
  324. tcp_fixup_rcvbuf(sk);
  325. if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
  326. tcp_fixup_sndbuf(sk);
  327. tp->rcvq_space.space = tp->rcv_wnd;
  328. maxwin = tcp_full_space(sk);
  329. if (tp->window_clamp >= maxwin) {
  330. tp->window_clamp = maxwin;
  331. if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
  332. tp->window_clamp = max(maxwin -
  333. (maxwin >> sysctl_tcp_app_win),
  334. 4 * tp->advmss);
  335. }
  336. /* Force reservation of one segment. */
  337. if (sysctl_tcp_app_win &&
  338. tp->window_clamp > 2 * tp->advmss &&
  339. tp->window_clamp + tp->advmss > maxwin)
  340. tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
  341. tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
  342. tp->snd_cwnd_stamp = tcp_time_stamp;
  343. }
  344. /* 5. Recalculate window clamp after socket hit its memory bounds. */
  345. static void tcp_clamp_window(struct sock *sk)
  346. {
  347. struct tcp_sock *tp = tcp_sk(sk);
  348. struct inet_connection_sock *icsk = inet_csk(sk);
  349. icsk->icsk_ack.quick = 0;
  350. if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
  351. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
  352. !tcp_memory_pressure &&
  353. atomic_long_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
  354. sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
  355. sysctl_tcp_rmem[2]);
  356. }
  357. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
  358. tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
  359. }
  360. /* Initialize RCV_MSS value.
  361. * RCV_MSS is an our guess about MSS used by the peer.
  362. * We haven't any direct information about the MSS.
  363. * It's better to underestimate the RCV_MSS rather than overestimate.
  364. * Overestimations make us ACKing less frequently than needed.
  365. * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
  366. */
  367. void tcp_initialize_rcv_mss(struct sock *sk)
  368. {
  369. struct tcp_sock *tp = tcp_sk(sk);
  370. unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
  371. hint = min(hint, tp->rcv_wnd / 2);
  372. hint = min(hint, TCP_MSS_DEFAULT);
  373. hint = max(hint, TCP_MIN_MSS);
  374. inet_csk(sk)->icsk_ack.rcv_mss = hint;
  375. }
  376. EXPORT_SYMBOL(tcp_initialize_rcv_mss);
  377. /* Receiver "autotuning" code.
  378. *
  379. * The algorithm for RTT estimation w/o timestamps is based on
  380. * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
  381. * <http://public.lanl.gov/radiant/pubs.html#DRS>
  382. *
  383. * More detail on this code can be found at
  384. * <http://staff.psc.edu/jheffner/>,
  385. * though this reference is out of date. A new paper
  386. * is pending.
  387. */
  388. static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
  389. {
  390. u32 new_sample = tp->rcv_rtt_est.rtt;
  391. long m = sample;
  392. if (m == 0)
  393. m = 1;
  394. if (new_sample != 0) {
  395. /* If we sample in larger samples in the non-timestamp
  396. * case, we could grossly overestimate the RTT especially
  397. * with chatty applications or bulk transfer apps which
  398. * are stalled on filesystem I/O.
  399. *
  400. * Also, since we are only going for a minimum in the
  401. * non-timestamp case, we do not smooth things out
  402. * else with timestamps disabled convergence takes too
  403. * long.
  404. */
  405. if (!win_dep) {
  406. m -= (new_sample >> 3);
  407. new_sample += m;
  408. } else if (m < new_sample)
  409. new_sample = m << 3;
  410. } else {
  411. /* No previous measure. */
  412. new_sample = m << 3;
  413. }
  414. if (tp->rcv_rtt_est.rtt != new_sample)
  415. tp->rcv_rtt_est.rtt = new_sample;
  416. }
  417. static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
  418. {
  419. if (tp->rcv_rtt_est.time == 0)
  420. goto new_measure;
  421. if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
  422. return;
  423. tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
  424. new_measure:
  425. tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
  426. tp->rcv_rtt_est.time = tcp_time_stamp;
  427. }
  428. static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
  429. const struct sk_buff *skb)
  430. {
  431. struct tcp_sock *tp = tcp_sk(sk);
  432. if (tp->rx_opt.rcv_tsecr &&
  433. (TCP_SKB_CB(skb)->end_seq -
  434. TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
  435. tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
  436. }
  437. /*
  438. * This function should be called every time data is copied to user space.
  439. * It calculates the appropriate TCP receive buffer space.
  440. */
  441. void tcp_rcv_space_adjust(struct sock *sk)
  442. {
  443. struct tcp_sock *tp = tcp_sk(sk);
  444. int time;
  445. int space;
  446. if (tp->rcvq_space.time == 0)
  447. goto new_measure;
  448. time = tcp_time_stamp - tp->rcvq_space.time;
  449. if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
  450. return;
  451. space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
  452. space = max(tp->rcvq_space.space, space);
  453. if (tp->rcvq_space.space != space) {
  454. int rcvmem;
  455. tp->rcvq_space.space = space;
  456. if (sysctl_tcp_moderate_rcvbuf &&
  457. !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
  458. int new_clamp = space;
  459. /* Receive space grows, normalize in order to
  460. * take into account packet headers and sk_buff
  461. * structure overhead.
  462. */
  463. space /= tp->advmss;
  464. if (!space)
  465. space = 1;
  466. rcvmem = (tp->advmss + MAX_TCP_HEADER +
  467. 16 + sizeof(struct sk_buff));
  468. while (tcp_win_from_space(rcvmem) < tp->advmss)
  469. rcvmem += 128;
  470. space *= rcvmem;
  471. space = min(space, sysctl_tcp_rmem[2]);
  472. if (space > sk->sk_rcvbuf) {
  473. sk->sk_rcvbuf = space;
  474. /* Make the window clamp follow along. */
  475. tp->window_clamp = new_clamp;
  476. }
  477. }
  478. }
  479. new_measure:
  480. tp->rcvq_space.seq = tp->copied_seq;
  481. tp->rcvq_space.time = tcp_time_stamp;
  482. }
  483. /* There is something which you must keep in mind when you analyze the
  484. * behavior of the tp->ato delayed ack timeout interval. When a
  485. * connection starts up, we want to ack as quickly as possible. The
  486. * problem is that "good" TCP's do slow start at the beginning of data
  487. * transmission. The means that until we send the first few ACK's the
  488. * sender will sit on his end and only queue most of his data, because
  489. * he can only send snd_cwnd unacked packets at any given time. For
  490. * each ACK we send, he increments snd_cwnd and transmits more of his
  491. * queue. -DaveM
  492. */
  493. static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
  494. {
  495. struct tcp_sock *tp = tcp_sk(sk);
  496. struct inet_connection_sock *icsk = inet_csk(sk);
  497. u32 now;
  498. inet_csk_schedule_ack(sk);
  499. tcp_measure_rcv_mss(sk, skb);
  500. tcp_rcv_rtt_measure(tp);
  501. now = tcp_time_stamp;
  502. if (!icsk->icsk_ack.ato) {
  503. /* The _first_ data packet received, initialize
  504. * delayed ACK engine.
  505. */
  506. tcp_incr_quickack(sk);
  507. icsk->icsk_ack.ato = TCP_ATO_MIN;
  508. } else {
  509. int m = now - icsk->icsk_ack.lrcvtime;
  510. if (m <= TCP_ATO_MIN / 2) {
  511. /* The fastest case is the first. */
  512. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
  513. } else if (m < icsk->icsk_ack.ato) {
  514. icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
  515. if (icsk->icsk_ack.ato > icsk->icsk_rto)
  516. icsk->icsk_ack.ato = icsk->icsk_rto;
  517. } else if (m > icsk->icsk_rto) {
  518. /* Too long gap. Apparently sender failed to
  519. * restart window, so that we send ACKs quickly.
  520. */
  521. tcp_incr_quickack(sk);
  522. sk_mem_reclaim(sk);
  523. }
  524. }
  525. icsk->icsk_ack.lrcvtime = now;
  526. TCP_ECN_check_ce(tp, skb);
  527. if (skb->len >= 128)
  528. tcp_grow_window(sk, skb);
  529. }
  530. /* Called to compute a smoothed rtt estimate. The data fed to this
  531. * routine either comes from timestamps, or from segments that were
  532. * known _not_ to have been retransmitted [see Karn/Partridge
  533. * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
  534. * piece by Van Jacobson.
  535. * NOTE: the next three routines used to be one big routine.
  536. * To save cycles in the RFC 1323 implementation it was better to break
  537. * it up into three procedures. -- erics
  538. */
  539. static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
  540. {
  541. struct tcp_sock *tp = tcp_sk(sk);
  542. long m = mrtt; /* RTT */
  543. /* The following amusing code comes from Jacobson's
  544. * article in SIGCOMM '88. Note that rtt and mdev
  545. * are scaled versions of rtt and mean deviation.
  546. * This is designed to be as fast as possible
  547. * m stands for "measurement".
  548. *
  549. * On a 1990 paper the rto value is changed to:
  550. * RTO = rtt + 4 * mdev
  551. *
  552. * Funny. This algorithm seems to be very broken.
  553. * These formulae increase RTO, when it should be decreased, increase
  554. * too slowly, when it should be increased quickly, decrease too quickly
  555. * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
  556. * does not matter how to _calculate_ it. Seems, it was trap
  557. * that VJ failed to avoid. 8)
  558. */
  559. if (m == 0)
  560. m = 1;
  561. if (tp->srtt != 0) {
  562. m -= (tp->srtt >> 3); /* m is now error in rtt est */
  563. tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
  564. if (m < 0) {
  565. m = -m; /* m is now abs(error) */
  566. m -= (tp->mdev >> 2); /* similar update on mdev */
  567. /* This is similar to one of Eifel findings.
  568. * Eifel blocks mdev updates when rtt decreases.
  569. * This solution is a bit different: we use finer gain
  570. * for mdev in this case (alpha*beta).
  571. * Like Eifel it also prevents growth of rto,
  572. * but also it limits too fast rto decreases,
  573. * happening in pure Eifel.
  574. */
  575. if (m > 0)
  576. m >>= 3;
  577. } else {
  578. m -= (tp->mdev >> 2); /* similar update on mdev */
  579. }
  580. tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
  581. if (tp->mdev > tp->mdev_max) {
  582. tp->mdev_max = tp->mdev;
  583. if (tp->mdev_max > tp->rttvar)
  584. tp->rttvar = tp->mdev_max;
  585. }
  586. if (after(tp->snd_una, tp->rtt_seq)) {
  587. if (tp->mdev_max < tp->rttvar)
  588. tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
  589. tp->rtt_seq = tp->snd_nxt;
  590. tp->mdev_max = tcp_rto_min(sk);
  591. }
  592. } else {
  593. /* no previous measure. */
  594. tp->srtt = m << 3; /* take the measured time to be rtt */
  595. tp->mdev = m << 1; /* make sure rto = 3*rtt */
  596. tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
  597. tp->rtt_seq = tp->snd_nxt;
  598. }
  599. }
  600. /* Calculate rto without backoff. This is the second half of Van Jacobson's
  601. * routine referred to above.
  602. */
  603. static inline void tcp_set_rto(struct sock *sk)
  604. {
  605. const struct tcp_sock *tp = tcp_sk(sk);
  606. /* Old crap is replaced with new one. 8)
  607. *
  608. * More seriously:
  609. * 1. If rtt variance happened to be less 50msec, it is hallucination.
  610. * It cannot be less due to utterly erratic ACK generation made
  611. * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
  612. * to do with delayed acks, because at cwnd>2 true delack timeout
  613. * is invisible. Actually, Linux-2.4 also generates erratic
  614. * ACKs in some circumstances.
  615. */
  616. inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
  617. /* 2. Fixups made earlier cannot be right.
  618. * If we do not estimate RTO correctly without them,
  619. * all the algo is pure shit and should be replaced
  620. * with correct one. It is exactly, which we pretend to do.
  621. */
  622. /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
  623. * guarantees that rto is higher.
  624. */
  625. tcp_bound_rto(sk);
  626. }
  627. /* Save metrics learned by this TCP session.
  628. This function is called only, when TCP finishes successfully
  629. i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
  630. */
  631. void tcp_update_metrics(struct sock *sk)
  632. {
  633. struct tcp_sock *tp = tcp_sk(sk);
  634. struct dst_entry *dst = __sk_dst_get(sk);
  635. if (sysctl_tcp_nometrics_save)
  636. return;
  637. dst_confirm(dst);
  638. if (dst && (dst->flags & DST_HOST)) {
  639. const struct inet_connection_sock *icsk = inet_csk(sk);
  640. int m;
  641. unsigned long rtt;
  642. if (icsk->icsk_backoff || !tp->srtt) {
  643. /* This session failed to estimate rtt. Why?
  644. * Probably, no packets returned in time.
  645. * Reset our results.
  646. */
  647. if (!(dst_metric_locked(dst, RTAX_RTT)))
  648. dst_metric_set(dst, RTAX_RTT, 0);
  649. return;
  650. }
  651. rtt = dst_metric_rtt(dst, RTAX_RTT);
  652. m = rtt - tp->srtt;
  653. /* If newly calculated rtt larger than stored one,
  654. * store new one. Otherwise, use EWMA. Remember,
  655. * rtt overestimation is always better than underestimation.
  656. */
  657. if (!(dst_metric_locked(dst, RTAX_RTT))) {
  658. if (m <= 0)
  659. set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
  660. else
  661. set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
  662. }
  663. if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
  664. unsigned long var;
  665. if (m < 0)
  666. m = -m;
  667. /* Scale deviation to rttvar fixed point */
  668. m >>= 1;
  669. if (m < tp->mdev)
  670. m = tp->mdev;
  671. var = dst_metric_rtt(dst, RTAX_RTTVAR);
  672. if (m >= var)
  673. var = m;
  674. else
  675. var -= (var - m) >> 2;
  676. set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
  677. }
  678. if (tcp_in_initial_slowstart(tp)) {
  679. /* Slow start still did not finish. */
  680. if (dst_metric(dst, RTAX_SSTHRESH) &&
  681. !dst_metric_locked(dst, RTAX_SSTHRESH) &&
  682. (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
  683. dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_cwnd >> 1);
  684. if (!dst_metric_locked(dst, RTAX_CWND) &&
  685. tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
  686. dst_metric_set(dst, RTAX_CWND, tp->snd_cwnd);
  687. } else if (tp->snd_cwnd > tp->snd_ssthresh &&
  688. icsk->icsk_ca_state == TCP_CA_Open) {
  689. /* Cong. avoidance phase, cwnd is reliable. */
  690. if (!dst_metric_locked(dst, RTAX_SSTHRESH))
  691. dst_metric_set(dst, RTAX_SSTHRESH,
  692. max(tp->snd_cwnd >> 1, tp->snd_ssthresh));
  693. if (!dst_metric_locked(dst, RTAX_CWND))
  694. dst_metric_set(dst, RTAX_CWND,
  695. (dst_metric(dst, RTAX_CWND) +
  696. tp->snd_cwnd) >> 1);
  697. } else {
  698. /* Else slow start did not finish, cwnd is non-sense,
  699. ssthresh may be also invalid.
  700. */
  701. if (!dst_metric_locked(dst, RTAX_CWND))
  702. dst_metric_set(dst, RTAX_CWND,
  703. (dst_metric(dst, RTAX_CWND) +
  704. tp->snd_ssthresh) >> 1);
  705. if (dst_metric(dst, RTAX_SSTHRESH) &&
  706. !dst_metric_locked(dst, RTAX_SSTHRESH) &&
  707. tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
  708. dst_metric_set(dst, RTAX_SSTHRESH, tp->snd_ssthresh);
  709. }
  710. if (!dst_metric_locked(dst, RTAX_REORDERING)) {
  711. if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
  712. tp->reordering != sysctl_tcp_reordering)
  713. dst_metric_set(dst, RTAX_REORDERING, tp->reordering);
  714. }
  715. }
  716. }
  717. __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
  718. {
  719. __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
  720. if (!cwnd)
  721. cwnd = TCP_INIT_CWND;
  722. return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
  723. }
  724. /* Set slow start threshold and cwnd not falling to slow start */
  725. void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
  726. {
  727. struct tcp_sock *tp = tcp_sk(sk);
  728. const struct inet_connection_sock *icsk = inet_csk(sk);
  729. tp->prior_ssthresh = 0;
  730. tp->bytes_acked = 0;
  731. if (icsk->icsk_ca_state < TCP_CA_CWR) {
  732. tp->undo_marker = 0;
  733. if (set_ssthresh)
  734. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  735. tp->snd_cwnd = min(tp->snd_cwnd,
  736. tcp_packets_in_flight(tp) + 1U);
  737. tp->snd_cwnd_cnt = 0;
  738. tp->high_seq = tp->snd_nxt;
  739. tp->snd_cwnd_stamp = tcp_time_stamp;
  740. TCP_ECN_queue_cwr(tp);
  741. tcp_set_ca_state(sk, TCP_CA_CWR);
  742. }
  743. }
  744. /*
  745. * Packet counting of FACK is based on in-order assumptions, therefore TCP
  746. * disables it when reordering is detected
  747. */
  748. static void tcp_disable_fack(struct tcp_sock *tp)
  749. {
  750. /* RFC3517 uses different metric in lost marker => reset on change */
  751. if (tcp_is_fack(tp))
  752. tp->lost_skb_hint = NULL;
  753. tp->rx_opt.sack_ok &= ~2;
  754. }
  755. /* Take a notice that peer is sending D-SACKs */
  756. static void tcp_dsack_seen(struct tcp_sock *tp)
  757. {
  758. tp->rx_opt.sack_ok |= 4;
  759. }
  760. /* Initialize metrics on socket. */
  761. static void tcp_init_metrics(struct sock *sk)
  762. {
  763. struct tcp_sock *tp = tcp_sk(sk);
  764. struct dst_entry *dst = __sk_dst_get(sk);
  765. if (dst == NULL)
  766. goto reset;
  767. dst_confirm(dst);
  768. if (dst_metric_locked(dst, RTAX_CWND))
  769. tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
  770. if (dst_metric(dst, RTAX_SSTHRESH)) {
  771. tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
  772. if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
  773. tp->snd_ssthresh = tp->snd_cwnd_clamp;
  774. }
  775. if (dst_metric(dst, RTAX_REORDERING) &&
  776. tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
  777. tcp_disable_fack(tp);
  778. tp->reordering = dst_metric(dst, RTAX_REORDERING);
  779. }
  780. if (dst_metric(dst, RTAX_RTT) == 0)
  781. goto reset;
  782. if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
  783. goto reset;
  784. /* Initial rtt is determined from SYN,SYN-ACK.
  785. * The segment is small and rtt may appear much
  786. * less than real one. Use per-dst memory
  787. * to make it more realistic.
  788. *
  789. * A bit of theory. RTT is time passed after "normal" sized packet
  790. * is sent until it is ACKed. In normal circumstances sending small
  791. * packets force peer to delay ACKs and calculation is correct too.
  792. * The algorithm is adaptive and, provided we follow specs, it
  793. * NEVER underestimate RTT. BUT! If peer tries to make some clever
  794. * tricks sort of "quick acks" for time long enough to decrease RTT
  795. * to low value, and then abruptly stops to do it and starts to delay
  796. * ACKs, wait for troubles.
  797. */
  798. if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
  799. tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
  800. tp->rtt_seq = tp->snd_nxt;
  801. }
  802. if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
  803. tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
  804. tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
  805. }
  806. tcp_set_rto(sk);
  807. if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp) {
  808. reset:
  809. /* Play conservative. If timestamps are not
  810. * supported, TCP will fail to recalculate correct
  811. * rtt, if initial rto is too small. FORGET ALL AND RESET!
  812. */
  813. if (!tp->rx_opt.saw_tstamp && tp->srtt) {
  814. tp->srtt = 0;
  815. tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
  816. inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
  817. }
  818. }
  819. tp->snd_cwnd = tcp_init_cwnd(tp, dst);
  820. tp->snd_cwnd_stamp = tcp_time_stamp;
  821. }
  822. static void tcp_update_reordering(struct sock *sk, const int metric,
  823. const int ts)
  824. {
  825. struct tcp_sock *tp = tcp_sk(sk);
  826. if (metric > tp->reordering) {
  827. int mib_idx;
  828. tp->reordering = min(TCP_MAX_REORDERING, metric);
  829. /* This exciting event is worth to be remembered. 8) */
  830. if (ts)
  831. mib_idx = LINUX_MIB_TCPTSREORDER;
  832. else if (tcp_is_reno(tp))
  833. mib_idx = LINUX_MIB_TCPRENOREORDER;
  834. else if (tcp_is_fack(tp))
  835. mib_idx = LINUX_MIB_TCPFACKREORDER;
  836. else
  837. mib_idx = LINUX_MIB_TCPSACKREORDER;
  838. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  839. #if FASTRETRANS_DEBUG > 1
  840. printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
  841. tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
  842. tp->reordering,
  843. tp->fackets_out,
  844. tp->sacked_out,
  845. tp->undo_marker ? tp->undo_retrans : 0);
  846. #endif
  847. tcp_disable_fack(tp);
  848. }
  849. }
  850. /* This must be called before lost_out is incremented */
  851. static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
  852. {
  853. if ((tp->retransmit_skb_hint == NULL) ||
  854. before(TCP_SKB_CB(skb)->seq,
  855. TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
  856. tp->retransmit_skb_hint = skb;
  857. if (!tp->lost_out ||
  858. after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
  859. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  860. }
  861. static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
  862. {
  863. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  864. tcp_verify_retransmit_hint(tp, skb);
  865. tp->lost_out += tcp_skb_pcount(skb);
  866. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  867. }
  868. }
  869. static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
  870. struct sk_buff *skb)
  871. {
  872. tcp_verify_retransmit_hint(tp, skb);
  873. if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
  874. tp->lost_out += tcp_skb_pcount(skb);
  875. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  876. }
  877. }
  878. /* This procedure tags the retransmission queue when SACKs arrive.
  879. *
  880. * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
  881. * Packets in queue with these bits set are counted in variables
  882. * sacked_out, retrans_out and lost_out, correspondingly.
  883. *
  884. * Valid combinations are:
  885. * Tag InFlight Description
  886. * 0 1 - orig segment is in flight.
  887. * S 0 - nothing flies, orig reached receiver.
  888. * L 0 - nothing flies, orig lost by net.
  889. * R 2 - both orig and retransmit are in flight.
  890. * L|R 1 - orig is lost, retransmit is in flight.
  891. * S|R 1 - orig reached receiver, retrans is still in flight.
  892. * (L|S|R is logically valid, it could occur when L|R is sacked,
  893. * but it is equivalent to plain S and code short-curcuits it to S.
  894. * L|S is logically invalid, it would mean -1 packet in flight 8))
  895. *
  896. * These 6 states form finite state machine, controlled by the following events:
  897. * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
  898. * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
  899. * 3. Loss detection event of one of three flavors:
  900. * A. Scoreboard estimator decided the packet is lost.
  901. * A'. Reno "three dupacks" marks head of queue lost.
  902. * A''. Its FACK modfication, head until snd.fack is lost.
  903. * B. SACK arrives sacking data transmitted after never retransmitted
  904. * hole was sent out.
  905. * C. SACK arrives sacking SND.NXT at the moment, when the
  906. * segment was retransmitted.
  907. * 4. D-SACK added new rule: D-SACK changes any tag to S.
  908. *
  909. * It is pleasant to note, that state diagram turns out to be commutative,
  910. * so that we are allowed not to be bothered by order of our actions,
  911. * when multiple events arrive simultaneously. (see the function below).
  912. *
  913. * Reordering detection.
  914. * --------------------
  915. * Reordering metric is maximal distance, which a packet can be displaced
  916. * in packet stream. With SACKs we can estimate it:
  917. *
  918. * 1. SACK fills old hole and the corresponding segment was not
  919. * ever retransmitted -> reordering. Alas, we cannot use it
  920. * when segment was retransmitted.
  921. * 2. The last flaw is solved with D-SACK. D-SACK arrives
  922. * for retransmitted and already SACKed segment -> reordering..
  923. * Both of these heuristics are not used in Loss state, when we cannot
  924. * account for retransmits accurately.
  925. *
  926. * SACK block validation.
  927. * ----------------------
  928. *
  929. * SACK block range validation checks that the received SACK block fits to
  930. * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
  931. * Note that SND.UNA is not included to the range though being valid because
  932. * it means that the receiver is rather inconsistent with itself reporting
  933. * SACK reneging when it should advance SND.UNA. Such SACK block this is
  934. * perfectly valid, however, in light of RFC2018 which explicitly states
  935. * that "SACK block MUST reflect the newest segment. Even if the newest
  936. * segment is going to be discarded ...", not that it looks very clever
  937. * in case of head skb. Due to potentional receiver driven attacks, we
  938. * choose to avoid immediate execution of a walk in write queue due to
  939. * reneging and defer head skb's loss recovery to standard loss recovery
  940. * procedure that will eventually trigger (nothing forbids us doing this).
  941. *
  942. * Implements also blockage to start_seq wrap-around. Problem lies in the
  943. * fact that though start_seq (s) is before end_seq (i.e., not reversed),
  944. * there's no guarantee that it will be before snd_nxt (n). The problem
  945. * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
  946. * wrap (s_w):
  947. *
  948. * <- outs wnd -> <- wrapzone ->
  949. * u e n u_w e_w s n_w
  950. * | | | | | | |
  951. * |<------------+------+----- TCP seqno space --------------+---------->|
  952. * ...-- <2^31 ->| |<--------...
  953. * ...---- >2^31 ------>| |<--------...
  954. *
  955. * Current code wouldn't be vulnerable but it's better still to discard such
  956. * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
  957. * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
  958. * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
  959. * equal to the ideal case (infinite seqno space without wrap caused issues).
  960. *
  961. * With D-SACK the lower bound is extended to cover sequence space below
  962. * SND.UNA down to undo_marker, which is the last point of interest. Yet
  963. * again, D-SACK block must not to go across snd_una (for the same reason as
  964. * for the normal SACK blocks, explained above). But there all simplicity
  965. * ends, TCP might receive valid D-SACKs below that. As long as they reside
  966. * fully below undo_marker they do not affect behavior in anyway and can
  967. * therefore be safely ignored. In rare cases (which are more or less
  968. * theoretical ones), the D-SACK will nicely cross that boundary due to skb
  969. * fragmentation and packet reordering past skb's retransmission. To consider
  970. * them correctly, the acceptable range must be extended even more though
  971. * the exact amount is rather hard to quantify. However, tp->max_window can
  972. * be used as an exaggerated estimate.
  973. */
  974. static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
  975. u32 start_seq, u32 end_seq)
  976. {
  977. /* Too far in future, or reversed (interpretation is ambiguous) */
  978. if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
  979. return 0;
  980. /* Nasty start_seq wrap-around check (see comments above) */
  981. if (!before(start_seq, tp->snd_nxt))
  982. return 0;
  983. /* In outstanding window? ...This is valid exit for D-SACKs too.
  984. * start_seq == snd_una is non-sensical (see comments above)
  985. */
  986. if (after(start_seq, tp->snd_una))
  987. return 1;
  988. if (!is_dsack || !tp->undo_marker)
  989. return 0;
  990. /* ...Then it's D-SACK, and must reside below snd_una completely */
  991. if (!after(end_seq, tp->snd_una))
  992. return 0;
  993. if (!before(start_seq, tp->undo_marker))
  994. return 1;
  995. /* Too old */
  996. if (!after(end_seq, tp->undo_marker))
  997. return 0;
  998. /* Undo_marker boundary crossing (overestimates a lot). Known already:
  999. * start_seq < undo_marker and end_seq >= undo_marker.
  1000. */
  1001. return !before(start_seq, end_seq - tp->max_window);
  1002. }
  1003. /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
  1004. * Event "C". Later note: FACK people cheated me again 8), we have to account
  1005. * for reordering! Ugly, but should help.
  1006. *
  1007. * Search retransmitted skbs from write_queue that were sent when snd_nxt was
  1008. * less than what is now known to be received by the other end (derived from
  1009. * highest SACK block). Also calculate the lowest snd_nxt among the remaining
  1010. * retransmitted skbs to avoid some costly processing per ACKs.
  1011. */
  1012. static void tcp_mark_lost_retrans(struct sock *sk)
  1013. {
  1014. const struct inet_connection_sock *icsk = inet_csk(sk);
  1015. struct tcp_sock *tp = tcp_sk(sk);
  1016. struct sk_buff *skb;
  1017. int cnt = 0;
  1018. u32 new_low_seq = tp->snd_nxt;
  1019. u32 received_upto = tcp_highest_sack_seq(tp);
  1020. if (!tcp_is_fack(tp) || !tp->retrans_out ||
  1021. !after(received_upto, tp->lost_retrans_low) ||
  1022. icsk->icsk_ca_state != TCP_CA_Recovery)
  1023. return;
  1024. tcp_for_write_queue(skb, sk) {
  1025. u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
  1026. if (skb == tcp_send_head(sk))
  1027. break;
  1028. if (cnt == tp->retrans_out)
  1029. break;
  1030. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1031. continue;
  1032. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
  1033. continue;
  1034. /* TODO: We would like to get rid of tcp_is_fack(tp) only
  1035. * constraint here (see above) but figuring out that at
  1036. * least tp->reordering SACK blocks reside between ack_seq
  1037. * and received_upto is not easy task to do cheaply with
  1038. * the available datastructures.
  1039. *
  1040. * Whether FACK should check here for tp->reordering segs
  1041. * in-between one could argue for either way (it would be
  1042. * rather simple to implement as we could count fack_count
  1043. * during the walk and do tp->fackets_out - fack_count).
  1044. */
  1045. if (after(received_upto, ack_seq)) {
  1046. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1047. tp->retrans_out -= tcp_skb_pcount(skb);
  1048. tcp_skb_mark_lost_uncond_verify(tp, skb);
  1049. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
  1050. } else {
  1051. if (before(ack_seq, new_low_seq))
  1052. new_low_seq = ack_seq;
  1053. cnt += tcp_skb_pcount(skb);
  1054. }
  1055. }
  1056. if (tp->retrans_out)
  1057. tp->lost_retrans_low = new_low_seq;
  1058. }
  1059. static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
  1060. struct tcp_sack_block_wire *sp, int num_sacks,
  1061. u32 prior_snd_una)
  1062. {
  1063. struct tcp_sock *tp = tcp_sk(sk);
  1064. u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
  1065. u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
  1066. int dup_sack = 0;
  1067. if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
  1068. dup_sack = 1;
  1069. tcp_dsack_seen(tp);
  1070. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
  1071. } else if (num_sacks > 1) {
  1072. u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
  1073. u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
  1074. if (!after(end_seq_0, end_seq_1) &&
  1075. !before(start_seq_0, start_seq_1)) {
  1076. dup_sack = 1;
  1077. tcp_dsack_seen(tp);
  1078. NET_INC_STATS_BH(sock_net(sk),
  1079. LINUX_MIB_TCPDSACKOFORECV);
  1080. }
  1081. }
  1082. /* D-SACK for already forgotten data... Do dumb counting. */
  1083. if (dup_sack && tp->undo_marker && tp->undo_retrans &&
  1084. !after(end_seq_0, prior_snd_una) &&
  1085. after(end_seq_0, tp->undo_marker))
  1086. tp->undo_retrans--;
  1087. return dup_sack;
  1088. }
  1089. struct tcp_sacktag_state {
  1090. int reord;
  1091. int fack_count;
  1092. int flag;
  1093. };
  1094. /* Check if skb is fully within the SACK block. In presence of GSO skbs,
  1095. * the incoming SACK may not exactly match but we can find smaller MSS
  1096. * aligned portion of it that matches. Therefore we might need to fragment
  1097. * which may fail and creates some hassle (caller must handle error case
  1098. * returns).
  1099. *
  1100. * FIXME: this could be merged to shift decision code
  1101. */
  1102. static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
  1103. u32 start_seq, u32 end_seq)
  1104. {
  1105. int in_sack, err;
  1106. unsigned int pkt_len;
  1107. unsigned int mss;
  1108. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1109. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1110. if (tcp_skb_pcount(skb) > 1 && !in_sack &&
  1111. after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
  1112. mss = tcp_skb_mss(skb);
  1113. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1114. if (!in_sack) {
  1115. pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
  1116. if (pkt_len < mss)
  1117. pkt_len = mss;
  1118. } else {
  1119. pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
  1120. if (pkt_len < mss)
  1121. return -EINVAL;
  1122. }
  1123. /* Round if necessary so that SACKs cover only full MSSes
  1124. * and/or the remaining small portion (if present)
  1125. */
  1126. if (pkt_len > mss) {
  1127. unsigned int new_len = (pkt_len / mss) * mss;
  1128. if (!in_sack && new_len < pkt_len) {
  1129. new_len += mss;
  1130. if (new_len > skb->len)
  1131. return 0;
  1132. }
  1133. pkt_len = new_len;
  1134. }
  1135. err = tcp_fragment(sk, skb, pkt_len, mss);
  1136. if (err < 0)
  1137. return err;
  1138. }
  1139. return in_sack;
  1140. }
  1141. static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
  1142. struct tcp_sacktag_state *state,
  1143. int dup_sack, int pcount)
  1144. {
  1145. struct tcp_sock *tp = tcp_sk(sk);
  1146. u8 sacked = TCP_SKB_CB(skb)->sacked;
  1147. int fack_count = state->fack_count;
  1148. /* Account D-SACK for retransmitted packet. */
  1149. if (dup_sack && (sacked & TCPCB_RETRANS)) {
  1150. if (tp->undo_marker && tp->undo_retrans &&
  1151. after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
  1152. tp->undo_retrans--;
  1153. if (sacked & TCPCB_SACKED_ACKED)
  1154. state->reord = min(fack_count, state->reord);
  1155. }
  1156. /* Nothing to do; acked frame is about to be dropped (was ACKed). */
  1157. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1158. return sacked;
  1159. if (!(sacked & TCPCB_SACKED_ACKED)) {
  1160. if (sacked & TCPCB_SACKED_RETRANS) {
  1161. /* If the segment is not tagged as lost,
  1162. * we do not clear RETRANS, believing
  1163. * that retransmission is still in flight.
  1164. */
  1165. if (sacked & TCPCB_LOST) {
  1166. sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
  1167. tp->lost_out -= pcount;
  1168. tp->retrans_out -= pcount;
  1169. }
  1170. } else {
  1171. if (!(sacked & TCPCB_RETRANS)) {
  1172. /* New sack for not retransmitted frame,
  1173. * which was in hole. It is reordering.
  1174. */
  1175. if (before(TCP_SKB_CB(skb)->seq,
  1176. tcp_highest_sack_seq(tp)))
  1177. state->reord = min(fack_count,
  1178. state->reord);
  1179. /* SACK enhanced F-RTO (RFC4138; Appendix B) */
  1180. if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
  1181. state->flag |= FLAG_ONLY_ORIG_SACKED;
  1182. }
  1183. if (sacked & TCPCB_LOST) {
  1184. sacked &= ~TCPCB_LOST;
  1185. tp->lost_out -= pcount;
  1186. }
  1187. }
  1188. sacked |= TCPCB_SACKED_ACKED;
  1189. state->flag |= FLAG_DATA_SACKED;
  1190. tp->sacked_out += pcount;
  1191. fack_count += pcount;
  1192. /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
  1193. if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
  1194. before(TCP_SKB_CB(skb)->seq,
  1195. TCP_SKB_CB(tp->lost_skb_hint)->seq))
  1196. tp->lost_cnt_hint += pcount;
  1197. if (fack_count > tp->fackets_out)
  1198. tp->fackets_out = fack_count;
  1199. }
  1200. /* D-SACK. We can detect redundant retransmission in S|R and plain R
  1201. * frames and clear it. undo_retrans is decreased above, L|R frames
  1202. * are accounted above as well.
  1203. */
  1204. if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
  1205. sacked &= ~TCPCB_SACKED_RETRANS;
  1206. tp->retrans_out -= pcount;
  1207. }
  1208. return sacked;
  1209. }
  1210. static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
  1211. struct tcp_sacktag_state *state,
  1212. unsigned int pcount, int shifted, int mss,
  1213. int dup_sack)
  1214. {
  1215. struct tcp_sock *tp = tcp_sk(sk);
  1216. struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
  1217. BUG_ON(!pcount);
  1218. /* Tweak before seqno plays */
  1219. if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
  1220. !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
  1221. tp->lost_cnt_hint += pcount;
  1222. TCP_SKB_CB(prev)->end_seq += shifted;
  1223. TCP_SKB_CB(skb)->seq += shifted;
  1224. skb_shinfo(prev)->gso_segs += pcount;
  1225. BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
  1226. skb_shinfo(skb)->gso_segs -= pcount;
  1227. /* When we're adding to gso_segs == 1, gso_size will be zero,
  1228. * in theory this shouldn't be necessary but as long as DSACK
  1229. * code can come after this skb later on it's better to keep
  1230. * setting gso_size to something.
  1231. */
  1232. if (!skb_shinfo(prev)->gso_size) {
  1233. skb_shinfo(prev)->gso_size = mss;
  1234. skb_shinfo(prev)->gso_type = sk->sk_gso_type;
  1235. }
  1236. /* CHECKME: To clear or not to clear? Mimics normal skb currently */
  1237. if (skb_shinfo(skb)->gso_segs <= 1) {
  1238. skb_shinfo(skb)->gso_size = 0;
  1239. skb_shinfo(skb)->gso_type = 0;
  1240. }
  1241. /* We discard results */
  1242. tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
  1243. /* Difference in this won't matter, both ACKed by the same cumul. ACK */
  1244. TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
  1245. if (skb->len > 0) {
  1246. BUG_ON(!tcp_skb_pcount(skb));
  1247. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
  1248. return 0;
  1249. }
  1250. /* Whole SKB was eaten :-) */
  1251. if (skb == tp->retransmit_skb_hint)
  1252. tp->retransmit_skb_hint = prev;
  1253. if (skb == tp->scoreboard_skb_hint)
  1254. tp->scoreboard_skb_hint = prev;
  1255. if (skb == tp->lost_skb_hint) {
  1256. tp->lost_skb_hint = prev;
  1257. tp->lost_cnt_hint -= tcp_skb_pcount(prev);
  1258. }
  1259. TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
  1260. if (skb == tcp_highest_sack(sk))
  1261. tcp_advance_highest_sack(sk, skb);
  1262. tcp_unlink_write_queue(skb, sk);
  1263. sk_wmem_free_skb(sk, skb);
  1264. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
  1265. return 1;
  1266. }
  1267. /* I wish gso_size would have a bit more sane initialization than
  1268. * something-or-zero which complicates things
  1269. */
  1270. static int tcp_skb_seglen(struct sk_buff *skb)
  1271. {
  1272. return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
  1273. }
  1274. /* Shifting pages past head area doesn't work */
  1275. static int skb_can_shift(struct sk_buff *skb)
  1276. {
  1277. return !skb_headlen(skb) && skb_is_nonlinear(skb);
  1278. }
  1279. /* Try collapsing SACK blocks spanning across multiple skbs to a single
  1280. * skb.
  1281. */
  1282. static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
  1283. struct tcp_sacktag_state *state,
  1284. u32 start_seq, u32 end_seq,
  1285. int dup_sack)
  1286. {
  1287. struct tcp_sock *tp = tcp_sk(sk);
  1288. struct sk_buff *prev;
  1289. int mss;
  1290. int pcount = 0;
  1291. int len;
  1292. int in_sack;
  1293. if (!sk_can_gso(sk))
  1294. goto fallback;
  1295. /* Normally R but no L won't result in plain S */
  1296. if (!dup_sack &&
  1297. (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
  1298. goto fallback;
  1299. if (!skb_can_shift(skb))
  1300. goto fallback;
  1301. /* This frame is about to be dropped (was ACKed). */
  1302. if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
  1303. goto fallback;
  1304. /* Can only happen with delayed DSACK + discard craziness */
  1305. if (unlikely(skb == tcp_write_queue_head(sk)))
  1306. goto fallback;
  1307. prev = tcp_write_queue_prev(sk, skb);
  1308. if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
  1309. goto fallback;
  1310. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
  1311. !before(end_seq, TCP_SKB_CB(skb)->end_seq);
  1312. if (in_sack) {
  1313. len = skb->len;
  1314. pcount = tcp_skb_pcount(skb);
  1315. mss = tcp_skb_seglen(skb);
  1316. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1317. * drop this restriction as unnecessary
  1318. */
  1319. if (mss != tcp_skb_seglen(prev))
  1320. goto fallback;
  1321. } else {
  1322. if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
  1323. goto noop;
  1324. /* CHECKME: This is non-MSS split case only?, this will
  1325. * cause skipped skbs due to advancing loop btw, original
  1326. * has that feature too
  1327. */
  1328. if (tcp_skb_pcount(skb) <= 1)
  1329. goto noop;
  1330. in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
  1331. if (!in_sack) {
  1332. /* TODO: head merge to next could be attempted here
  1333. * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
  1334. * though it might not be worth of the additional hassle
  1335. *
  1336. * ...we can probably just fallback to what was done
  1337. * previously. We could try merging non-SACKed ones
  1338. * as well but it probably isn't going to buy off
  1339. * because later SACKs might again split them, and
  1340. * it would make skb timestamp tracking considerably
  1341. * harder problem.
  1342. */
  1343. goto fallback;
  1344. }
  1345. len = end_seq - TCP_SKB_CB(skb)->seq;
  1346. BUG_ON(len < 0);
  1347. BUG_ON(len > skb->len);
  1348. /* MSS boundaries should be honoured or else pcount will
  1349. * severely break even though it makes things bit trickier.
  1350. * Optimize common case to avoid most of the divides
  1351. */
  1352. mss = tcp_skb_mss(skb);
  1353. /* TODO: Fix DSACKs to not fragment already SACKed and we can
  1354. * drop this restriction as unnecessary
  1355. */
  1356. if (mss != tcp_skb_seglen(prev))
  1357. goto fallback;
  1358. if (len == mss) {
  1359. pcount = 1;
  1360. } else if (len < mss) {
  1361. goto noop;
  1362. } else {
  1363. pcount = len / mss;
  1364. len = pcount * mss;
  1365. }
  1366. }
  1367. if (!skb_shift(prev, skb, len))
  1368. goto fallback;
  1369. if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
  1370. goto out;
  1371. /* Hole filled allows collapsing with the next as well, this is very
  1372. * useful when hole on every nth skb pattern happens
  1373. */
  1374. if (prev == tcp_write_queue_tail(sk))
  1375. goto out;
  1376. skb = tcp_write_queue_next(sk, prev);
  1377. if (!skb_can_shift(skb) ||
  1378. (skb == tcp_send_head(sk)) ||
  1379. ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
  1380. (mss != tcp_skb_seglen(skb)))
  1381. goto out;
  1382. len = skb->len;
  1383. if (skb_shift(prev, skb, len)) {
  1384. pcount += tcp_skb_pcount(skb);
  1385. tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
  1386. }
  1387. out:
  1388. state->fack_count += pcount;
  1389. return prev;
  1390. noop:
  1391. return skb;
  1392. fallback:
  1393. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
  1394. return NULL;
  1395. }
  1396. static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
  1397. struct tcp_sack_block *next_dup,
  1398. struct tcp_sacktag_state *state,
  1399. u32 start_seq, u32 end_seq,
  1400. int dup_sack_in)
  1401. {
  1402. struct tcp_sock *tp = tcp_sk(sk);
  1403. struct sk_buff *tmp;
  1404. tcp_for_write_queue_from(skb, sk) {
  1405. int in_sack = 0;
  1406. int dup_sack = dup_sack_in;
  1407. if (skb == tcp_send_head(sk))
  1408. break;
  1409. /* queue is in-order => we can short-circuit the walk early */
  1410. if (!before(TCP_SKB_CB(skb)->seq, end_seq))
  1411. break;
  1412. if ((next_dup != NULL) &&
  1413. before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
  1414. in_sack = tcp_match_skb_to_sack(sk, skb,
  1415. next_dup->start_seq,
  1416. next_dup->end_seq);
  1417. if (in_sack > 0)
  1418. dup_sack = 1;
  1419. }
  1420. /* skb reference here is a bit tricky to get right, since
  1421. * shifting can eat and free both this skb and the next,
  1422. * so not even _safe variant of the loop is enough.
  1423. */
  1424. if (in_sack <= 0) {
  1425. tmp = tcp_shift_skb_data(sk, skb, state,
  1426. start_seq, end_seq, dup_sack);
  1427. if (tmp != NULL) {
  1428. if (tmp != skb) {
  1429. skb = tmp;
  1430. continue;
  1431. }
  1432. in_sack = 0;
  1433. } else {
  1434. in_sack = tcp_match_skb_to_sack(sk, skb,
  1435. start_seq,
  1436. end_seq);
  1437. }
  1438. }
  1439. if (unlikely(in_sack < 0))
  1440. break;
  1441. if (in_sack) {
  1442. TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
  1443. state,
  1444. dup_sack,
  1445. tcp_skb_pcount(skb));
  1446. if (!before(TCP_SKB_CB(skb)->seq,
  1447. tcp_highest_sack_seq(tp)))
  1448. tcp_advance_highest_sack(sk, skb);
  1449. }
  1450. state->fack_count += tcp_skb_pcount(skb);
  1451. }
  1452. return skb;
  1453. }
  1454. /* Avoid all extra work that is being done by sacktag while walking in
  1455. * a normal way
  1456. */
  1457. static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
  1458. struct tcp_sacktag_state *state,
  1459. u32 skip_to_seq)
  1460. {
  1461. tcp_for_write_queue_from(skb, sk) {
  1462. if (skb == tcp_send_head(sk))
  1463. break;
  1464. if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
  1465. break;
  1466. state->fack_count += tcp_skb_pcount(skb);
  1467. }
  1468. return skb;
  1469. }
  1470. static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
  1471. struct sock *sk,
  1472. struct tcp_sack_block *next_dup,
  1473. struct tcp_sacktag_state *state,
  1474. u32 skip_to_seq)
  1475. {
  1476. if (next_dup == NULL)
  1477. return skb;
  1478. if (before(next_dup->start_seq, skip_to_seq)) {
  1479. skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
  1480. skb = tcp_sacktag_walk(skb, sk, NULL, state,
  1481. next_dup->start_seq, next_dup->end_seq,
  1482. 1);
  1483. }
  1484. return skb;
  1485. }
  1486. static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
  1487. {
  1488. return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1489. }
  1490. static int
  1491. tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
  1492. u32 prior_snd_una)
  1493. {
  1494. const struct inet_connection_sock *icsk = inet_csk(sk);
  1495. struct tcp_sock *tp = tcp_sk(sk);
  1496. unsigned char *ptr = (skb_transport_header(ack_skb) +
  1497. TCP_SKB_CB(ack_skb)->sacked);
  1498. struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
  1499. struct tcp_sack_block sp[TCP_NUM_SACKS];
  1500. struct tcp_sack_block *cache;
  1501. struct tcp_sacktag_state state;
  1502. struct sk_buff *skb;
  1503. int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
  1504. int used_sacks;
  1505. int found_dup_sack = 0;
  1506. int i, j;
  1507. int first_sack_index;
  1508. state.flag = 0;
  1509. state.reord = tp->packets_out;
  1510. if (!tp->sacked_out) {
  1511. if (WARN_ON(tp->fackets_out))
  1512. tp->fackets_out = 0;
  1513. tcp_highest_sack_reset(sk);
  1514. }
  1515. found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
  1516. num_sacks, prior_snd_una);
  1517. if (found_dup_sack)
  1518. state.flag |= FLAG_DSACKING_ACK;
  1519. /* Eliminate too old ACKs, but take into
  1520. * account more or less fresh ones, they can
  1521. * contain valid SACK info.
  1522. */
  1523. if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
  1524. return 0;
  1525. if (!tp->packets_out)
  1526. goto out;
  1527. used_sacks = 0;
  1528. first_sack_index = 0;
  1529. for (i = 0; i < num_sacks; i++) {
  1530. int dup_sack = !i && found_dup_sack;
  1531. sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
  1532. sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
  1533. if (!tcp_is_sackblock_valid(tp, dup_sack,
  1534. sp[used_sacks].start_seq,
  1535. sp[used_sacks].end_seq)) {
  1536. int mib_idx;
  1537. if (dup_sack) {
  1538. if (!tp->undo_marker)
  1539. mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
  1540. else
  1541. mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
  1542. } else {
  1543. /* Don't count olds caused by ACK reordering */
  1544. if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
  1545. !after(sp[used_sacks].end_seq, tp->snd_una))
  1546. continue;
  1547. mib_idx = LINUX_MIB_TCPSACKDISCARD;
  1548. }
  1549. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  1550. if (i == 0)
  1551. first_sack_index = -1;
  1552. continue;
  1553. }
  1554. /* Ignore very old stuff early */
  1555. if (!after(sp[used_sacks].end_seq, prior_snd_una))
  1556. continue;
  1557. used_sacks++;
  1558. }
  1559. /* order SACK blocks to allow in order walk of the retrans queue */
  1560. for (i = used_sacks - 1; i > 0; i--) {
  1561. for (j = 0; j < i; j++) {
  1562. if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
  1563. swap(sp[j], sp[j + 1]);
  1564. /* Track where the first SACK block goes to */
  1565. if (j == first_sack_index)
  1566. first_sack_index = j + 1;
  1567. }
  1568. }
  1569. }
  1570. skb = tcp_write_queue_head(sk);
  1571. state.fack_count = 0;
  1572. i = 0;
  1573. if (!tp->sacked_out) {
  1574. /* It's already past, so skip checking against it */
  1575. cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
  1576. } else {
  1577. cache = tp->recv_sack_cache;
  1578. /* Skip empty blocks in at head of the cache */
  1579. while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
  1580. !cache->end_seq)
  1581. cache++;
  1582. }
  1583. while (i < used_sacks) {
  1584. u32 start_seq = sp[i].start_seq;
  1585. u32 end_seq = sp[i].end_seq;
  1586. int dup_sack = (found_dup_sack && (i == first_sack_index));
  1587. struct tcp_sack_block *next_dup = NULL;
  1588. if (found_dup_sack && ((i + 1) == first_sack_index))
  1589. next_dup = &sp[i + 1];
  1590. /* Event "B" in the comment above. */
  1591. if (after(end_seq, tp->high_seq))
  1592. state.flag |= FLAG_DATA_LOST;
  1593. /* Skip too early cached blocks */
  1594. while (tcp_sack_cache_ok(tp, cache) &&
  1595. !before(start_seq, cache->end_seq))
  1596. cache++;
  1597. /* Can skip some work by looking recv_sack_cache? */
  1598. if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
  1599. after(end_seq, cache->start_seq)) {
  1600. /* Head todo? */
  1601. if (before(start_seq, cache->start_seq)) {
  1602. skb = tcp_sacktag_skip(skb, sk, &state,
  1603. start_seq);
  1604. skb = tcp_sacktag_walk(skb, sk, next_dup,
  1605. &state,
  1606. start_seq,
  1607. cache->start_seq,
  1608. dup_sack);
  1609. }
  1610. /* Rest of the block already fully processed? */
  1611. if (!after(end_seq, cache->end_seq))
  1612. goto advance_sp;
  1613. skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
  1614. &state,
  1615. cache->end_seq);
  1616. /* ...tail remains todo... */
  1617. if (tcp_highest_sack_seq(tp) == cache->end_seq) {
  1618. /* ...but better entrypoint exists! */
  1619. skb = tcp_highest_sack(sk);
  1620. if (skb == NULL)
  1621. break;
  1622. state.fack_count = tp->fackets_out;
  1623. cache++;
  1624. goto walk;
  1625. }
  1626. skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
  1627. /* Check overlap against next cached too (past this one already) */
  1628. cache++;
  1629. continue;
  1630. }
  1631. if (!before(start_seq, tcp_highest_sack_seq(tp))) {
  1632. skb = tcp_highest_sack(sk);
  1633. if (skb == NULL)
  1634. break;
  1635. state.fack_count = tp->fackets_out;
  1636. }
  1637. skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
  1638. walk:
  1639. skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
  1640. start_seq, end_seq, dup_sack);
  1641. advance_sp:
  1642. /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
  1643. * due to in-order walk
  1644. */
  1645. if (after(end_seq, tp->frto_highmark))
  1646. state.flag &= ~FLAG_ONLY_ORIG_SACKED;
  1647. i++;
  1648. }
  1649. /* Clear the head of the cache sack blocks so we can skip it next time */
  1650. for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
  1651. tp->recv_sack_cache[i].start_seq = 0;
  1652. tp->recv_sack_cache[i].end_seq = 0;
  1653. }
  1654. for (j = 0; j < used_sacks; j++)
  1655. tp->recv_sack_cache[i++] = sp[j];
  1656. tcp_mark_lost_retrans(sk);
  1657. tcp_verify_left_out(tp);
  1658. if ((state.reord < tp->fackets_out) &&
  1659. ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
  1660. (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
  1661. tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
  1662. out:
  1663. #if FASTRETRANS_DEBUG > 0
  1664. WARN_ON((int)tp->sacked_out < 0);
  1665. WARN_ON((int)tp->lost_out < 0);
  1666. WARN_ON((int)tp->retrans_out < 0);
  1667. WARN_ON((int)tcp_packets_in_flight(tp) < 0);
  1668. #endif
  1669. return state.flag;
  1670. }
  1671. /* Limits sacked_out so that sum with lost_out isn't ever larger than
  1672. * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
  1673. */
  1674. static int tcp_limit_reno_sacked(struct tcp_sock *tp)
  1675. {
  1676. u32 holes;
  1677. holes = max(tp->lost_out, 1U);
  1678. holes = min(holes, tp->packets_out);
  1679. if ((tp->sacked_out + holes) > tp->packets_out) {
  1680. tp->sacked_out = tp->packets_out - holes;
  1681. return 1;
  1682. }
  1683. return 0;
  1684. }
  1685. /* If we receive more dupacks than we expected counting segments
  1686. * in assumption of absent reordering, interpret this as reordering.
  1687. * The only another reason could be bug in receiver TCP.
  1688. */
  1689. static void tcp_check_reno_reordering(struct sock *sk, const int addend)
  1690. {
  1691. struct tcp_sock *tp = tcp_sk(sk);
  1692. if (tcp_limit_reno_sacked(tp))
  1693. tcp_update_reordering(sk, tp->packets_out + addend, 0);
  1694. }
  1695. /* Emulate SACKs for SACKless connection: account for a new dupack. */
  1696. static void tcp_add_reno_sack(struct sock *sk)
  1697. {
  1698. struct tcp_sock *tp = tcp_sk(sk);
  1699. tp->sacked_out++;
  1700. tcp_check_reno_reordering(sk, 0);
  1701. tcp_verify_left_out(tp);
  1702. }
  1703. /* Account for ACK, ACKing some data in Reno Recovery phase. */
  1704. static void tcp_remove_reno_sacks(struct sock *sk, int acked)
  1705. {
  1706. struct tcp_sock *tp = tcp_sk(sk);
  1707. if (acked > 0) {
  1708. /* One ACK acked hole. The rest eat duplicate ACKs. */
  1709. if (acked - 1 >= tp->sacked_out)
  1710. tp->sacked_out = 0;
  1711. else
  1712. tp->sacked_out -= acked - 1;
  1713. }
  1714. tcp_check_reno_reordering(sk, acked);
  1715. tcp_verify_left_out(tp);
  1716. }
  1717. static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
  1718. {
  1719. tp->sacked_out = 0;
  1720. }
  1721. static int tcp_is_sackfrto(const struct tcp_sock *tp)
  1722. {
  1723. return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
  1724. }
  1725. /* F-RTO can only be used if TCP has never retransmitted anything other than
  1726. * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
  1727. */
  1728. int tcp_use_frto(struct sock *sk)
  1729. {
  1730. const struct tcp_sock *tp = tcp_sk(sk);
  1731. const struct inet_connection_sock *icsk = inet_csk(sk);
  1732. struct sk_buff *skb;
  1733. if (!sysctl_tcp_frto)
  1734. return 0;
  1735. /* MTU probe and F-RTO won't really play nicely along currently */
  1736. if (icsk->icsk_mtup.probe_size)
  1737. return 0;
  1738. if (tcp_is_sackfrto(tp))
  1739. return 1;
  1740. /* Avoid expensive walking of rexmit queue if possible */
  1741. if (tp->retrans_out > 1)
  1742. return 0;
  1743. skb = tcp_write_queue_head(sk);
  1744. if (tcp_skb_is_last(sk, skb))
  1745. return 1;
  1746. skb = tcp_write_queue_next(sk, skb); /* Skips head */
  1747. tcp_for_write_queue_from(skb, sk) {
  1748. if (skb == tcp_send_head(sk))
  1749. break;
  1750. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1751. return 0;
  1752. /* Short-circuit when first non-SACKed skb has been checked */
  1753. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  1754. break;
  1755. }
  1756. return 1;
  1757. }
  1758. /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
  1759. * recovery a bit and use heuristics in tcp_process_frto() to detect if
  1760. * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
  1761. * keep retrans_out counting accurate (with SACK F-RTO, other than head
  1762. * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
  1763. * bits are handled if the Loss state is really to be entered (in
  1764. * tcp_enter_frto_loss).
  1765. *
  1766. * Do like tcp_enter_loss() would; when RTO expires the second time it
  1767. * does:
  1768. * "Reduce ssthresh if it has not yet been made inside this window."
  1769. */
  1770. void tcp_enter_frto(struct sock *sk)
  1771. {
  1772. const struct inet_connection_sock *icsk = inet_csk(sk);
  1773. struct tcp_sock *tp = tcp_sk(sk);
  1774. struct sk_buff *skb;
  1775. if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
  1776. tp->snd_una == tp->high_seq ||
  1777. ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
  1778. !icsk->icsk_retransmits)) {
  1779. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1780. /* Our state is too optimistic in ssthresh() call because cwnd
  1781. * is not reduced until tcp_enter_frto_loss() when previous F-RTO
  1782. * recovery has not yet completed. Pattern would be this: RTO,
  1783. * Cumulative ACK, RTO (2xRTO for the same segment does not end
  1784. * up here twice).
  1785. * RFC4138 should be more specific on what to do, even though
  1786. * RTO is quite unlikely to occur after the first Cumulative ACK
  1787. * due to back-off and complexity of triggering events ...
  1788. */
  1789. if (tp->frto_counter) {
  1790. u32 stored_cwnd;
  1791. stored_cwnd = tp->snd_cwnd;
  1792. tp->snd_cwnd = 2;
  1793. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1794. tp->snd_cwnd = stored_cwnd;
  1795. } else {
  1796. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1797. }
  1798. /* ... in theory, cong.control module could do "any tricks" in
  1799. * ssthresh(), which means that ca_state, lost bits and lost_out
  1800. * counter would have to be faked before the call occurs. We
  1801. * consider that too expensive, unlikely and hacky, so modules
  1802. * using these in ssthresh() must deal these incompatibility
  1803. * issues if they receives CA_EVENT_FRTO and frto_counter != 0
  1804. */
  1805. tcp_ca_event(sk, CA_EVENT_FRTO);
  1806. }
  1807. tp->undo_marker = tp->snd_una;
  1808. tp->undo_retrans = 0;
  1809. skb = tcp_write_queue_head(sk);
  1810. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1811. tp->undo_marker = 0;
  1812. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  1813. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1814. tp->retrans_out -= tcp_skb_pcount(skb);
  1815. }
  1816. tcp_verify_left_out(tp);
  1817. /* Too bad if TCP was application limited */
  1818. tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
  1819. /* Earlier loss recovery underway (see RFC4138; Appendix B).
  1820. * The last condition is necessary at least in tp->frto_counter case.
  1821. */
  1822. if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
  1823. ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
  1824. after(tp->high_seq, tp->snd_una)) {
  1825. tp->frto_highmark = tp->high_seq;
  1826. } else {
  1827. tp->frto_highmark = tp->snd_nxt;
  1828. }
  1829. tcp_set_ca_state(sk, TCP_CA_Disorder);
  1830. tp->high_seq = tp->snd_nxt;
  1831. tp->frto_counter = 1;
  1832. }
  1833. /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
  1834. * which indicates that we should follow the traditional RTO recovery,
  1835. * i.e. mark everything lost and do go-back-N retransmission.
  1836. */
  1837. static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
  1838. {
  1839. struct tcp_sock *tp = tcp_sk(sk);
  1840. struct sk_buff *skb;
  1841. tp->lost_out = 0;
  1842. tp->retrans_out = 0;
  1843. if (tcp_is_reno(tp))
  1844. tcp_reset_reno_sack(tp);
  1845. tcp_for_write_queue(skb, sk) {
  1846. if (skb == tcp_send_head(sk))
  1847. break;
  1848. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  1849. /*
  1850. * Count the retransmission made on RTO correctly (only when
  1851. * waiting for the first ACK and did not get it)...
  1852. */
  1853. if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
  1854. /* For some reason this R-bit might get cleared? */
  1855. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
  1856. tp->retrans_out += tcp_skb_pcount(skb);
  1857. /* ...enter this if branch just for the first segment */
  1858. flag |= FLAG_DATA_ACKED;
  1859. } else {
  1860. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1861. tp->undo_marker = 0;
  1862. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  1863. }
  1864. /* Marking forward transmissions that were made after RTO lost
  1865. * can cause unnecessary retransmissions in some scenarios,
  1866. * SACK blocks will mitigate that in some but not in all cases.
  1867. * We used to not mark them but it was causing break-ups with
  1868. * receivers that do only in-order receival.
  1869. *
  1870. * TODO: we could detect presence of such receiver and select
  1871. * different behavior per flow.
  1872. */
  1873. if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  1874. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1875. tp->lost_out += tcp_skb_pcount(skb);
  1876. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1877. }
  1878. }
  1879. tcp_verify_left_out(tp);
  1880. tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
  1881. tp->snd_cwnd_cnt = 0;
  1882. tp->snd_cwnd_stamp = tcp_time_stamp;
  1883. tp->frto_counter = 0;
  1884. tp->bytes_acked = 0;
  1885. tp->reordering = min_t(unsigned int, tp->reordering,
  1886. sysctl_tcp_reordering);
  1887. tcp_set_ca_state(sk, TCP_CA_Loss);
  1888. tp->high_seq = tp->snd_nxt;
  1889. TCP_ECN_queue_cwr(tp);
  1890. tcp_clear_all_retrans_hints(tp);
  1891. }
  1892. static void tcp_clear_retrans_partial(struct tcp_sock *tp)
  1893. {
  1894. tp->retrans_out = 0;
  1895. tp->lost_out = 0;
  1896. tp->undo_marker = 0;
  1897. tp->undo_retrans = 0;
  1898. }
  1899. void tcp_clear_retrans(struct tcp_sock *tp)
  1900. {
  1901. tcp_clear_retrans_partial(tp);
  1902. tp->fackets_out = 0;
  1903. tp->sacked_out = 0;
  1904. }
  1905. /* Enter Loss state. If "how" is not zero, forget all SACK information
  1906. * and reset tags completely, otherwise preserve SACKs. If receiver
  1907. * dropped its ofo queue, we will know this due to reneging detection.
  1908. */
  1909. void tcp_enter_loss(struct sock *sk, int how)
  1910. {
  1911. const struct inet_connection_sock *icsk = inet_csk(sk);
  1912. struct tcp_sock *tp = tcp_sk(sk);
  1913. struct sk_buff *skb;
  1914. /* Reduce ssthresh if it has not yet been made inside this window. */
  1915. if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
  1916. (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
  1917. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  1918. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  1919. tcp_ca_event(sk, CA_EVENT_LOSS);
  1920. }
  1921. tp->snd_cwnd = 1;
  1922. tp->snd_cwnd_cnt = 0;
  1923. tp->snd_cwnd_stamp = tcp_time_stamp;
  1924. tp->bytes_acked = 0;
  1925. tcp_clear_retrans_partial(tp);
  1926. if (tcp_is_reno(tp))
  1927. tcp_reset_reno_sack(tp);
  1928. if (!how) {
  1929. /* Push undo marker, if it was plain RTO and nothing
  1930. * was retransmitted. */
  1931. tp->undo_marker = tp->snd_una;
  1932. } else {
  1933. tp->sacked_out = 0;
  1934. tp->fackets_out = 0;
  1935. }
  1936. tcp_clear_all_retrans_hints(tp);
  1937. tcp_for_write_queue(skb, sk) {
  1938. if (skb == tcp_send_head(sk))
  1939. break;
  1940. if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
  1941. tp->undo_marker = 0;
  1942. TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
  1943. if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
  1944. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
  1945. TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
  1946. tp->lost_out += tcp_skb_pcount(skb);
  1947. tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
  1948. }
  1949. }
  1950. tcp_verify_left_out(tp);
  1951. tp->reordering = min_t(unsigned int, tp->reordering,
  1952. sysctl_tcp_reordering);
  1953. tcp_set_ca_state(sk, TCP_CA_Loss);
  1954. tp->high_seq = tp->snd_nxt;
  1955. TCP_ECN_queue_cwr(tp);
  1956. /* Abort F-RTO algorithm if one is in progress */
  1957. tp->frto_counter = 0;
  1958. }
  1959. /* If ACK arrived pointing to a remembered SACK, it means that our
  1960. * remembered SACKs do not reflect real state of receiver i.e.
  1961. * receiver _host_ is heavily congested (or buggy).
  1962. *
  1963. * Do processing similar to RTO timeout.
  1964. */
  1965. static int tcp_check_sack_reneging(struct sock *sk, int flag)
  1966. {
  1967. if (flag & FLAG_SACK_RENEGING) {
  1968. struct inet_connection_sock *icsk = inet_csk(sk);
  1969. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
  1970. tcp_enter_loss(sk, 1);
  1971. icsk->icsk_retransmits++;
  1972. tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
  1973. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  1974. icsk->icsk_rto, TCP_RTO_MAX);
  1975. return 1;
  1976. }
  1977. return 0;
  1978. }
  1979. static inline int tcp_fackets_out(struct tcp_sock *tp)
  1980. {
  1981. return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
  1982. }
  1983. /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
  1984. * counter when SACK is enabled (without SACK, sacked_out is used for
  1985. * that purpose).
  1986. *
  1987. * Instead, with FACK TCP uses fackets_out that includes both SACKed
  1988. * segments up to the highest received SACK block so far and holes in
  1989. * between them.
  1990. *
  1991. * With reordering, holes may still be in flight, so RFC3517 recovery
  1992. * uses pure sacked_out (total number of SACKed segments) even though
  1993. * it violates the RFC that uses duplicate ACKs, often these are equal
  1994. * but when e.g. out-of-window ACKs or packet duplication occurs,
  1995. * they differ. Since neither occurs due to loss, TCP should really
  1996. * ignore them.
  1997. */
  1998. static inline int tcp_dupack_heuristics(struct tcp_sock *tp)
  1999. {
  2000. return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
  2001. }
  2002. static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
  2003. {
  2004. return tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto;
  2005. }
  2006. static inline int tcp_head_timedout(struct sock *sk)
  2007. {
  2008. struct tcp_sock *tp = tcp_sk(sk);
  2009. return tp->packets_out &&
  2010. tcp_skb_timedout(sk, tcp_write_queue_head(sk));
  2011. }
  2012. /* Linux NewReno/SACK/FACK/ECN state machine.
  2013. * --------------------------------------
  2014. *
  2015. * "Open" Normal state, no dubious events, fast path.
  2016. * "Disorder" In all the respects it is "Open",
  2017. * but requires a bit more attention. It is entered when
  2018. * we see some SACKs or dupacks. It is split of "Open"
  2019. * mainly to move some processing from fast path to slow one.
  2020. * "CWR" CWND was reduced due to some Congestion Notification event.
  2021. * It can be ECN, ICMP source quench, local device congestion.
  2022. * "Recovery" CWND was reduced, we are fast-retransmitting.
  2023. * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
  2024. *
  2025. * tcp_fastretrans_alert() is entered:
  2026. * - each incoming ACK, if state is not "Open"
  2027. * - when arrived ACK is unusual, namely:
  2028. * * SACK
  2029. * * Duplicate ACK.
  2030. * * ECN ECE.
  2031. *
  2032. * Counting packets in flight is pretty simple.
  2033. *
  2034. * in_flight = packets_out - left_out + retrans_out
  2035. *
  2036. * packets_out is SND.NXT-SND.UNA counted in packets.
  2037. *
  2038. * retrans_out is number of retransmitted segments.
  2039. *
  2040. * left_out is number of segments left network, but not ACKed yet.
  2041. *
  2042. * left_out = sacked_out + lost_out
  2043. *
  2044. * sacked_out: Packets, which arrived to receiver out of order
  2045. * and hence not ACKed. With SACKs this number is simply
  2046. * amount of SACKed data. Even without SACKs
  2047. * it is easy to give pretty reliable estimate of this number,
  2048. * counting duplicate ACKs.
  2049. *
  2050. * lost_out: Packets lost by network. TCP has no explicit
  2051. * "loss notification" feedback from network (for now).
  2052. * It means that this number can be only _guessed_.
  2053. * Actually, it is the heuristics to predict lossage that
  2054. * distinguishes different algorithms.
  2055. *
  2056. * F.e. after RTO, when all the queue is considered as lost,
  2057. * lost_out = packets_out and in_flight = retrans_out.
  2058. *
  2059. * Essentially, we have now two algorithms counting
  2060. * lost packets.
  2061. *
  2062. * FACK: It is the simplest heuristics. As soon as we decided
  2063. * that something is lost, we decide that _all_ not SACKed
  2064. * packets until the most forward SACK are lost. I.e.
  2065. * lost_out = fackets_out - sacked_out and left_out = fackets_out.
  2066. * It is absolutely correct estimate, if network does not reorder
  2067. * packets. And it loses any connection to reality when reordering
  2068. * takes place. We use FACK by default until reordering
  2069. * is suspected on the path to this destination.
  2070. *
  2071. * NewReno: when Recovery is entered, we assume that one segment
  2072. * is lost (classic Reno). While we are in Recovery and
  2073. * a partial ACK arrives, we assume that one more packet
  2074. * is lost (NewReno). This heuristics are the same in NewReno
  2075. * and SACK.
  2076. *
  2077. * Imagine, that's all! Forget about all this shamanism about CWND inflation
  2078. * deflation etc. CWND is real congestion window, never inflated, changes
  2079. * only according to classic VJ rules.
  2080. *
  2081. * Really tricky (and requiring careful tuning) part of algorithm
  2082. * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
  2083. * The first determines the moment _when_ we should reduce CWND and,
  2084. * hence, slow down forward transmission. In fact, it determines the moment
  2085. * when we decide that hole is caused by loss, rather than by a reorder.
  2086. *
  2087. * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
  2088. * holes, caused by lost packets.
  2089. *
  2090. * And the most logically complicated part of algorithm is undo
  2091. * heuristics. We detect false retransmits due to both too early
  2092. * fast retransmit (reordering) and underestimated RTO, analyzing
  2093. * timestamps and D-SACKs. When we detect that some segments were
  2094. * retransmitted by mistake and CWND reduction was wrong, we undo
  2095. * window reduction and abort recovery phase. This logic is hidden
  2096. * inside several functions named tcp_try_undo_<something>.
  2097. */
  2098. /* This function decides, when we should leave Disordered state
  2099. * and enter Recovery phase, reducing congestion window.
  2100. *
  2101. * Main question: may we further continue forward transmission
  2102. * with the same cwnd?
  2103. */
  2104. static int tcp_time_to_recover(struct sock *sk)
  2105. {
  2106. struct tcp_sock *tp = tcp_sk(sk);
  2107. __u32 packets_out;
  2108. /* Do not perform any recovery during F-RTO algorithm */
  2109. if (tp->frto_counter)
  2110. return 0;
  2111. /* Trick#1: The loss is proven. */
  2112. if (tp->lost_out)
  2113. return 1;
  2114. /* Not-A-Trick#2 : Classic rule... */
  2115. if (tcp_dupack_heuristics(tp) > tp->reordering)
  2116. return 1;
  2117. /* Trick#3 : when we use RFC2988 timer restart, fast
  2118. * retransmit can be triggered by timeout of queue head.
  2119. */
  2120. if (tcp_is_fack(tp) && tcp_head_timedout(sk))
  2121. return 1;
  2122. /* Trick#4: It is still not OK... But will it be useful to delay
  2123. * recovery more?
  2124. */
  2125. packets_out = tp->packets_out;
  2126. if (packets_out <= tp->reordering &&
  2127. tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
  2128. !tcp_may_send_now(sk)) {
  2129. /* We have nothing to send. This connection is limited
  2130. * either by receiver window or by application.
  2131. */
  2132. return 1;
  2133. }
  2134. /* If a thin stream is detected, retransmit after first
  2135. * received dupack. Employ only if SACK is supported in order
  2136. * to avoid possible corner-case series of spurious retransmissions
  2137. * Use only if there are no unsent data.
  2138. */
  2139. if ((tp->thin_dupack || sysctl_tcp_thin_dupack) &&
  2140. tcp_stream_is_thin(tp) && tcp_dupack_heuristics(tp) > 1 &&
  2141. tcp_is_sack(tp) && !tcp_send_head(sk))
  2142. return 1;
  2143. return 0;
  2144. }
  2145. /* New heuristics: it is possible only after we switched to restart timer
  2146. * each time when something is ACKed. Hence, we can detect timed out packets
  2147. * during fast retransmit without falling to slow start.
  2148. *
  2149. * Usefulness of this as is very questionable, since we should know which of
  2150. * the segments is the next to timeout which is relatively expensive to find
  2151. * in general case unless we add some data structure just for that. The
  2152. * current approach certainly won't find the right one too often and when it
  2153. * finally does find _something_ it usually marks large part of the window
  2154. * right away (because a retransmission with a larger timestamp blocks the
  2155. * loop from advancing). -ij
  2156. */
  2157. static void tcp_timeout_skbs(struct sock *sk)
  2158. {
  2159. struct tcp_sock *tp = tcp_sk(sk);
  2160. struct sk_buff *skb;
  2161. if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
  2162. return;
  2163. skb = tp->scoreboard_skb_hint;
  2164. if (tp->scoreboard_skb_hint == NULL)
  2165. skb = tcp_write_queue_head(sk);
  2166. tcp_for_write_queue_from(skb, sk) {
  2167. if (skb == tcp_send_head(sk))
  2168. break;
  2169. if (!tcp_skb_timedout(sk, skb))
  2170. break;
  2171. tcp_skb_mark_lost(tp, skb);
  2172. }
  2173. tp->scoreboard_skb_hint = skb;
  2174. tcp_verify_left_out(tp);
  2175. }
  2176. /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
  2177. * is against sacked "cnt", otherwise it's against facked "cnt"
  2178. */
  2179. static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
  2180. {
  2181. struct tcp_sock *tp = tcp_sk(sk);
  2182. struct sk_buff *skb;
  2183. int cnt, oldcnt;
  2184. int err;
  2185. unsigned int mss;
  2186. WARN_ON(packets > tp->packets_out);
  2187. if (tp->lost_skb_hint) {
  2188. skb = tp->lost_skb_hint;
  2189. cnt = tp->lost_cnt_hint;
  2190. /* Head already handled? */
  2191. if (mark_head && skb != tcp_write_queue_head(sk))
  2192. return;
  2193. } else {
  2194. skb = tcp_write_queue_head(sk);
  2195. cnt = 0;
  2196. }
  2197. tcp_for_write_queue_from(skb, sk) {
  2198. if (skb == tcp_send_head(sk))
  2199. break;
  2200. /* TODO: do this better */
  2201. /* this is not the most efficient way to do this... */
  2202. tp->lost_skb_hint = skb;
  2203. tp->lost_cnt_hint = cnt;
  2204. if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
  2205. break;
  2206. oldcnt = cnt;
  2207. if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
  2208. (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2209. cnt += tcp_skb_pcount(skb);
  2210. if (cnt > packets) {
  2211. if ((tcp_is_sack(tp) && !tcp_is_fack(tp)) ||
  2212. (oldcnt >= packets))
  2213. break;
  2214. mss = skb_shinfo(skb)->gso_size;
  2215. err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
  2216. if (err < 0)
  2217. break;
  2218. cnt = packets;
  2219. }
  2220. tcp_skb_mark_lost(tp, skb);
  2221. if (mark_head)
  2222. break;
  2223. }
  2224. tcp_verify_left_out(tp);
  2225. }
  2226. /* Account newly detected lost packet(s) */
  2227. static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
  2228. {
  2229. struct tcp_sock *tp = tcp_sk(sk);
  2230. if (tcp_is_reno(tp)) {
  2231. tcp_mark_head_lost(sk, 1, 1);
  2232. } else if (tcp_is_fack(tp)) {
  2233. int lost = tp->fackets_out - tp->reordering;
  2234. if (lost <= 0)
  2235. lost = 1;
  2236. tcp_mark_head_lost(sk, lost, 0);
  2237. } else {
  2238. int sacked_upto = tp->sacked_out - tp->reordering;
  2239. if (sacked_upto >= 0)
  2240. tcp_mark_head_lost(sk, sacked_upto, 0);
  2241. else if (fast_rexmit)
  2242. tcp_mark_head_lost(sk, 1, 1);
  2243. }
  2244. tcp_timeout_skbs(sk);
  2245. }
  2246. /* CWND moderation, preventing bursts due to too big ACKs
  2247. * in dubious situations.
  2248. */
  2249. static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
  2250. {
  2251. tp->snd_cwnd = min(tp->snd_cwnd,
  2252. tcp_packets_in_flight(tp) + tcp_max_burst(tp));
  2253. tp->snd_cwnd_stamp = tcp_time_stamp;
  2254. }
  2255. /* Lower bound on congestion window is slow start threshold
  2256. * unless congestion avoidance choice decides to overide it.
  2257. */
  2258. static inline u32 tcp_cwnd_min(const struct sock *sk)
  2259. {
  2260. const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
  2261. return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
  2262. }
  2263. /* Decrease cwnd each second ack. */
  2264. static void tcp_cwnd_down(struct sock *sk, int flag)
  2265. {
  2266. struct tcp_sock *tp = tcp_sk(sk);
  2267. int decr = tp->snd_cwnd_cnt + 1;
  2268. if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
  2269. (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
  2270. tp->snd_cwnd_cnt = decr & 1;
  2271. decr >>= 1;
  2272. if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
  2273. tp->snd_cwnd -= decr;
  2274. tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
  2275. tp->snd_cwnd_stamp = tcp_time_stamp;
  2276. }
  2277. }
  2278. /* Nothing was retransmitted or returned timestamp is less
  2279. * than timestamp of the first retransmission.
  2280. */
  2281. static inline int tcp_packet_delayed(struct tcp_sock *tp)
  2282. {
  2283. return !tp->retrans_stamp ||
  2284. (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  2285. before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
  2286. }
  2287. /* Undo procedures. */
  2288. #if FASTRETRANS_DEBUG > 1
  2289. static void DBGUNDO(struct sock *sk, const char *msg)
  2290. {
  2291. struct tcp_sock *tp = tcp_sk(sk);
  2292. struct inet_sock *inet = inet_sk(sk);
  2293. if (sk->sk_family == AF_INET) {
  2294. printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
  2295. msg,
  2296. &inet->inet_daddr, ntohs(inet->inet_dport),
  2297. tp->snd_cwnd, tcp_left_out(tp),
  2298. tp->snd_ssthresh, tp->prior_ssthresh,
  2299. tp->packets_out);
  2300. }
  2301. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  2302. else if (sk->sk_family == AF_INET6) {
  2303. struct ipv6_pinfo *np = inet6_sk(sk);
  2304. printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
  2305. msg,
  2306. &np->daddr, ntohs(inet->inet_dport),
  2307. tp->snd_cwnd, tcp_left_out(tp),
  2308. tp->snd_ssthresh, tp->prior_ssthresh,
  2309. tp->packets_out);
  2310. }
  2311. #endif
  2312. }
  2313. #else
  2314. #define DBGUNDO(x...) do { } while (0)
  2315. #endif
  2316. static void tcp_undo_cwr(struct sock *sk, const bool undo_ssthresh)
  2317. {
  2318. struct tcp_sock *tp = tcp_sk(sk);
  2319. if (tp->prior_ssthresh) {
  2320. const struct inet_connection_sock *icsk = inet_csk(sk);
  2321. if (icsk->icsk_ca_ops->undo_cwnd)
  2322. tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
  2323. else
  2324. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
  2325. if (undo_ssthresh && tp->prior_ssthresh > tp->snd_ssthresh) {
  2326. tp->snd_ssthresh = tp->prior_ssthresh;
  2327. TCP_ECN_withdraw_cwr(tp);
  2328. }
  2329. } else {
  2330. tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
  2331. }
  2332. tp->snd_cwnd_stamp = tcp_time_stamp;
  2333. }
  2334. static inline int tcp_may_undo(struct tcp_sock *tp)
  2335. {
  2336. return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
  2337. }
  2338. /* People celebrate: "We love our President!" */
  2339. static int tcp_try_undo_recovery(struct sock *sk)
  2340. {
  2341. struct tcp_sock *tp = tcp_sk(sk);
  2342. if (tcp_may_undo(tp)) {
  2343. int mib_idx;
  2344. /* Happy end! We did not retransmit anything
  2345. * or our original transmission succeeded.
  2346. */
  2347. DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
  2348. tcp_undo_cwr(sk, true);
  2349. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
  2350. mib_idx = LINUX_MIB_TCPLOSSUNDO;
  2351. else
  2352. mib_idx = LINUX_MIB_TCPFULLUNDO;
  2353. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2354. tp->undo_marker = 0;
  2355. }
  2356. if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
  2357. /* Hold old state until something *above* high_seq
  2358. * is ACKed. For Reno it is MUST to prevent false
  2359. * fast retransmits (RFC2582). SACK TCP is safe. */
  2360. tcp_moderate_cwnd(tp);
  2361. return 1;
  2362. }
  2363. tcp_set_ca_state(sk, TCP_CA_Open);
  2364. return 0;
  2365. }
  2366. /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
  2367. static void tcp_try_undo_dsack(struct sock *sk)
  2368. {
  2369. struct tcp_sock *tp = tcp_sk(sk);
  2370. if (tp->undo_marker && !tp->undo_retrans) {
  2371. DBGUNDO(sk, "D-SACK");
  2372. tcp_undo_cwr(sk, true);
  2373. tp->undo_marker = 0;
  2374. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
  2375. }
  2376. }
  2377. /* We can clear retrans_stamp when there are no retransmissions in the
  2378. * window. It would seem that it is trivially available for us in
  2379. * tp->retrans_out, however, that kind of assumptions doesn't consider
  2380. * what will happen if errors occur when sending retransmission for the
  2381. * second time. ...It could the that such segment has only
  2382. * TCPCB_EVER_RETRANS set at the present time. It seems that checking
  2383. * the head skb is enough except for some reneging corner cases that
  2384. * are not worth the effort.
  2385. *
  2386. * Main reason for all this complexity is the fact that connection dying
  2387. * time now depends on the validity of the retrans_stamp, in particular,
  2388. * that successive retransmissions of a segment must not advance
  2389. * retrans_stamp under any conditions.
  2390. */
  2391. static int tcp_any_retrans_done(struct sock *sk)
  2392. {
  2393. struct tcp_sock *tp = tcp_sk(sk);
  2394. struct sk_buff *skb;
  2395. if (tp->retrans_out)
  2396. return 1;
  2397. skb = tcp_write_queue_head(sk);
  2398. if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
  2399. return 1;
  2400. return 0;
  2401. }
  2402. /* Undo during fast recovery after partial ACK. */
  2403. static int tcp_try_undo_partial(struct sock *sk, int acked)
  2404. {
  2405. struct tcp_sock *tp = tcp_sk(sk);
  2406. /* Partial ACK arrived. Force Hoe's retransmit. */
  2407. int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
  2408. if (tcp_may_undo(tp)) {
  2409. /* Plain luck! Hole if filled with delayed
  2410. * packet, rather than with a retransmit.
  2411. */
  2412. if (!tcp_any_retrans_done(sk))
  2413. tp->retrans_stamp = 0;
  2414. tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
  2415. DBGUNDO(sk, "Hoe");
  2416. tcp_undo_cwr(sk, false);
  2417. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
  2418. /* So... Do not make Hoe's retransmit yet.
  2419. * If the first packet was delayed, the rest
  2420. * ones are most probably delayed as well.
  2421. */
  2422. failed = 0;
  2423. }
  2424. return failed;
  2425. }
  2426. /* Undo during loss recovery after partial ACK. */
  2427. static int tcp_try_undo_loss(struct sock *sk)
  2428. {
  2429. struct tcp_sock *tp = tcp_sk(sk);
  2430. if (tcp_may_undo(tp)) {
  2431. struct sk_buff *skb;
  2432. tcp_for_write_queue(skb, sk) {
  2433. if (skb == tcp_send_head(sk))
  2434. break;
  2435. TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
  2436. }
  2437. tcp_clear_all_retrans_hints(tp);
  2438. DBGUNDO(sk, "partial loss");
  2439. tp->lost_out = 0;
  2440. tcp_undo_cwr(sk, true);
  2441. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
  2442. inet_csk(sk)->icsk_retransmits = 0;
  2443. tp->undo_marker = 0;
  2444. if (tcp_is_sack(tp))
  2445. tcp_set_ca_state(sk, TCP_CA_Open);
  2446. return 1;
  2447. }
  2448. return 0;
  2449. }
  2450. static inline void tcp_complete_cwr(struct sock *sk)
  2451. {
  2452. struct tcp_sock *tp = tcp_sk(sk);
  2453. /* Do not moderate cwnd if it's already undone in cwr or recovery */
  2454. if (tp->undo_marker && tp->snd_cwnd > tp->snd_ssthresh) {
  2455. tp->snd_cwnd = tp->snd_ssthresh;
  2456. tp->snd_cwnd_stamp = tcp_time_stamp;
  2457. }
  2458. tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
  2459. }
  2460. static void tcp_try_keep_open(struct sock *sk)
  2461. {
  2462. struct tcp_sock *tp = tcp_sk(sk);
  2463. int state = TCP_CA_Open;
  2464. if (tcp_left_out(tp) || tcp_any_retrans_done(sk) || tp->undo_marker)
  2465. state = TCP_CA_Disorder;
  2466. if (inet_csk(sk)->icsk_ca_state != state) {
  2467. tcp_set_ca_state(sk, state);
  2468. tp->high_seq = tp->snd_nxt;
  2469. }
  2470. }
  2471. static void tcp_try_to_open(struct sock *sk, int flag)
  2472. {
  2473. struct tcp_sock *tp = tcp_sk(sk);
  2474. tcp_verify_left_out(tp);
  2475. if (!tp->frto_counter && !tcp_any_retrans_done(sk))
  2476. tp->retrans_stamp = 0;
  2477. if (flag & FLAG_ECE)
  2478. tcp_enter_cwr(sk, 1);
  2479. if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
  2480. tcp_try_keep_open(sk);
  2481. tcp_moderate_cwnd(tp);
  2482. } else {
  2483. tcp_cwnd_down(sk, flag);
  2484. }
  2485. }
  2486. static void tcp_mtup_probe_failed(struct sock *sk)
  2487. {
  2488. struct inet_connection_sock *icsk = inet_csk(sk);
  2489. icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
  2490. icsk->icsk_mtup.probe_size = 0;
  2491. }
  2492. static void tcp_mtup_probe_success(struct sock *sk)
  2493. {
  2494. struct tcp_sock *tp = tcp_sk(sk);
  2495. struct inet_connection_sock *icsk = inet_csk(sk);
  2496. /* FIXME: breaks with very large cwnd */
  2497. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2498. tp->snd_cwnd = tp->snd_cwnd *
  2499. tcp_mss_to_mtu(sk, tp->mss_cache) /
  2500. icsk->icsk_mtup.probe_size;
  2501. tp->snd_cwnd_cnt = 0;
  2502. tp->snd_cwnd_stamp = tcp_time_stamp;
  2503. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2504. icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
  2505. icsk->icsk_mtup.probe_size = 0;
  2506. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  2507. }
  2508. /* Do a simple retransmit without using the backoff mechanisms in
  2509. * tcp_timer. This is used for path mtu discovery.
  2510. * The socket is already locked here.
  2511. */
  2512. void tcp_simple_retransmit(struct sock *sk)
  2513. {
  2514. const struct inet_connection_sock *icsk = inet_csk(sk);
  2515. struct tcp_sock *tp = tcp_sk(sk);
  2516. struct sk_buff *skb;
  2517. unsigned int mss = tcp_current_mss(sk);
  2518. u32 prior_lost = tp->lost_out;
  2519. tcp_for_write_queue(skb, sk) {
  2520. if (skb == tcp_send_head(sk))
  2521. break;
  2522. if (tcp_skb_seglen(skb) > mss &&
  2523. !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
  2524. if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
  2525. TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
  2526. tp->retrans_out -= tcp_skb_pcount(skb);
  2527. }
  2528. tcp_skb_mark_lost_uncond_verify(tp, skb);
  2529. }
  2530. }
  2531. tcp_clear_retrans_hints_partial(tp);
  2532. if (prior_lost == tp->lost_out)
  2533. return;
  2534. if (tcp_is_reno(tp))
  2535. tcp_limit_reno_sacked(tp);
  2536. tcp_verify_left_out(tp);
  2537. /* Don't muck with the congestion window here.
  2538. * Reason is that we do not increase amount of _data_
  2539. * in network, but units changed and effective
  2540. * cwnd/ssthresh really reduced now.
  2541. */
  2542. if (icsk->icsk_ca_state != TCP_CA_Loss) {
  2543. tp->high_seq = tp->snd_nxt;
  2544. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  2545. tp->prior_ssthresh = 0;
  2546. tp->undo_marker = 0;
  2547. tcp_set_ca_state(sk, TCP_CA_Loss);
  2548. }
  2549. tcp_xmit_retransmit_queue(sk);
  2550. }
  2551. EXPORT_SYMBOL(tcp_simple_retransmit);
  2552. /* Process an event, which can update packets-in-flight not trivially.
  2553. * Main goal of this function is to calculate new estimate for left_out,
  2554. * taking into account both packets sitting in receiver's buffer and
  2555. * packets lost by network.
  2556. *
  2557. * Besides that it does CWND reduction, when packet loss is detected
  2558. * and changes state of machine.
  2559. *
  2560. * It does _not_ decide what to send, it is made in function
  2561. * tcp_xmit_retransmit_queue().
  2562. */
  2563. static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
  2564. {
  2565. struct inet_connection_sock *icsk = inet_csk(sk);
  2566. struct tcp_sock *tp = tcp_sk(sk);
  2567. int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
  2568. int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
  2569. (tcp_fackets_out(tp) > tp->reordering));
  2570. int fast_rexmit = 0, mib_idx;
  2571. if (WARN_ON(!tp->packets_out && tp->sacked_out))
  2572. tp->sacked_out = 0;
  2573. if (WARN_ON(!tp->sacked_out && tp->fackets_out))
  2574. tp->fackets_out = 0;
  2575. /* Now state machine starts.
  2576. * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
  2577. if (flag & FLAG_ECE)
  2578. tp->prior_ssthresh = 0;
  2579. /* B. In all the states check for reneging SACKs. */
  2580. if (tcp_check_sack_reneging(sk, flag))
  2581. return;
  2582. /* C. Process data loss notification, provided it is valid. */
  2583. if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
  2584. before(tp->snd_una, tp->high_seq) &&
  2585. icsk->icsk_ca_state != TCP_CA_Open &&
  2586. tp->fackets_out > tp->reordering) {
  2587. tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering, 0);
  2588. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
  2589. }
  2590. /* D. Check consistency of the current state. */
  2591. tcp_verify_left_out(tp);
  2592. /* E. Check state exit conditions. State can be terminated
  2593. * when high_seq is ACKed. */
  2594. if (icsk->icsk_ca_state == TCP_CA_Open) {
  2595. WARN_ON(tp->retrans_out != 0);
  2596. tp->retrans_stamp = 0;
  2597. } else if (!before(tp->snd_una, tp->high_seq)) {
  2598. switch (icsk->icsk_ca_state) {
  2599. case TCP_CA_Loss:
  2600. icsk->icsk_retransmits = 0;
  2601. if (tcp_try_undo_recovery(sk))
  2602. return;
  2603. break;
  2604. case TCP_CA_CWR:
  2605. /* CWR is to be held something *above* high_seq
  2606. * is ACKed for CWR bit to reach receiver. */
  2607. if (tp->snd_una != tp->high_seq) {
  2608. tcp_complete_cwr(sk);
  2609. tcp_set_ca_state(sk, TCP_CA_Open);
  2610. }
  2611. break;
  2612. case TCP_CA_Disorder:
  2613. tcp_try_undo_dsack(sk);
  2614. if (!tp->undo_marker ||
  2615. /* For SACK case do not Open to allow to undo
  2616. * catching for all duplicate ACKs. */
  2617. tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
  2618. tp->undo_marker = 0;
  2619. tcp_set_ca_state(sk, TCP_CA_Open);
  2620. }
  2621. break;
  2622. case TCP_CA_Recovery:
  2623. if (tcp_is_reno(tp))
  2624. tcp_reset_reno_sack(tp);
  2625. if (tcp_try_undo_recovery(sk))
  2626. return;
  2627. tcp_complete_cwr(sk);
  2628. break;
  2629. }
  2630. }
  2631. /* F. Process state. */
  2632. switch (icsk->icsk_ca_state) {
  2633. case TCP_CA_Recovery:
  2634. if (!(flag & FLAG_SND_UNA_ADVANCED)) {
  2635. if (tcp_is_reno(tp) && is_dupack)
  2636. tcp_add_reno_sack(sk);
  2637. } else
  2638. do_lost = tcp_try_undo_partial(sk, pkts_acked);
  2639. break;
  2640. case TCP_CA_Loss:
  2641. if (flag & FLAG_DATA_ACKED)
  2642. icsk->icsk_retransmits = 0;
  2643. if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
  2644. tcp_reset_reno_sack(tp);
  2645. if (!tcp_try_undo_loss(sk)) {
  2646. tcp_moderate_cwnd(tp);
  2647. tcp_xmit_retransmit_queue(sk);
  2648. return;
  2649. }
  2650. if (icsk->icsk_ca_state != TCP_CA_Open)
  2651. return;
  2652. /* Loss is undone; fall through to processing in Open state. */
  2653. default:
  2654. if (tcp_is_reno(tp)) {
  2655. if (flag & FLAG_SND_UNA_ADVANCED)
  2656. tcp_reset_reno_sack(tp);
  2657. if (is_dupack)
  2658. tcp_add_reno_sack(sk);
  2659. }
  2660. if (icsk->icsk_ca_state == TCP_CA_Disorder)
  2661. tcp_try_undo_dsack(sk);
  2662. if (!tcp_time_to_recover(sk)) {
  2663. tcp_try_to_open(sk, flag);
  2664. return;
  2665. }
  2666. /* MTU probe failure: don't reduce cwnd */
  2667. if (icsk->icsk_ca_state < TCP_CA_CWR &&
  2668. icsk->icsk_mtup.probe_size &&
  2669. tp->snd_una == tp->mtu_probe.probe_seq_start) {
  2670. tcp_mtup_probe_failed(sk);
  2671. /* Restores the reduction we did in tcp_mtup_probe() */
  2672. tp->snd_cwnd++;
  2673. tcp_simple_retransmit(sk);
  2674. return;
  2675. }
  2676. /* Otherwise enter Recovery state */
  2677. if (tcp_is_reno(tp))
  2678. mib_idx = LINUX_MIB_TCPRENORECOVERY;
  2679. else
  2680. mib_idx = LINUX_MIB_TCPSACKRECOVERY;
  2681. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  2682. tp->high_seq = tp->snd_nxt;
  2683. tp->prior_ssthresh = 0;
  2684. tp->undo_marker = tp->snd_una;
  2685. tp->undo_retrans = tp->retrans_out;
  2686. if (icsk->icsk_ca_state < TCP_CA_CWR) {
  2687. if (!(flag & FLAG_ECE))
  2688. tp->prior_ssthresh = tcp_current_ssthresh(sk);
  2689. tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
  2690. TCP_ECN_queue_cwr(tp);
  2691. }
  2692. tp->bytes_acked = 0;
  2693. tp->snd_cwnd_cnt = 0;
  2694. tcp_set_ca_state(sk, TCP_CA_Recovery);
  2695. fast_rexmit = 1;
  2696. }
  2697. if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
  2698. tcp_update_scoreboard(sk, fast_rexmit);
  2699. tcp_cwnd_down(sk, flag);
  2700. tcp_xmit_retransmit_queue(sk);
  2701. }
  2702. static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
  2703. {
  2704. tcp_rtt_estimator(sk, seq_rtt);
  2705. tcp_set_rto(sk);
  2706. inet_csk(sk)->icsk_backoff = 0;
  2707. }
  2708. /* Read draft-ietf-tcplw-high-performance before mucking
  2709. * with this code. (Supersedes RFC1323)
  2710. */
  2711. static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
  2712. {
  2713. /* RTTM Rule: A TSecr value received in a segment is used to
  2714. * update the averaged RTT measurement only if the segment
  2715. * acknowledges some new data, i.e., only if it advances the
  2716. * left edge of the send window.
  2717. *
  2718. * See draft-ietf-tcplw-high-performance-00, section 3.3.
  2719. * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
  2720. *
  2721. * Changed: reset backoff as soon as we see the first valid sample.
  2722. * If we do not, we get strongly overestimated rto. With timestamps
  2723. * samples are accepted even from very old segments: f.e., when rtt=1
  2724. * increases to 8, we retransmit 5 times and after 8 seconds delayed
  2725. * answer arrives rto becomes 120 seconds! If at least one of segments
  2726. * in window is lost... Voila. --ANK (010210)
  2727. */
  2728. struct tcp_sock *tp = tcp_sk(sk);
  2729. tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
  2730. }
  2731. static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
  2732. {
  2733. /* We don't have a timestamp. Can only use
  2734. * packets that are not retransmitted to determine
  2735. * rtt estimates. Also, we must not reset the
  2736. * backoff for rto until we get a non-retransmitted
  2737. * packet. This allows us to deal with a situation
  2738. * where the network delay has increased suddenly.
  2739. * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
  2740. */
  2741. if (flag & FLAG_RETRANS_DATA_ACKED)
  2742. return;
  2743. tcp_valid_rtt_meas(sk, seq_rtt);
  2744. }
  2745. static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
  2746. const s32 seq_rtt)
  2747. {
  2748. const struct tcp_sock *tp = tcp_sk(sk);
  2749. /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
  2750. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
  2751. tcp_ack_saw_tstamp(sk, flag);
  2752. else if (seq_rtt >= 0)
  2753. tcp_ack_no_tstamp(sk, seq_rtt, flag);
  2754. }
  2755. static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
  2756. {
  2757. const struct inet_connection_sock *icsk = inet_csk(sk);
  2758. icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
  2759. tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
  2760. }
  2761. /* Restart timer after forward progress on connection.
  2762. * RFC2988 recommends to restart timer to now+rto.
  2763. */
  2764. static void tcp_rearm_rto(struct sock *sk)
  2765. {
  2766. struct tcp_sock *tp = tcp_sk(sk);
  2767. if (!tp->packets_out) {
  2768. inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
  2769. } else {
  2770. inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
  2771. inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
  2772. }
  2773. }
  2774. /* If we get here, the whole TSO packet has not been acked. */
  2775. static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
  2776. {
  2777. struct tcp_sock *tp = tcp_sk(sk);
  2778. u32 packets_acked;
  2779. BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
  2780. packets_acked = tcp_skb_pcount(skb);
  2781. if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
  2782. return 0;
  2783. packets_acked -= tcp_skb_pcount(skb);
  2784. if (packets_acked) {
  2785. BUG_ON(tcp_skb_pcount(skb) == 0);
  2786. BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
  2787. }
  2788. return packets_acked;
  2789. }
  2790. /* Remove acknowledged frames from the retransmission queue. If our packet
  2791. * is before the ack sequence we can discard it as it's confirmed to have
  2792. * arrived at the other end.
  2793. */
  2794. static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
  2795. u32 prior_snd_una)
  2796. {
  2797. struct tcp_sock *tp = tcp_sk(sk);
  2798. const struct inet_connection_sock *icsk = inet_csk(sk);
  2799. struct sk_buff *skb;
  2800. u32 now = tcp_time_stamp;
  2801. int fully_acked = 1;
  2802. int flag = 0;
  2803. u32 pkts_acked = 0;
  2804. u32 reord = tp->packets_out;
  2805. u32 prior_sacked = tp->sacked_out;
  2806. s32 seq_rtt = -1;
  2807. s32 ca_seq_rtt = -1;
  2808. ktime_t last_ackt = net_invalid_timestamp();
  2809. while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
  2810. struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
  2811. u32 acked_pcount;
  2812. u8 sacked = scb->sacked;
  2813. /* Determine how many packets and what bytes were acked, tso and else */
  2814. if (after(scb->end_seq, tp->snd_una)) {
  2815. if (tcp_skb_pcount(skb) == 1 ||
  2816. !after(tp->snd_una, scb->seq))
  2817. break;
  2818. acked_pcount = tcp_tso_acked(sk, skb);
  2819. if (!acked_pcount)
  2820. break;
  2821. fully_acked = 0;
  2822. } else {
  2823. acked_pcount = tcp_skb_pcount(skb);
  2824. }
  2825. if (sacked & TCPCB_RETRANS) {
  2826. if (sacked & TCPCB_SACKED_RETRANS)
  2827. tp->retrans_out -= acked_pcount;
  2828. flag |= FLAG_RETRANS_DATA_ACKED;
  2829. ca_seq_rtt = -1;
  2830. seq_rtt = -1;
  2831. if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
  2832. flag |= FLAG_NONHEAD_RETRANS_ACKED;
  2833. } else {
  2834. ca_seq_rtt = now - scb->when;
  2835. last_ackt = skb->tstamp;
  2836. if (seq_rtt < 0) {
  2837. seq_rtt = ca_seq_rtt;
  2838. }
  2839. if (!(sacked & TCPCB_SACKED_ACKED))
  2840. reord = min(pkts_acked, reord);
  2841. }
  2842. if (sacked & TCPCB_SACKED_ACKED)
  2843. tp->sacked_out -= acked_pcount;
  2844. if (sacked & TCPCB_LOST)
  2845. tp->lost_out -= acked_pcount;
  2846. tp->packets_out -= acked_pcount;
  2847. pkts_acked += acked_pcount;
  2848. /* Initial outgoing SYN's get put onto the write_queue
  2849. * just like anything else we transmit. It is not
  2850. * true data, and if we misinform our callers that
  2851. * this ACK acks real data, we will erroneously exit
  2852. * connection startup slow start one packet too
  2853. * quickly. This is severely frowned upon behavior.
  2854. */
  2855. if (!(scb->flags & TCPHDR_SYN)) {
  2856. flag |= FLAG_DATA_ACKED;
  2857. } else {
  2858. flag |= FLAG_SYN_ACKED;
  2859. tp->retrans_stamp = 0;
  2860. }
  2861. if (!fully_acked)
  2862. break;
  2863. tcp_unlink_write_queue(skb, sk);
  2864. sk_wmem_free_skb(sk, skb);
  2865. tp->scoreboard_skb_hint = NULL;
  2866. if (skb == tp->retransmit_skb_hint)
  2867. tp->retransmit_skb_hint = NULL;
  2868. if (skb == tp->lost_skb_hint)
  2869. tp->lost_skb_hint = NULL;
  2870. }
  2871. if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
  2872. tp->snd_up = tp->snd_una;
  2873. if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
  2874. flag |= FLAG_SACK_RENEGING;
  2875. if (flag & FLAG_ACKED) {
  2876. const struct tcp_congestion_ops *ca_ops
  2877. = inet_csk(sk)->icsk_ca_ops;
  2878. if (unlikely(icsk->icsk_mtup.probe_size &&
  2879. !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
  2880. tcp_mtup_probe_success(sk);
  2881. }
  2882. tcp_ack_update_rtt(sk, flag, seq_rtt);
  2883. tcp_rearm_rto(sk);
  2884. if (tcp_is_reno(tp)) {
  2885. tcp_remove_reno_sacks(sk, pkts_acked);
  2886. } else {
  2887. int delta;
  2888. /* Non-retransmitted hole got filled? That's reordering */
  2889. if (reord < prior_fackets)
  2890. tcp_update_reordering(sk, tp->fackets_out - reord, 0);
  2891. delta = tcp_is_fack(tp) ? pkts_acked :
  2892. prior_sacked - tp->sacked_out;
  2893. tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
  2894. }
  2895. tp->fackets_out -= min(pkts_acked, tp->fackets_out);
  2896. if (ca_ops->pkts_acked) {
  2897. s32 rtt_us = -1;
  2898. /* Is the ACK triggering packet unambiguous? */
  2899. if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
  2900. /* High resolution needed and available? */
  2901. if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
  2902. !ktime_equal(last_ackt,
  2903. net_invalid_timestamp()))
  2904. rtt_us = ktime_us_delta(ktime_get_real(),
  2905. last_ackt);
  2906. else if (ca_seq_rtt >= 0)
  2907. rtt_us = jiffies_to_usecs(ca_seq_rtt);
  2908. }
  2909. ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
  2910. }
  2911. }
  2912. #if FASTRETRANS_DEBUG > 0
  2913. WARN_ON((int)tp->sacked_out < 0);
  2914. WARN_ON((int)tp->lost_out < 0);
  2915. WARN_ON((int)tp->retrans_out < 0);
  2916. if (!tp->packets_out && tcp_is_sack(tp)) {
  2917. icsk = inet_csk(sk);
  2918. if (tp->lost_out) {
  2919. printk(KERN_DEBUG "Leak l=%u %d\n",
  2920. tp->lost_out, icsk->icsk_ca_state);
  2921. tp->lost_out = 0;
  2922. }
  2923. if (tp->sacked_out) {
  2924. printk(KERN_DEBUG "Leak s=%u %d\n",
  2925. tp->sacked_out, icsk->icsk_ca_state);
  2926. tp->sacked_out = 0;
  2927. }
  2928. if (tp->retrans_out) {
  2929. printk(KERN_DEBUG "Leak r=%u %d\n",
  2930. tp->retrans_out, icsk->icsk_ca_state);
  2931. tp->retrans_out = 0;
  2932. }
  2933. }
  2934. #endif
  2935. return flag;
  2936. }
  2937. static void tcp_ack_probe(struct sock *sk)
  2938. {
  2939. const struct tcp_sock *tp = tcp_sk(sk);
  2940. struct inet_connection_sock *icsk = inet_csk(sk);
  2941. /* Was it a usable window open? */
  2942. if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
  2943. icsk->icsk_backoff = 0;
  2944. inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
  2945. /* Socket must be waked up by subsequent tcp_data_snd_check().
  2946. * This function is not for random using!
  2947. */
  2948. } else {
  2949. inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
  2950. min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
  2951. TCP_RTO_MAX);
  2952. }
  2953. }
  2954. static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
  2955. {
  2956. return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
  2957. inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
  2958. }
  2959. static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
  2960. {
  2961. const struct tcp_sock *tp = tcp_sk(sk);
  2962. return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
  2963. !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
  2964. }
  2965. /* Check that window update is acceptable.
  2966. * The function assumes that snd_una<=ack<=snd_next.
  2967. */
  2968. static inline int tcp_may_update_window(const struct tcp_sock *tp,
  2969. const u32 ack, const u32 ack_seq,
  2970. const u32 nwin)
  2971. {
  2972. return after(ack, tp->snd_una) ||
  2973. after(ack_seq, tp->snd_wl1) ||
  2974. (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
  2975. }
  2976. /* Update our send window.
  2977. *
  2978. * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
  2979. * and in FreeBSD. NetBSD's one is even worse.) is wrong.
  2980. */
  2981. static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
  2982. u32 ack_seq)
  2983. {
  2984. struct tcp_sock *tp = tcp_sk(sk);
  2985. int flag = 0;
  2986. u32 nwin = ntohs(tcp_hdr(skb)->window);
  2987. if (likely(!tcp_hdr(skb)->syn))
  2988. nwin <<= tp->rx_opt.snd_wscale;
  2989. if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
  2990. flag |= FLAG_WIN_UPDATE;
  2991. tcp_update_wl(tp, ack_seq);
  2992. if (tp->snd_wnd != nwin) {
  2993. tp->snd_wnd = nwin;
  2994. /* Note, it is the only place, where
  2995. * fast path is recovered for sending TCP.
  2996. */
  2997. tp->pred_flags = 0;
  2998. tcp_fast_path_check(sk);
  2999. if (nwin > tp->max_window) {
  3000. tp->max_window = nwin;
  3001. tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
  3002. }
  3003. }
  3004. }
  3005. tp->snd_una = ack;
  3006. return flag;
  3007. }
  3008. /* A very conservative spurious RTO response algorithm: reduce cwnd and
  3009. * continue in congestion avoidance.
  3010. */
  3011. static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
  3012. {
  3013. tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
  3014. tp->snd_cwnd_cnt = 0;
  3015. tp->bytes_acked = 0;
  3016. TCP_ECN_queue_cwr(tp);
  3017. tcp_moderate_cwnd(tp);
  3018. }
  3019. /* A conservative spurious RTO response algorithm: reduce cwnd using
  3020. * rate halving and continue in congestion avoidance.
  3021. */
  3022. static void tcp_ratehalving_spur_to_response(struct sock *sk)
  3023. {
  3024. tcp_enter_cwr(sk, 0);
  3025. }
  3026. static void tcp_undo_spur_to_response(struct sock *sk, int flag)
  3027. {
  3028. if (flag & FLAG_ECE)
  3029. tcp_ratehalving_spur_to_response(sk);
  3030. else
  3031. tcp_undo_cwr(sk, true);
  3032. }
  3033. /* F-RTO spurious RTO detection algorithm (RFC4138)
  3034. *
  3035. * F-RTO affects during two new ACKs following RTO (well, almost, see inline
  3036. * comments). State (ACK number) is kept in frto_counter. When ACK advances
  3037. * window (but not to or beyond highest sequence sent before RTO):
  3038. * On First ACK, send two new segments out.
  3039. * On Second ACK, RTO was likely spurious. Do spurious response (response
  3040. * algorithm is not part of the F-RTO detection algorithm
  3041. * given in RFC4138 but can be selected separately).
  3042. * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
  3043. * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
  3044. * of Nagle, this is done using frto_counter states 2 and 3, when a new data
  3045. * segment of any size sent during F-RTO, state 2 is upgraded to 3.
  3046. *
  3047. * Rationale: if the RTO was spurious, new ACKs should arrive from the
  3048. * original window even after we transmit two new data segments.
  3049. *
  3050. * SACK version:
  3051. * on first step, wait until first cumulative ACK arrives, then move to
  3052. * the second step. In second step, the next ACK decides.
  3053. *
  3054. * F-RTO is implemented (mainly) in four functions:
  3055. * - tcp_use_frto() is used to determine if TCP is can use F-RTO
  3056. * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
  3057. * called when tcp_use_frto() showed green light
  3058. * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
  3059. * - tcp_enter_frto_loss() is called if there is not enough evidence
  3060. * to prove that the RTO is indeed spurious. It transfers the control
  3061. * from F-RTO to the conventional RTO recovery
  3062. */
  3063. static int tcp_process_frto(struct sock *sk, int flag)
  3064. {
  3065. struct tcp_sock *tp = tcp_sk(sk);
  3066. tcp_verify_left_out(tp);
  3067. /* Duplicate the behavior from Loss state (fastretrans_alert) */
  3068. if (flag & FLAG_DATA_ACKED)
  3069. inet_csk(sk)->icsk_retransmits = 0;
  3070. if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
  3071. ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
  3072. tp->undo_marker = 0;
  3073. if (!before(tp->snd_una, tp->frto_highmark)) {
  3074. tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
  3075. return 1;
  3076. }
  3077. if (!tcp_is_sackfrto(tp)) {
  3078. /* RFC4138 shortcoming in step 2; should also have case c):
  3079. * ACK isn't duplicate nor advances window, e.g., opposite dir
  3080. * data, winupdate
  3081. */
  3082. if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
  3083. return 1;
  3084. if (!(flag & FLAG_DATA_ACKED)) {
  3085. tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
  3086. flag);
  3087. return 1;
  3088. }
  3089. } else {
  3090. if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
  3091. /* Prevent sending of new data. */
  3092. tp->snd_cwnd = min(tp->snd_cwnd,
  3093. tcp_packets_in_flight(tp));
  3094. return 1;
  3095. }
  3096. if ((tp->frto_counter >= 2) &&
  3097. (!(flag & FLAG_FORWARD_PROGRESS) ||
  3098. ((flag & FLAG_DATA_SACKED) &&
  3099. !(flag & FLAG_ONLY_ORIG_SACKED)))) {
  3100. /* RFC4138 shortcoming (see comment above) */
  3101. if (!(flag & FLAG_FORWARD_PROGRESS) &&
  3102. (flag & FLAG_NOT_DUP))
  3103. return 1;
  3104. tcp_enter_frto_loss(sk, 3, flag);
  3105. return 1;
  3106. }
  3107. }
  3108. if (tp->frto_counter == 1) {
  3109. /* tcp_may_send_now needs to see updated state */
  3110. tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
  3111. tp->frto_counter = 2;
  3112. if (!tcp_may_send_now(sk))
  3113. tcp_enter_frto_loss(sk, 2, flag);
  3114. return 1;
  3115. } else {
  3116. switch (sysctl_tcp_frto_response) {
  3117. case 2:
  3118. tcp_undo_spur_to_response(sk, flag);
  3119. break;
  3120. case 1:
  3121. tcp_conservative_spur_to_response(tp);
  3122. break;
  3123. default:
  3124. tcp_ratehalving_spur_to_response(sk);
  3125. break;
  3126. }
  3127. tp->frto_counter = 0;
  3128. tp->undo_marker = 0;
  3129. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
  3130. }
  3131. return 0;
  3132. }
  3133. /* This routine deals with incoming acks, but not outgoing ones. */
  3134. static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
  3135. {
  3136. struct inet_connection_sock *icsk = inet_csk(sk);
  3137. struct tcp_sock *tp = tcp_sk(sk);
  3138. u32 prior_snd_una = tp->snd_una;
  3139. u32 ack_seq = TCP_SKB_CB(skb)->seq;
  3140. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3141. u32 prior_in_flight;
  3142. u32 prior_fackets;
  3143. int prior_packets;
  3144. int frto_cwnd = 0;
  3145. /* If the ack is older than previous acks
  3146. * then we can probably ignore it.
  3147. */
  3148. if (before(ack, prior_snd_una))
  3149. goto old_ack;
  3150. /* If the ack includes data we haven't sent yet, discard
  3151. * this segment (RFC793 Section 3.9).
  3152. */
  3153. if (after(ack, tp->snd_nxt))
  3154. goto invalid_ack;
  3155. if (after(ack, prior_snd_una))
  3156. flag |= FLAG_SND_UNA_ADVANCED;
  3157. if (sysctl_tcp_abc) {
  3158. if (icsk->icsk_ca_state < TCP_CA_CWR)
  3159. tp->bytes_acked += ack - prior_snd_una;
  3160. else if (icsk->icsk_ca_state == TCP_CA_Loss)
  3161. /* we assume just one segment left network */
  3162. tp->bytes_acked += min(ack - prior_snd_una,
  3163. tp->mss_cache);
  3164. }
  3165. prior_fackets = tp->fackets_out;
  3166. prior_in_flight = tcp_packets_in_flight(tp);
  3167. if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
  3168. /* Window is constant, pure forward advance.
  3169. * No more checks are required.
  3170. * Note, we use the fact that SND.UNA>=SND.WL2.
  3171. */
  3172. tcp_update_wl(tp, ack_seq);
  3173. tp->snd_una = ack;
  3174. flag |= FLAG_WIN_UPDATE;
  3175. tcp_ca_event(sk, CA_EVENT_FAST_ACK);
  3176. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
  3177. } else {
  3178. if (ack_seq != TCP_SKB_CB(skb)->end_seq)
  3179. flag |= FLAG_DATA;
  3180. else
  3181. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
  3182. flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
  3183. if (TCP_SKB_CB(skb)->sacked)
  3184. flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  3185. if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
  3186. flag |= FLAG_ECE;
  3187. tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
  3188. }
  3189. /* We passed data and got it acked, remove any soft error
  3190. * log. Something worked...
  3191. */
  3192. sk->sk_err_soft = 0;
  3193. icsk->icsk_probes_out = 0;
  3194. tp->rcv_tstamp = tcp_time_stamp;
  3195. prior_packets = tp->packets_out;
  3196. if (!prior_packets)
  3197. goto no_queue;
  3198. /* See if we can take anything off of the retransmit queue. */
  3199. flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
  3200. if (tp->frto_counter)
  3201. frto_cwnd = tcp_process_frto(sk, flag);
  3202. /* Guarantee sacktag reordering detection against wrap-arounds */
  3203. if (before(tp->frto_highmark, tp->snd_una))
  3204. tp->frto_highmark = 0;
  3205. if (tcp_ack_is_dubious(sk, flag)) {
  3206. /* Advance CWND, if state allows this. */
  3207. if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
  3208. tcp_may_raise_cwnd(sk, flag))
  3209. tcp_cong_avoid(sk, ack, prior_in_flight);
  3210. tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
  3211. flag);
  3212. } else {
  3213. if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
  3214. tcp_cong_avoid(sk, ack, prior_in_flight);
  3215. }
  3216. if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
  3217. dst_confirm(__sk_dst_get(sk));
  3218. return 1;
  3219. no_queue:
  3220. /* If this ack opens up a zero window, clear backoff. It was
  3221. * being used to time the probes, and is probably far higher than
  3222. * it needs to be for normal retransmission.
  3223. */
  3224. if (tcp_send_head(sk))
  3225. tcp_ack_probe(sk);
  3226. return 1;
  3227. invalid_ack:
  3228. SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3229. return -1;
  3230. old_ack:
  3231. if (TCP_SKB_CB(skb)->sacked) {
  3232. tcp_sacktag_write_queue(sk, skb, prior_snd_una);
  3233. if (icsk->icsk_ca_state == TCP_CA_Open)
  3234. tcp_try_keep_open(sk);
  3235. }
  3236. SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
  3237. return 0;
  3238. }
  3239. /* Look for tcp options. Normally only called on SYN and SYNACK packets.
  3240. * But, this can also be called on packets in the established flow when
  3241. * the fast version below fails.
  3242. */
  3243. void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
  3244. u8 **hvpp, int estab)
  3245. {
  3246. unsigned char *ptr;
  3247. struct tcphdr *th = tcp_hdr(skb);
  3248. int length = (th->doff * 4) - sizeof(struct tcphdr);
  3249. ptr = (unsigned char *)(th + 1);
  3250. opt_rx->saw_tstamp = 0;
  3251. while (length > 0) {
  3252. int opcode = *ptr++;
  3253. int opsize;
  3254. switch (opcode) {
  3255. case TCPOPT_EOL:
  3256. return;
  3257. case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
  3258. length--;
  3259. continue;
  3260. default:
  3261. opsize = *ptr++;
  3262. if (opsize < 2) /* "silly options" */
  3263. return;
  3264. if (opsize > length)
  3265. return; /* don't parse partial options */
  3266. switch (opcode) {
  3267. case TCPOPT_MSS:
  3268. if (opsize == TCPOLEN_MSS && th->syn && !estab) {
  3269. u16 in_mss = get_unaligned_be16(ptr);
  3270. if (in_mss) {
  3271. if (opt_rx->user_mss &&
  3272. opt_rx->user_mss < in_mss)
  3273. in_mss = opt_rx->user_mss;
  3274. opt_rx->mss_clamp = in_mss;
  3275. }
  3276. }
  3277. break;
  3278. case TCPOPT_WINDOW:
  3279. if (opsize == TCPOLEN_WINDOW && th->syn &&
  3280. !estab && sysctl_tcp_window_scaling) {
  3281. __u8 snd_wscale = *(__u8 *)ptr;
  3282. opt_rx->wscale_ok = 1;
  3283. if (snd_wscale > 14) {
  3284. if (net_ratelimit())
  3285. printk(KERN_INFO "tcp_parse_options: Illegal window "
  3286. "scaling value %d >14 received.\n",
  3287. snd_wscale);
  3288. snd_wscale = 14;
  3289. }
  3290. opt_rx->snd_wscale = snd_wscale;
  3291. }
  3292. break;
  3293. case TCPOPT_TIMESTAMP:
  3294. if ((opsize == TCPOLEN_TIMESTAMP) &&
  3295. ((estab && opt_rx->tstamp_ok) ||
  3296. (!estab && sysctl_tcp_timestamps))) {
  3297. opt_rx->saw_tstamp = 1;
  3298. opt_rx->rcv_tsval = get_unaligned_be32(ptr);
  3299. opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
  3300. }
  3301. break;
  3302. case TCPOPT_SACK_PERM:
  3303. if (opsize == TCPOLEN_SACK_PERM && th->syn &&
  3304. !estab && sysctl_tcp_sack) {
  3305. opt_rx->sack_ok = 1;
  3306. tcp_sack_reset(opt_rx);
  3307. }
  3308. break;
  3309. case TCPOPT_SACK:
  3310. if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
  3311. !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
  3312. opt_rx->sack_ok) {
  3313. TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
  3314. }
  3315. break;
  3316. #ifdef CONFIG_TCP_MD5SIG
  3317. case TCPOPT_MD5SIG:
  3318. /*
  3319. * The MD5 Hash has already been
  3320. * checked (see tcp_v{4,6}_do_rcv()).
  3321. */
  3322. break;
  3323. #endif
  3324. case TCPOPT_COOKIE:
  3325. /* This option is variable length.
  3326. */
  3327. switch (opsize) {
  3328. case TCPOLEN_COOKIE_BASE:
  3329. /* not yet implemented */
  3330. break;
  3331. case TCPOLEN_COOKIE_PAIR:
  3332. /* not yet implemented */
  3333. break;
  3334. case TCPOLEN_COOKIE_MIN+0:
  3335. case TCPOLEN_COOKIE_MIN+2:
  3336. case TCPOLEN_COOKIE_MIN+4:
  3337. case TCPOLEN_COOKIE_MIN+6:
  3338. case TCPOLEN_COOKIE_MAX:
  3339. /* 16-bit multiple */
  3340. opt_rx->cookie_plus = opsize;
  3341. *hvpp = ptr;
  3342. break;
  3343. default:
  3344. /* ignore option */
  3345. break;
  3346. }
  3347. break;
  3348. }
  3349. ptr += opsize-2;
  3350. length -= opsize;
  3351. }
  3352. }
  3353. }
  3354. EXPORT_SYMBOL(tcp_parse_options);
  3355. static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
  3356. {
  3357. __be32 *ptr = (__be32 *)(th + 1);
  3358. if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
  3359. | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
  3360. tp->rx_opt.saw_tstamp = 1;
  3361. ++ptr;
  3362. tp->rx_opt.rcv_tsval = ntohl(*ptr);
  3363. ++ptr;
  3364. tp->rx_opt.rcv_tsecr = ntohl(*ptr);
  3365. return 1;
  3366. }
  3367. return 0;
  3368. }
  3369. /* Fast parse options. This hopes to only see timestamps.
  3370. * If it is wrong it falls back on tcp_parse_options().
  3371. */
  3372. static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
  3373. struct tcp_sock *tp, u8 **hvpp)
  3374. {
  3375. /* In the spirit of fast parsing, compare doff directly to constant
  3376. * values. Because equality is used, short doff can be ignored here.
  3377. */
  3378. if (th->doff == (sizeof(*th) / 4)) {
  3379. tp->rx_opt.saw_tstamp = 0;
  3380. return 0;
  3381. } else if (tp->rx_opt.tstamp_ok &&
  3382. th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
  3383. if (tcp_parse_aligned_timestamp(tp, th))
  3384. return 1;
  3385. }
  3386. tcp_parse_options(skb, &tp->rx_opt, hvpp, 1);
  3387. return 1;
  3388. }
  3389. #ifdef CONFIG_TCP_MD5SIG
  3390. /*
  3391. * Parse MD5 Signature option
  3392. */
  3393. u8 *tcp_parse_md5sig_option(struct tcphdr *th)
  3394. {
  3395. int length = (th->doff << 2) - sizeof (*th);
  3396. u8 *ptr = (u8*)(th + 1);
  3397. /* If the TCP option is too short, we can short cut */
  3398. if (length < TCPOLEN_MD5SIG)
  3399. return NULL;
  3400. while (length > 0) {
  3401. int opcode = *ptr++;
  3402. int opsize;
  3403. switch(opcode) {
  3404. case TCPOPT_EOL:
  3405. return NULL;
  3406. case TCPOPT_NOP:
  3407. length--;
  3408. continue;
  3409. default:
  3410. opsize = *ptr++;
  3411. if (opsize < 2 || opsize > length)
  3412. return NULL;
  3413. if (opcode == TCPOPT_MD5SIG)
  3414. return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
  3415. }
  3416. ptr += opsize - 2;
  3417. length -= opsize;
  3418. }
  3419. return NULL;
  3420. }
  3421. EXPORT_SYMBOL(tcp_parse_md5sig_option);
  3422. #endif
  3423. static inline void tcp_store_ts_recent(struct tcp_sock *tp)
  3424. {
  3425. tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
  3426. tp->rx_opt.ts_recent_stamp = get_seconds();
  3427. }
  3428. static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
  3429. {
  3430. if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
  3431. /* PAWS bug workaround wrt. ACK frames, the PAWS discard
  3432. * extra check below makes sure this can only happen
  3433. * for pure ACK frames. -DaveM
  3434. *
  3435. * Not only, also it occurs for expired timestamps.
  3436. */
  3437. if (tcp_paws_check(&tp->rx_opt, 0))
  3438. tcp_store_ts_recent(tp);
  3439. }
  3440. }
  3441. /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
  3442. *
  3443. * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
  3444. * it can pass through stack. So, the following predicate verifies that
  3445. * this segment is not used for anything but congestion avoidance or
  3446. * fast retransmit. Moreover, we even are able to eliminate most of such
  3447. * second order effects, if we apply some small "replay" window (~RTO)
  3448. * to timestamp space.
  3449. *
  3450. * All these measures still do not guarantee that we reject wrapped ACKs
  3451. * on networks with high bandwidth, when sequence space is recycled fastly,
  3452. * but it guarantees that such events will be very rare and do not affect
  3453. * connection seriously. This doesn't look nice, but alas, PAWS is really
  3454. * buggy extension.
  3455. *
  3456. * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
  3457. * states that events when retransmit arrives after original data are rare.
  3458. * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
  3459. * the biggest problem on large power networks even with minor reordering.
  3460. * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
  3461. * up to bandwidth of 18Gigabit/sec. 8) ]
  3462. */
  3463. static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
  3464. {
  3465. struct tcp_sock *tp = tcp_sk(sk);
  3466. struct tcphdr *th = tcp_hdr(skb);
  3467. u32 seq = TCP_SKB_CB(skb)->seq;
  3468. u32 ack = TCP_SKB_CB(skb)->ack_seq;
  3469. return (/* 1. Pure ACK with correct sequence number. */
  3470. (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
  3471. /* 2. ... and duplicate ACK. */
  3472. ack == tp->snd_una &&
  3473. /* 3. ... and does not update window. */
  3474. !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
  3475. /* 4. ... and sits in replay window. */
  3476. (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
  3477. }
  3478. static inline int tcp_paws_discard(const struct sock *sk,
  3479. const struct sk_buff *skb)
  3480. {
  3481. const struct tcp_sock *tp = tcp_sk(sk);
  3482. return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
  3483. !tcp_disordered_ack(sk, skb);
  3484. }
  3485. /* Check segment sequence number for validity.
  3486. *
  3487. * Segment controls are considered valid, if the segment
  3488. * fits to the window after truncation to the window. Acceptability
  3489. * of data (and SYN, FIN, of course) is checked separately.
  3490. * See tcp_data_queue(), for example.
  3491. *
  3492. * Also, controls (RST is main one) are accepted using RCV.WUP instead
  3493. * of RCV.NXT. Peer still did not advance his SND.UNA when we
  3494. * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
  3495. * (borrowed from freebsd)
  3496. */
  3497. static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
  3498. {
  3499. return !before(end_seq, tp->rcv_wup) &&
  3500. !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
  3501. }
  3502. /* When we get a reset we do this. */
  3503. static void tcp_reset(struct sock *sk)
  3504. {
  3505. /* We want the right error as BSD sees it (and indeed as we do). */
  3506. switch (sk->sk_state) {
  3507. case TCP_SYN_SENT:
  3508. sk->sk_err = ECONNREFUSED;
  3509. break;
  3510. case TCP_CLOSE_WAIT:
  3511. sk->sk_err = EPIPE;
  3512. break;
  3513. case TCP_CLOSE:
  3514. return;
  3515. default:
  3516. sk->sk_err = ECONNRESET;
  3517. }
  3518. /* This barrier is coupled with smp_rmb() in tcp_poll() */
  3519. smp_wmb();
  3520. if (!sock_flag(sk, SOCK_DEAD))
  3521. sk->sk_error_report(sk);
  3522. tcp_done(sk);
  3523. }
  3524. /*
  3525. * Process the FIN bit. This now behaves as it is supposed to work
  3526. * and the FIN takes effect when it is validly part of sequence
  3527. * space. Not before when we get holes.
  3528. *
  3529. * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
  3530. * (and thence onto LAST-ACK and finally, CLOSE, we never enter
  3531. * TIME-WAIT)
  3532. *
  3533. * If we are in FINWAIT-1, a received FIN indicates simultaneous
  3534. * close and we go into CLOSING (and later onto TIME-WAIT)
  3535. *
  3536. * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
  3537. */
  3538. static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
  3539. {
  3540. struct tcp_sock *tp = tcp_sk(sk);
  3541. inet_csk_schedule_ack(sk);
  3542. sk->sk_shutdown |= RCV_SHUTDOWN;
  3543. sock_set_flag(sk, SOCK_DONE);
  3544. switch (sk->sk_state) {
  3545. case TCP_SYN_RECV:
  3546. case TCP_ESTABLISHED:
  3547. /* Move to CLOSE_WAIT */
  3548. tcp_set_state(sk, TCP_CLOSE_WAIT);
  3549. inet_csk(sk)->icsk_ack.pingpong = 1;
  3550. break;
  3551. case TCP_CLOSE_WAIT:
  3552. case TCP_CLOSING:
  3553. /* Received a retransmission of the FIN, do
  3554. * nothing.
  3555. */
  3556. break;
  3557. case TCP_LAST_ACK:
  3558. /* RFC793: Remain in the LAST-ACK state. */
  3559. break;
  3560. case TCP_FIN_WAIT1:
  3561. /* This case occurs when a simultaneous close
  3562. * happens, we must ack the received FIN and
  3563. * enter the CLOSING state.
  3564. */
  3565. tcp_send_ack(sk);
  3566. tcp_set_state(sk, TCP_CLOSING);
  3567. break;
  3568. case TCP_FIN_WAIT2:
  3569. /* Received a FIN -- send ACK and enter TIME_WAIT. */
  3570. tcp_send_ack(sk);
  3571. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  3572. break;
  3573. default:
  3574. /* Only TCP_LISTEN and TCP_CLOSE are left, in these
  3575. * cases we should never reach this piece of code.
  3576. */
  3577. printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
  3578. __func__, sk->sk_state);
  3579. break;
  3580. }
  3581. /* It _is_ possible, that we have something out-of-order _after_ FIN.
  3582. * Probably, we should reset in this case. For now drop them.
  3583. */
  3584. __skb_queue_purge(&tp->out_of_order_queue);
  3585. if (tcp_is_sack(tp))
  3586. tcp_sack_reset(&tp->rx_opt);
  3587. sk_mem_reclaim(sk);
  3588. if (!sock_flag(sk, SOCK_DEAD)) {
  3589. sk->sk_state_change(sk);
  3590. /* Do not send POLL_HUP for half duplex close. */
  3591. if (sk->sk_shutdown == SHUTDOWN_MASK ||
  3592. sk->sk_state == TCP_CLOSE)
  3593. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
  3594. else
  3595. sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
  3596. }
  3597. }
  3598. static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
  3599. u32 end_seq)
  3600. {
  3601. if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
  3602. if (before(seq, sp->start_seq))
  3603. sp->start_seq = seq;
  3604. if (after(end_seq, sp->end_seq))
  3605. sp->end_seq = end_seq;
  3606. return 1;
  3607. }
  3608. return 0;
  3609. }
  3610. static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
  3611. {
  3612. struct tcp_sock *tp = tcp_sk(sk);
  3613. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3614. int mib_idx;
  3615. if (before(seq, tp->rcv_nxt))
  3616. mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
  3617. else
  3618. mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
  3619. NET_INC_STATS_BH(sock_net(sk), mib_idx);
  3620. tp->rx_opt.dsack = 1;
  3621. tp->duplicate_sack[0].start_seq = seq;
  3622. tp->duplicate_sack[0].end_seq = end_seq;
  3623. }
  3624. }
  3625. static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
  3626. {
  3627. struct tcp_sock *tp = tcp_sk(sk);
  3628. if (!tp->rx_opt.dsack)
  3629. tcp_dsack_set(sk, seq, end_seq);
  3630. else
  3631. tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
  3632. }
  3633. static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
  3634. {
  3635. struct tcp_sock *tp = tcp_sk(sk);
  3636. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  3637. before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3638. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3639. tcp_enter_quickack_mode(sk);
  3640. if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
  3641. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3642. if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
  3643. end_seq = tp->rcv_nxt;
  3644. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
  3645. }
  3646. }
  3647. tcp_send_ack(sk);
  3648. }
  3649. /* These routines update the SACK block as out-of-order packets arrive or
  3650. * in-order packets close up the sequence space.
  3651. */
  3652. static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
  3653. {
  3654. int this_sack;
  3655. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3656. struct tcp_sack_block *swalk = sp + 1;
  3657. /* See if the recent change to the first SACK eats into
  3658. * or hits the sequence space of other SACK blocks, if so coalesce.
  3659. */
  3660. for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
  3661. if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
  3662. int i;
  3663. /* Zap SWALK, by moving every further SACK up by one slot.
  3664. * Decrease num_sacks.
  3665. */
  3666. tp->rx_opt.num_sacks--;
  3667. for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
  3668. sp[i] = sp[i + 1];
  3669. continue;
  3670. }
  3671. this_sack++, swalk++;
  3672. }
  3673. }
  3674. static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
  3675. {
  3676. struct tcp_sock *tp = tcp_sk(sk);
  3677. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3678. int cur_sacks = tp->rx_opt.num_sacks;
  3679. int this_sack;
  3680. if (!cur_sacks)
  3681. goto new_sack;
  3682. for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
  3683. if (tcp_sack_extend(sp, seq, end_seq)) {
  3684. /* Rotate this_sack to the first one. */
  3685. for (; this_sack > 0; this_sack--, sp--)
  3686. swap(*sp, *(sp - 1));
  3687. if (cur_sacks > 1)
  3688. tcp_sack_maybe_coalesce(tp);
  3689. return;
  3690. }
  3691. }
  3692. /* Could not find an adjacent existing SACK, build a new one,
  3693. * put it at the front, and shift everyone else down. We
  3694. * always know there is at least one SACK present already here.
  3695. *
  3696. * If the sack array is full, forget about the last one.
  3697. */
  3698. if (this_sack >= TCP_NUM_SACKS) {
  3699. this_sack--;
  3700. tp->rx_opt.num_sacks--;
  3701. sp--;
  3702. }
  3703. for (; this_sack > 0; this_sack--, sp--)
  3704. *sp = *(sp - 1);
  3705. new_sack:
  3706. /* Build the new head SACK, and we're done. */
  3707. sp->start_seq = seq;
  3708. sp->end_seq = end_seq;
  3709. tp->rx_opt.num_sacks++;
  3710. }
  3711. /* RCV.NXT advances, some SACKs should be eaten. */
  3712. static void tcp_sack_remove(struct tcp_sock *tp)
  3713. {
  3714. struct tcp_sack_block *sp = &tp->selective_acks[0];
  3715. int num_sacks = tp->rx_opt.num_sacks;
  3716. int this_sack;
  3717. /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
  3718. if (skb_queue_empty(&tp->out_of_order_queue)) {
  3719. tp->rx_opt.num_sacks = 0;
  3720. return;
  3721. }
  3722. for (this_sack = 0; this_sack < num_sacks;) {
  3723. /* Check if the start of the sack is covered by RCV.NXT. */
  3724. if (!before(tp->rcv_nxt, sp->start_seq)) {
  3725. int i;
  3726. /* RCV.NXT must cover all the block! */
  3727. WARN_ON(before(tp->rcv_nxt, sp->end_seq));
  3728. /* Zap this SACK, by moving forward any other SACKS. */
  3729. for (i=this_sack+1; i < num_sacks; i++)
  3730. tp->selective_acks[i-1] = tp->selective_acks[i];
  3731. num_sacks--;
  3732. continue;
  3733. }
  3734. this_sack++;
  3735. sp++;
  3736. }
  3737. tp->rx_opt.num_sacks = num_sacks;
  3738. }
  3739. /* This one checks to see if we can put data from the
  3740. * out_of_order queue into the receive_queue.
  3741. */
  3742. static void tcp_ofo_queue(struct sock *sk)
  3743. {
  3744. struct tcp_sock *tp = tcp_sk(sk);
  3745. __u32 dsack_high = tp->rcv_nxt;
  3746. struct sk_buff *skb;
  3747. while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
  3748. if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  3749. break;
  3750. if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
  3751. __u32 dsack = dsack_high;
  3752. if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
  3753. dsack_high = TCP_SKB_CB(skb)->end_seq;
  3754. tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
  3755. }
  3756. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3757. SOCK_DEBUG(sk, "ofo packet was already received\n");
  3758. __skb_unlink(skb, &tp->out_of_order_queue);
  3759. __kfree_skb(skb);
  3760. continue;
  3761. }
  3762. SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
  3763. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3764. TCP_SKB_CB(skb)->end_seq);
  3765. __skb_unlink(skb, &tp->out_of_order_queue);
  3766. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3767. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3768. if (tcp_hdr(skb)->fin)
  3769. tcp_fin(skb, sk, tcp_hdr(skb));
  3770. }
  3771. }
  3772. static int tcp_prune_ofo_queue(struct sock *sk);
  3773. static int tcp_prune_queue(struct sock *sk);
  3774. static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
  3775. {
  3776. if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
  3777. !sk_rmem_schedule(sk, size)) {
  3778. if (tcp_prune_queue(sk) < 0)
  3779. return -1;
  3780. if (!sk_rmem_schedule(sk, size)) {
  3781. if (!tcp_prune_ofo_queue(sk))
  3782. return -1;
  3783. if (!sk_rmem_schedule(sk, size))
  3784. return -1;
  3785. }
  3786. }
  3787. return 0;
  3788. }
  3789. static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
  3790. {
  3791. struct tcphdr *th = tcp_hdr(skb);
  3792. struct tcp_sock *tp = tcp_sk(sk);
  3793. int eaten = -1;
  3794. if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
  3795. goto drop;
  3796. skb_dst_drop(skb);
  3797. __skb_pull(skb, th->doff * 4);
  3798. TCP_ECN_accept_cwr(tp, skb);
  3799. tp->rx_opt.dsack = 0;
  3800. /* Queue data for delivery to the user.
  3801. * Packets in sequence go to the receive queue.
  3802. * Out of sequence packets to the out_of_order_queue.
  3803. */
  3804. if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
  3805. if (tcp_receive_window(tp) == 0)
  3806. goto out_of_window;
  3807. /* Ok. In sequence. In window. */
  3808. if (tp->ucopy.task == current &&
  3809. tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
  3810. sock_owned_by_user(sk) && !tp->urg_data) {
  3811. int chunk = min_t(unsigned int, skb->len,
  3812. tp->ucopy.len);
  3813. __set_current_state(TASK_RUNNING);
  3814. local_bh_enable();
  3815. if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
  3816. tp->ucopy.len -= chunk;
  3817. tp->copied_seq += chunk;
  3818. eaten = (chunk == skb->len);
  3819. tcp_rcv_space_adjust(sk);
  3820. }
  3821. local_bh_disable();
  3822. }
  3823. if (eaten <= 0) {
  3824. queue_and_out:
  3825. if (eaten < 0 &&
  3826. tcp_try_rmem_schedule(sk, skb->truesize))
  3827. goto drop;
  3828. skb_set_owner_r(skb, sk);
  3829. __skb_queue_tail(&sk->sk_receive_queue, skb);
  3830. }
  3831. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  3832. if (skb->len)
  3833. tcp_event_data_recv(sk, skb);
  3834. if (th->fin)
  3835. tcp_fin(skb, sk, th);
  3836. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  3837. tcp_ofo_queue(sk);
  3838. /* RFC2581. 4.2. SHOULD send immediate ACK, when
  3839. * gap in queue is filled.
  3840. */
  3841. if (skb_queue_empty(&tp->out_of_order_queue))
  3842. inet_csk(sk)->icsk_ack.pingpong = 0;
  3843. }
  3844. if (tp->rx_opt.num_sacks)
  3845. tcp_sack_remove(tp);
  3846. tcp_fast_path_check(sk);
  3847. if (eaten > 0)
  3848. __kfree_skb(skb);
  3849. else if (!sock_flag(sk, SOCK_DEAD))
  3850. sk->sk_data_ready(sk, 0);
  3851. return;
  3852. }
  3853. if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
  3854. /* A retransmit, 2nd most common case. Force an immediate ack. */
  3855. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
  3856. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3857. out_of_window:
  3858. tcp_enter_quickack_mode(sk);
  3859. inet_csk_schedule_ack(sk);
  3860. drop:
  3861. __kfree_skb(skb);
  3862. return;
  3863. }
  3864. /* Out of window. F.e. zero window probe. */
  3865. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
  3866. goto out_of_window;
  3867. tcp_enter_quickack_mode(sk);
  3868. if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  3869. /* Partial packet, seq < rcv_next < end_seq */
  3870. SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
  3871. tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
  3872. TCP_SKB_CB(skb)->end_seq);
  3873. tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
  3874. /* If window is closed, drop tail of packet. But after
  3875. * remembering D-SACK for its head made in previous line.
  3876. */
  3877. if (!tcp_receive_window(tp))
  3878. goto out_of_window;
  3879. goto queue_and_out;
  3880. }
  3881. TCP_ECN_check_ce(tp, skb);
  3882. if (tcp_try_rmem_schedule(sk, skb->truesize))
  3883. goto drop;
  3884. /* Disable header prediction. */
  3885. tp->pred_flags = 0;
  3886. inet_csk_schedule_ack(sk);
  3887. SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
  3888. tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
  3889. skb_set_owner_r(skb, sk);
  3890. if (!skb_peek(&tp->out_of_order_queue)) {
  3891. /* Initial out of order segment, build 1 SACK. */
  3892. if (tcp_is_sack(tp)) {
  3893. tp->rx_opt.num_sacks = 1;
  3894. tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
  3895. tp->selective_acks[0].end_seq =
  3896. TCP_SKB_CB(skb)->end_seq;
  3897. }
  3898. __skb_queue_head(&tp->out_of_order_queue, skb);
  3899. } else {
  3900. struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
  3901. u32 seq = TCP_SKB_CB(skb)->seq;
  3902. u32 end_seq = TCP_SKB_CB(skb)->end_seq;
  3903. if (seq == TCP_SKB_CB(skb1)->end_seq) {
  3904. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3905. if (!tp->rx_opt.num_sacks ||
  3906. tp->selective_acks[0].end_seq != seq)
  3907. goto add_sack;
  3908. /* Common case: data arrive in order after hole. */
  3909. tp->selective_acks[0].end_seq = end_seq;
  3910. return;
  3911. }
  3912. /* Find place to insert this segment. */
  3913. while (1) {
  3914. if (!after(TCP_SKB_CB(skb1)->seq, seq))
  3915. break;
  3916. if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
  3917. skb1 = NULL;
  3918. break;
  3919. }
  3920. skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
  3921. }
  3922. /* Do skb overlap to previous one? */
  3923. if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
  3924. if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3925. /* All the bits are present. Drop. */
  3926. __kfree_skb(skb);
  3927. tcp_dsack_set(sk, seq, end_seq);
  3928. goto add_sack;
  3929. }
  3930. if (after(seq, TCP_SKB_CB(skb1)->seq)) {
  3931. /* Partial overlap. */
  3932. tcp_dsack_set(sk, seq,
  3933. TCP_SKB_CB(skb1)->end_seq);
  3934. } else {
  3935. if (skb_queue_is_first(&tp->out_of_order_queue,
  3936. skb1))
  3937. skb1 = NULL;
  3938. else
  3939. skb1 = skb_queue_prev(
  3940. &tp->out_of_order_queue,
  3941. skb1);
  3942. }
  3943. }
  3944. if (!skb1)
  3945. __skb_queue_head(&tp->out_of_order_queue, skb);
  3946. else
  3947. __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
  3948. /* And clean segments covered by new one as whole. */
  3949. while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
  3950. skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
  3951. if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
  3952. break;
  3953. if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
  3954. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3955. end_seq);
  3956. break;
  3957. }
  3958. __skb_unlink(skb1, &tp->out_of_order_queue);
  3959. tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
  3960. TCP_SKB_CB(skb1)->end_seq);
  3961. __kfree_skb(skb1);
  3962. }
  3963. add_sack:
  3964. if (tcp_is_sack(tp))
  3965. tcp_sack_new_ofo_skb(sk, seq, end_seq);
  3966. }
  3967. }
  3968. static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
  3969. struct sk_buff_head *list)
  3970. {
  3971. struct sk_buff *next = NULL;
  3972. if (!skb_queue_is_last(list, skb))
  3973. next = skb_queue_next(list, skb);
  3974. __skb_unlink(skb, list);
  3975. __kfree_skb(skb);
  3976. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
  3977. return next;
  3978. }
  3979. /* Collapse contiguous sequence of skbs head..tail with
  3980. * sequence numbers start..end.
  3981. *
  3982. * If tail is NULL, this means until the end of the list.
  3983. *
  3984. * Segments with FIN/SYN are not collapsed (only because this
  3985. * simplifies code)
  3986. */
  3987. static void
  3988. tcp_collapse(struct sock *sk, struct sk_buff_head *list,
  3989. struct sk_buff *head, struct sk_buff *tail,
  3990. u32 start, u32 end)
  3991. {
  3992. struct sk_buff *skb, *n;
  3993. bool end_of_skbs;
  3994. /* First, check that queue is collapsible and find
  3995. * the point where collapsing can be useful. */
  3996. skb = head;
  3997. restart:
  3998. end_of_skbs = true;
  3999. skb_queue_walk_from_safe(list, skb, n) {
  4000. if (skb == tail)
  4001. break;
  4002. /* No new bits? It is possible on ofo queue. */
  4003. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4004. skb = tcp_collapse_one(sk, skb, list);
  4005. if (!skb)
  4006. break;
  4007. goto restart;
  4008. }
  4009. /* The first skb to collapse is:
  4010. * - not SYN/FIN and
  4011. * - bloated or contains data before "start" or
  4012. * overlaps to the next one.
  4013. */
  4014. if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
  4015. (tcp_win_from_space(skb->truesize) > skb->len ||
  4016. before(TCP_SKB_CB(skb)->seq, start))) {
  4017. end_of_skbs = false;
  4018. break;
  4019. }
  4020. if (!skb_queue_is_last(list, skb)) {
  4021. struct sk_buff *next = skb_queue_next(list, skb);
  4022. if (next != tail &&
  4023. TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
  4024. end_of_skbs = false;
  4025. break;
  4026. }
  4027. }
  4028. /* Decided to skip this, advance start seq. */
  4029. start = TCP_SKB_CB(skb)->end_seq;
  4030. }
  4031. if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
  4032. return;
  4033. while (before(start, end)) {
  4034. struct sk_buff *nskb;
  4035. unsigned int header = skb_headroom(skb);
  4036. int copy = SKB_MAX_ORDER(header, 0);
  4037. /* Too big header? This can happen with IPv6. */
  4038. if (copy < 0)
  4039. return;
  4040. if (end - start < copy)
  4041. copy = end - start;
  4042. nskb = alloc_skb(copy + header, GFP_ATOMIC);
  4043. if (!nskb)
  4044. return;
  4045. skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
  4046. skb_set_network_header(nskb, (skb_network_header(skb) -
  4047. skb->head));
  4048. skb_set_transport_header(nskb, (skb_transport_header(skb) -
  4049. skb->head));
  4050. skb_reserve(nskb, header);
  4051. memcpy(nskb->head, skb->head, header);
  4052. memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
  4053. TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
  4054. __skb_queue_before(list, skb, nskb);
  4055. skb_set_owner_r(nskb, sk);
  4056. /* Copy data, releasing collapsed skbs. */
  4057. while (copy > 0) {
  4058. int offset = start - TCP_SKB_CB(skb)->seq;
  4059. int size = TCP_SKB_CB(skb)->end_seq - start;
  4060. BUG_ON(offset < 0);
  4061. if (size > 0) {
  4062. size = min(copy, size);
  4063. if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
  4064. BUG();
  4065. TCP_SKB_CB(nskb)->end_seq += size;
  4066. copy -= size;
  4067. start += size;
  4068. }
  4069. if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
  4070. skb = tcp_collapse_one(sk, skb, list);
  4071. if (!skb ||
  4072. skb == tail ||
  4073. tcp_hdr(skb)->syn ||
  4074. tcp_hdr(skb)->fin)
  4075. return;
  4076. }
  4077. }
  4078. }
  4079. }
  4080. /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
  4081. * and tcp_collapse() them until all the queue is collapsed.
  4082. */
  4083. static void tcp_collapse_ofo_queue(struct sock *sk)
  4084. {
  4085. struct tcp_sock *tp = tcp_sk(sk);
  4086. struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
  4087. struct sk_buff *head;
  4088. u32 start, end;
  4089. if (skb == NULL)
  4090. return;
  4091. start = TCP_SKB_CB(skb)->seq;
  4092. end = TCP_SKB_CB(skb)->end_seq;
  4093. head = skb;
  4094. for (;;) {
  4095. struct sk_buff *next = NULL;
  4096. if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
  4097. next = skb_queue_next(&tp->out_of_order_queue, skb);
  4098. skb = next;
  4099. /* Segment is terminated when we see gap or when
  4100. * we are at the end of all the queue. */
  4101. if (!skb ||
  4102. after(TCP_SKB_CB(skb)->seq, end) ||
  4103. before(TCP_SKB_CB(skb)->end_seq, start)) {
  4104. tcp_collapse(sk, &tp->out_of_order_queue,
  4105. head, skb, start, end);
  4106. head = skb;
  4107. if (!skb)
  4108. break;
  4109. /* Start new segment */
  4110. start = TCP_SKB_CB(skb)->seq;
  4111. end = TCP_SKB_CB(skb)->end_seq;
  4112. } else {
  4113. if (before(TCP_SKB_CB(skb)->seq, start))
  4114. start = TCP_SKB_CB(skb)->seq;
  4115. if (after(TCP_SKB_CB(skb)->end_seq, end))
  4116. end = TCP_SKB_CB(skb)->end_seq;
  4117. }
  4118. }
  4119. }
  4120. /*
  4121. * Purge the out-of-order queue.
  4122. * Return true if queue was pruned.
  4123. */
  4124. static int tcp_prune_ofo_queue(struct sock *sk)
  4125. {
  4126. struct tcp_sock *tp = tcp_sk(sk);
  4127. int res = 0;
  4128. if (!skb_queue_empty(&tp->out_of_order_queue)) {
  4129. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
  4130. __skb_queue_purge(&tp->out_of_order_queue);
  4131. /* Reset SACK state. A conforming SACK implementation will
  4132. * do the same at a timeout based retransmit. When a connection
  4133. * is in a sad state like this, we care only about integrity
  4134. * of the connection not performance.
  4135. */
  4136. if (tp->rx_opt.sack_ok)
  4137. tcp_sack_reset(&tp->rx_opt);
  4138. sk_mem_reclaim(sk);
  4139. res = 1;
  4140. }
  4141. return res;
  4142. }
  4143. /* Reduce allocated memory if we can, trying to get
  4144. * the socket within its memory limits again.
  4145. *
  4146. * Return less than zero if we should start dropping frames
  4147. * until the socket owning process reads some of the data
  4148. * to stabilize the situation.
  4149. */
  4150. static int tcp_prune_queue(struct sock *sk)
  4151. {
  4152. struct tcp_sock *tp = tcp_sk(sk);
  4153. SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
  4154. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
  4155. if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
  4156. tcp_clamp_window(sk);
  4157. else if (tcp_memory_pressure)
  4158. tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
  4159. tcp_collapse_ofo_queue(sk);
  4160. if (!skb_queue_empty(&sk->sk_receive_queue))
  4161. tcp_collapse(sk, &sk->sk_receive_queue,
  4162. skb_peek(&sk->sk_receive_queue),
  4163. NULL,
  4164. tp->copied_seq, tp->rcv_nxt);
  4165. sk_mem_reclaim(sk);
  4166. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4167. return 0;
  4168. /* Collapsing did not help, destructive actions follow.
  4169. * This must not ever occur. */
  4170. tcp_prune_ofo_queue(sk);
  4171. if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
  4172. return 0;
  4173. /* If we are really being abused, tell the caller to silently
  4174. * drop receive data on the floor. It will get retransmitted
  4175. * and hopefully then we'll have sufficient space.
  4176. */
  4177. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
  4178. /* Massive buffer overcommit. */
  4179. tp->pred_flags = 0;
  4180. return -1;
  4181. }
  4182. /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
  4183. * As additional protections, we do not touch cwnd in retransmission phases,
  4184. * and if application hit its sndbuf limit recently.
  4185. */
  4186. void tcp_cwnd_application_limited(struct sock *sk)
  4187. {
  4188. struct tcp_sock *tp = tcp_sk(sk);
  4189. if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
  4190. sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
  4191. /* Limited by application or receiver window. */
  4192. u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
  4193. u32 win_used = max(tp->snd_cwnd_used, init_win);
  4194. if (win_used < tp->snd_cwnd) {
  4195. tp->snd_ssthresh = tcp_current_ssthresh(sk);
  4196. tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
  4197. }
  4198. tp->snd_cwnd_used = 0;
  4199. }
  4200. tp->snd_cwnd_stamp = tcp_time_stamp;
  4201. }
  4202. static int tcp_should_expand_sndbuf(struct sock *sk)
  4203. {
  4204. struct tcp_sock *tp = tcp_sk(sk);
  4205. /* If the user specified a specific send buffer setting, do
  4206. * not modify it.
  4207. */
  4208. if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
  4209. return 0;
  4210. /* If we are under global TCP memory pressure, do not expand. */
  4211. if (tcp_memory_pressure)
  4212. return 0;
  4213. /* If we are under soft global TCP memory pressure, do not expand. */
  4214. if (atomic_long_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
  4215. return 0;
  4216. /* If we filled the congestion window, do not expand. */
  4217. if (tp->packets_out >= tp->snd_cwnd)
  4218. return 0;
  4219. return 1;
  4220. }
  4221. /* When incoming ACK allowed to free some skb from write_queue,
  4222. * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
  4223. * on the exit from tcp input handler.
  4224. *
  4225. * PROBLEM: sndbuf expansion does not work well with largesend.
  4226. */
  4227. static void tcp_new_space(struct sock *sk)
  4228. {
  4229. struct tcp_sock *tp = tcp_sk(sk);
  4230. if (tcp_should_expand_sndbuf(sk)) {
  4231. int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
  4232. MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
  4233. int demanded = max_t(unsigned int, tp->snd_cwnd,
  4234. tp->reordering + 1);
  4235. sndmem *= 2 * demanded;
  4236. if (sndmem > sk->sk_sndbuf)
  4237. sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
  4238. tp->snd_cwnd_stamp = tcp_time_stamp;
  4239. }
  4240. sk->sk_write_space(sk);
  4241. }
  4242. static void tcp_check_space(struct sock *sk)
  4243. {
  4244. if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
  4245. sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
  4246. if (sk->sk_socket &&
  4247. test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
  4248. tcp_new_space(sk);
  4249. }
  4250. }
  4251. static inline void tcp_data_snd_check(struct sock *sk)
  4252. {
  4253. tcp_push_pending_frames(sk);
  4254. tcp_check_space(sk);
  4255. }
  4256. /*
  4257. * Check if sending an ack is needed.
  4258. */
  4259. static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
  4260. {
  4261. struct tcp_sock *tp = tcp_sk(sk);
  4262. /* More than one full frame received... */
  4263. if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss &&
  4264. /* ... and right edge of window advances far enough.
  4265. * (tcp_recvmsg() will send ACK otherwise). Or...
  4266. */
  4267. __tcp_select_window(sk) >= tp->rcv_wnd) ||
  4268. /* We ACK each frame or... */
  4269. tcp_in_quickack_mode(sk) ||
  4270. /* We have out of order data. */
  4271. (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
  4272. /* Then ack it now */
  4273. tcp_send_ack(sk);
  4274. } else {
  4275. /* Else, send delayed ack. */
  4276. tcp_send_delayed_ack(sk);
  4277. }
  4278. }
  4279. static inline void tcp_ack_snd_check(struct sock *sk)
  4280. {
  4281. if (!inet_csk_ack_scheduled(sk)) {
  4282. /* We sent a data segment already. */
  4283. return;
  4284. }
  4285. __tcp_ack_snd_check(sk, 1);
  4286. }
  4287. /*
  4288. * This routine is only called when we have urgent data
  4289. * signaled. Its the 'slow' part of tcp_urg. It could be
  4290. * moved inline now as tcp_urg is only called from one
  4291. * place. We handle URGent data wrong. We have to - as
  4292. * BSD still doesn't use the correction from RFC961.
  4293. * For 1003.1g we should support a new option TCP_STDURG to permit
  4294. * either form (or just set the sysctl tcp_stdurg).
  4295. */
  4296. static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
  4297. {
  4298. struct tcp_sock *tp = tcp_sk(sk);
  4299. u32 ptr = ntohs(th->urg_ptr);
  4300. if (ptr && !sysctl_tcp_stdurg)
  4301. ptr--;
  4302. ptr += ntohl(th->seq);
  4303. /* Ignore urgent data that we've already seen and read. */
  4304. if (after(tp->copied_seq, ptr))
  4305. return;
  4306. /* Do not replay urg ptr.
  4307. *
  4308. * NOTE: interesting situation not covered by specs.
  4309. * Misbehaving sender may send urg ptr, pointing to segment,
  4310. * which we already have in ofo queue. We are not able to fetch
  4311. * such data and will stay in TCP_URG_NOTYET until will be eaten
  4312. * by recvmsg(). Seems, we are not obliged to handle such wicked
  4313. * situations. But it is worth to think about possibility of some
  4314. * DoSes using some hypothetical application level deadlock.
  4315. */
  4316. if (before(ptr, tp->rcv_nxt))
  4317. return;
  4318. /* Do we already have a newer (or duplicate) urgent pointer? */
  4319. if (tp->urg_data && !after(ptr, tp->urg_seq))
  4320. return;
  4321. /* Tell the world about our new urgent pointer. */
  4322. sk_send_sigurg(sk);
  4323. /* We may be adding urgent data when the last byte read was
  4324. * urgent. To do this requires some care. We cannot just ignore
  4325. * tp->copied_seq since we would read the last urgent byte again
  4326. * as data, nor can we alter copied_seq until this data arrives
  4327. * or we break the semantics of SIOCATMARK (and thus sockatmark())
  4328. *
  4329. * NOTE. Double Dutch. Rendering to plain English: author of comment
  4330. * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
  4331. * and expect that both A and B disappear from stream. This is _wrong_.
  4332. * Though this happens in BSD with high probability, this is occasional.
  4333. * Any application relying on this is buggy. Note also, that fix "works"
  4334. * only in this artificial test. Insert some normal data between A and B and we will
  4335. * decline of BSD again. Verdict: it is better to remove to trap
  4336. * buggy users.
  4337. */
  4338. if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
  4339. !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
  4340. struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
  4341. tp->copied_seq++;
  4342. if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
  4343. __skb_unlink(skb, &sk->sk_receive_queue);
  4344. __kfree_skb(skb);
  4345. }
  4346. }
  4347. tp->urg_data = TCP_URG_NOTYET;
  4348. tp->urg_seq = ptr;
  4349. /* Disable header prediction. */
  4350. tp->pred_flags = 0;
  4351. }
  4352. /* This is the 'fast' part of urgent handling. */
  4353. static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
  4354. {
  4355. struct tcp_sock *tp = tcp_sk(sk);
  4356. /* Check if we get a new urgent pointer - normally not. */
  4357. if (th->urg)
  4358. tcp_check_urg(sk, th);
  4359. /* Do we wait for any urgent data? - normally not... */
  4360. if (tp->urg_data == TCP_URG_NOTYET) {
  4361. u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
  4362. th->syn;
  4363. /* Is the urgent pointer pointing into this packet? */
  4364. if (ptr < skb->len) {
  4365. u8 tmp;
  4366. if (skb_copy_bits(skb, ptr, &tmp, 1))
  4367. BUG();
  4368. tp->urg_data = TCP_URG_VALID | tmp;
  4369. if (!sock_flag(sk, SOCK_DEAD))
  4370. sk->sk_data_ready(sk, 0);
  4371. }
  4372. }
  4373. }
  4374. static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
  4375. {
  4376. struct tcp_sock *tp = tcp_sk(sk);
  4377. int chunk = skb->len - hlen;
  4378. int err;
  4379. local_bh_enable();
  4380. if (skb_csum_unnecessary(skb))
  4381. err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
  4382. else
  4383. err = skb_copy_and_csum_datagram_iovec(skb, hlen,
  4384. tp->ucopy.iov);
  4385. if (!err) {
  4386. tp->ucopy.len -= chunk;
  4387. tp->copied_seq += chunk;
  4388. tcp_rcv_space_adjust(sk);
  4389. }
  4390. local_bh_disable();
  4391. return err;
  4392. }
  4393. static __sum16 __tcp_checksum_complete_user(struct sock *sk,
  4394. struct sk_buff *skb)
  4395. {
  4396. __sum16 result;
  4397. if (sock_owned_by_user(sk)) {
  4398. local_bh_enable();
  4399. result = __tcp_checksum_complete(skb);
  4400. local_bh_disable();
  4401. } else {
  4402. result = __tcp_checksum_complete(skb);
  4403. }
  4404. return result;
  4405. }
  4406. static inline int tcp_checksum_complete_user(struct sock *sk,
  4407. struct sk_buff *skb)
  4408. {
  4409. return !skb_csum_unnecessary(skb) &&
  4410. __tcp_checksum_complete_user(sk, skb);
  4411. }
  4412. #ifdef CONFIG_NET_DMA
  4413. static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
  4414. int hlen)
  4415. {
  4416. struct tcp_sock *tp = tcp_sk(sk);
  4417. int chunk = skb->len - hlen;
  4418. int dma_cookie;
  4419. int copied_early = 0;
  4420. if (tp->ucopy.wakeup)
  4421. return 0;
  4422. if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
  4423. tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
  4424. if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
  4425. dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
  4426. skb, hlen,
  4427. tp->ucopy.iov, chunk,
  4428. tp->ucopy.pinned_list);
  4429. if (dma_cookie < 0)
  4430. goto out;
  4431. tp->ucopy.dma_cookie = dma_cookie;
  4432. copied_early = 1;
  4433. tp->ucopy.len -= chunk;
  4434. tp->copied_seq += chunk;
  4435. tcp_rcv_space_adjust(sk);
  4436. if ((tp->ucopy.len == 0) ||
  4437. (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
  4438. (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
  4439. tp->ucopy.wakeup = 1;
  4440. sk->sk_data_ready(sk, 0);
  4441. }
  4442. } else if (chunk > 0) {
  4443. tp->ucopy.wakeup = 1;
  4444. sk->sk_data_ready(sk, 0);
  4445. }
  4446. out:
  4447. return copied_early;
  4448. }
  4449. #endif /* CONFIG_NET_DMA */
  4450. /* Does PAWS and seqno based validation of an incoming segment, flags will
  4451. * play significant role here.
  4452. */
  4453. static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
  4454. struct tcphdr *th, int syn_inerr)
  4455. {
  4456. u8 *hash_location;
  4457. struct tcp_sock *tp = tcp_sk(sk);
  4458. /* RFC1323: H1. Apply PAWS check first. */
  4459. if (tcp_fast_parse_options(skb, th, tp, &hash_location) &&
  4460. tp->rx_opt.saw_tstamp &&
  4461. tcp_paws_discard(sk, skb)) {
  4462. if (!th->rst) {
  4463. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
  4464. tcp_send_dupack(sk, skb);
  4465. goto discard;
  4466. }
  4467. /* Reset is accepted even if it did not pass PAWS. */
  4468. }
  4469. /* Step 1: check sequence number */
  4470. if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
  4471. /* RFC793, page 37: "In all states except SYN-SENT, all reset
  4472. * (RST) segments are validated by checking their SEQ-fields."
  4473. * And page 69: "If an incoming segment is not acceptable,
  4474. * an acknowledgment should be sent in reply (unless the RST
  4475. * bit is set, if so drop the segment and return)".
  4476. */
  4477. if (!th->rst)
  4478. tcp_send_dupack(sk, skb);
  4479. goto discard;
  4480. }
  4481. /* Step 2: check RST bit */
  4482. if (th->rst) {
  4483. tcp_reset(sk);
  4484. goto discard;
  4485. }
  4486. /* ts_recent update must be made after we are sure that the packet
  4487. * is in window.
  4488. */
  4489. tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
  4490. /* step 3: check security and precedence [ignored] */
  4491. /* step 4: Check for a SYN in window. */
  4492. if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
  4493. if (syn_inerr)
  4494. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4495. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
  4496. tcp_reset(sk);
  4497. return -1;
  4498. }
  4499. return 1;
  4500. discard:
  4501. __kfree_skb(skb);
  4502. return 0;
  4503. }
  4504. /*
  4505. * TCP receive function for the ESTABLISHED state.
  4506. *
  4507. * It is split into a fast path and a slow path. The fast path is
  4508. * disabled when:
  4509. * - A zero window was announced from us - zero window probing
  4510. * is only handled properly in the slow path.
  4511. * - Out of order segments arrived.
  4512. * - Urgent data is expected.
  4513. * - There is no buffer space left
  4514. * - Unexpected TCP flags/window values/header lengths are received
  4515. * (detected by checking the TCP header against pred_flags)
  4516. * - Data is sent in both directions. Fast path only supports pure senders
  4517. * or pure receivers (this means either the sequence number or the ack
  4518. * value must stay constant)
  4519. * - Unexpected TCP option.
  4520. *
  4521. * When these conditions are not satisfied it drops into a standard
  4522. * receive procedure patterned after RFC793 to handle all cases.
  4523. * The first three cases are guaranteed by proper pred_flags setting,
  4524. * the rest is checked inline. Fast processing is turned on in
  4525. * tcp_data_queue when everything is OK.
  4526. */
  4527. int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
  4528. struct tcphdr *th, unsigned len)
  4529. {
  4530. struct tcp_sock *tp = tcp_sk(sk);
  4531. int res;
  4532. /*
  4533. * Header prediction.
  4534. * The code loosely follows the one in the famous
  4535. * "30 instruction TCP receive" Van Jacobson mail.
  4536. *
  4537. * Van's trick is to deposit buffers into socket queue
  4538. * on a device interrupt, to call tcp_recv function
  4539. * on the receive process context and checksum and copy
  4540. * the buffer to user space. smart...
  4541. *
  4542. * Our current scheme is not silly either but we take the
  4543. * extra cost of the net_bh soft interrupt processing...
  4544. * We do checksum and copy also but from device to kernel.
  4545. */
  4546. tp->rx_opt.saw_tstamp = 0;
  4547. /* pred_flags is 0xS?10 << 16 + snd_wnd
  4548. * if header_prediction is to be made
  4549. * 'S' will always be tp->tcp_header_len >> 2
  4550. * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
  4551. * turn it off (when there are holes in the receive
  4552. * space for instance)
  4553. * PSH flag is ignored.
  4554. */
  4555. if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
  4556. TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
  4557. !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
  4558. int tcp_header_len = tp->tcp_header_len;
  4559. /* Timestamp header prediction: tcp_header_len
  4560. * is automatically equal to th->doff*4 due to pred_flags
  4561. * match.
  4562. */
  4563. /* Check timestamp */
  4564. if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
  4565. /* No? Slow path! */
  4566. if (!tcp_parse_aligned_timestamp(tp, th))
  4567. goto slow_path;
  4568. /* If PAWS failed, check it more carefully in slow path */
  4569. if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
  4570. goto slow_path;
  4571. /* DO NOT update ts_recent here, if checksum fails
  4572. * and timestamp was corrupted part, it will result
  4573. * in a hung connection since we will drop all
  4574. * future packets due to the PAWS test.
  4575. */
  4576. }
  4577. if (len <= tcp_header_len) {
  4578. /* Bulk data transfer: sender */
  4579. if (len == tcp_header_len) {
  4580. /* Predicted packet is in window by definition.
  4581. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4582. * Hence, check seq<=rcv_wup reduces to:
  4583. */
  4584. if (tcp_header_len ==
  4585. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4586. tp->rcv_nxt == tp->rcv_wup)
  4587. tcp_store_ts_recent(tp);
  4588. /* We know that such packets are checksummed
  4589. * on entry.
  4590. */
  4591. tcp_ack(sk, skb, 0);
  4592. __kfree_skb(skb);
  4593. tcp_data_snd_check(sk);
  4594. return 0;
  4595. } else { /* Header too small */
  4596. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4597. goto discard;
  4598. }
  4599. } else {
  4600. int eaten = 0;
  4601. int copied_early = 0;
  4602. if (tp->copied_seq == tp->rcv_nxt &&
  4603. len - tcp_header_len <= tp->ucopy.len) {
  4604. #ifdef CONFIG_NET_DMA
  4605. if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
  4606. copied_early = 1;
  4607. eaten = 1;
  4608. }
  4609. #endif
  4610. if (tp->ucopy.task == current &&
  4611. sock_owned_by_user(sk) && !copied_early) {
  4612. __set_current_state(TASK_RUNNING);
  4613. if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
  4614. eaten = 1;
  4615. }
  4616. if (eaten) {
  4617. /* Predicted packet is in window by definition.
  4618. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4619. * Hence, check seq<=rcv_wup reduces to:
  4620. */
  4621. if (tcp_header_len ==
  4622. (sizeof(struct tcphdr) +
  4623. TCPOLEN_TSTAMP_ALIGNED) &&
  4624. tp->rcv_nxt == tp->rcv_wup)
  4625. tcp_store_ts_recent(tp);
  4626. tcp_rcv_rtt_measure_ts(sk, skb);
  4627. __skb_pull(skb, tcp_header_len);
  4628. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4629. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
  4630. }
  4631. if (copied_early)
  4632. tcp_cleanup_rbuf(sk, skb->len);
  4633. }
  4634. if (!eaten) {
  4635. if (tcp_checksum_complete_user(sk, skb))
  4636. goto csum_error;
  4637. /* Predicted packet is in window by definition.
  4638. * seq == rcv_nxt and rcv_wup <= rcv_nxt.
  4639. * Hence, check seq<=rcv_wup reduces to:
  4640. */
  4641. if (tcp_header_len ==
  4642. (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
  4643. tp->rcv_nxt == tp->rcv_wup)
  4644. tcp_store_ts_recent(tp);
  4645. tcp_rcv_rtt_measure_ts(sk, skb);
  4646. if ((int)skb->truesize > sk->sk_forward_alloc)
  4647. goto step5;
  4648. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
  4649. /* Bulk data transfer: receiver */
  4650. __skb_pull(skb, tcp_header_len);
  4651. __skb_queue_tail(&sk->sk_receive_queue, skb);
  4652. skb_set_owner_r(skb, sk);
  4653. tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
  4654. }
  4655. tcp_event_data_recv(sk, skb);
  4656. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
  4657. /* Well, only one small jumplet in fast path... */
  4658. tcp_ack(sk, skb, FLAG_DATA);
  4659. tcp_data_snd_check(sk);
  4660. if (!inet_csk_ack_scheduled(sk))
  4661. goto no_ack;
  4662. }
  4663. if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
  4664. __tcp_ack_snd_check(sk, 0);
  4665. no_ack:
  4666. #ifdef CONFIG_NET_DMA
  4667. if (copied_early)
  4668. __skb_queue_tail(&sk->sk_async_wait_queue, skb);
  4669. else
  4670. #endif
  4671. if (eaten)
  4672. __kfree_skb(skb);
  4673. else
  4674. sk->sk_data_ready(sk, 0);
  4675. return 0;
  4676. }
  4677. }
  4678. slow_path:
  4679. if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
  4680. goto csum_error;
  4681. /*
  4682. * Standard slow path.
  4683. */
  4684. res = tcp_validate_incoming(sk, skb, th, 1);
  4685. if (res <= 0)
  4686. return -res;
  4687. step5:
  4688. if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
  4689. goto discard;
  4690. tcp_rcv_rtt_measure_ts(sk, skb);
  4691. /* Process urgent data. */
  4692. tcp_urg(sk, skb, th);
  4693. /* step 7: process the segment text */
  4694. tcp_data_queue(sk, skb);
  4695. tcp_data_snd_check(sk);
  4696. tcp_ack_snd_check(sk);
  4697. return 0;
  4698. csum_error:
  4699. TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
  4700. discard:
  4701. __kfree_skb(skb);
  4702. return 0;
  4703. }
  4704. EXPORT_SYMBOL(tcp_rcv_established);
  4705. static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
  4706. struct tcphdr *th, unsigned len)
  4707. {
  4708. u8 *hash_location;
  4709. struct inet_connection_sock *icsk = inet_csk(sk);
  4710. struct tcp_sock *tp = tcp_sk(sk);
  4711. struct tcp_cookie_values *cvp = tp->cookie_values;
  4712. int saved_clamp = tp->rx_opt.mss_clamp;
  4713. tcp_parse_options(skb, &tp->rx_opt, &hash_location, 0);
  4714. if (th->ack) {
  4715. /* rfc793:
  4716. * "If the state is SYN-SENT then
  4717. * first check the ACK bit
  4718. * If the ACK bit is set
  4719. * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
  4720. * a reset (unless the RST bit is set, if so drop
  4721. * the segment and return)"
  4722. *
  4723. * We do not send data with SYN, so that RFC-correct
  4724. * test reduces to:
  4725. */
  4726. if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
  4727. goto reset_and_undo;
  4728. if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
  4729. !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
  4730. tcp_time_stamp)) {
  4731. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
  4732. goto reset_and_undo;
  4733. }
  4734. /* Now ACK is acceptable.
  4735. *
  4736. * "If the RST bit is set
  4737. * If the ACK was acceptable then signal the user "error:
  4738. * connection reset", drop the segment, enter CLOSED state,
  4739. * delete TCB, and return."
  4740. */
  4741. if (th->rst) {
  4742. tcp_reset(sk);
  4743. goto discard;
  4744. }
  4745. /* rfc793:
  4746. * "fifth, if neither of the SYN or RST bits is set then
  4747. * drop the segment and return."
  4748. *
  4749. * See note below!
  4750. * --ANK(990513)
  4751. */
  4752. if (!th->syn)
  4753. goto discard_and_undo;
  4754. /* rfc793:
  4755. * "If the SYN bit is on ...
  4756. * are acceptable then ...
  4757. * (our SYN has been ACKed), change the connection
  4758. * state to ESTABLISHED..."
  4759. */
  4760. TCP_ECN_rcv_synack(tp, th);
  4761. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  4762. tcp_ack(sk, skb, FLAG_SLOWPATH);
  4763. /* Ok.. it's good. Set up sequence numbers and
  4764. * move to established.
  4765. */
  4766. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4767. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4768. /* RFC1323: The window in SYN & SYN/ACK segments is
  4769. * never scaled.
  4770. */
  4771. tp->snd_wnd = ntohs(th->window);
  4772. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  4773. if (!tp->rx_opt.wscale_ok) {
  4774. tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
  4775. tp->window_clamp = min(tp->window_clamp, 65535U);
  4776. }
  4777. if (tp->rx_opt.saw_tstamp) {
  4778. tp->rx_opt.tstamp_ok = 1;
  4779. tp->tcp_header_len =
  4780. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4781. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  4782. tcp_store_ts_recent(tp);
  4783. } else {
  4784. tp->tcp_header_len = sizeof(struct tcphdr);
  4785. }
  4786. if (tcp_is_sack(tp) && sysctl_tcp_fack)
  4787. tcp_enable_fack(tp);
  4788. tcp_mtup_init(sk);
  4789. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4790. tcp_initialize_rcv_mss(sk);
  4791. /* Remember, tcp_poll() does not lock socket!
  4792. * Change state from SYN-SENT only after copied_seq
  4793. * is initialized. */
  4794. tp->copied_seq = tp->rcv_nxt;
  4795. if (cvp != NULL &&
  4796. cvp->cookie_pair_size > 0 &&
  4797. tp->rx_opt.cookie_plus > 0) {
  4798. int cookie_size = tp->rx_opt.cookie_plus
  4799. - TCPOLEN_COOKIE_BASE;
  4800. int cookie_pair_size = cookie_size
  4801. + cvp->cookie_desired;
  4802. /* A cookie extension option was sent and returned.
  4803. * Note that each incoming SYNACK replaces the
  4804. * Responder cookie. The initial exchange is most
  4805. * fragile, as protection against spoofing relies
  4806. * entirely upon the sequence and timestamp (above).
  4807. * This replacement strategy allows the correct pair to
  4808. * pass through, while any others will be filtered via
  4809. * Responder verification later.
  4810. */
  4811. if (sizeof(cvp->cookie_pair) >= cookie_pair_size) {
  4812. memcpy(&cvp->cookie_pair[cvp->cookie_desired],
  4813. hash_location, cookie_size);
  4814. cvp->cookie_pair_size = cookie_pair_size;
  4815. }
  4816. }
  4817. smp_mb();
  4818. tcp_set_state(sk, TCP_ESTABLISHED);
  4819. security_inet_conn_established(sk, skb);
  4820. /* Make sure socket is routed, for correct metrics. */
  4821. icsk->icsk_af_ops->rebuild_header(sk);
  4822. tcp_init_metrics(sk);
  4823. tcp_init_congestion_control(sk);
  4824. /* Prevent spurious tcp_cwnd_restart() on first data
  4825. * packet.
  4826. */
  4827. tp->lsndtime = tcp_time_stamp;
  4828. tcp_init_buffer_space(sk);
  4829. if (sock_flag(sk, SOCK_KEEPOPEN))
  4830. inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
  4831. if (!tp->rx_opt.snd_wscale)
  4832. __tcp_fast_path_on(tp, tp->snd_wnd);
  4833. else
  4834. tp->pred_flags = 0;
  4835. if (!sock_flag(sk, SOCK_DEAD)) {
  4836. sk->sk_state_change(sk);
  4837. sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
  4838. }
  4839. if (sk->sk_write_pending ||
  4840. icsk->icsk_accept_queue.rskq_defer_accept ||
  4841. icsk->icsk_ack.pingpong) {
  4842. /* Save one ACK. Data will be ready after
  4843. * several ticks, if write_pending is set.
  4844. *
  4845. * It may be deleted, but with this feature tcpdumps
  4846. * look so _wonderfully_ clever, that I was not able
  4847. * to stand against the temptation 8) --ANK
  4848. */
  4849. inet_csk_schedule_ack(sk);
  4850. icsk->icsk_ack.lrcvtime = tcp_time_stamp;
  4851. icsk->icsk_ack.ato = TCP_ATO_MIN;
  4852. tcp_incr_quickack(sk);
  4853. tcp_enter_quickack_mode(sk);
  4854. inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
  4855. TCP_DELACK_MAX, TCP_RTO_MAX);
  4856. discard:
  4857. __kfree_skb(skb);
  4858. return 0;
  4859. } else {
  4860. tcp_send_ack(sk);
  4861. }
  4862. return -1;
  4863. }
  4864. /* No ACK in the segment */
  4865. if (th->rst) {
  4866. /* rfc793:
  4867. * "If the RST bit is set
  4868. *
  4869. * Otherwise (no ACK) drop the segment and return."
  4870. */
  4871. goto discard_and_undo;
  4872. }
  4873. /* PAWS check. */
  4874. if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
  4875. tcp_paws_reject(&tp->rx_opt, 0))
  4876. goto discard_and_undo;
  4877. if (th->syn) {
  4878. /* We see SYN without ACK. It is attempt of
  4879. * simultaneous connect with crossed SYNs.
  4880. * Particularly, it can be connect to self.
  4881. */
  4882. tcp_set_state(sk, TCP_SYN_RECV);
  4883. if (tp->rx_opt.saw_tstamp) {
  4884. tp->rx_opt.tstamp_ok = 1;
  4885. tcp_store_ts_recent(tp);
  4886. tp->tcp_header_len =
  4887. sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
  4888. } else {
  4889. tp->tcp_header_len = sizeof(struct tcphdr);
  4890. }
  4891. tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
  4892. tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
  4893. /* RFC1323: The window in SYN & SYN/ACK segments is
  4894. * never scaled.
  4895. */
  4896. tp->snd_wnd = ntohs(th->window);
  4897. tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
  4898. tp->max_window = tp->snd_wnd;
  4899. TCP_ECN_rcv_syn(tp, th);
  4900. tcp_mtup_init(sk);
  4901. tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
  4902. tcp_initialize_rcv_mss(sk);
  4903. tcp_send_synack(sk);
  4904. #if 0
  4905. /* Note, we could accept data and URG from this segment.
  4906. * There are no obstacles to make this.
  4907. *
  4908. * However, if we ignore data in ACKless segments sometimes,
  4909. * we have no reasons to accept it sometimes.
  4910. * Also, seems the code doing it in step6 of tcp_rcv_state_process
  4911. * is not flawless. So, discard packet for sanity.
  4912. * Uncomment this return to process the data.
  4913. */
  4914. return -1;
  4915. #else
  4916. goto discard;
  4917. #endif
  4918. }
  4919. /* "fifth, if neither of the SYN or RST bits is set then
  4920. * drop the segment and return."
  4921. */
  4922. discard_and_undo:
  4923. tcp_clear_options(&tp->rx_opt);
  4924. tp->rx_opt.mss_clamp = saved_clamp;
  4925. goto discard;
  4926. reset_and_undo:
  4927. tcp_clear_options(&tp->rx_opt);
  4928. tp->rx_opt.mss_clamp = saved_clamp;
  4929. return 1;
  4930. }
  4931. /*
  4932. * This function implements the receiving procedure of RFC 793 for
  4933. * all states except ESTABLISHED and TIME_WAIT.
  4934. * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
  4935. * address independent.
  4936. */
  4937. int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
  4938. struct tcphdr *th, unsigned len)
  4939. {
  4940. struct tcp_sock *tp = tcp_sk(sk);
  4941. struct inet_connection_sock *icsk = inet_csk(sk);
  4942. int queued = 0;
  4943. int res;
  4944. tp->rx_opt.saw_tstamp = 0;
  4945. switch (sk->sk_state) {
  4946. case TCP_CLOSE:
  4947. goto discard;
  4948. case TCP_LISTEN:
  4949. if (th->ack)
  4950. return 1;
  4951. if (th->rst)
  4952. goto discard;
  4953. if (th->syn) {
  4954. if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
  4955. return 1;
  4956. /* Now we have several options: In theory there is
  4957. * nothing else in the frame. KA9Q has an option to
  4958. * send data with the syn, BSD accepts data with the
  4959. * syn up to the [to be] advertised window and
  4960. * Solaris 2.1 gives you a protocol error. For now
  4961. * we just ignore it, that fits the spec precisely
  4962. * and avoids incompatibilities. It would be nice in
  4963. * future to drop through and process the data.
  4964. *
  4965. * Now that TTCP is starting to be used we ought to
  4966. * queue this data.
  4967. * But, this leaves one open to an easy denial of
  4968. * service attack, and SYN cookies can't defend
  4969. * against this problem. So, we drop the data
  4970. * in the interest of security over speed unless
  4971. * it's still in use.
  4972. */
  4973. kfree_skb(skb);
  4974. return 0;
  4975. }
  4976. goto discard;
  4977. case TCP_SYN_SENT:
  4978. queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
  4979. if (queued >= 0)
  4980. return queued;
  4981. /* Do step6 onward by hand. */
  4982. tcp_urg(sk, skb, th);
  4983. __kfree_skb(skb);
  4984. tcp_data_snd_check(sk);
  4985. return 0;
  4986. }
  4987. res = tcp_validate_incoming(sk, skb, th, 0);
  4988. if (res <= 0)
  4989. return -res;
  4990. /* step 5: check the ACK field */
  4991. if (th->ack) {
  4992. int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
  4993. switch (sk->sk_state) {
  4994. case TCP_SYN_RECV:
  4995. if (acceptable) {
  4996. tp->copied_seq = tp->rcv_nxt;
  4997. smp_mb();
  4998. tcp_set_state(sk, TCP_ESTABLISHED);
  4999. sk->sk_state_change(sk);
  5000. /* Note, that this wakeup is only for marginal
  5001. * crossed SYN case. Passively open sockets
  5002. * are not waked up, because sk->sk_sleep ==
  5003. * NULL and sk->sk_socket == NULL.
  5004. */
  5005. if (sk->sk_socket)
  5006. sk_wake_async(sk,
  5007. SOCK_WAKE_IO, POLL_OUT);
  5008. tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
  5009. tp->snd_wnd = ntohs(th->window) <<
  5010. tp->rx_opt.snd_wscale;
  5011. tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
  5012. /* tcp_ack considers this ACK as duplicate
  5013. * and does not calculate rtt.
  5014. * Force it here.
  5015. */
  5016. tcp_ack_update_rtt(sk, 0, 0);
  5017. if (tp->rx_opt.tstamp_ok)
  5018. tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
  5019. /* Make sure socket is routed, for
  5020. * correct metrics.
  5021. */
  5022. icsk->icsk_af_ops->rebuild_header(sk);
  5023. tcp_init_metrics(sk);
  5024. tcp_init_congestion_control(sk);
  5025. /* Prevent spurious tcp_cwnd_restart() on
  5026. * first data packet.
  5027. */
  5028. tp->lsndtime = tcp_time_stamp;
  5029. tcp_mtup_init(sk);
  5030. tcp_initialize_rcv_mss(sk);
  5031. tcp_init_buffer_space(sk);
  5032. tcp_fast_path_on(tp);
  5033. } else {
  5034. return 1;
  5035. }
  5036. break;
  5037. case TCP_FIN_WAIT1:
  5038. if (tp->snd_una == tp->write_seq) {
  5039. tcp_set_state(sk, TCP_FIN_WAIT2);
  5040. sk->sk_shutdown |= SEND_SHUTDOWN;
  5041. dst_confirm(__sk_dst_get(sk));
  5042. if (!sock_flag(sk, SOCK_DEAD))
  5043. /* Wake up lingering close() */
  5044. sk->sk_state_change(sk);
  5045. else {
  5046. int tmo;
  5047. if (tp->linger2 < 0 ||
  5048. (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5049. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
  5050. tcp_done(sk);
  5051. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5052. return 1;
  5053. }
  5054. tmo = tcp_fin_time(sk);
  5055. if (tmo > TCP_TIMEWAIT_LEN) {
  5056. inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
  5057. } else if (th->fin || sock_owned_by_user(sk)) {
  5058. /* Bad case. We could lose such FIN otherwise.
  5059. * It is not a big problem, but it looks confusing
  5060. * and not so rare event. We still can lose it now,
  5061. * if it spins in bh_lock_sock(), but it is really
  5062. * marginal case.
  5063. */
  5064. inet_csk_reset_keepalive_timer(sk, tmo);
  5065. } else {
  5066. tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
  5067. goto discard;
  5068. }
  5069. }
  5070. }
  5071. break;
  5072. case TCP_CLOSING:
  5073. if (tp->snd_una == tp->write_seq) {
  5074. tcp_time_wait(sk, TCP_TIME_WAIT, 0);
  5075. goto discard;
  5076. }
  5077. break;
  5078. case TCP_LAST_ACK:
  5079. if (tp->snd_una == tp->write_seq) {
  5080. tcp_update_metrics(sk);
  5081. tcp_done(sk);
  5082. goto discard;
  5083. }
  5084. break;
  5085. }
  5086. } else
  5087. goto discard;
  5088. /* step 6: check the URG bit */
  5089. tcp_urg(sk, skb, th);
  5090. /* step 7: process the segment text */
  5091. switch (sk->sk_state) {
  5092. case TCP_CLOSE_WAIT:
  5093. case TCP_CLOSING:
  5094. case TCP_LAST_ACK:
  5095. if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
  5096. break;
  5097. case TCP_FIN_WAIT1:
  5098. case TCP_FIN_WAIT2:
  5099. /* RFC 793 says to queue data in these states,
  5100. * RFC 1122 says we MUST send a reset.
  5101. * BSD 4.4 also does reset.
  5102. */
  5103. if (sk->sk_shutdown & RCV_SHUTDOWN) {
  5104. if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
  5105. after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
  5106. NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
  5107. tcp_reset(sk);
  5108. return 1;
  5109. }
  5110. }
  5111. /* Fall through */
  5112. case TCP_ESTABLISHED:
  5113. tcp_data_queue(sk, skb);
  5114. queued = 1;
  5115. break;
  5116. }
  5117. /* tcp_data could move socket to TIME-WAIT */
  5118. if (sk->sk_state != TCP_CLOSE) {
  5119. tcp_data_snd_check(sk);
  5120. tcp_ack_snd_check(sk);
  5121. }
  5122. if (!queued) {
  5123. discard:
  5124. __kfree_skb(skb);
  5125. }
  5126. return 0;
  5127. }
  5128. EXPORT_SYMBOL(tcp_rcv_state_process);