page_alloc.c 156 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691
  1. /*
  2. * linux/mm/page_alloc.c
  3. *
  4. * Manages the free list, the system allocates free pages here.
  5. * Note that kmalloc() lives in slab.c
  6. *
  7. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  8. * Swap reorganised 29.12.95, Stephen Tweedie
  9. * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10. * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11. * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12. * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13. * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14. * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15. */
  16. #include <linux/stddef.h>
  17. #include <linux/mm.h>
  18. #include <linux/swap.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/pagemap.h>
  21. #include <linux/jiffies.h>
  22. #include <linux/bootmem.h>
  23. #include <linux/memblock.h>
  24. #include <linux/compiler.h>
  25. #include <linux/kernel.h>
  26. #include <linux/kmemcheck.h>
  27. #include <linux/module.h>
  28. #include <linux/suspend.h>
  29. #include <linux/pagevec.h>
  30. #include <linux/blkdev.h>
  31. #include <linux/slab.h>
  32. #include <linux/oom.h>
  33. #include <linux/notifier.h>
  34. #include <linux/topology.h>
  35. #include <linux/sysctl.h>
  36. #include <linux/cpu.h>
  37. #include <linux/cpuset.h>
  38. #include <linux/memory_hotplug.h>
  39. #include <linux/nodemask.h>
  40. #include <linux/vmalloc.h>
  41. #include <linux/mempolicy.h>
  42. #include <linux/stop_machine.h>
  43. #include <linux/sort.h>
  44. #include <linux/pfn.h>
  45. #include <linux/backing-dev.h>
  46. #include <linux/fault-inject.h>
  47. #include <linux/page-isolation.h>
  48. #include <linux/page_cgroup.h>
  49. #include <linux/debugobjects.h>
  50. #include <linux/kmemleak.h>
  51. #include <linux/memory.h>
  52. #include <linux/compaction.h>
  53. #include <trace/events/kmem.h>
  54. #include <linux/ftrace_event.h>
  55. #include <linux/memcontrol.h>
  56. #include <asm/tlbflush.h>
  57. #include <asm/div64.h>
  58. #include "internal.h"
  59. #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  60. DEFINE_PER_CPU(int, numa_node);
  61. EXPORT_PER_CPU_SYMBOL(numa_node);
  62. #endif
  63. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  64. /*
  65. * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  66. * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  67. * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  68. * defined in <linux/topology.h>.
  69. */
  70. DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
  71. EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  72. #endif
  73. /*
  74. * Array of node states.
  75. */
  76. nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
  77. [N_POSSIBLE] = NODE_MASK_ALL,
  78. [N_ONLINE] = { { [0] = 1UL } },
  79. #ifndef CONFIG_NUMA
  80. [N_NORMAL_MEMORY] = { { [0] = 1UL } },
  81. #ifdef CONFIG_HIGHMEM
  82. [N_HIGH_MEMORY] = { { [0] = 1UL } },
  83. #endif
  84. [N_CPU] = { { [0] = 1UL } },
  85. #endif /* NUMA */
  86. };
  87. EXPORT_SYMBOL(node_states);
  88. unsigned long totalram_pages __read_mostly;
  89. unsigned long totalreserve_pages __read_mostly;
  90. int percpu_pagelist_fraction;
  91. gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
  92. #ifdef CONFIG_PM_SLEEP
  93. /*
  94. * The following functions are used by the suspend/hibernate code to temporarily
  95. * change gfp_allowed_mask in order to avoid using I/O during memory allocations
  96. * while devices are suspended. To avoid races with the suspend/hibernate code,
  97. * they should always be called with pm_mutex held (gfp_allowed_mask also should
  98. * only be modified with pm_mutex held, unless the suspend/hibernate code is
  99. * guaranteed not to run in parallel with that modification).
  100. */
  101. static gfp_t saved_gfp_mask;
  102. void pm_restore_gfp_mask(void)
  103. {
  104. WARN_ON(!mutex_is_locked(&pm_mutex));
  105. if (saved_gfp_mask) {
  106. gfp_allowed_mask = saved_gfp_mask;
  107. saved_gfp_mask = 0;
  108. }
  109. }
  110. void pm_restrict_gfp_mask(void)
  111. {
  112. WARN_ON(!mutex_is_locked(&pm_mutex));
  113. WARN_ON(saved_gfp_mask);
  114. saved_gfp_mask = gfp_allowed_mask;
  115. gfp_allowed_mask &= ~GFP_IOFS;
  116. }
  117. #endif /* CONFIG_PM_SLEEP */
  118. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  119. int pageblock_order __read_mostly;
  120. #endif
  121. static void __free_pages_ok(struct page *page, unsigned int order);
  122. /*
  123. * results with 256, 32 in the lowmem_reserve sysctl:
  124. * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
  125. * 1G machine -> (16M dma, 784M normal, 224M high)
  126. * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
  127. * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
  128. * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
  129. *
  130. * TBD: should special case ZONE_DMA32 machines here - in those we normally
  131. * don't need any ZONE_NORMAL reservation
  132. */
  133. int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
  134. #ifdef CONFIG_ZONE_DMA
  135. 256,
  136. #endif
  137. #ifdef CONFIG_ZONE_DMA32
  138. 256,
  139. #endif
  140. #ifdef CONFIG_HIGHMEM
  141. 32,
  142. #endif
  143. 32,
  144. };
  145. EXPORT_SYMBOL(totalram_pages);
  146. static char * const zone_names[MAX_NR_ZONES] = {
  147. #ifdef CONFIG_ZONE_DMA
  148. "DMA",
  149. #endif
  150. #ifdef CONFIG_ZONE_DMA32
  151. "DMA32",
  152. #endif
  153. "Normal",
  154. #ifdef CONFIG_HIGHMEM
  155. "HighMem",
  156. #endif
  157. "Movable",
  158. };
  159. int min_free_kbytes = 1024;
  160. static unsigned long __meminitdata nr_kernel_pages;
  161. static unsigned long __meminitdata nr_all_pages;
  162. static unsigned long __meminitdata dma_reserve;
  163. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  164. /*
  165. * MAX_ACTIVE_REGIONS determines the maximum number of distinct
  166. * ranges of memory (RAM) that may be registered with add_active_range().
  167. * Ranges passed to add_active_range() will be merged if possible
  168. * so the number of times add_active_range() can be called is
  169. * related to the number of nodes and the number of holes
  170. */
  171. #ifdef CONFIG_MAX_ACTIVE_REGIONS
  172. /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
  173. #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
  174. #else
  175. #if MAX_NUMNODES >= 32
  176. /* If there can be many nodes, allow up to 50 holes per node */
  177. #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
  178. #else
  179. /* By default, allow up to 256 distinct regions */
  180. #define MAX_ACTIVE_REGIONS 256
  181. #endif
  182. #endif
  183. static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
  184. static int __meminitdata nr_nodemap_entries;
  185. static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
  186. static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
  187. static unsigned long __initdata required_kernelcore;
  188. static unsigned long __initdata required_movablecore;
  189. static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
  190. /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
  191. int movable_zone;
  192. EXPORT_SYMBOL(movable_zone);
  193. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  194. #if MAX_NUMNODES > 1
  195. int nr_node_ids __read_mostly = MAX_NUMNODES;
  196. int nr_online_nodes __read_mostly = 1;
  197. EXPORT_SYMBOL(nr_node_ids);
  198. EXPORT_SYMBOL(nr_online_nodes);
  199. #endif
  200. int page_group_by_mobility_disabled __read_mostly;
  201. static void set_pageblock_migratetype(struct page *page, int migratetype)
  202. {
  203. if (unlikely(page_group_by_mobility_disabled))
  204. migratetype = MIGRATE_UNMOVABLE;
  205. set_pageblock_flags_group(page, (unsigned long)migratetype,
  206. PB_migrate, PB_migrate_end);
  207. }
  208. bool oom_killer_disabled __read_mostly;
  209. #ifdef CONFIG_DEBUG_VM
  210. static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
  211. {
  212. int ret = 0;
  213. unsigned seq;
  214. unsigned long pfn = page_to_pfn(page);
  215. do {
  216. seq = zone_span_seqbegin(zone);
  217. if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
  218. ret = 1;
  219. else if (pfn < zone->zone_start_pfn)
  220. ret = 1;
  221. } while (zone_span_seqretry(zone, seq));
  222. return ret;
  223. }
  224. static int page_is_consistent(struct zone *zone, struct page *page)
  225. {
  226. if (!pfn_valid_within(page_to_pfn(page)))
  227. return 0;
  228. if (zone != page_zone(page))
  229. return 0;
  230. return 1;
  231. }
  232. /*
  233. * Temporary debugging check for pages not lying within a given zone.
  234. */
  235. static int bad_range(struct zone *zone, struct page *page)
  236. {
  237. if (page_outside_zone_boundaries(zone, page))
  238. return 1;
  239. if (!page_is_consistent(zone, page))
  240. return 1;
  241. return 0;
  242. }
  243. #else
  244. static inline int bad_range(struct zone *zone, struct page *page)
  245. {
  246. return 0;
  247. }
  248. #endif
  249. static void bad_page(struct page *page)
  250. {
  251. static unsigned long resume;
  252. static unsigned long nr_shown;
  253. static unsigned long nr_unshown;
  254. /* Don't complain about poisoned pages */
  255. if (PageHWPoison(page)) {
  256. reset_page_mapcount(page); /* remove PageBuddy */
  257. return;
  258. }
  259. /*
  260. * Allow a burst of 60 reports, then keep quiet for that minute;
  261. * or allow a steady drip of one report per second.
  262. */
  263. if (nr_shown == 60) {
  264. if (time_before(jiffies, resume)) {
  265. nr_unshown++;
  266. goto out;
  267. }
  268. if (nr_unshown) {
  269. printk(KERN_ALERT
  270. "BUG: Bad page state: %lu messages suppressed\n",
  271. nr_unshown);
  272. nr_unshown = 0;
  273. }
  274. nr_shown = 0;
  275. }
  276. if (nr_shown++ == 0)
  277. resume = jiffies + 60 * HZ;
  278. printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
  279. current->comm, page_to_pfn(page));
  280. dump_page(page);
  281. dump_stack();
  282. out:
  283. /* Leave bad fields for debug, except PageBuddy could make trouble */
  284. reset_page_mapcount(page); /* remove PageBuddy */
  285. add_taint(TAINT_BAD_PAGE);
  286. }
  287. /*
  288. * Higher-order pages are called "compound pages". They are structured thusly:
  289. *
  290. * The first PAGE_SIZE page is called the "head page".
  291. *
  292. * The remaining PAGE_SIZE pages are called "tail pages".
  293. *
  294. * All pages have PG_compound set. All pages have their ->private pointing at
  295. * the head page (even the head page has this).
  296. *
  297. * The first tail page's ->lru.next holds the address of the compound page's
  298. * put_page() function. Its ->lru.prev holds the order of allocation.
  299. * This usage means that zero-order pages may not be compound.
  300. */
  301. static void free_compound_page(struct page *page)
  302. {
  303. __free_pages_ok(page, compound_order(page));
  304. }
  305. void prep_compound_page(struct page *page, unsigned long order)
  306. {
  307. int i;
  308. int nr_pages = 1 << order;
  309. set_compound_page_dtor(page, free_compound_page);
  310. set_compound_order(page, order);
  311. __SetPageHead(page);
  312. for (i = 1; i < nr_pages; i++) {
  313. struct page *p = page + i;
  314. __SetPageTail(p);
  315. p->first_page = page;
  316. }
  317. }
  318. /* update __split_huge_page_refcount if you change this function */
  319. static int destroy_compound_page(struct page *page, unsigned long order)
  320. {
  321. int i;
  322. int nr_pages = 1 << order;
  323. int bad = 0;
  324. if (unlikely(compound_order(page) != order) ||
  325. unlikely(!PageHead(page))) {
  326. bad_page(page);
  327. bad++;
  328. }
  329. __ClearPageHead(page);
  330. for (i = 1; i < nr_pages; i++) {
  331. struct page *p = page + i;
  332. if (unlikely(!PageTail(p) || (p->first_page != page))) {
  333. bad_page(page);
  334. bad++;
  335. }
  336. __ClearPageTail(p);
  337. }
  338. return bad;
  339. }
  340. static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
  341. {
  342. int i;
  343. /*
  344. * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
  345. * and __GFP_HIGHMEM from hard or soft interrupt context.
  346. */
  347. VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
  348. for (i = 0; i < (1 << order); i++)
  349. clear_highpage(page + i);
  350. }
  351. static inline void set_page_order(struct page *page, int order)
  352. {
  353. set_page_private(page, order);
  354. __SetPageBuddy(page);
  355. }
  356. static inline void rmv_page_order(struct page *page)
  357. {
  358. __ClearPageBuddy(page);
  359. set_page_private(page, 0);
  360. }
  361. /*
  362. * Locate the struct page for both the matching buddy in our
  363. * pair (buddy1) and the combined O(n+1) page they form (page).
  364. *
  365. * 1) Any buddy B1 will have an order O twin B2 which satisfies
  366. * the following equation:
  367. * B2 = B1 ^ (1 << O)
  368. * For example, if the starting buddy (buddy2) is #8 its order
  369. * 1 buddy is #10:
  370. * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
  371. *
  372. * 2) Any buddy B will have an order O+1 parent P which
  373. * satisfies the following equation:
  374. * P = B & ~(1 << O)
  375. *
  376. * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
  377. */
  378. static inline unsigned long
  379. __find_buddy_index(unsigned long page_idx, unsigned int order)
  380. {
  381. return page_idx ^ (1 << order);
  382. }
  383. /*
  384. * This function checks whether a page is free && is the buddy
  385. * we can do coalesce a page and its buddy if
  386. * (a) the buddy is not in a hole &&
  387. * (b) the buddy is in the buddy system &&
  388. * (c) a page and its buddy have the same order &&
  389. * (d) a page and its buddy are in the same zone.
  390. *
  391. * For recording whether a page is in the buddy system, we set ->_mapcount -2.
  392. * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
  393. *
  394. * For recording page's order, we use page_private(page).
  395. */
  396. static inline int page_is_buddy(struct page *page, struct page *buddy,
  397. int order)
  398. {
  399. if (!pfn_valid_within(page_to_pfn(buddy)))
  400. return 0;
  401. if (page_zone_id(page) != page_zone_id(buddy))
  402. return 0;
  403. if (PageBuddy(buddy) && page_order(buddy) == order) {
  404. VM_BUG_ON(page_count(buddy) != 0);
  405. return 1;
  406. }
  407. return 0;
  408. }
  409. /*
  410. * Freeing function for a buddy system allocator.
  411. *
  412. * The concept of a buddy system is to maintain direct-mapped table
  413. * (containing bit values) for memory blocks of various "orders".
  414. * The bottom level table contains the map for the smallest allocatable
  415. * units of memory (here, pages), and each level above it describes
  416. * pairs of units from the levels below, hence, "buddies".
  417. * At a high level, all that happens here is marking the table entry
  418. * at the bottom level available, and propagating the changes upward
  419. * as necessary, plus some accounting needed to play nicely with other
  420. * parts of the VM system.
  421. * At each level, we keep a list of pages, which are heads of continuous
  422. * free pages of length of (1 << order) and marked with _mapcount -2. Page's
  423. * order is recorded in page_private(page) field.
  424. * So when we are allocating or freeing one, we can derive the state of the
  425. * other. That is, if we allocate a small block, and both were
  426. * free, the remainder of the region must be split into blocks.
  427. * If a block is freed, and its buddy is also free, then this
  428. * triggers coalescing into a block of larger size.
  429. *
  430. * -- wli
  431. */
  432. static inline void __free_one_page(struct page *page,
  433. struct zone *zone, unsigned int order,
  434. int migratetype)
  435. {
  436. unsigned long page_idx;
  437. unsigned long combined_idx;
  438. unsigned long uninitialized_var(buddy_idx);
  439. struct page *buddy;
  440. if (unlikely(PageCompound(page)))
  441. if (unlikely(destroy_compound_page(page, order)))
  442. return;
  443. VM_BUG_ON(migratetype == -1);
  444. page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
  445. VM_BUG_ON(page_idx & ((1 << order) - 1));
  446. VM_BUG_ON(bad_range(zone, page));
  447. while (order < MAX_ORDER-1) {
  448. buddy_idx = __find_buddy_index(page_idx, order);
  449. buddy = page + (buddy_idx - page_idx);
  450. if (!page_is_buddy(page, buddy, order))
  451. break;
  452. /* Our buddy is free, merge with it and move up one order. */
  453. list_del(&buddy->lru);
  454. zone->free_area[order].nr_free--;
  455. rmv_page_order(buddy);
  456. combined_idx = buddy_idx & page_idx;
  457. page = page + (combined_idx - page_idx);
  458. page_idx = combined_idx;
  459. order++;
  460. }
  461. set_page_order(page, order);
  462. /*
  463. * If this is not the largest possible page, check if the buddy
  464. * of the next-highest order is free. If it is, it's possible
  465. * that pages are being freed that will coalesce soon. In case,
  466. * that is happening, add the free page to the tail of the list
  467. * so it's less likely to be used soon and more likely to be merged
  468. * as a higher order page
  469. */
  470. if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
  471. struct page *higher_page, *higher_buddy;
  472. combined_idx = buddy_idx & page_idx;
  473. higher_page = page + (combined_idx - page_idx);
  474. buddy_idx = __find_buddy_index(combined_idx, order + 1);
  475. higher_buddy = page + (buddy_idx - combined_idx);
  476. if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
  477. list_add_tail(&page->lru,
  478. &zone->free_area[order].free_list[migratetype]);
  479. goto out;
  480. }
  481. }
  482. list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
  483. out:
  484. zone->free_area[order].nr_free++;
  485. }
  486. /*
  487. * free_page_mlock() -- clean up attempts to free and mlocked() page.
  488. * Page should not be on lru, so no need to fix that up.
  489. * free_pages_check() will verify...
  490. */
  491. static inline void free_page_mlock(struct page *page)
  492. {
  493. __dec_zone_page_state(page, NR_MLOCK);
  494. __count_vm_event(UNEVICTABLE_MLOCKFREED);
  495. }
  496. static inline int free_pages_check(struct page *page)
  497. {
  498. if (unlikely(page_mapcount(page) |
  499. (page->mapping != NULL) |
  500. (atomic_read(&page->_count) != 0) |
  501. (page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
  502. (mem_cgroup_bad_page_check(page)))) {
  503. bad_page(page);
  504. return 1;
  505. }
  506. if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
  507. page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
  508. return 0;
  509. }
  510. /*
  511. * Frees a number of pages from the PCP lists
  512. * Assumes all pages on list are in same zone, and of same order.
  513. * count is the number of pages to free.
  514. *
  515. * If the zone was previously in an "all pages pinned" state then look to
  516. * see if this freeing clears that state.
  517. *
  518. * And clear the zone's pages_scanned counter, to hold off the "all pages are
  519. * pinned" detection logic.
  520. */
  521. static void free_pcppages_bulk(struct zone *zone, int count,
  522. struct per_cpu_pages *pcp)
  523. {
  524. int migratetype = 0;
  525. int batch_free = 0;
  526. int to_free = count;
  527. spin_lock(&zone->lock);
  528. zone->all_unreclaimable = 0;
  529. zone->pages_scanned = 0;
  530. while (to_free) {
  531. struct page *page;
  532. struct list_head *list;
  533. /*
  534. * Remove pages from lists in a round-robin fashion. A
  535. * batch_free count is maintained that is incremented when an
  536. * empty list is encountered. This is so more pages are freed
  537. * off fuller lists instead of spinning excessively around empty
  538. * lists
  539. */
  540. do {
  541. batch_free++;
  542. if (++migratetype == MIGRATE_PCPTYPES)
  543. migratetype = 0;
  544. list = &pcp->lists[migratetype];
  545. } while (list_empty(list));
  546. /* This is the only non-empty list. Free them all. */
  547. if (batch_free == MIGRATE_PCPTYPES)
  548. batch_free = to_free;
  549. do {
  550. page = list_entry(list->prev, struct page, lru);
  551. /* must delete as __free_one_page list manipulates */
  552. list_del(&page->lru);
  553. /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
  554. __free_one_page(page, zone, 0, page_private(page));
  555. trace_mm_page_pcpu_drain(page, 0, page_private(page));
  556. } while (--to_free && --batch_free && !list_empty(list));
  557. }
  558. __mod_zone_page_state(zone, NR_FREE_PAGES, count);
  559. spin_unlock(&zone->lock);
  560. }
  561. static void free_one_page(struct zone *zone, struct page *page, int order,
  562. int migratetype)
  563. {
  564. spin_lock(&zone->lock);
  565. zone->all_unreclaimable = 0;
  566. zone->pages_scanned = 0;
  567. __free_one_page(page, zone, order, migratetype);
  568. __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
  569. spin_unlock(&zone->lock);
  570. }
  571. static bool free_pages_prepare(struct page *page, unsigned int order)
  572. {
  573. int i;
  574. int bad = 0;
  575. trace_mm_page_free_direct(page, order);
  576. kmemcheck_free_shadow(page, order);
  577. if (PageAnon(page))
  578. page->mapping = NULL;
  579. for (i = 0; i < (1 << order); i++)
  580. bad += free_pages_check(page + i);
  581. if (bad)
  582. return false;
  583. if (!PageHighMem(page)) {
  584. debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
  585. debug_check_no_obj_freed(page_address(page),
  586. PAGE_SIZE << order);
  587. }
  588. arch_free_page(page, order);
  589. kernel_map_pages(page, 1 << order, 0);
  590. return true;
  591. }
  592. static void __free_pages_ok(struct page *page, unsigned int order)
  593. {
  594. unsigned long flags;
  595. int wasMlocked = __TestClearPageMlocked(page);
  596. if (!free_pages_prepare(page, order))
  597. return;
  598. local_irq_save(flags);
  599. if (unlikely(wasMlocked))
  600. free_page_mlock(page);
  601. __count_vm_events(PGFREE, 1 << order);
  602. free_one_page(page_zone(page), page, order,
  603. get_pageblock_migratetype(page));
  604. local_irq_restore(flags);
  605. }
  606. /*
  607. * permit the bootmem allocator to evade page validation on high-order frees
  608. */
  609. void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
  610. {
  611. if (order == 0) {
  612. __ClearPageReserved(page);
  613. set_page_count(page, 0);
  614. set_page_refcounted(page);
  615. __free_page(page);
  616. } else {
  617. int loop;
  618. prefetchw(page);
  619. for (loop = 0; loop < BITS_PER_LONG; loop++) {
  620. struct page *p = &page[loop];
  621. if (loop + 1 < BITS_PER_LONG)
  622. prefetchw(p + 1);
  623. __ClearPageReserved(p);
  624. set_page_count(p, 0);
  625. }
  626. set_page_refcounted(page);
  627. __free_pages(page, order);
  628. }
  629. }
  630. /*
  631. * The order of subdivision here is critical for the IO subsystem.
  632. * Please do not alter this order without good reasons and regression
  633. * testing. Specifically, as large blocks of memory are subdivided,
  634. * the order in which smaller blocks are delivered depends on the order
  635. * they're subdivided in this function. This is the primary factor
  636. * influencing the order in which pages are delivered to the IO
  637. * subsystem according to empirical testing, and this is also justified
  638. * by considering the behavior of a buddy system containing a single
  639. * large block of memory acted on by a series of small allocations.
  640. * This behavior is a critical factor in sglist merging's success.
  641. *
  642. * -- wli
  643. */
  644. static inline void expand(struct zone *zone, struct page *page,
  645. int low, int high, struct free_area *area,
  646. int migratetype)
  647. {
  648. unsigned long size = 1 << high;
  649. while (high > low) {
  650. area--;
  651. high--;
  652. size >>= 1;
  653. VM_BUG_ON(bad_range(zone, &page[size]));
  654. list_add(&page[size].lru, &area->free_list[migratetype]);
  655. area->nr_free++;
  656. set_page_order(&page[size], high);
  657. }
  658. }
  659. /*
  660. * This page is about to be returned from the page allocator
  661. */
  662. static inline int check_new_page(struct page *page)
  663. {
  664. if (unlikely(page_mapcount(page) |
  665. (page->mapping != NULL) |
  666. (atomic_read(&page->_count) != 0) |
  667. (page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
  668. (mem_cgroup_bad_page_check(page)))) {
  669. bad_page(page);
  670. return 1;
  671. }
  672. return 0;
  673. }
  674. static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
  675. {
  676. int i;
  677. for (i = 0; i < (1 << order); i++) {
  678. struct page *p = page + i;
  679. if (unlikely(check_new_page(p)))
  680. return 1;
  681. }
  682. set_page_private(page, 0);
  683. set_page_refcounted(page);
  684. arch_alloc_page(page, order);
  685. kernel_map_pages(page, 1 << order, 1);
  686. if (gfp_flags & __GFP_ZERO)
  687. prep_zero_page(page, order, gfp_flags);
  688. if (order && (gfp_flags & __GFP_COMP))
  689. prep_compound_page(page, order);
  690. return 0;
  691. }
  692. /*
  693. * Go through the free lists for the given migratetype and remove
  694. * the smallest available page from the freelists
  695. */
  696. static inline
  697. struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
  698. int migratetype)
  699. {
  700. unsigned int current_order;
  701. struct free_area * area;
  702. struct page *page;
  703. /* Find a page of the appropriate size in the preferred list */
  704. for (current_order = order; current_order < MAX_ORDER; ++current_order) {
  705. area = &(zone->free_area[current_order]);
  706. if (list_empty(&area->free_list[migratetype]))
  707. continue;
  708. page = list_entry(area->free_list[migratetype].next,
  709. struct page, lru);
  710. list_del(&page->lru);
  711. rmv_page_order(page);
  712. area->nr_free--;
  713. expand(zone, page, order, current_order, area, migratetype);
  714. return page;
  715. }
  716. return NULL;
  717. }
  718. /*
  719. * This array describes the order lists are fallen back to when
  720. * the free lists for the desirable migrate type are depleted
  721. */
  722. static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
  723. [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  724. [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
  725. [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
  726. [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
  727. };
  728. /*
  729. * Move the free pages in a range to the free lists of the requested type.
  730. * Note that start_page and end_pages are not aligned on a pageblock
  731. * boundary. If alignment is required, use move_freepages_block()
  732. */
  733. static int move_freepages(struct zone *zone,
  734. struct page *start_page, struct page *end_page,
  735. int migratetype)
  736. {
  737. struct page *page;
  738. unsigned long order;
  739. int pages_moved = 0;
  740. #ifndef CONFIG_HOLES_IN_ZONE
  741. /*
  742. * page_zone is not safe to call in this context when
  743. * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
  744. * anyway as we check zone boundaries in move_freepages_block().
  745. * Remove at a later date when no bug reports exist related to
  746. * grouping pages by mobility
  747. */
  748. BUG_ON(page_zone(start_page) != page_zone(end_page));
  749. #endif
  750. for (page = start_page; page <= end_page;) {
  751. /* Make sure we are not inadvertently changing nodes */
  752. VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
  753. if (!pfn_valid_within(page_to_pfn(page))) {
  754. page++;
  755. continue;
  756. }
  757. if (!PageBuddy(page)) {
  758. page++;
  759. continue;
  760. }
  761. order = page_order(page);
  762. list_move(&page->lru,
  763. &zone->free_area[order].free_list[migratetype]);
  764. page += 1 << order;
  765. pages_moved += 1 << order;
  766. }
  767. return pages_moved;
  768. }
  769. static int move_freepages_block(struct zone *zone, struct page *page,
  770. int migratetype)
  771. {
  772. unsigned long start_pfn, end_pfn;
  773. struct page *start_page, *end_page;
  774. start_pfn = page_to_pfn(page);
  775. start_pfn = start_pfn & ~(pageblock_nr_pages-1);
  776. start_page = pfn_to_page(start_pfn);
  777. end_page = start_page + pageblock_nr_pages - 1;
  778. end_pfn = start_pfn + pageblock_nr_pages - 1;
  779. /* Do not cross zone boundaries */
  780. if (start_pfn < zone->zone_start_pfn)
  781. start_page = page;
  782. if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
  783. return 0;
  784. return move_freepages(zone, start_page, end_page, migratetype);
  785. }
  786. static void change_pageblock_range(struct page *pageblock_page,
  787. int start_order, int migratetype)
  788. {
  789. int nr_pageblocks = 1 << (start_order - pageblock_order);
  790. while (nr_pageblocks--) {
  791. set_pageblock_migratetype(pageblock_page, migratetype);
  792. pageblock_page += pageblock_nr_pages;
  793. }
  794. }
  795. /* Remove an element from the buddy allocator from the fallback list */
  796. static inline struct page *
  797. __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
  798. {
  799. struct free_area * area;
  800. int current_order;
  801. struct page *page;
  802. int migratetype, i;
  803. /* Find the largest possible block of pages in the other list */
  804. for (current_order = MAX_ORDER-1; current_order >= order;
  805. --current_order) {
  806. for (i = 0; i < MIGRATE_TYPES - 1; i++) {
  807. migratetype = fallbacks[start_migratetype][i];
  808. /* MIGRATE_RESERVE handled later if necessary */
  809. if (migratetype == MIGRATE_RESERVE)
  810. continue;
  811. area = &(zone->free_area[current_order]);
  812. if (list_empty(&area->free_list[migratetype]))
  813. continue;
  814. page = list_entry(area->free_list[migratetype].next,
  815. struct page, lru);
  816. area->nr_free--;
  817. /*
  818. * If breaking a large block of pages, move all free
  819. * pages to the preferred allocation list. If falling
  820. * back for a reclaimable kernel allocation, be more
  821. * agressive about taking ownership of free pages
  822. */
  823. if (unlikely(current_order >= (pageblock_order >> 1)) ||
  824. start_migratetype == MIGRATE_RECLAIMABLE ||
  825. page_group_by_mobility_disabled) {
  826. unsigned long pages;
  827. pages = move_freepages_block(zone, page,
  828. start_migratetype);
  829. /* Claim the whole block if over half of it is free */
  830. if (pages >= (1 << (pageblock_order-1)) ||
  831. page_group_by_mobility_disabled)
  832. set_pageblock_migratetype(page,
  833. start_migratetype);
  834. migratetype = start_migratetype;
  835. }
  836. /* Remove the page from the freelists */
  837. list_del(&page->lru);
  838. rmv_page_order(page);
  839. /* Take ownership for orders >= pageblock_order */
  840. if (current_order >= pageblock_order)
  841. change_pageblock_range(page, current_order,
  842. start_migratetype);
  843. expand(zone, page, order, current_order, area, migratetype);
  844. trace_mm_page_alloc_extfrag(page, order, current_order,
  845. start_migratetype, migratetype);
  846. return page;
  847. }
  848. }
  849. return NULL;
  850. }
  851. /*
  852. * Do the hard work of removing an element from the buddy allocator.
  853. * Call me with the zone->lock already held.
  854. */
  855. static struct page *__rmqueue(struct zone *zone, unsigned int order,
  856. int migratetype)
  857. {
  858. struct page *page;
  859. retry_reserve:
  860. page = __rmqueue_smallest(zone, order, migratetype);
  861. if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
  862. page = __rmqueue_fallback(zone, order, migratetype);
  863. /*
  864. * Use MIGRATE_RESERVE rather than fail an allocation. goto
  865. * is used because __rmqueue_smallest is an inline function
  866. * and we want just one call site
  867. */
  868. if (!page) {
  869. migratetype = MIGRATE_RESERVE;
  870. goto retry_reserve;
  871. }
  872. }
  873. trace_mm_page_alloc_zone_locked(page, order, migratetype);
  874. return page;
  875. }
  876. /*
  877. * Obtain a specified number of elements from the buddy allocator, all under
  878. * a single hold of the lock, for efficiency. Add them to the supplied list.
  879. * Returns the number of new pages which were placed at *list.
  880. */
  881. static int rmqueue_bulk(struct zone *zone, unsigned int order,
  882. unsigned long count, struct list_head *list,
  883. int migratetype, int cold)
  884. {
  885. int i;
  886. spin_lock(&zone->lock);
  887. for (i = 0; i < count; ++i) {
  888. struct page *page = __rmqueue(zone, order, migratetype);
  889. if (unlikely(page == NULL))
  890. break;
  891. /*
  892. * Split buddy pages returned by expand() are received here
  893. * in physical page order. The page is added to the callers and
  894. * list and the list head then moves forward. From the callers
  895. * perspective, the linked list is ordered by page number in
  896. * some conditions. This is useful for IO devices that can
  897. * merge IO requests if the physical pages are ordered
  898. * properly.
  899. */
  900. if (likely(cold == 0))
  901. list_add(&page->lru, list);
  902. else
  903. list_add_tail(&page->lru, list);
  904. set_page_private(page, migratetype);
  905. list = &page->lru;
  906. }
  907. __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
  908. spin_unlock(&zone->lock);
  909. return i;
  910. }
  911. #ifdef CONFIG_NUMA
  912. /*
  913. * Called from the vmstat counter updater to drain pagesets of this
  914. * currently executing processor on remote nodes after they have
  915. * expired.
  916. *
  917. * Note that this function must be called with the thread pinned to
  918. * a single processor.
  919. */
  920. void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
  921. {
  922. unsigned long flags;
  923. int to_drain;
  924. local_irq_save(flags);
  925. if (pcp->count >= pcp->batch)
  926. to_drain = pcp->batch;
  927. else
  928. to_drain = pcp->count;
  929. free_pcppages_bulk(zone, to_drain, pcp);
  930. pcp->count -= to_drain;
  931. local_irq_restore(flags);
  932. }
  933. #endif
  934. /*
  935. * Drain pages of the indicated processor.
  936. *
  937. * The processor must either be the current processor and the
  938. * thread pinned to the current processor or a processor that
  939. * is not online.
  940. */
  941. static void drain_pages(unsigned int cpu)
  942. {
  943. unsigned long flags;
  944. struct zone *zone;
  945. for_each_populated_zone(zone) {
  946. struct per_cpu_pageset *pset;
  947. struct per_cpu_pages *pcp;
  948. local_irq_save(flags);
  949. pset = per_cpu_ptr(zone->pageset, cpu);
  950. pcp = &pset->pcp;
  951. if (pcp->count) {
  952. free_pcppages_bulk(zone, pcp->count, pcp);
  953. pcp->count = 0;
  954. }
  955. local_irq_restore(flags);
  956. }
  957. }
  958. /*
  959. * Spill all of this CPU's per-cpu pages back into the buddy allocator.
  960. */
  961. void drain_local_pages(void *arg)
  962. {
  963. drain_pages(smp_processor_id());
  964. }
  965. /*
  966. * Spill all the per-cpu pages from all CPUs back into the buddy allocator
  967. */
  968. void drain_all_pages(void)
  969. {
  970. on_each_cpu(drain_local_pages, NULL, 1);
  971. }
  972. #ifdef CONFIG_HIBERNATION
  973. void mark_free_pages(struct zone *zone)
  974. {
  975. unsigned long pfn, max_zone_pfn;
  976. unsigned long flags;
  977. int order, t;
  978. struct list_head *curr;
  979. if (!zone->spanned_pages)
  980. return;
  981. spin_lock_irqsave(&zone->lock, flags);
  982. max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
  983. for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
  984. if (pfn_valid(pfn)) {
  985. struct page *page = pfn_to_page(pfn);
  986. if (!swsusp_page_is_forbidden(page))
  987. swsusp_unset_page_free(page);
  988. }
  989. for_each_migratetype_order(order, t) {
  990. list_for_each(curr, &zone->free_area[order].free_list[t]) {
  991. unsigned long i;
  992. pfn = page_to_pfn(list_entry(curr, struct page, lru));
  993. for (i = 0; i < (1UL << order); i++)
  994. swsusp_set_page_free(pfn_to_page(pfn + i));
  995. }
  996. }
  997. spin_unlock_irqrestore(&zone->lock, flags);
  998. }
  999. #endif /* CONFIG_PM */
  1000. /*
  1001. * Free a 0-order page
  1002. * cold == 1 ? free a cold page : free a hot page
  1003. */
  1004. void free_hot_cold_page(struct page *page, int cold)
  1005. {
  1006. struct zone *zone = page_zone(page);
  1007. struct per_cpu_pages *pcp;
  1008. unsigned long flags;
  1009. int migratetype;
  1010. int wasMlocked = __TestClearPageMlocked(page);
  1011. if (!free_pages_prepare(page, 0))
  1012. return;
  1013. migratetype = get_pageblock_migratetype(page);
  1014. set_page_private(page, migratetype);
  1015. local_irq_save(flags);
  1016. if (unlikely(wasMlocked))
  1017. free_page_mlock(page);
  1018. __count_vm_event(PGFREE);
  1019. /*
  1020. * We only track unmovable, reclaimable and movable on pcp lists.
  1021. * Free ISOLATE pages back to the allocator because they are being
  1022. * offlined but treat RESERVE as movable pages so we can get those
  1023. * areas back if necessary. Otherwise, we may have to free
  1024. * excessively into the page allocator
  1025. */
  1026. if (migratetype >= MIGRATE_PCPTYPES) {
  1027. if (unlikely(migratetype == MIGRATE_ISOLATE)) {
  1028. free_one_page(zone, page, 0, migratetype);
  1029. goto out;
  1030. }
  1031. migratetype = MIGRATE_MOVABLE;
  1032. }
  1033. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1034. if (cold)
  1035. list_add_tail(&page->lru, &pcp->lists[migratetype]);
  1036. else
  1037. list_add(&page->lru, &pcp->lists[migratetype]);
  1038. pcp->count++;
  1039. if (pcp->count >= pcp->high) {
  1040. free_pcppages_bulk(zone, pcp->batch, pcp);
  1041. pcp->count -= pcp->batch;
  1042. }
  1043. out:
  1044. local_irq_restore(flags);
  1045. }
  1046. /*
  1047. * split_page takes a non-compound higher-order page, and splits it into
  1048. * n (1<<order) sub-pages: page[0..n]
  1049. * Each sub-page must be freed individually.
  1050. *
  1051. * Note: this is probably too low level an operation for use in drivers.
  1052. * Please consult with lkml before using this in your driver.
  1053. */
  1054. void split_page(struct page *page, unsigned int order)
  1055. {
  1056. int i;
  1057. VM_BUG_ON(PageCompound(page));
  1058. VM_BUG_ON(!page_count(page));
  1059. #ifdef CONFIG_KMEMCHECK
  1060. /*
  1061. * Split shadow pages too, because free(page[0]) would
  1062. * otherwise free the whole shadow.
  1063. */
  1064. if (kmemcheck_page_is_tracked(page))
  1065. split_page(virt_to_page(page[0].shadow), order);
  1066. #endif
  1067. for (i = 1; i < (1 << order); i++)
  1068. set_page_refcounted(page + i);
  1069. }
  1070. /*
  1071. * Similar to split_page except the page is already free. As this is only
  1072. * being used for migration, the migratetype of the block also changes.
  1073. * As this is called with interrupts disabled, the caller is responsible
  1074. * for calling arch_alloc_page() and kernel_map_page() after interrupts
  1075. * are enabled.
  1076. *
  1077. * Note: this is probably too low level an operation for use in drivers.
  1078. * Please consult with lkml before using this in your driver.
  1079. */
  1080. int split_free_page(struct page *page)
  1081. {
  1082. unsigned int order;
  1083. unsigned long watermark;
  1084. struct zone *zone;
  1085. BUG_ON(!PageBuddy(page));
  1086. zone = page_zone(page);
  1087. order = page_order(page);
  1088. /* Obey watermarks as if the page was being allocated */
  1089. watermark = low_wmark_pages(zone) + (1 << order);
  1090. if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
  1091. return 0;
  1092. /* Remove page from free list */
  1093. list_del(&page->lru);
  1094. zone->free_area[order].nr_free--;
  1095. rmv_page_order(page);
  1096. __mod_zone_page_state(zone, NR_FREE_PAGES, -(1UL << order));
  1097. /* Split into individual pages */
  1098. set_page_refcounted(page);
  1099. split_page(page, order);
  1100. if (order >= pageblock_order - 1) {
  1101. struct page *endpage = page + (1 << order) - 1;
  1102. for (; page < endpage; page += pageblock_nr_pages)
  1103. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  1104. }
  1105. return 1 << order;
  1106. }
  1107. /*
  1108. * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
  1109. * we cheat by calling it from here, in the order > 0 path. Saves a branch
  1110. * or two.
  1111. */
  1112. static inline
  1113. struct page *buffered_rmqueue(struct zone *preferred_zone,
  1114. struct zone *zone, int order, gfp_t gfp_flags,
  1115. int migratetype)
  1116. {
  1117. unsigned long flags;
  1118. struct page *page;
  1119. int cold = !!(gfp_flags & __GFP_COLD);
  1120. again:
  1121. if (likely(order == 0)) {
  1122. struct per_cpu_pages *pcp;
  1123. struct list_head *list;
  1124. local_irq_save(flags);
  1125. pcp = &this_cpu_ptr(zone->pageset)->pcp;
  1126. list = &pcp->lists[migratetype];
  1127. if (list_empty(list)) {
  1128. pcp->count += rmqueue_bulk(zone, 0,
  1129. pcp->batch, list,
  1130. migratetype, cold);
  1131. if (unlikely(list_empty(list)))
  1132. goto failed;
  1133. }
  1134. if (cold)
  1135. page = list_entry(list->prev, struct page, lru);
  1136. else
  1137. page = list_entry(list->next, struct page, lru);
  1138. list_del(&page->lru);
  1139. pcp->count--;
  1140. } else {
  1141. if (unlikely(gfp_flags & __GFP_NOFAIL)) {
  1142. /*
  1143. * __GFP_NOFAIL is not to be used in new code.
  1144. *
  1145. * All __GFP_NOFAIL callers should be fixed so that they
  1146. * properly detect and handle allocation failures.
  1147. *
  1148. * We most definitely don't want callers attempting to
  1149. * allocate greater than order-1 page units with
  1150. * __GFP_NOFAIL.
  1151. */
  1152. WARN_ON_ONCE(order > 1);
  1153. }
  1154. spin_lock_irqsave(&zone->lock, flags);
  1155. page = __rmqueue(zone, order, migratetype);
  1156. spin_unlock(&zone->lock);
  1157. if (!page)
  1158. goto failed;
  1159. __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
  1160. }
  1161. __count_zone_vm_events(PGALLOC, zone, 1 << order);
  1162. zone_statistics(preferred_zone, zone, gfp_flags);
  1163. local_irq_restore(flags);
  1164. VM_BUG_ON(bad_range(zone, page));
  1165. if (prep_new_page(page, order, gfp_flags))
  1166. goto again;
  1167. return page;
  1168. failed:
  1169. local_irq_restore(flags);
  1170. return NULL;
  1171. }
  1172. /* The ALLOC_WMARK bits are used as an index to zone->watermark */
  1173. #define ALLOC_WMARK_MIN WMARK_MIN
  1174. #define ALLOC_WMARK_LOW WMARK_LOW
  1175. #define ALLOC_WMARK_HIGH WMARK_HIGH
  1176. #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
  1177. /* Mask to get the watermark bits */
  1178. #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
  1179. #define ALLOC_HARDER 0x10 /* try to alloc harder */
  1180. #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
  1181. #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
  1182. #ifdef CONFIG_FAIL_PAGE_ALLOC
  1183. static struct fail_page_alloc_attr {
  1184. struct fault_attr attr;
  1185. u32 ignore_gfp_highmem;
  1186. u32 ignore_gfp_wait;
  1187. u32 min_order;
  1188. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1189. struct dentry *ignore_gfp_highmem_file;
  1190. struct dentry *ignore_gfp_wait_file;
  1191. struct dentry *min_order_file;
  1192. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1193. } fail_page_alloc = {
  1194. .attr = FAULT_ATTR_INITIALIZER,
  1195. .ignore_gfp_wait = 1,
  1196. .ignore_gfp_highmem = 1,
  1197. .min_order = 1,
  1198. };
  1199. static int __init setup_fail_page_alloc(char *str)
  1200. {
  1201. return setup_fault_attr(&fail_page_alloc.attr, str);
  1202. }
  1203. __setup("fail_page_alloc=", setup_fail_page_alloc);
  1204. static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1205. {
  1206. if (order < fail_page_alloc.min_order)
  1207. return 0;
  1208. if (gfp_mask & __GFP_NOFAIL)
  1209. return 0;
  1210. if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
  1211. return 0;
  1212. if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
  1213. return 0;
  1214. return should_fail(&fail_page_alloc.attr, 1 << order);
  1215. }
  1216. #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
  1217. static int __init fail_page_alloc_debugfs(void)
  1218. {
  1219. mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
  1220. struct dentry *dir;
  1221. int err;
  1222. err = init_fault_attr_dentries(&fail_page_alloc.attr,
  1223. "fail_page_alloc");
  1224. if (err)
  1225. return err;
  1226. dir = fail_page_alloc.attr.dentries.dir;
  1227. fail_page_alloc.ignore_gfp_wait_file =
  1228. debugfs_create_bool("ignore-gfp-wait", mode, dir,
  1229. &fail_page_alloc.ignore_gfp_wait);
  1230. fail_page_alloc.ignore_gfp_highmem_file =
  1231. debugfs_create_bool("ignore-gfp-highmem", mode, dir,
  1232. &fail_page_alloc.ignore_gfp_highmem);
  1233. fail_page_alloc.min_order_file =
  1234. debugfs_create_u32("min-order", mode, dir,
  1235. &fail_page_alloc.min_order);
  1236. if (!fail_page_alloc.ignore_gfp_wait_file ||
  1237. !fail_page_alloc.ignore_gfp_highmem_file ||
  1238. !fail_page_alloc.min_order_file) {
  1239. err = -ENOMEM;
  1240. debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
  1241. debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
  1242. debugfs_remove(fail_page_alloc.min_order_file);
  1243. cleanup_fault_attr_dentries(&fail_page_alloc.attr);
  1244. }
  1245. return err;
  1246. }
  1247. late_initcall(fail_page_alloc_debugfs);
  1248. #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
  1249. #else /* CONFIG_FAIL_PAGE_ALLOC */
  1250. static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
  1251. {
  1252. return 0;
  1253. }
  1254. #endif /* CONFIG_FAIL_PAGE_ALLOC */
  1255. /*
  1256. * Return true if free pages are above 'mark'. This takes into account the order
  1257. * of the allocation.
  1258. */
  1259. static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1260. int classzone_idx, int alloc_flags, long free_pages)
  1261. {
  1262. /* free_pages my go negative - that's OK */
  1263. long min = mark;
  1264. int o;
  1265. free_pages -= (1 << order) + 1;
  1266. if (alloc_flags & ALLOC_HIGH)
  1267. min -= min / 2;
  1268. if (alloc_flags & ALLOC_HARDER)
  1269. min -= min / 4;
  1270. if (free_pages <= min + z->lowmem_reserve[classzone_idx])
  1271. return false;
  1272. for (o = 0; o < order; o++) {
  1273. /* At the next order, this order's pages become unavailable */
  1274. free_pages -= z->free_area[o].nr_free << o;
  1275. /* Require fewer higher order pages to be free */
  1276. min >>= 1;
  1277. if (free_pages <= min)
  1278. return false;
  1279. }
  1280. return true;
  1281. }
  1282. bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
  1283. int classzone_idx, int alloc_flags)
  1284. {
  1285. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1286. zone_page_state(z, NR_FREE_PAGES));
  1287. }
  1288. bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
  1289. int classzone_idx, int alloc_flags)
  1290. {
  1291. long free_pages = zone_page_state(z, NR_FREE_PAGES);
  1292. if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
  1293. free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
  1294. return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
  1295. free_pages);
  1296. }
  1297. #ifdef CONFIG_NUMA
  1298. /*
  1299. * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
  1300. * skip over zones that are not allowed by the cpuset, or that have
  1301. * been recently (in last second) found to be nearly full. See further
  1302. * comments in mmzone.h. Reduces cache footprint of zonelist scans
  1303. * that have to skip over a lot of full or unallowed zones.
  1304. *
  1305. * If the zonelist cache is present in the passed in zonelist, then
  1306. * returns a pointer to the allowed node mask (either the current
  1307. * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
  1308. *
  1309. * If the zonelist cache is not available for this zonelist, does
  1310. * nothing and returns NULL.
  1311. *
  1312. * If the fullzones BITMAP in the zonelist cache is stale (more than
  1313. * a second since last zap'd) then we zap it out (clear its bits.)
  1314. *
  1315. * We hold off even calling zlc_setup, until after we've checked the
  1316. * first zone in the zonelist, on the theory that most allocations will
  1317. * be satisfied from that first zone, so best to examine that zone as
  1318. * quickly as we can.
  1319. */
  1320. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1321. {
  1322. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1323. nodemask_t *allowednodes; /* zonelist_cache approximation */
  1324. zlc = zonelist->zlcache_ptr;
  1325. if (!zlc)
  1326. return NULL;
  1327. if (time_after(jiffies, zlc->last_full_zap + HZ)) {
  1328. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  1329. zlc->last_full_zap = jiffies;
  1330. }
  1331. allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
  1332. &cpuset_current_mems_allowed :
  1333. &node_states[N_HIGH_MEMORY];
  1334. return allowednodes;
  1335. }
  1336. /*
  1337. * Given 'z' scanning a zonelist, run a couple of quick checks to see
  1338. * if it is worth looking at further for free memory:
  1339. * 1) Check that the zone isn't thought to be full (doesn't have its
  1340. * bit set in the zonelist_cache fullzones BITMAP).
  1341. * 2) Check that the zones node (obtained from the zonelist_cache
  1342. * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
  1343. * Return true (non-zero) if zone is worth looking at further, or
  1344. * else return false (zero) if it is not.
  1345. *
  1346. * This check -ignores- the distinction between various watermarks,
  1347. * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
  1348. * found to be full for any variation of these watermarks, it will
  1349. * be considered full for up to one second by all requests, unless
  1350. * we are so low on memory on all allowed nodes that we are forced
  1351. * into the second scan of the zonelist.
  1352. *
  1353. * In the second scan we ignore this zonelist cache and exactly
  1354. * apply the watermarks to all zones, even it is slower to do so.
  1355. * We are low on memory in the second scan, and should leave no stone
  1356. * unturned looking for a free page.
  1357. */
  1358. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1359. nodemask_t *allowednodes)
  1360. {
  1361. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1362. int i; /* index of *z in zonelist zones */
  1363. int n; /* node that zone *z is on */
  1364. zlc = zonelist->zlcache_ptr;
  1365. if (!zlc)
  1366. return 1;
  1367. i = z - zonelist->_zonerefs;
  1368. n = zlc->z_to_n[i];
  1369. /* This zone is worth trying if it is allowed but not full */
  1370. return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
  1371. }
  1372. /*
  1373. * Given 'z' scanning a zonelist, set the corresponding bit in
  1374. * zlc->fullzones, so that subsequent attempts to allocate a page
  1375. * from that zone don't waste time re-examining it.
  1376. */
  1377. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1378. {
  1379. struct zonelist_cache *zlc; /* cached zonelist speedup info */
  1380. int i; /* index of *z in zonelist zones */
  1381. zlc = zonelist->zlcache_ptr;
  1382. if (!zlc)
  1383. return;
  1384. i = z - zonelist->_zonerefs;
  1385. set_bit(i, zlc->fullzones);
  1386. }
  1387. #else /* CONFIG_NUMA */
  1388. static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
  1389. {
  1390. return NULL;
  1391. }
  1392. static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
  1393. nodemask_t *allowednodes)
  1394. {
  1395. return 1;
  1396. }
  1397. static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
  1398. {
  1399. }
  1400. #endif /* CONFIG_NUMA */
  1401. /*
  1402. * get_page_from_freelist goes through the zonelist trying to allocate
  1403. * a page.
  1404. */
  1405. static struct page *
  1406. get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
  1407. struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
  1408. struct zone *preferred_zone, int migratetype)
  1409. {
  1410. struct zoneref *z;
  1411. struct page *page = NULL;
  1412. int classzone_idx;
  1413. struct zone *zone;
  1414. nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
  1415. int zlc_active = 0; /* set if using zonelist_cache */
  1416. int did_zlc_setup = 0; /* just call zlc_setup() one time */
  1417. classzone_idx = zone_idx(preferred_zone);
  1418. zonelist_scan:
  1419. /*
  1420. * Scan zonelist, looking for a zone with enough free.
  1421. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1422. */
  1423. for_each_zone_zonelist_nodemask(zone, z, zonelist,
  1424. high_zoneidx, nodemask) {
  1425. if (NUMA_BUILD && zlc_active &&
  1426. !zlc_zone_worth_trying(zonelist, z, allowednodes))
  1427. continue;
  1428. if ((alloc_flags & ALLOC_CPUSET) &&
  1429. !cpuset_zone_allowed_softwall(zone, gfp_mask))
  1430. goto try_next_zone;
  1431. BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
  1432. if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
  1433. unsigned long mark;
  1434. int ret;
  1435. mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
  1436. if (zone_watermark_ok(zone, order, mark,
  1437. classzone_idx, alloc_flags))
  1438. goto try_this_zone;
  1439. if (zone_reclaim_mode == 0)
  1440. goto this_zone_full;
  1441. ret = zone_reclaim(zone, gfp_mask, order);
  1442. switch (ret) {
  1443. case ZONE_RECLAIM_NOSCAN:
  1444. /* did not scan */
  1445. goto try_next_zone;
  1446. case ZONE_RECLAIM_FULL:
  1447. /* scanned but unreclaimable */
  1448. goto this_zone_full;
  1449. default:
  1450. /* did we reclaim enough */
  1451. if (!zone_watermark_ok(zone, order, mark,
  1452. classzone_idx, alloc_flags))
  1453. goto this_zone_full;
  1454. }
  1455. }
  1456. try_this_zone:
  1457. page = buffered_rmqueue(preferred_zone, zone, order,
  1458. gfp_mask, migratetype);
  1459. if (page)
  1460. break;
  1461. this_zone_full:
  1462. if (NUMA_BUILD)
  1463. zlc_mark_zone_full(zonelist, z);
  1464. try_next_zone:
  1465. if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
  1466. /*
  1467. * we do zlc_setup after the first zone is tried but only
  1468. * if there are multiple nodes make it worthwhile
  1469. */
  1470. allowednodes = zlc_setup(zonelist, alloc_flags);
  1471. zlc_active = 1;
  1472. did_zlc_setup = 1;
  1473. }
  1474. }
  1475. if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
  1476. /* Disable zlc cache for second zonelist scan */
  1477. zlc_active = 0;
  1478. goto zonelist_scan;
  1479. }
  1480. return page;
  1481. }
  1482. /*
  1483. * Large machines with many possible nodes should not always dump per-node
  1484. * meminfo in irq context.
  1485. */
  1486. static inline bool should_suppress_show_mem(void)
  1487. {
  1488. bool ret = false;
  1489. #if NODES_SHIFT > 8
  1490. ret = in_interrupt();
  1491. #endif
  1492. return ret;
  1493. }
  1494. static inline int
  1495. should_alloc_retry(gfp_t gfp_mask, unsigned int order,
  1496. unsigned long pages_reclaimed)
  1497. {
  1498. /* Do not loop if specifically requested */
  1499. if (gfp_mask & __GFP_NORETRY)
  1500. return 0;
  1501. /*
  1502. * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
  1503. * means __GFP_NOFAIL, but that may not be true in other
  1504. * implementations.
  1505. */
  1506. if (order <= PAGE_ALLOC_COSTLY_ORDER)
  1507. return 1;
  1508. /*
  1509. * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
  1510. * specified, then we retry until we no longer reclaim any pages
  1511. * (above), or we've reclaimed an order of pages at least as
  1512. * large as the allocation's order. In both cases, if the
  1513. * allocation still fails, we stop retrying.
  1514. */
  1515. if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
  1516. return 1;
  1517. /*
  1518. * Don't let big-order allocations loop unless the caller
  1519. * explicitly requests that.
  1520. */
  1521. if (gfp_mask & __GFP_NOFAIL)
  1522. return 1;
  1523. return 0;
  1524. }
  1525. static inline struct page *
  1526. __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
  1527. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1528. nodemask_t *nodemask, struct zone *preferred_zone,
  1529. int migratetype)
  1530. {
  1531. struct page *page;
  1532. /* Acquire the OOM killer lock for the zones in zonelist */
  1533. if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
  1534. schedule_timeout_uninterruptible(1);
  1535. return NULL;
  1536. }
  1537. /*
  1538. * Go through the zonelist yet one more time, keep very high watermark
  1539. * here, this is only to catch a parallel oom killing, we must fail if
  1540. * we're still under heavy pressure.
  1541. */
  1542. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
  1543. order, zonelist, high_zoneidx,
  1544. ALLOC_WMARK_HIGH|ALLOC_CPUSET,
  1545. preferred_zone, migratetype);
  1546. if (page)
  1547. goto out;
  1548. if (!(gfp_mask & __GFP_NOFAIL)) {
  1549. /* The OOM killer will not help higher order allocs */
  1550. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1551. goto out;
  1552. /* The OOM killer does not needlessly kill tasks for lowmem */
  1553. if (high_zoneidx < ZONE_NORMAL)
  1554. goto out;
  1555. /*
  1556. * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
  1557. * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
  1558. * The caller should handle page allocation failure by itself if
  1559. * it specifies __GFP_THISNODE.
  1560. * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
  1561. */
  1562. if (gfp_mask & __GFP_THISNODE)
  1563. goto out;
  1564. }
  1565. /* Exhausted what can be done so it's blamo time */
  1566. out_of_memory(zonelist, gfp_mask, order, nodemask);
  1567. out:
  1568. clear_zonelist_oom(zonelist, gfp_mask);
  1569. return page;
  1570. }
  1571. #ifdef CONFIG_COMPACTION
  1572. /* Try memory compaction for high-order allocations before reclaim */
  1573. static struct page *
  1574. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  1575. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1576. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1577. int migratetype, unsigned long *did_some_progress,
  1578. bool sync_migration)
  1579. {
  1580. struct page *page;
  1581. if (!order || compaction_deferred(preferred_zone))
  1582. return NULL;
  1583. current->flags |= PF_MEMALLOC;
  1584. *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
  1585. nodemask, sync_migration);
  1586. current->flags &= ~PF_MEMALLOC;
  1587. if (*did_some_progress != COMPACT_SKIPPED) {
  1588. /* Page migration frees to the PCP lists but we want merging */
  1589. drain_pages(get_cpu());
  1590. put_cpu();
  1591. page = get_page_from_freelist(gfp_mask, nodemask,
  1592. order, zonelist, high_zoneidx,
  1593. alloc_flags, preferred_zone,
  1594. migratetype);
  1595. if (page) {
  1596. preferred_zone->compact_considered = 0;
  1597. preferred_zone->compact_defer_shift = 0;
  1598. count_vm_event(COMPACTSUCCESS);
  1599. return page;
  1600. }
  1601. /*
  1602. * It's bad if compaction run occurs and fails.
  1603. * The most likely reason is that pages exist,
  1604. * but not enough to satisfy watermarks.
  1605. */
  1606. count_vm_event(COMPACTFAIL);
  1607. defer_compaction(preferred_zone);
  1608. cond_resched();
  1609. }
  1610. return NULL;
  1611. }
  1612. #else
  1613. static inline struct page *
  1614. __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
  1615. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1616. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1617. int migratetype, unsigned long *did_some_progress,
  1618. bool sync_migration)
  1619. {
  1620. return NULL;
  1621. }
  1622. #endif /* CONFIG_COMPACTION */
  1623. /* The really slow allocator path where we enter direct reclaim */
  1624. static inline struct page *
  1625. __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
  1626. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1627. nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
  1628. int migratetype, unsigned long *did_some_progress)
  1629. {
  1630. struct page *page = NULL;
  1631. struct reclaim_state reclaim_state;
  1632. bool drained = false;
  1633. cond_resched();
  1634. /* We now go into synchronous reclaim */
  1635. cpuset_memory_pressure_bump();
  1636. current->flags |= PF_MEMALLOC;
  1637. lockdep_set_current_reclaim_state(gfp_mask);
  1638. reclaim_state.reclaimed_slab = 0;
  1639. current->reclaim_state = &reclaim_state;
  1640. *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
  1641. current->reclaim_state = NULL;
  1642. lockdep_clear_current_reclaim_state();
  1643. current->flags &= ~PF_MEMALLOC;
  1644. cond_resched();
  1645. if (unlikely(!(*did_some_progress)))
  1646. return NULL;
  1647. retry:
  1648. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1649. zonelist, high_zoneidx,
  1650. alloc_flags, preferred_zone,
  1651. migratetype);
  1652. /*
  1653. * If an allocation failed after direct reclaim, it could be because
  1654. * pages are pinned on the per-cpu lists. Drain them and try again
  1655. */
  1656. if (!page && !drained) {
  1657. drain_all_pages();
  1658. drained = true;
  1659. goto retry;
  1660. }
  1661. return page;
  1662. }
  1663. /*
  1664. * This is called in the allocator slow-path if the allocation request is of
  1665. * sufficient urgency to ignore watermarks and take other desperate measures
  1666. */
  1667. static inline struct page *
  1668. __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
  1669. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1670. nodemask_t *nodemask, struct zone *preferred_zone,
  1671. int migratetype)
  1672. {
  1673. struct page *page;
  1674. do {
  1675. page = get_page_from_freelist(gfp_mask, nodemask, order,
  1676. zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
  1677. preferred_zone, migratetype);
  1678. if (!page && gfp_mask & __GFP_NOFAIL)
  1679. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  1680. } while (!page && (gfp_mask & __GFP_NOFAIL));
  1681. return page;
  1682. }
  1683. static inline
  1684. void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
  1685. enum zone_type high_zoneidx,
  1686. enum zone_type classzone_idx)
  1687. {
  1688. struct zoneref *z;
  1689. struct zone *zone;
  1690. for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
  1691. wakeup_kswapd(zone, order, classzone_idx);
  1692. }
  1693. static inline int
  1694. gfp_to_alloc_flags(gfp_t gfp_mask)
  1695. {
  1696. int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
  1697. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1698. /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
  1699. BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
  1700. /*
  1701. * The caller may dip into page reserves a bit more if the caller
  1702. * cannot run direct reclaim, or if the caller has realtime scheduling
  1703. * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
  1704. * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
  1705. */
  1706. alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
  1707. if (!wait) {
  1708. /*
  1709. * Not worth trying to allocate harder for
  1710. * __GFP_NOMEMALLOC even if it can't schedule.
  1711. */
  1712. if (!(gfp_mask & __GFP_NOMEMALLOC))
  1713. alloc_flags |= ALLOC_HARDER;
  1714. /*
  1715. * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
  1716. * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
  1717. */
  1718. alloc_flags &= ~ALLOC_CPUSET;
  1719. } else if (unlikely(rt_task(current)) && !in_interrupt())
  1720. alloc_flags |= ALLOC_HARDER;
  1721. if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
  1722. if (!in_interrupt() &&
  1723. ((current->flags & PF_MEMALLOC) ||
  1724. unlikely(test_thread_flag(TIF_MEMDIE))))
  1725. alloc_flags |= ALLOC_NO_WATERMARKS;
  1726. }
  1727. return alloc_flags;
  1728. }
  1729. static inline struct page *
  1730. __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
  1731. struct zonelist *zonelist, enum zone_type high_zoneidx,
  1732. nodemask_t *nodemask, struct zone *preferred_zone,
  1733. int migratetype)
  1734. {
  1735. const gfp_t wait = gfp_mask & __GFP_WAIT;
  1736. struct page *page = NULL;
  1737. int alloc_flags;
  1738. unsigned long pages_reclaimed = 0;
  1739. unsigned long did_some_progress;
  1740. bool sync_migration = false;
  1741. /*
  1742. * In the slowpath, we sanity check order to avoid ever trying to
  1743. * reclaim >= MAX_ORDER areas which will never succeed. Callers may
  1744. * be using allocators in order of preference for an area that is
  1745. * too large.
  1746. */
  1747. if (order >= MAX_ORDER) {
  1748. WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
  1749. return NULL;
  1750. }
  1751. /*
  1752. * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
  1753. * __GFP_NOWARN set) should not cause reclaim since the subsystem
  1754. * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
  1755. * using a larger set of nodes after it has established that the
  1756. * allowed per node queues are empty and that nodes are
  1757. * over allocated.
  1758. */
  1759. if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
  1760. goto nopage;
  1761. restart:
  1762. if (!(gfp_mask & __GFP_NO_KSWAPD))
  1763. wake_all_kswapd(order, zonelist, high_zoneidx,
  1764. zone_idx(preferred_zone));
  1765. /*
  1766. * OK, we're below the kswapd watermark and have kicked background
  1767. * reclaim. Now things get more complex, so set up alloc_flags according
  1768. * to how we want to proceed.
  1769. */
  1770. alloc_flags = gfp_to_alloc_flags(gfp_mask);
  1771. /*
  1772. * Find the true preferred zone if the allocation is unconstrained by
  1773. * cpusets.
  1774. */
  1775. if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
  1776. first_zones_zonelist(zonelist, high_zoneidx, NULL,
  1777. &preferred_zone);
  1778. /* This is the last chance, in general, before the goto nopage. */
  1779. page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
  1780. high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
  1781. preferred_zone, migratetype);
  1782. if (page)
  1783. goto got_pg;
  1784. rebalance:
  1785. /* Allocate without watermarks if the context allows */
  1786. if (alloc_flags & ALLOC_NO_WATERMARKS) {
  1787. page = __alloc_pages_high_priority(gfp_mask, order,
  1788. zonelist, high_zoneidx, nodemask,
  1789. preferred_zone, migratetype);
  1790. if (page)
  1791. goto got_pg;
  1792. }
  1793. /* Atomic allocations - we can't balance anything */
  1794. if (!wait)
  1795. goto nopage;
  1796. /* Avoid recursion of direct reclaim */
  1797. if (current->flags & PF_MEMALLOC)
  1798. goto nopage;
  1799. /* Avoid allocations with no watermarks from looping endlessly */
  1800. if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
  1801. goto nopage;
  1802. /*
  1803. * Try direct compaction. The first pass is asynchronous. Subsequent
  1804. * attempts after direct reclaim are synchronous
  1805. */
  1806. page = __alloc_pages_direct_compact(gfp_mask, order,
  1807. zonelist, high_zoneidx,
  1808. nodemask,
  1809. alloc_flags, preferred_zone,
  1810. migratetype, &did_some_progress,
  1811. sync_migration);
  1812. if (page)
  1813. goto got_pg;
  1814. sync_migration = !(gfp_mask & __GFP_NO_KSWAPD);
  1815. /* Try direct reclaim and then allocating */
  1816. page = __alloc_pages_direct_reclaim(gfp_mask, order,
  1817. zonelist, high_zoneidx,
  1818. nodemask,
  1819. alloc_flags, preferred_zone,
  1820. migratetype, &did_some_progress);
  1821. if (page)
  1822. goto got_pg;
  1823. /*
  1824. * If we failed to make any progress reclaiming, then we are
  1825. * running out of options and have to consider going OOM
  1826. */
  1827. if (!did_some_progress) {
  1828. if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
  1829. if (oom_killer_disabled)
  1830. goto nopage;
  1831. page = __alloc_pages_may_oom(gfp_mask, order,
  1832. zonelist, high_zoneidx,
  1833. nodemask, preferred_zone,
  1834. migratetype);
  1835. if (page)
  1836. goto got_pg;
  1837. if (!(gfp_mask & __GFP_NOFAIL)) {
  1838. /*
  1839. * The oom killer is not called for high-order
  1840. * allocations that may fail, so if no progress
  1841. * is being made, there are no other options and
  1842. * retrying is unlikely to help.
  1843. */
  1844. if (order > PAGE_ALLOC_COSTLY_ORDER)
  1845. goto nopage;
  1846. /*
  1847. * The oom killer is not called for lowmem
  1848. * allocations to prevent needlessly killing
  1849. * innocent tasks.
  1850. */
  1851. if (high_zoneidx < ZONE_NORMAL)
  1852. goto nopage;
  1853. }
  1854. goto restart;
  1855. }
  1856. }
  1857. /* Check if we should retry the allocation */
  1858. pages_reclaimed += did_some_progress;
  1859. if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
  1860. /* Wait for some write requests to complete then retry */
  1861. wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
  1862. goto rebalance;
  1863. } else {
  1864. /*
  1865. * High-order allocations do not necessarily loop after
  1866. * direct reclaim and reclaim/compaction depends on compaction
  1867. * being called after reclaim so call directly if necessary
  1868. */
  1869. page = __alloc_pages_direct_compact(gfp_mask, order,
  1870. zonelist, high_zoneidx,
  1871. nodemask,
  1872. alloc_flags, preferred_zone,
  1873. migratetype, &did_some_progress,
  1874. sync_migration);
  1875. if (page)
  1876. goto got_pg;
  1877. }
  1878. nopage:
  1879. if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
  1880. unsigned int filter = SHOW_MEM_FILTER_NODES;
  1881. /*
  1882. * This documents exceptions given to allocations in certain
  1883. * contexts that are allowed to allocate outside current's set
  1884. * of allowed nodes.
  1885. */
  1886. if (!(gfp_mask & __GFP_NOMEMALLOC))
  1887. if (test_thread_flag(TIF_MEMDIE) ||
  1888. (current->flags & (PF_MEMALLOC | PF_EXITING)))
  1889. filter &= ~SHOW_MEM_FILTER_NODES;
  1890. if (in_interrupt() || !wait)
  1891. filter &= ~SHOW_MEM_FILTER_NODES;
  1892. pr_warning("%s: page allocation failure. order:%d, mode:0x%x\n",
  1893. current->comm, order, gfp_mask);
  1894. dump_stack();
  1895. if (!should_suppress_show_mem())
  1896. show_mem(filter);
  1897. }
  1898. return page;
  1899. got_pg:
  1900. if (kmemcheck_enabled)
  1901. kmemcheck_pagealloc_alloc(page, order, gfp_mask);
  1902. return page;
  1903. }
  1904. /*
  1905. * This is the 'heart' of the zoned buddy allocator.
  1906. */
  1907. struct page *
  1908. __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
  1909. struct zonelist *zonelist, nodemask_t *nodemask)
  1910. {
  1911. enum zone_type high_zoneidx = gfp_zone(gfp_mask);
  1912. struct zone *preferred_zone;
  1913. struct page *page;
  1914. int migratetype = allocflags_to_migratetype(gfp_mask);
  1915. gfp_mask &= gfp_allowed_mask;
  1916. lockdep_trace_alloc(gfp_mask);
  1917. might_sleep_if(gfp_mask & __GFP_WAIT);
  1918. if (should_fail_alloc_page(gfp_mask, order))
  1919. return NULL;
  1920. /*
  1921. * Check the zones suitable for the gfp_mask contain at least one
  1922. * valid zone. It's possible to have an empty zonelist as a result
  1923. * of GFP_THISNODE and a memoryless node
  1924. */
  1925. if (unlikely(!zonelist->_zonerefs->zone))
  1926. return NULL;
  1927. get_mems_allowed();
  1928. /* The preferred zone is used for statistics later */
  1929. first_zones_zonelist(zonelist, high_zoneidx,
  1930. nodemask ? : &cpuset_current_mems_allowed,
  1931. &preferred_zone);
  1932. if (!preferred_zone) {
  1933. put_mems_allowed();
  1934. return NULL;
  1935. }
  1936. /* First allocation attempt */
  1937. page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
  1938. zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
  1939. preferred_zone, migratetype);
  1940. if (unlikely(!page))
  1941. page = __alloc_pages_slowpath(gfp_mask, order,
  1942. zonelist, high_zoneidx, nodemask,
  1943. preferred_zone, migratetype);
  1944. put_mems_allowed();
  1945. trace_mm_page_alloc(page, order, gfp_mask, migratetype);
  1946. return page;
  1947. }
  1948. EXPORT_SYMBOL(__alloc_pages_nodemask);
  1949. /*
  1950. * Common helper functions.
  1951. */
  1952. unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
  1953. {
  1954. struct page *page;
  1955. /*
  1956. * __get_free_pages() returns a 32-bit address, which cannot represent
  1957. * a highmem page
  1958. */
  1959. VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
  1960. page = alloc_pages(gfp_mask, order);
  1961. if (!page)
  1962. return 0;
  1963. return (unsigned long) page_address(page);
  1964. }
  1965. EXPORT_SYMBOL(__get_free_pages);
  1966. unsigned long get_zeroed_page(gfp_t gfp_mask)
  1967. {
  1968. return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
  1969. }
  1970. EXPORT_SYMBOL(get_zeroed_page);
  1971. void __pagevec_free(struct pagevec *pvec)
  1972. {
  1973. int i = pagevec_count(pvec);
  1974. while (--i >= 0) {
  1975. trace_mm_pagevec_free(pvec->pages[i], pvec->cold);
  1976. free_hot_cold_page(pvec->pages[i], pvec->cold);
  1977. }
  1978. }
  1979. void __free_pages(struct page *page, unsigned int order)
  1980. {
  1981. if (put_page_testzero(page)) {
  1982. if (order == 0)
  1983. free_hot_cold_page(page, 0);
  1984. else
  1985. __free_pages_ok(page, order);
  1986. }
  1987. }
  1988. EXPORT_SYMBOL(__free_pages);
  1989. void free_pages(unsigned long addr, unsigned int order)
  1990. {
  1991. if (addr != 0) {
  1992. VM_BUG_ON(!virt_addr_valid((void *)addr));
  1993. __free_pages(virt_to_page((void *)addr), order);
  1994. }
  1995. }
  1996. EXPORT_SYMBOL(free_pages);
  1997. /**
  1998. * alloc_pages_exact - allocate an exact number physically-contiguous pages.
  1999. * @size: the number of bytes to allocate
  2000. * @gfp_mask: GFP flags for the allocation
  2001. *
  2002. * This function is similar to alloc_pages(), except that it allocates the
  2003. * minimum number of pages to satisfy the request. alloc_pages() can only
  2004. * allocate memory in power-of-two pages.
  2005. *
  2006. * This function is also limited by MAX_ORDER.
  2007. *
  2008. * Memory allocated by this function must be released by free_pages_exact().
  2009. */
  2010. void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
  2011. {
  2012. unsigned int order = get_order(size);
  2013. unsigned long addr;
  2014. addr = __get_free_pages(gfp_mask, order);
  2015. if (addr) {
  2016. unsigned long alloc_end = addr + (PAGE_SIZE << order);
  2017. unsigned long used = addr + PAGE_ALIGN(size);
  2018. split_page(virt_to_page((void *)addr), order);
  2019. while (used < alloc_end) {
  2020. free_page(used);
  2021. used += PAGE_SIZE;
  2022. }
  2023. }
  2024. return (void *)addr;
  2025. }
  2026. EXPORT_SYMBOL(alloc_pages_exact);
  2027. /**
  2028. * free_pages_exact - release memory allocated via alloc_pages_exact()
  2029. * @virt: the value returned by alloc_pages_exact.
  2030. * @size: size of allocation, same value as passed to alloc_pages_exact().
  2031. *
  2032. * Release the memory allocated by a previous call to alloc_pages_exact.
  2033. */
  2034. void free_pages_exact(void *virt, size_t size)
  2035. {
  2036. unsigned long addr = (unsigned long)virt;
  2037. unsigned long end = addr + PAGE_ALIGN(size);
  2038. while (addr < end) {
  2039. free_page(addr);
  2040. addr += PAGE_SIZE;
  2041. }
  2042. }
  2043. EXPORT_SYMBOL(free_pages_exact);
  2044. static unsigned int nr_free_zone_pages(int offset)
  2045. {
  2046. struct zoneref *z;
  2047. struct zone *zone;
  2048. /* Just pick one node, since fallback list is circular */
  2049. unsigned int sum = 0;
  2050. struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
  2051. for_each_zone_zonelist(zone, z, zonelist, offset) {
  2052. unsigned long size = zone->present_pages;
  2053. unsigned long high = high_wmark_pages(zone);
  2054. if (size > high)
  2055. sum += size - high;
  2056. }
  2057. return sum;
  2058. }
  2059. /*
  2060. * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
  2061. */
  2062. unsigned int nr_free_buffer_pages(void)
  2063. {
  2064. return nr_free_zone_pages(gfp_zone(GFP_USER));
  2065. }
  2066. EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
  2067. /*
  2068. * Amount of free RAM allocatable within all zones
  2069. */
  2070. unsigned int nr_free_pagecache_pages(void)
  2071. {
  2072. return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
  2073. }
  2074. static inline void show_node(struct zone *zone)
  2075. {
  2076. if (NUMA_BUILD)
  2077. printk("Node %d ", zone_to_nid(zone));
  2078. }
  2079. void si_meminfo(struct sysinfo *val)
  2080. {
  2081. val->totalram = totalram_pages;
  2082. val->sharedram = 0;
  2083. val->freeram = global_page_state(NR_FREE_PAGES);
  2084. val->bufferram = nr_blockdev_pages();
  2085. val->totalhigh = totalhigh_pages;
  2086. val->freehigh = nr_free_highpages();
  2087. val->mem_unit = PAGE_SIZE;
  2088. }
  2089. EXPORT_SYMBOL(si_meminfo);
  2090. #ifdef CONFIG_NUMA
  2091. void si_meminfo_node(struct sysinfo *val, int nid)
  2092. {
  2093. pg_data_t *pgdat = NODE_DATA(nid);
  2094. val->totalram = pgdat->node_present_pages;
  2095. val->freeram = node_page_state(nid, NR_FREE_PAGES);
  2096. #ifdef CONFIG_HIGHMEM
  2097. val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
  2098. val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
  2099. NR_FREE_PAGES);
  2100. #else
  2101. val->totalhigh = 0;
  2102. val->freehigh = 0;
  2103. #endif
  2104. val->mem_unit = PAGE_SIZE;
  2105. }
  2106. #endif
  2107. /*
  2108. * Determine whether the zone's node should be displayed or not, depending on
  2109. * whether SHOW_MEM_FILTER_NODES was passed to __show_free_areas().
  2110. */
  2111. static bool skip_free_areas_zone(unsigned int flags, const struct zone *zone)
  2112. {
  2113. bool ret = false;
  2114. if (!(flags & SHOW_MEM_FILTER_NODES))
  2115. goto out;
  2116. get_mems_allowed();
  2117. ret = !node_isset(zone->zone_pgdat->node_id,
  2118. cpuset_current_mems_allowed);
  2119. put_mems_allowed();
  2120. out:
  2121. return ret;
  2122. }
  2123. #define K(x) ((x) << (PAGE_SHIFT-10))
  2124. /*
  2125. * Show free area list (used inside shift_scroll-lock stuff)
  2126. * We also calculate the percentage fragmentation. We do this by counting the
  2127. * memory on each free list with the exception of the first item on the list.
  2128. * Suppresses nodes that are not allowed by current's cpuset if
  2129. * SHOW_MEM_FILTER_NODES is passed.
  2130. */
  2131. void __show_free_areas(unsigned int filter)
  2132. {
  2133. int cpu;
  2134. struct zone *zone;
  2135. for_each_populated_zone(zone) {
  2136. if (skip_free_areas_zone(filter, zone))
  2137. continue;
  2138. show_node(zone);
  2139. printk("%s per-cpu:\n", zone->name);
  2140. for_each_online_cpu(cpu) {
  2141. struct per_cpu_pageset *pageset;
  2142. pageset = per_cpu_ptr(zone->pageset, cpu);
  2143. printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
  2144. cpu, pageset->pcp.high,
  2145. pageset->pcp.batch, pageset->pcp.count);
  2146. }
  2147. }
  2148. printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
  2149. " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
  2150. " unevictable:%lu"
  2151. " dirty:%lu writeback:%lu unstable:%lu\n"
  2152. " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
  2153. " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
  2154. global_page_state(NR_ACTIVE_ANON),
  2155. global_page_state(NR_INACTIVE_ANON),
  2156. global_page_state(NR_ISOLATED_ANON),
  2157. global_page_state(NR_ACTIVE_FILE),
  2158. global_page_state(NR_INACTIVE_FILE),
  2159. global_page_state(NR_ISOLATED_FILE),
  2160. global_page_state(NR_UNEVICTABLE),
  2161. global_page_state(NR_FILE_DIRTY),
  2162. global_page_state(NR_WRITEBACK),
  2163. global_page_state(NR_UNSTABLE_NFS),
  2164. global_page_state(NR_FREE_PAGES),
  2165. global_page_state(NR_SLAB_RECLAIMABLE),
  2166. global_page_state(NR_SLAB_UNRECLAIMABLE),
  2167. global_page_state(NR_FILE_MAPPED),
  2168. global_page_state(NR_SHMEM),
  2169. global_page_state(NR_PAGETABLE),
  2170. global_page_state(NR_BOUNCE));
  2171. for_each_populated_zone(zone) {
  2172. int i;
  2173. if (skip_free_areas_zone(filter, zone))
  2174. continue;
  2175. show_node(zone);
  2176. printk("%s"
  2177. " free:%lukB"
  2178. " min:%lukB"
  2179. " low:%lukB"
  2180. " high:%lukB"
  2181. " active_anon:%lukB"
  2182. " inactive_anon:%lukB"
  2183. " active_file:%lukB"
  2184. " inactive_file:%lukB"
  2185. " unevictable:%lukB"
  2186. " isolated(anon):%lukB"
  2187. " isolated(file):%lukB"
  2188. " present:%lukB"
  2189. " mlocked:%lukB"
  2190. " dirty:%lukB"
  2191. " writeback:%lukB"
  2192. " mapped:%lukB"
  2193. " shmem:%lukB"
  2194. " slab_reclaimable:%lukB"
  2195. " slab_unreclaimable:%lukB"
  2196. " kernel_stack:%lukB"
  2197. " pagetables:%lukB"
  2198. " unstable:%lukB"
  2199. " bounce:%lukB"
  2200. " writeback_tmp:%lukB"
  2201. " pages_scanned:%lu"
  2202. " all_unreclaimable? %s"
  2203. "\n",
  2204. zone->name,
  2205. K(zone_page_state(zone, NR_FREE_PAGES)),
  2206. K(min_wmark_pages(zone)),
  2207. K(low_wmark_pages(zone)),
  2208. K(high_wmark_pages(zone)),
  2209. K(zone_page_state(zone, NR_ACTIVE_ANON)),
  2210. K(zone_page_state(zone, NR_INACTIVE_ANON)),
  2211. K(zone_page_state(zone, NR_ACTIVE_FILE)),
  2212. K(zone_page_state(zone, NR_INACTIVE_FILE)),
  2213. K(zone_page_state(zone, NR_UNEVICTABLE)),
  2214. K(zone_page_state(zone, NR_ISOLATED_ANON)),
  2215. K(zone_page_state(zone, NR_ISOLATED_FILE)),
  2216. K(zone->present_pages),
  2217. K(zone_page_state(zone, NR_MLOCK)),
  2218. K(zone_page_state(zone, NR_FILE_DIRTY)),
  2219. K(zone_page_state(zone, NR_WRITEBACK)),
  2220. K(zone_page_state(zone, NR_FILE_MAPPED)),
  2221. K(zone_page_state(zone, NR_SHMEM)),
  2222. K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
  2223. K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
  2224. zone_page_state(zone, NR_KERNEL_STACK) *
  2225. THREAD_SIZE / 1024,
  2226. K(zone_page_state(zone, NR_PAGETABLE)),
  2227. K(zone_page_state(zone, NR_UNSTABLE_NFS)),
  2228. K(zone_page_state(zone, NR_BOUNCE)),
  2229. K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
  2230. zone->pages_scanned,
  2231. (zone->all_unreclaimable ? "yes" : "no")
  2232. );
  2233. printk("lowmem_reserve[]:");
  2234. for (i = 0; i < MAX_NR_ZONES; i++)
  2235. printk(" %lu", zone->lowmem_reserve[i]);
  2236. printk("\n");
  2237. }
  2238. for_each_populated_zone(zone) {
  2239. unsigned long nr[MAX_ORDER], flags, order, total = 0;
  2240. if (skip_free_areas_zone(filter, zone))
  2241. continue;
  2242. show_node(zone);
  2243. printk("%s: ", zone->name);
  2244. spin_lock_irqsave(&zone->lock, flags);
  2245. for (order = 0; order < MAX_ORDER; order++) {
  2246. nr[order] = zone->free_area[order].nr_free;
  2247. total += nr[order] << order;
  2248. }
  2249. spin_unlock_irqrestore(&zone->lock, flags);
  2250. for (order = 0; order < MAX_ORDER; order++)
  2251. printk("%lu*%lukB ", nr[order], K(1UL) << order);
  2252. printk("= %lukB\n", K(total));
  2253. }
  2254. printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
  2255. show_swap_cache_info();
  2256. }
  2257. void show_free_areas(void)
  2258. {
  2259. __show_free_areas(0);
  2260. }
  2261. static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
  2262. {
  2263. zoneref->zone = zone;
  2264. zoneref->zone_idx = zone_idx(zone);
  2265. }
  2266. /*
  2267. * Builds allocation fallback zone lists.
  2268. *
  2269. * Add all populated zones of a node to the zonelist.
  2270. */
  2271. static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
  2272. int nr_zones, enum zone_type zone_type)
  2273. {
  2274. struct zone *zone;
  2275. BUG_ON(zone_type >= MAX_NR_ZONES);
  2276. zone_type++;
  2277. do {
  2278. zone_type--;
  2279. zone = pgdat->node_zones + zone_type;
  2280. if (populated_zone(zone)) {
  2281. zoneref_set_zone(zone,
  2282. &zonelist->_zonerefs[nr_zones++]);
  2283. check_highest_zone(zone_type);
  2284. }
  2285. } while (zone_type);
  2286. return nr_zones;
  2287. }
  2288. /*
  2289. * zonelist_order:
  2290. * 0 = automatic detection of better ordering.
  2291. * 1 = order by ([node] distance, -zonetype)
  2292. * 2 = order by (-zonetype, [node] distance)
  2293. *
  2294. * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
  2295. * the same zonelist. So only NUMA can configure this param.
  2296. */
  2297. #define ZONELIST_ORDER_DEFAULT 0
  2298. #define ZONELIST_ORDER_NODE 1
  2299. #define ZONELIST_ORDER_ZONE 2
  2300. /* zonelist order in the kernel.
  2301. * set_zonelist_order() will set this to NODE or ZONE.
  2302. */
  2303. static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2304. static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
  2305. #ifdef CONFIG_NUMA
  2306. /* The value user specified ....changed by config */
  2307. static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2308. /* string for sysctl */
  2309. #define NUMA_ZONELIST_ORDER_LEN 16
  2310. char numa_zonelist_order[16] = "default";
  2311. /*
  2312. * interface for configure zonelist ordering.
  2313. * command line option "numa_zonelist_order"
  2314. * = "[dD]efault - default, automatic configuration.
  2315. * = "[nN]ode - order by node locality, then by zone within node
  2316. * = "[zZ]one - order by zone, then by locality within zone
  2317. */
  2318. static int __parse_numa_zonelist_order(char *s)
  2319. {
  2320. if (*s == 'd' || *s == 'D') {
  2321. user_zonelist_order = ZONELIST_ORDER_DEFAULT;
  2322. } else if (*s == 'n' || *s == 'N') {
  2323. user_zonelist_order = ZONELIST_ORDER_NODE;
  2324. } else if (*s == 'z' || *s == 'Z') {
  2325. user_zonelist_order = ZONELIST_ORDER_ZONE;
  2326. } else {
  2327. printk(KERN_WARNING
  2328. "Ignoring invalid numa_zonelist_order value: "
  2329. "%s\n", s);
  2330. return -EINVAL;
  2331. }
  2332. return 0;
  2333. }
  2334. static __init int setup_numa_zonelist_order(char *s)
  2335. {
  2336. int ret;
  2337. if (!s)
  2338. return 0;
  2339. ret = __parse_numa_zonelist_order(s);
  2340. if (ret == 0)
  2341. strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
  2342. return ret;
  2343. }
  2344. early_param("numa_zonelist_order", setup_numa_zonelist_order);
  2345. /*
  2346. * sysctl handler for numa_zonelist_order
  2347. */
  2348. int numa_zonelist_order_handler(ctl_table *table, int write,
  2349. void __user *buffer, size_t *length,
  2350. loff_t *ppos)
  2351. {
  2352. char saved_string[NUMA_ZONELIST_ORDER_LEN];
  2353. int ret;
  2354. static DEFINE_MUTEX(zl_order_mutex);
  2355. mutex_lock(&zl_order_mutex);
  2356. if (write)
  2357. strcpy(saved_string, (char*)table->data);
  2358. ret = proc_dostring(table, write, buffer, length, ppos);
  2359. if (ret)
  2360. goto out;
  2361. if (write) {
  2362. int oldval = user_zonelist_order;
  2363. if (__parse_numa_zonelist_order((char*)table->data)) {
  2364. /*
  2365. * bogus value. restore saved string
  2366. */
  2367. strncpy((char*)table->data, saved_string,
  2368. NUMA_ZONELIST_ORDER_LEN);
  2369. user_zonelist_order = oldval;
  2370. } else if (oldval != user_zonelist_order) {
  2371. mutex_lock(&zonelists_mutex);
  2372. build_all_zonelists(NULL);
  2373. mutex_unlock(&zonelists_mutex);
  2374. }
  2375. }
  2376. out:
  2377. mutex_unlock(&zl_order_mutex);
  2378. return ret;
  2379. }
  2380. #define MAX_NODE_LOAD (nr_online_nodes)
  2381. static int node_load[MAX_NUMNODES];
  2382. /**
  2383. * find_next_best_node - find the next node that should appear in a given node's fallback list
  2384. * @node: node whose fallback list we're appending
  2385. * @used_node_mask: nodemask_t of already used nodes
  2386. *
  2387. * We use a number of factors to determine which is the next node that should
  2388. * appear on a given node's fallback list. The node should not have appeared
  2389. * already in @node's fallback list, and it should be the next closest node
  2390. * according to the distance array (which contains arbitrary distance values
  2391. * from each node to each node in the system), and should also prefer nodes
  2392. * with no CPUs, since presumably they'll have very little allocation pressure
  2393. * on them otherwise.
  2394. * It returns -1 if no node is found.
  2395. */
  2396. static int find_next_best_node(int node, nodemask_t *used_node_mask)
  2397. {
  2398. int n, val;
  2399. int min_val = INT_MAX;
  2400. int best_node = -1;
  2401. const struct cpumask *tmp = cpumask_of_node(0);
  2402. /* Use the local node if we haven't already */
  2403. if (!node_isset(node, *used_node_mask)) {
  2404. node_set(node, *used_node_mask);
  2405. return node;
  2406. }
  2407. for_each_node_state(n, N_HIGH_MEMORY) {
  2408. /* Don't want a node to appear more than once */
  2409. if (node_isset(n, *used_node_mask))
  2410. continue;
  2411. /* Use the distance array to find the distance */
  2412. val = node_distance(node, n);
  2413. /* Penalize nodes under us ("prefer the next node") */
  2414. val += (n < node);
  2415. /* Give preference to headless and unused nodes */
  2416. tmp = cpumask_of_node(n);
  2417. if (!cpumask_empty(tmp))
  2418. val += PENALTY_FOR_NODE_WITH_CPUS;
  2419. /* Slight preference for less loaded node */
  2420. val *= (MAX_NODE_LOAD*MAX_NUMNODES);
  2421. val += node_load[n];
  2422. if (val < min_val) {
  2423. min_val = val;
  2424. best_node = n;
  2425. }
  2426. }
  2427. if (best_node >= 0)
  2428. node_set(best_node, *used_node_mask);
  2429. return best_node;
  2430. }
  2431. /*
  2432. * Build zonelists ordered by node and zones within node.
  2433. * This results in maximum locality--normal zone overflows into local
  2434. * DMA zone, if any--but risks exhausting DMA zone.
  2435. */
  2436. static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
  2437. {
  2438. int j;
  2439. struct zonelist *zonelist;
  2440. zonelist = &pgdat->node_zonelists[0];
  2441. for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
  2442. ;
  2443. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2444. MAX_NR_ZONES - 1);
  2445. zonelist->_zonerefs[j].zone = NULL;
  2446. zonelist->_zonerefs[j].zone_idx = 0;
  2447. }
  2448. /*
  2449. * Build gfp_thisnode zonelists
  2450. */
  2451. static void build_thisnode_zonelists(pg_data_t *pgdat)
  2452. {
  2453. int j;
  2454. struct zonelist *zonelist;
  2455. zonelist = &pgdat->node_zonelists[1];
  2456. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2457. zonelist->_zonerefs[j].zone = NULL;
  2458. zonelist->_zonerefs[j].zone_idx = 0;
  2459. }
  2460. /*
  2461. * Build zonelists ordered by zone and nodes within zones.
  2462. * This results in conserving DMA zone[s] until all Normal memory is
  2463. * exhausted, but results in overflowing to remote node while memory
  2464. * may still exist in local DMA zone.
  2465. */
  2466. static int node_order[MAX_NUMNODES];
  2467. static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
  2468. {
  2469. int pos, j, node;
  2470. int zone_type; /* needs to be signed */
  2471. struct zone *z;
  2472. struct zonelist *zonelist;
  2473. zonelist = &pgdat->node_zonelists[0];
  2474. pos = 0;
  2475. for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
  2476. for (j = 0; j < nr_nodes; j++) {
  2477. node = node_order[j];
  2478. z = &NODE_DATA(node)->node_zones[zone_type];
  2479. if (populated_zone(z)) {
  2480. zoneref_set_zone(z,
  2481. &zonelist->_zonerefs[pos++]);
  2482. check_highest_zone(zone_type);
  2483. }
  2484. }
  2485. }
  2486. zonelist->_zonerefs[pos].zone = NULL;
  2487. zonelist->_zonerefs[pos].zone_idx = 0;
  2488. }
  2489. static int default_zonelist_order(void)
  2490. {
  2491. int nid, zone_type;
  2492. unsigned long low_kmem_size,total_size;
  2493. struct zone *z;
  2494. int average_size;
  2495. /*
  2496. * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
  2497. * If they are really small and used heavily, the system can fall
  2498. * into OOM very easily.
  2499. * This function detect ZONE_DMA/DMA32 size and configures zone order.
  2500. */
  2501. /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
  2502. low_kmem_size = 0;
  2503. total_size = 0;
  2504. for_each_online_node(nid) {
  2505. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2506. z = &NODE_DATA(nid)->node_zones[zone_type];
  2507. if (populated_zone(z)) {
  2508. if (zone_type < ZONE_NORMAL)
  2509. low_kmem_size += z->present_pages;
  2510. total_size += z->present_pages;
  2511. } else if (zone_type == ZONE_NORMAL) {
  2512. /*
  2513. * If any node has only lowmem, then node order
  2514. * is preferred to allow kernel allocations
  2515. * locally; otherwise, they can easily infringe
  2516. * on other nodes when there is an abundance of
  2517. * lowmem available to allocate from.
  2518. */
  2519. return ZONELIST_ORDER_NODE;
  2520. }
  2521. }
  2522. }
  2523. if (!low_kmem_size || /* there are no DMA area. */
  2524. low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
  2525. return ZONELIST_ORDER_NODE;
  2526. /*
  2527. * look into each node's config.
  2528. * If there is a node whose DMA/DMA32 memory is very big area on
  2529. * local memory, NODE_ORDER may be suitable.
  2530. */
  2531. average_size = total_size /
  2532. (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
  2533. for_each_online_node(nid) {
  2534. low_kmem_size = 0;
  2535. total_size = 0;
  2536. for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
  2537. z = &NODE_DATA(nid)->node_zones[zone_type];
  2538. if (populated_zone(z)) {
  2539. if (zone_type < ZONE_NORMAL)
  2540. low_kmem_size += z->present_pages;
  2541. total_size += z->present_pages;
  2542. }
  2543. }
  2544. if (low_kmem_size &&
  2545. total_size > average_size && /* ignore small node */
  2546. low_kmem_size > total_size * 70/100)
  2547. return ZONELIST_ORDER_NODE;
  2548. }
  2549. return ZONELIST_ORDER_ZONE;
  2550. }
  2551. static void set_zonelist_order(void)
  2552. {
  2553. if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
  2554. current_zonelist_order = default_zonelist_order();
  2555. else
  2556. current_zonelist_order = user_zonelist_order;
  2557. }
  2558. static void build_zonelists(pg_data_t *pgdat)
  2559. {
  2560. int j, node, load;
  2561. enum zone_type i;
  2562. nodemask_t used_mask;
  2563. int local_node, prev_node;
  2564. struct zonelist *zonelist;
  2565. int order = current_zonelist_order;
  2566. /* initialize zonelists */
  2567. for (i = 0; i < MAX_ZONELISTS; i++) {
  2568. zonelist = pgdat->node_zonelists + i;
  2569. zonelist->_zonerefs[0].zone = NULL;
  2570. zonelist->_zonerefs[0].zone_idx = 0;
  2571. }
  2572. /* NUMA-aware ordering of nodes */
  2573. local_node = pgdat->node_id;
  2574. load = nr_online_nodes;
  2575. prev_node = local_node;
  2576. nodes_clear(used_mask);
  2577. memset(node_order, 0, sizeof(node_order));
  2578. j = 0;
  2579. while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
  2580. int distance = node_distance(local_node, node);
  2581. /*
  2582. * If another node is sufficiently far away then it is better
  2583. * to reclaim pages in a zone before going off node.
  2584. */
  2585. if (distance > RECLAIM_DISTANCE)
  2586. zone_reclaim_mode = 1;
  2587. /*
  2588. * We don't want to pressure a particular node.
  2589. * So adding penalty to the first node in same
  2590. * distance group to make it round-robin.
  2591. */
  2592. if (distance != node_distance(local_node, prev_node))
  2593. node_load[node] = load;
  2594. prev_node = node;
  2595. load--;
  2596. if (order == ZONELIST_ORDER_NODE)
  2597. build_zonelists_in_node_order(pgdat, node);
  2598. else
  2599. node_order[j++] = node; /* remember order */
  2600. }
  2601. if (order == ZONELIST_ORDER_ZONE) {
  2602. /* calculate node order -- i.e., DMA last! */
  2603. build_zonelists_in_zone_order(pgdat, j);
  2604. }
  2605. build_thisnode_zonelists(pgdat);
  2606. }
  2607. /* Construct the zonelist performance cache - see further mmzone.h */
  2608. static void build_zonelist_cache(pg_data_t *pgdat)
  2609. {
  2610. struct zonelist *zonelist;
  2611. struct zonelist_cache *zlc;
  2612. struct zoneref *z;
  2613. zonelist = &pgdat->node_zonelists[0];
  2614. zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
  2615. bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
  2616. for (z = zonelist->_zonerefs; z->zone; z++)
  2617. zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
  2618. }
  2619. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  2620. /*
  2621. * Return node id of node used for "local" allocations.
  2622. * I.e., first node id of first zone in arg node's generic zonelist.
  2623. * Used for initializing percpu 'numa_mem', which is used primarily
  2624. * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
  2625. */
  2626. int local_memory_node(int node)
  2627. {
  2628. struct zone *zone;
  2629. (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
  2630. gfp_zone(GFP_KERNEL),
  2631. NULL,
  2632. &zone);
  2633. return zone->node;
  2634. }
  2635. #endif
  2636. #else /* CONFIG_NUMA */
  2637. static void set_zonelist_order(void)
  2638. {
  2639. current_zonelist_order = ZONELIST_ORDER_ZONE;
  2640. }
  2641. static void build_zonelists(pg_data_t *pgdat)
  2642. {
  2643. int node, local_node;
  2644. enum zone_type j;
  2645. struct zonelist *zonelist;
  2646. local_node = pgdat->node_id;
  2647. zonelist = &pgdat->node_zonelists[0];
  2648. j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
  2649. /*
  2650. * Now we build the zonelist so that it contains the zones
  2651. * of all the other nodes.
  2652. * We don't want to pressure a particular node, so when
  2653. * building the zones for node N, we make sure that the
  2654. * zones coming right after the local ones are those from
  2655. * node N+1 (modulo N)
  2656. */
  2657. for (node = local_node + 1; node < MAX_NUMNODES; node++) {
  2658. if (!node_online(node))
  2659. continue;
  2660. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2661. MAX_NR_ZONES - 1);
  2662. }
  2663. for (node = 0; node < local_node; node++) {
  2664. if (!node_online(node))
  2665. continue;
  2666. j = build_zonelists_node(NODE_DATA(node), zonelist, j,
  2667. MAX_NR_ZONES - 1);
  2668. }
  2669. zonelist->_zonerefs[j].zone = NULL;
  2670. zonelist->_zonerefs[j].zone_idx = 0;
  2671. }
  2672. /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
  2673. static void build_zonelist_cache(pg_data_t *pgdat)
  2674. {
  2675. pgdat->node_zonelists[0].zlcache_ptr = NULL;
  2676. }
  2677. #endif /* CONFIG_NUMA */
  2678. /*
  2679. * Boot pageset table. One per cpu which is going to be used for all
  2680. * zones and all nodes. The parameters will be set in such a way
  2681. * that an item put on a list will immediately be handed over to
  2682. * the buddy list. This is safe since pageset manipulation is done
  2683. * with interrupts disabled.
  2684. *
  2685. * The boot_pagesets must be kept even after bootup is complete for
  2686. * unused processors and/or zones. They do play a role for bootstrapping
  2687. * hotplugged processors.
  2688. *
  2689. * zoneinfo_show() and maybe other functions do
  2690. * not check if the processor is online before following the pageset pointer.
  2691. * Other parts of the kernel may not check if the zone is available.
  2692. */
  2693. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
  2694. static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
  2695. static void setup_zone_pageset(struct zone *zone);
  2696. /*
  2697. * Global mutex to protect against size modification of zonelists
  2698. * as well as to serialize pageset setup for the new populated zone.
  2699. */
  2700. DEFINE_MUTEX(zonelists_mutex);
  2701. /* return values int ....just for stop_machine() */
  2702. static __init_refok int __build_all_zonelists(void *data)
  2703. {
  2704. int nid;
  2705. int cpu;
  2706. #ifdef CONFIG_NUMA
  2707. memset(node_load, 0, sizeof(node_load));
  2708. #endif
  2709. for_each_online_node(nid) {
  2710. pg_data_t *pgdat = NODE_DATA(nid);
  2711. build_zonelists(pgdat);
  2712. build_zonelist_cache(pgdat);
  2713. }
  2714. /*
  2715. * Initialize the boot_pagesets that are going to be used
  2716. * for bootstrapping processors. The real pagesets for
  2717. * each zone will be allocated later when the per cpu
  2718. * allocator is available.
  2719. *
  2720. * boot_pagesets are used also for bootstrapping offline
  2721. * cpus if the system is already booted because the pagesets
  2722. * are needed to initialize allocators on a specific cpu too.
  2723. * F.e. the percpu allocator needs the page allocator which
  2724. * needs the percpu allocator in order to allocate its pagesets
  2725. * (a chicken-egg dilemma).
  2726. */
  2727. for_each_possible_cpu(cpu) {
  2728. setup_pageset(&per_cpu(boot_pageset, cpu), 0);
  2729. #ifdef CONFIG_HAVE_MEMORYLESS_NODES
  2730. /*
  2731. * We now know the "local memory node" for each node--
  2732. * i.e., the node of the first zone in the generic zonelist.
  2733. * Set up numa_mem percpu variable for on-line cpus. During
  2734. * boot, only the boot cpu should be on-line; we'll init the
  2735. * secondary cpus' numa_mem as they come on-line. During
  2736. * node/memory hotplug, we'll fixup all on-line cpus.
  2737. */
  2738. if (cpu_online(cpu))
  2739. set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
  2740. #endif
  2741. }
  2742. return 0;
  2743. }
  2744. /*
  2745. * Called with zonelists_mutex held always
  2746. * unless system_state == SYSTEM_BOOTING.
  2747. */
  2748. void build_all_zonelists(void *data)
  2749. {
  2750. set_zonelist_order();
  2751. if (system_state == SYSTEM_BOOTING) {
  2752. __build_all_zonelists(NULL);
  2753. mminit_verify_zonelist();
  2754. cpuset_init_current_mems_allowed();
  2755. } else {
  2756. /* we have to stop all cpus to guarantee there is no user
  2757. of zonelist */
  2758. #ifdef CONFIG_MEMORY_HOTPLUG
  2759. if (data)
  2760. setup_zone_pageset((struct zone *)data);
  2761. #endif
  2762. stop_machine(__build_all_zonelists, NULL, NULL);
  2763. /* cpuset refresh routine should be here */
  2764. }
  2765. vm_total_pages = nr_free_pagecache_pages();
  2766. /*
  2767. * Disable grouping by mobility if the number of pages in the
  2768. * system is too low to allow the mechanism to work. It would be
  2769. * more accurate, but expensive to check per-zone. This check is
  2770. * made on memory-hotadd so a system can start with mobility
  2771. * disabled and enable it later
  2772. */
  2773. if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
  2774. page_group_by_mobility_disabled = 1;
  2775. else
  2776. page_group_by_mobility_disabled = 0;
  2777. printk("Built %i zonelists in %s order, mobility grouping %s. "
  2778. "Total pages: %ld\n",
  2779. nr_online_nodes,
  2780. zonelist_order_name[current_zonelist_order],
  2781. page_group_by_mobility_disabled ? "off" : "on",
  2782. vm_total_pages);
  2783. #ifdef CONFIG_NUMA
  2784. printk("Policy zone: %s\n", zone_names[policy_zone]);
  2785. #endif
  2786. }
  2787. /*
  2788. * Helper functions to size the waitqueue hash table.
  2789. * Essentially these want to choose hash table sizes sufficiently
  2790. * large so that collisions trying to wait on pages are rare.
  2791. * But in fact, the number of active page waitqueues on typical
  2792. * systems is ridiculously low, less than 200. So this is even
  2793. * conservative, even though it seems large.
  2794. *
  2795. * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
  2796. * waitqueues, i.e. the size of the waitq table given the number of pages.
  2797. */
  2798. #define PAGES_PER_WAITQUEUE 256
  2799. #ifndef CONFIG_MEMORY_HOTPLUG
  2800. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2801. {
  2802. unsigned long size = 1;
  2803. pages /= PAGES_PER_WAITQUEUE;
  2804. while (size < pages)
  2805. size <<= 1;
  2806. /*
  2807. * Once we have dozens or even hundreds of threads sleeping
  2808. * on IO we've got bigger problems than wait queue collision.
  2809. * Limit the size of the wait table to a reasonable size.
  2810. */
  2811. size = min(size, 4096UL);
  2812. return max(size, 4UL);
  2813. }
  2814. #else
  2815. /*
  2816. * A zone's size might be changed by hot-add, so it is not possible to determine
  2817. * a suitable size for its wait_table. So we use the maximum size now.
  2818. *
  2819. * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
  2820. *
  2821. * i386 (preemption config) : 4096 x 16 = 64Kbyte.
  2822. * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
  2823. * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
  2824. *
  2825. * The maximum entries are prepared when a zone's memory is (512K + 256) pages
  2826. * or more by the traditional way. (See above). It equals:
  2827. *
  2828. * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
  2829. * ia64(16K page size) : = ( 8G + 4M)byte.
  2830. * powerpc (64K page size) : = (32G +16M)byte.
  2831. */
  2832. static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
  2833. {
  2834. return 4096UL;
  2835. }
  2836. #endif
  2837. /*
  2838. * This is an integer logarithm so that shifts can be used later
  2839. * to extract the more random high bits from the multiplicative
  2840. * hash function before the remainder is taken.
  2841. */
  2842. static inline unsigned long wait_table_bits(unsigned long size)
  2843. {
  2844. return ffz(~size);
  2845. }
  2846. #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
  2847. /*
  2848. * Mark a number of pageblocks as MIGRATE_RESERVE. The number
  2849. * of blocks reserved is based on min_wmark_pages(zone). The memory within
  2850. * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
  2851. * higher will lead to a bigger reserve which will get freed as contiguous
  2852. * blocks as reclaim kicks in
  2853. */
  2854. static void setup_zone_migrate_reserve(struct zone *zone)
  2855. {
  2856. unsigned long start_pfn, pfn, end_pfn;
  2857. struct page *page;
  2858. unsigned long block_migratetype;
  2859. int reserve;
  2860. /* Get the start pfn, end pfn and the number of blocks to reserve */
  2861. start_pfn = zone->zone_start_pfn;
  2862. end_pfn = start_pfn + zone->spanned_pages;
  2863. reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
  2864. pageblock_order;
  2865. /*
  2866. * Reserve blocks are generally in place to help high-order atomic
  2867. * allocations that are short-lived. A min_free_kbytes value that
  2868. * would result in more than 2 reserve blocks for atomic allocations
  2869. * is assumed to be in place to help anti-fragmentation for the
  2870. * future allocation of hugepages at runtime.
  2871. */
  2872. reserve = min(2, reserve);
  2873. for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
  2874. if (!pfn_valid(pfn))
  2875. continue;
  2876. page = pfn_to_page(pfn);
  2877. /* Watch out for overlapping nodes */
  2878. if (page_to_nid(page) != zone_to_nid(zone))
  2879. continue;
  2880. /* Blocks with reserved pages will never free, skip them. */
  2881. if (PageReserved(page))
  2882. continue;
  2883. block_migratetype = get_pageblock_migratetype(page);
  2884. /* If this block is reserved, account for it */
  2885. if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
  2886. reserve--;
  2887. continue;
  2888. }
  2889. /* Suitable for reserving if this block is movable */
  2890. if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
  2891. set_pageblock_migratetype(page, MIGRATE_RESERVE);
  2892. move_freepages_block(zone, page, MIGRATE_RESERVE);
  2893. reserve--;
  2894. continue;
  2895. }
  2896. /*
  2897. * If the reserve is met and this is a previous reserved block,
  2898. * take it back
  2899. */
  2900. if (block_migratetype == MIGRATE_RESERVE) {
  2901. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2902. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  2903. }
  2904. }
  2905. }
  2906. /*
  2907. * Initially all pages are reserved - free ones are freed
  2908. * up by free_all_bootmem() once the early boot process is
  2909. * done. Non-atomic initialization, single-pass.
  2910. */
  2911. void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
  2912. unsigned long start_pfn, enum memmap_context context)
  2913. {
  2914. struct page *page;
  2915. unsigned long end_pfn = start_pfn + size;
  2916. unsigned long pfn;
  2917. struct zone *z;
  2918. if (highest_memmap_pfn < end_pfn - 1)
  2919. highest_memmap_pfn = end_pfn - 1;
  2920. z = &NODE_DATA(nid)->node_zones[zone];
  2921. for (pfn = start_pfn; pfn < end_pfn; pfn++) {
  2922. /*
  2923. * There can be holes in boot-time mem_map[]s
  2924. * handed to this function. They do not
  2925. * exist on hotplugged memory.
  2926. */
  2927. if (context == MEMMAP_EARLY) {
  2928. if (!early_pfn_valid(pfn))
  2929. continue;
  2930. if (!early_pfn_in_nid(pfn, nid))
  2931. continue;
  2932. }
  2933. page = pfn_to_page(pfn);
  2934. set_page_links(page, zone, nid, pfn);
  2935. mminit_verify_page_links(page, zone, nid, pfn);
  2936. init_page_count(page);
  2937. reset_page_mapcount(page);
  2938. SetPageReserved(page);
  2939. /*
  2940. * Mark the block movable so that blocks are reserved for
  2941. * movable at startup. This will force kernel allocations
  2942. * to reserve their blocks rather than leaking throughout
  2943. * the address space during boot when many long-lived
  2944. * kernel allocations are made. Later some blocks near
  2945. * the start are marked MIGRATE_RESERVE by
  2946. * setup_zone_migrate_reserve()
  2947. *
  2948. * bitmap is created for zone's valid pfn range. but memmap
  2949. * can be created for invalid pages (for alignment)
  2950. * check here not to call set_pageblock_migratetype() against
  2951. * pfn out of zone.
  2952. */
  2953. if ((z->zone_start_pfn <= pfn)
  2954. && (pfn < z->zone_start_pfn + z->spanned_pages)
  2955. && !(pfn & (pageblock_nr_pages - 1)))
  2956. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  2957. INIT_LIST_HEAD(&page->lru);
  2958. #ifdef WANT_PAGE_VIRTUAL
  2959. /* The shift won't overflow because ZONE_NORMAL is below 4G. */
  2960. if (!is_highmem_idx(zone))
  2961. set_page_address(page, __va(pfn << PAGE_SHIFT));
  2962. #endif
  2963. }
  2964. }
  2965. static void __meminit zone_init_free_lists(struct zone *zone)
  2966. {
  2967. int order, t;
  2968. for_each_migratetype_order(order, t) {
  2969. INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
  2970. zone->free_area[order].nr_free = 0;
  2971. }
  2972. }
  2973. #ifndef __HAVE_ARCH_MEMMAP_INIT
  2974. #define memmap_init(size, nid, zone, start_pfn) \
  2975. memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
  2976. #endif
  2977. static int zone_batchsize(struct zone *zone)
  2978. {
  2979. #ifdef CONFIG_MMU
  2980. int batch;
  2981. /*
  2982. * The per-cpu-pages pools are set to around 1000th of the
  2983. * size of the zone. But no more than 1/2 of a meg.
  2984. *
  2985. * OK, so we don't know how big the cache is. So guess.
  2986. */
  2987. batch = zone->present_pages / 1024;
  2988. if (batch * PAGE_SIZE > 512 * 1024)
  2989. batch = (512 * 1024) / PAGE_SIZE;
  2990. batch /= 4; /* We effectively *= 4 below */
  2991. if (batch < 1)
  2992. batch = 1;
  2993. /*
  2994. * Clamp the batch to a 2^n - 1 value. Having a power
  2995. * of 2 value was found to be more likely to have
  2996. * suboptimal cache aliasing properties in some cases.
  2997. *
  2998. * For example if 2 tasks are alternately allocating
  2999. * batches of pages, one task can end up with a lot
  3000. * of pages of one half of the possible page colors
  3001. * and the other with pages of the other colors.
  3002. */
  3003. batch = rounddown_pow_of_two(batch + batch/2) - 1;
  3004. return batch;
  3005. #else
  3006. /* The deferral and batching of frees should be suppressed under NOMMU
  3007. * conditions.
  3008. *
  3009. * The problem is that NOMMU needs to be able to allocate large chunks
  3010. * of contiguous memory as there's no hardware page translation to
  3011. * assemble apparent contiguous memory from discontiguous pages.
  3012. *
  3013. * Queueing large contiguous runs of pages for batching, however,
  3014. * causes the pages to actually be freed in smaller chunks. As there
  3015. * can be a significant delay between the individual batches being
  3016. * recycled, this leads to the once large chunks of space being
  3017. * fragmented and becoming unavailable for high-order allocations.
  3018. */
  3019. return 0;
  3020. #endif
  3021. }
  3022. static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
  3023. {
  3024. struct per_cpu_pages *pcp;
  3025. int migratetype;
  3026. memset(p, 0, sizeof(*p));
  3027. pcp = &p->pcp;
  3028. pcp->count = 0;
  3029. pcp->high = 6 * batch;
  3030. pcp->batch = max(1UL, 1 * batch);
  3031. for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
  3032. INIT_LIST_HEAD(&pcp->lists[migratetype]);
  3033. }
  3034. /*
  3035. * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
  3036. * to the value high for the pageset p.
  3037. */
  3038. static void setup_pagelist_highmark(struct per_cpu_pageset *p,
  3039. unsigned long high)
  3040. {
  3041. struct per_cpu_pages *pcp;
  3042. pcp = &p->pcp;
  3043. pcp->high = high;
  3044. pcp->batch = max(1UL, high/4);
  3045. if ((high/4) > (PAGE_SHIFT * 8))
  3046. pcp->batch = PAGE_SHIFT * 8;
  3047. }
  3048. static __meminit void setup_zone_pageset(struct zone *zone)
  3049. {
  3050. int cpu;
  3051. zone->pageset = alloc_percpu(struct per_cpu_pageset);
  3052. for_each_possible_cpu(cpu) {
  3053. struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
  3054. setup_pageset(pcp, zone_batchsize(zone));
  3055. if (percpu_pagelist_fraction)
  3056. setup_pagelist_highmark(pcp,
  3057. (zone->present_pages /
  3058. percpu_pagelist_fraction));
  3059. }
  3060. }
  3061. /*
  3062. * Allocate per cpu pagesets and initialize them.
  3063. * Before this call only boot pagesets were available.
  3064. */
  3065. void __init setup_per_cpu_pageset(void)
  3066. {
  3067. struct zone *zone;
  3068. for_each_populated_zone(zone)
  3069. setup_zone_pageset(zone);
  3070. }
  3071. static noinline __init_refok
  3072. int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
  3073. {
  3074. int i;
  3075. struct pglist_data *pgdat = zone->zone_pgdat;
  3076. size_t alloc_size;
  3077. /*
  3078. * The per-page waitqueue mechanism uses hashed waitqueues
  3079. * per zone.
  3080. */
  3081. zone->wait_table_hash_nr_entries =
  3082. wait_table_hash_nr_entries(zone_size_pages);
  3083. zone->wait_table_bits =
  3084. wait_table_bits(zone->wait_table_hash_nr_entries);
  3085. alloc_size = zone->wait_table_hash_nr_entries
  3086. * sizeof(wait_queue_head_t);
  3087. if (!slab_is_available()) {
  3088. zone->wait_table = (wait_queue_head_t *)
  3089. alloc_bootmem_node(pgdat, alloc_size);
  3090. } else {
  3091. /*
  3092. * This case means that a zone whose size was 0 gets new memory
  3093. * via memory hot-add.
  3094. * But it may be the case that a new node was hot-added. In
  3095. * this case vmalloc() will not be able to use this new node's
  3096. * memory - this wait_table must be initialized to use this new
  3097. * node itself as well.
  3098. * To use this new node's memory, further consideration will be
  3099. * necessary.
  3100. */
  3101. zone->wait_table = vmalloc(alloc_size);
  3102. }
  3103. if (!zone->wait_table)
  3104. return -ENOMEM;
  3105. for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
  3106. init_waitqueue_head(zone->wait_table + i);
  3107. return 0;
  3108. }
  3109. static int __zone_pcp_update(void *data)
  3110. {
  3111. struct zone *zone = data;
  3112. int cpu;
  3113. unsigned long batch = zone_batchsize(zone), flags;
  3114. for_each_possible_cpu(cpu) {
  3115. struct per_cpu_pageset *pset;
  3116. struct per_cpu_pages *pcp;
  3117. pset = per_cpu_ptr(zone->pageset, cpu);
  3118. pcp = &pset->pcp;
  3119. local_irq_save(flags);
  3120. free_pcppages_bulk(zone, pcp->count, pcp);
  3121. setup_pageset(pset, batch);
  3122. local_irq_restore(flags);
  3123. }
  3124. return 0;
  3125. }
  3126. void zone_pcp_update(struct zone *zone)
  3127. {
  3128. stop_machine(__zone_pcp_update, zone, NULL);
  3129. }
  3130. static __meminit void zone_pcp_init(struct zone *zone)
  3131. {
  3132. /*
  3133. * per cpu subsystem is not up at this point. The following code
  3134. * relies on the ability of the linker to provide the
  3135. * offset of a (static) per cpu variable into the per cpu area.
  3136. */
  3137. zone->pageset = &boot_pageset;
  3138. if (zone->present_pages)
  3139. printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
  3140. zone->name, zone->present_pages,
  3141. zone_batchsize(zone));
  3142. }
  3143. __meminit int init_currently_empty_zone(struct zone *zone,
  3144. unsigned long zone_start_pfn,
  3145. unsigned long size,
  3146. enum memmap_context context)
  3147. {
  3148. struct pglist_data *pgdat = zone->zone_pgdat;
  3149. int ret;
  3150. ret = zone_wait_table_init(zone, size);
  3151. if (ret)
  3152. return ret;
  3153. pgdat->nr_zones = zone_idx(zone) + 1;
  3154. zone->zone_start_pfn = zone_start_pfn;
  3155. mminit_dprintk(MMINIT_TRACE, "memmap_init",
  3156. "Initialising map node %d zone %lu pfns %lu -> %lu\n",
  3157. pgdat->node_id,
  3158. (unsigned long)zone_idx(zone),
  3159. zone_start_pfn, (zone_start_pfn + size));
  3160. zone_init_free_lists(zone);
  3161. return 0;
  3162. }
  3163. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3164. /*
  3165. * Basic iterator support. Return the first range of PFNs for a node
  3166. * Note: nid == MAX_NUMNODES returns first region regardless of node
  3167. */
  3168. static int __meminit first_active_region_index_in_nid(int nid)
  3169. {
  3170. int i;
  3171. for (i = 0; i < nr_nodemap_entries; i++)
  3172. if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
  3173. return i;
  3174. return -1;
  3175. }
  3176. /*
  3177. * Basic iterator support. Return the next active range of PFNs for a node
  3178. * Note: nid == MAX_NUMNODES returns next region regardless of node
  3179. */
  3180. static int __meminit next_active_region_index_in_nid(int index, int nid)
  3181. {
  3182. for (index = index + 1; index < nr_nodemap_entries; index++)
  3183. if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
  3184. return index;
  3185. return -1;
  3186. }
  3187. #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
  3188. /*
  3189. * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
  3190. * Architectures may implement their own version but if add_active_range()
  3191. * was used and there are no special requirements, this is a convenient
  3192. * alternative
  3193. */
  3194. int __meminit __early_pfn_to_nid(unsigned long pfn)
  3195. {
  3196. int i;
  3197. for (i = 0; i < nr_nodemap_entries; i++) {
  3198. unsigned long start_pfn = early_node_map[i].start_pfn;
  3199. unsigned long end_pfn = early_node_map[i].end_pfn;
  3200. if (start_pfn <= pfn && pfn < end_pfn)
  3201. return early_node_map[i].nid;
  3202. }
  3203. /* This is a memory hole */
  3204. return -1;
  3205. }
  3206. #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
  3207. int __meminit early_pfn_to_nid(unsigned long pfn)
  3208. {
  3209. int nid;
  3210. nid = __early_pfn_to_nid(pfn);
  3211. if (nid >= 0)
  3212. return nid;
  3213. /* just returns 0 */
  3214. return 0;
  3215. }
  3216. #ifdef CONFIG_NODES_SPAN_OTHER_NODES
  3217. bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
  3218. {
  3219. int nid;
  3220. nid = __early_pfn_to_nid(pfn);
  3221. if (nid >= 0 && nid != node)
  3222. return false;
  3223. return true;
  3224. }
  3225. #endif
  3226. /* Basic iterator support to walk early_node_map[] */
  3227. #define for_each_active_range_index_in_nid(i, nid) \
  3228. for (i = first_active_region_index_in_nid(nid); i != -1; \
  3229. i = next_active_region_index_in_nid(i, nid))
  3230. /**
  3231. * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
  3232. * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
  3233. * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
  3234. *
  3235. * If an architecture guarantees that all ranges registered with
  3236. * add_active_ranges() contain no holes and may be freed, this
  3237. * this function may be used instead of calling free_bootmem() manually.
  3238. */
  3239. void __init free_bootmem_with_active_regions(int nid,
  3240. unsigned long max_low_pfn)
  3241. {
  3242. int i;
  3243. for_each_active_range_index_in_nid(i, nid) {
  3244. unsigned long size_pages = 0;
  3245. unsigned long end_pfn = early_node_map[i].end_pfn;
  3246. if (early_node_map[i].start_pfn >= max_low_pfn)
  3247. continue;
  3248. if (end_pfn > max_low_pfn)
  3249. end_pfn = max_low_pfn;
  3250. size_pages = end_pfn - early_node_map[i].start_pfn;
  3251. free_bootmem_node(NODE_DATA(early_node_map[i].nid),
  3252. PFN_PHYS(early_node_map[i].start_pfn),
  3253. size_pages << PAGE_SHIFT);
  3254. }
  3255. }
  3256. #ifdef CONFIG_HAVE_MEMBLOCK
  3257. /*
  3258. * Basic iterator support. Return the last range of PFNs for a node
  3259. * Note: nid == MAX_NUMNODES returns last region regardless of node
  3260. */
  3261. static int __meminit last_active_region_index_in_nid(int nid)
  3262. {
  3263. int i;
  3264. for (i = nr_nodemap_entries - 1; i >= 0; i--)
  3265. if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
  3266. return i;
  3267. return -1;
  3268. }
  3269. /*
  3270. * Basic iterator support. Return the previous active range of PFNs for a node
  3271. * Note: nid == MAX_NUMNODES returns next region regardless of node
  3272. */
  3273. static int __meminit previous_active_region_index_in_nid(int index, int nid)
  3274. {
  3275. for (index = index - 1; index >= 0; index--)
  3276. if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
  3277. return index;
  3278. return -1;
  3279. }
  3280. #define for_each_active_range_index_in_nid_reverse(i, nid) \
  3281. for (i = last_active_region_index_in_nid(nid); i != -1; \
  3282. i = previous_active_region_index_in_nid(i, nid))
  3283. u64 __init find_memory_core_early(int nid, u64 size, u64 align,
  3284. u64 goal, u64 limit)
  3285. {
  3286. int i;
  3287. /* Need to go over early_node_map to find out good range for node */
  3288. for_each_active_range_index_in_nid_reverse(i, nid) {
  3289. u64 addr;
  3290. u64 ei_start, ei_last;
  3291. u64 final_start, final_end;
  3292. ei_last = early_node_map[i].end_pfn;
  3293. ei_last <<= PAGE_SHIFT;
  3294. ei_start = early_node_map[i].start_pfn;
  3295. ei_start <<= PAGE_SHIFT;
  3296. final_start = max(ei_start, goal);
  3297. final_end = min(ei_last, limit);
  3298. if (final_start >= final_end)
  3299. continue;
  3300. addr = memblock_find_in_range(final_start, final_end, size, align);
  3301. if (addr == MEMBLOCK_ERROR)
  3302. continue;
  3303. return addr;
  3304. }
  3305. return MEMBLOCK_ERROR;
  3306. }
  3307. #endif
  3308. int __init add_from_early_node_map(struct range *range, int az,
  3309. int nr_range, int nid)
  3310. {
  3311. int i;
  3312. u64 start, end;
  3313. /* need to go over early_node_map to find out good range for node */
  3314. for_each_active_range_index_in_nid(i, nid) {
  3315. start = early_node_map[i].start_pfn;
  3316. end = early_node_map[i].end_pfn;
  3317. nr_range = add_range(range, az, nr_range, start, end);
  3318. }
  3319. return nr_range;
  3320. }
  3321. void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
  3322. {
  3323. int i;
  3324. int ret;
  3325. for_each_active_range_index_in_nid(i, nid) {
  3326. ret = work_fn(early_node_map[i].start_pfn,
  3327. early_node_map[i].end_pfn, data);
  3328. if (ret)
  3329. break;
  3330. }
  3331. }
  3332. /**
  3333. * sparse_memory_present_with_active_regions - Call memory_present for each active range
  3334. * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
  3335. *
  3336. * If an architecture guarantees that all ranges registered with
  3337. * add_active_ranges() contain no holes and may be freed, this
  3338. * function may be used instead of calling memory_present() manually.
  3339. */
  3340. void __init sparse_memory_present_with_active_regions(int nid)
  3341. {
  3342. int i;
  3343. for_each_active_range_index_in_nid(i, nid)
  3344. memory_present(early_node_map[i].nid,
  3345. early_node_map[i].start_pfn,
  3346. early_node_map[i].end_pfn);
  3347. }
  3348. /**
  3349. * get_pfn_range_for_nid - Return the start and end page frames for a node
  3350. * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
  3351. * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
  3352. * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
  3353. *
  3354. * It returns the start and end page frame of a node based on information
  3355. * provided by an arch calling add_active_range(). If called for a node
  3356. * with no available memory, a warning is printed and the start and end
  3357. * PFNs will be 0.
  3358. */
  3359. void __meminit get_pfn_range_for_nid(unsigned int nid,
  3360. unsigned long *start_pfn, unsigned long *end_pfn)
  3361. {
  3362. int i;
  3363. *start_pfn = -1UL;
  3364. *end_pfn = 0;
  3365. for_each_active_range_index_in_nid(i, nid) {
  3366. *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
  3367. *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
  3368. }
  3369. if (*start_pfn == -1UL)
  3370. *start_pfn = 0;
  3371. }
  3372. /*
  3373. * This finds a zone that can be used for ZONE_MOVABLE pages. The
  3374. * assumption is made that zones within a node are ordered in monotonic
  3375. * increasing memory addresses so that the "highest" populated zone is used
  3376. */
  3377. static void __init find_usable_zone_for_movable(void)
  3378. {
  3379. int zone_index;
  3380. for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
  3381. if (zone_index == ZONE_MOVABLE)
  3382. continue;
  3383. if (arch_zone_highest_possible_pfn[zone_index] >
  3384. arch_zone_lowest_possible_pfn[zone_index])
  3385. break;
  3386. }
  3387. VM_BUG_ON(zone_index == -1);
  3388. movable_zone = zone_index;
  3389. }
  3390. /*
  3391. * The zone ranges provided by the architecture do not include ZONE_MOVABLE
  3392. * because it is sized independant of architecture. Unlike the other zones,
  3393. * the starting point for ZONE_MOVABLE is not fixed. It may be different
  3394. * in each node depending on the size of each node and how evenly kernelcore
  3395. * is distributed. This helper function adjusts the zone ranges
  3396. * provided by the architecture for a given node by using the end of the
  3397. * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
  3398. * zones within a node are in order of monotonic increases memory addresses
  3399. */
  3400. static void __meminit adjust_zone_range_for_zone_movable(int nid,
  3401. unsigned long zone_type,
  3402. unsigned long node_start_pfn,
  3403. unsigned long node_end_pfn,
  3404. unsigned long *zone_start_pfn,
  3405. unsigned long *zone_end_pfn)
  3406. {
  3407. /* Only adjust if ZONE_MOVABLE is on this node */
  3408. if (zone_movable_pfn[nid]) {
  3409. /* Size ZONE_MOVABLE */
  3410. if (zone_type == ZONE_MOVABLE) {
  3411. *zone_start_pfn = zone_movable_pfn[nid];
  3412. *zone_end_pfn = min(node_end_pfn,
  3413. arch_zone_highest_possible_pfn[movable_zone]);
  3414. /* Adjust for ZONE_MOVABLE starting within this range */
  3415. } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
  3416. *zone_end_pfn > zone_movable_pfn[nid]) {
  3417. *zone_end_pfn = zone_movable_pfn[nid];
  3418. /* Check if this whole range is within ZONE_MOVABLE */
  3419. } else if (*zone_start_pfn >= zone_movable_pfn[nid])
  3420. *zone_start_pfn = *zone_end_pfn;
  3421. }
  3422. }
  3423. /*
  3424. * Return the number of pages a zone spans in a node, including holes
  3425. * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
  3426. */
  3427. static unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3428. unsigned long zone_type,
  3429. unsigned long *ignored)
  3430. {
  3431. unsigned long node_start_pfn, node_end_pfn;
  3432. unsigned long zone_start_pfn, zone_end_pfn;
  3433. /* Get the start and end of the node and zone */
  3434. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3435. zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
  3436. zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
  3437. adjust_zone_range_for_zone_movable(nid, zone_type,
  3438. node_start_pfn, node_end_pfn,
  3439. &zone_start_pfn, &zone_end_pfn);
  3440. /* Check that this node has pages within the zone's required range */
  3441. if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
  3442. return 0;
  3443. /* Move the zone boundaries inside the node if necessary */
  3444. zone_end_pfn = min(zone_end_pfn, node_end_pfn);
  3445. zone_start_pfn = max(zone_start_pfn, node_start_pfn);
  3446. /* Return the spanned pages */
  3447. return zone_end_pfn - zone_start_pfn;
  3448. }
  3449. /*
  3450. * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
  3451. * then all holes in the requested range will be accounted for.
  3452. */
  3453. unsigned long __meminit __absent_pages_in_range(int nid,
  3454. unsigned long range_start_pfn,
  3455. unsigned long range_end_pfn)
  3456. {
  3457. int i = 0;
  3458. unsigned long prev_end_pfn = 0, hole_pages = 0;
  3459. unsigned long start_pfn;
  3460. /* Find the end_pfn of the first active range of pfns in the node */
  3461. i = first_active_region_index_in_nid(nid);
  3462. if (i == -1)
  3463. return 0;
  3464. prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  3465. /* Account for ranges before physical memory on this node */
  3466. if (early_node_map[i].start_pfn > range_start_pfn)
  3467. hole_pages = prev_end_pfn - range_start_pfn;
  3468. /* Find all holes for the zone within the node */
  3469. for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
  3470. /* No need to continue if prev_end_pfn is outside the zone */
  3471. if (prev_end_pfn >= range_end_pfn)
  3472. break;
  3473. /* Make sure the end of the zone is not within the hole */
  3474. start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
  3475. prev_end_pfn = max(prev_end_pfn, range_start_pfn);
  3476. /* Update the hole size cound and move on */
  3477. if (start_pfn > range_start_pfn) {
  3478. BUG_ON(prev_end_pfn > start_pfn);
  3479. hole_pages += start_pfn - prev_end_pfn;
  3480. }
  3481. prev_end_pfn = early_node_map[i].end_pfn;
  3482. }
  3483. /* Account for ranges past physical memory on this node */
  3484. if (range_end_pfn > prev_end_pfn)
  3485. hole_pages += range_end_pfn -
  3486. max(range_start_pfn, prev_end_pfn);
  3487. return hole_pages;
  3488. }
  3489. /**
  3490. * absent_pages_in_range - Return number of page frames in holes within a range
  3491. * @start_pfn: The start PFN to start searching for holes
  3492. * @end_pfn: The end PFN to stop searching for holes
  3493. *
  3494. * It returns the number of pages frames in memory holes within a range.
  3495. */
  3496. unsigned long __init absent_pages_in_range(unsigned long start_pfn,
  3497. unsigned long end_pfn)
  3498. {
  3499. return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
  3500. }
  3501. /* Return the number of page frames in holes in a zone on a node */
  3502. static unsigned long __meminit zone_absent_pages_in_node(int nid,
  3503. unsigned long zone_type,
  3504. unsigned long *ignored)
  3505. {
  3506. unsigned long node_start_pfn, node_end_pfn;
  3507. unsigned long zone_start_pfn, zone_end_pfn;
  3508. get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
  3509. zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
  3510. node_start_pfn);
  3511. zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
  3512. node_end_pfn);
  3513. adjust_zone_range_for_zone_movable(nid, zone_type,
  3514. node_start_pfn, node_end_pfn,
  3515. &zone_start_pfn, &zone_end_pfn);
  3516. return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
  3517. }
  3518. #else
  3519. static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
  3520. unsigned long zone_type,
  3521. unsigned long *zones_size)
  3522. {
  3523. return zones_size[zone_type];
  3524. }
  3525. static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
  3526. unsigned long zone_type,
  3527. unsigned long *zholes_size)
  3528. {
  3529. if (!zholes_size)
  3530. return 0;
  3531. return zholes_size[zone_type];
  3532. }
  3533. #endif
  3534. static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
  3535. unsigned long *zones_size, unsigned long *zholes_size)
  3536. {
  3537. unsigned long realtotalpages, totalpages = 0;
  3538. enum zone_type i;
  3539. for (i = 0; i < MAX_NR_ZONES; i++)
  3540. totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
  3541. zones_size);
  3542. pgdat->node_spanned_pages = totalpages;
  3543. realtotalpages = totalpages;
  3544. for (i = 0; i < MAX_NR_ZONES; i++)
  3545. realtotalpages -=
  3546. zone_absent_pages_in_node(pgdat->node_id, i,
  3547. zholes_size);
  3548. pgdat->node_present_pages = realtotalpages;
  3549. printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
  3550. realtotalpages);
  3551. }
  3552. #ifndef CONFIG_SPARSEMEM
  3553. /*
  3554. * Calculate the size of the zone->blockflags rounded to an unsigned long
  3555. * Start by making sure zonesize is a multiple of pageblock_order by rounding
  3556. * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
  3557. * round what is now in bits to nearest long in bits, then return it in
  3558. * bytes.
  3559. */
  3560. static unsigned long __init usemap_size(unsigned long zonesize)
  3561. {
  3562. unsigned long usemapsize;
  3563. usemapsize = roundup(zonesize, pageblock_nr_pages);
  3564. usemapsize = usemapsize >> pageblock_order;
  3565. usemapsize *= NR_PAGEBLOCK_BITS;
  3566. usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
  3567. return usemapsize / 8;
  3568. }
  3569. static void __init setup_usemap(struct pglist_data *pgdat,
  3570. struct zone *zone, unsigned long zonesize)
  3571. {
  3572. unsigned long usemapsize = usemap_size(zonesize);
  3573. zone->pageblock_flags = NULL;
  3574. if (usemapsize)
  3575. zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
  3576. }
  3577. #else
  3578. static inline void setup_usemap(struct pglist_data *pgdat,
  3579. struct zone *zone, unsigned long zonesize) {}
  3580. #endif /* CONFIG_SPARSEMEM */
  3581. #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
  3582. /* Return a sensible default order for the pageblock size. */
  3583. static inline int pageblock_default_order(void)
  3584. {
  3585. if (HPAGE_SHIFT > PAGE_SHIFT)
  3586. return HUGETLB_PAGE_ORDER;
  3587. return MAX_ORDER-1;
  3588. }
  3589. /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
  3590. static inline void __init set_pageblock_order(unsigned int order)
  3591. {
  3592. /* Check that pageblock_nr_pages has not already been setup */
  3593. if (pageblock_order)
  3594. return;
  3595. /*
  3596. * Assume the largest contiguous order of interest is a huge page.
  3597. * This value may be variable depending on boot parameters on IA64
  3598. */
  3599. pageblock_order = order;
  3600. }
  3601. #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3602. /*
  3603. * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
  3604. * and pageblock_default_order() are unused as pageblock_order is set
  3605. * at compile-time. See include/linux/pageblock-flags.h for the values of
  3606. * pageblock_order based on the kernel config
  3607. */
  3608. static inline int pageblock_default_order(unsigned int order)
  3609. {
  3610. return MAX_ORDER-1;
  3611. }
  3612. #define set_pageblock_order(x) do {} while (0)
  3613. #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
  3614. /*
  3615. * Set up the zone data structures:
  3616. * - mark all pages reserved
  3617. * - mark all memory queues empty
  3618. * - clear the memory bitmaps
  3619. */
  3620. static void __paginginit free_area_init_core(struct pglist_data *pgdat,
  3621. unsigned long *zones_size, unsigned long *zholes_size)
  3622. {
  3623. enum zone_type j;
  3624. int nid = pgdat->node_id;
  3625. unsigned long zone_start_pfn = pgdat->node_start_pfn;
  3626. int ret;
  3627. pgdat_resize_init(pgdat);
  3628. pgdat->nr_zones = 0;
  3629. init_waitqueue_head(&pgdat->kswapd_wait);
  3630. pgdat->kswapd_max_order = 0;
  3631. pgdat_page_cgroup_init(pgdat);
  3632. for (j = 0; j < MAX_NR_ZONES; j++) {
  3633. struct zone *zone = pgdat->node_zones + j;
  3634. unsigned long size, realsize, memmap_pages;
  3635. enum lru_list l;
  3636. size = zone_spanned_pages_in_node(nid, j, zones_size);
  3637. realsize = size - zone_absent_pages_in_node(nid, j,
  3638. zholes_size);
  3639. /*
  3640. * Adjust realsize so that it accounts for how much memory
  3641. * is used by this zone for memmap. This affects the watermark
  3642. * and per-cpu initialisations
  3643. */
  3644. memmap_pages =
  3645. PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
  3646. if (realsize >= memmap_pages) {
  3647. realsize -= memmap_pages;
  3648. if (memmap_pages)
  3649. printk(KERN_DEBUG
  3650. " %s zone: %lu pages used for memmap\n",
  3651. zone_names[j], memmap_pages);
  3652. } else
  3653. printk(KERN_WARNING
  3654. " %s zone: %lu pages exceeds realsize %lu\n",
  3655. zone_names[j], memmap_pages, realsize);
  3656. /* Account for reserved pages */
  3657. if (j == 0 && realsize > dma_reserve) {
  3658. realsize -= dma_reserve;
  3659. printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
  3660. zone_names[0], dma_reserve);
  3661. }
  3662. if (!is_highmem_idx(j))
  3663. nr_kernel_pages += realsize;
  3664. nr_all_pages += realsize;
  3665. zone->spanned_pages = size;
  3666. zone->present_pages = realsize;
  3667. #ifdef CONFIG_NUMA
  3668. zone->node = nid;
  3669. zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
  3670. / 100;
  3671. zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
  3672. #endif
  3673. zone->name = zone_names[j];
  3674. spin_lock_init(&zone->lock);
  3675. spin_lock_init(&zone->lru_lock);
  3676. zone_seqlock_init(zone);
  3677. zone->zone_pgdat = pgdat;
  3678. zone_pcp_init(zone);
  3679. for_each_lru(l) {
  3680. INIT_LIST_HEAD(&zone->lru[l].list);
  3681. zone->reclaim_stat.nr_saved_scan[l] = 0;
  3682. }
  3683. zone->reclaim_stat.recent_rotated[0] = 0;
  3684. zone->reclaim_stat.recent_rotated[1] = 0;
  3685. zone->reclaim_stat.recent_scanned[0] = 0;
  3686. zone->reclaim_stat.recent_scanned[1] = 0;
  3687. zap_zone_vm_stats(zone);
  3688. zone->flags = 0;
  3689. if (!size)
  3690. continue;
  3691. set_pageblock_order(pageblock_default_order());
  3692. setup_usemap(pgdat, zone, size);
  3693. ret = init_currently_empty_zone(zone, zone_start_pfn,
  3694. size, MEMMAP_EARLY);
  3695. BUG_ON(ret);
  3696. memmap_init(size, nid, j, zone_start_pfn);
  3697. zone_start_pfn += size;
  3698. }
  3699. }
  3700. static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
  3701. {
  3702. /* Skip empty nodes */
  3703. if (!pgdat->node_spanned_pages)
  3704. return;
  3705. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3706. /* ia64 gets its own node_mem_map, before this, without bootmem */
  3707. if (!pgdat->node_mem_map) {
  3708. unsigned long size, start, end;
  3709. struct page *map;
  3710. /*
  3711. * The zone's endpoints aren't required to be MAX_ORDER
  3712. * aligned but the node_mem_map endpoints must be in order
  3713. * for the buddy allocator to function correctly.
  3714. */
  3715. start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
  3716. end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
  3717. end = ALIGN(end, MAX_ORDER_NR_PAGES);
  3718. size = (end - start) * sizeof(struct page);
  3719. map = alloc_remap(pgdat->node_id, size);
  3720. if (!map)
  3721. map = alloc_bootmem_node(pgdat, size);
  3722. pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
  3723. }
  3724. #ifndef CONFIG_NEED_MULTIPLE_NODES
  3725. /*
  3726. * With no DISCONTIG, the global mem_map is just set as node 0's
  3727. */
  3728. if (pgdat == NODE_DATA(0)) {
  3729. mem_map = NODE_DATA(0)->node_mem_map;
  3730. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3731. if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
  3732. mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
  3733. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  3734. }
  3735. #endif
  3736. #endif /* CONFIG_FLAT_NODE_MEM_MAP */
  3737. }
  3738. void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
  3739. unsigned long node_start_pfn, unsigned long *zholes_size)
  3740. {
  3741. pg_data_t *pgdat = NODE_DATA(nid);
  3742. pgdat->node_id = nid;
  3743. pgdat->node_start_pfn = node_start_pfn;
  3744. calculate_node_totalpages(pgdat, zones_size, zholes_size);
  3745. alloc_node_mem_map(pgdat);
  3746. #ifdef CONFIG_FLAT_NODE_MEM_MAP
  3747. printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
  3748. nid, (unsigned long)pgdat,
  3749. (unsigned long)pgdat->node_mem_map);
  3750. #endif
  3751. free_area_init_core(pgdat, zones_size, zholes_size);
  3752. }
  3753. #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
  3754. #if MAX_NUMNODES > 1
  3755. /*
  3756. * Figure out the number of possible node ids.
  3757. */
  3758. static void __init setup_nr_node_ids(void)
  3759. {
  3760. unsigned int node;
  3761. unsigned int highest = 0;
  3762. for_each_node_mask(node, node_possible_map)
  3763. highest = node;
  3764. nr_node_ids = highest + 1;
  3765. }
  3766. #else
  3767. static inline void setup_nr_node_ids(void)
  3768. {
  3769. }
  3770. #endif
  3771. /**
  3772. * add_active_range - Register a range of PFNs backed by physical memory
  3773. * @nid: The node ID the range resides on
  3774. * @start_pfn: The start PFN of the available physical memory
  3775. * @end_pfn: The end PFN of the available physical memory
  3776. *
  3777. * These ranges are stored in an early_node_map[] and later used by
  3778. * free_area_init_nodes() to calculate zone sizes and holes. If the
  3779. * range spans a memory hole, it is up to the architecture to ensure
  3780. * the memory is not freed by the bootmem allocator. If possible
  3781. * the range being registered will be merged with existing ranges.
  3782. */
  3783. void __init add_active_range(unsigned int nid, unsigned long start_pfn,
  3784. unsigned long end_pfn)
  3785. {
  3786. int i;
  3787. mminit_dprintk(MMINIT_TRACE, "memory_register",
  3788. "Entering add_active_range(%d, %#lx, %#lx) "
  3789. "%d entries of %d used\n",
  3790. nid, start_pfn, end_pfn,
  3791. nr_nodemap_entries, MAX_ACTIVE_REGIONS);
  3792. mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
  3793. /* Merge with existing active regions if possible */
  3794. for (i = 0; i < nr_nodemap_entries; i++) {
  3795. if (early_node_map[i].nid != nid)
  3796. continue;
  3797. /* Skip if an existing region covers this new one */
  3798. if (start_pfn >= early_node_map[i].start_pfn &&
  3799. end_pfn <= early_node_map[i].end_pfn)
  3800. return;
  3801. /* Merge forward if suitable */
  3802. if (start_pfn <= early_node_map[i].end_pfn &&
  3803. end_pfn > early_node_map[i].end_pfn) {
  3804. early_node_map[i].end_pfn = end_pfn;
  3805. return;
  3806. }
  3807. /* Merge backward if suitable */
  3808. if (start_pfn < early_node_map[i].start_pfn &&
  3809. end_pfn >= early_node_map[i].start_pfn) {
  3810. early_node_map[i].start_pfn = start_pfn;
  3811. return;
  3812. }
  3813. }
  3814. /* Check that early_node_map is large enough */
  3815. if (i >= MAX_ACTIVE_REGIONS) {
  3816. printk(KERN_CRIT "More than %d memory regions, truncating\n",
  3817. MAX_ACTIVE_REGIONS);
  3818. return;
  3819. }
  3820. early_node_map[i].nid = nid;
  3821. early_node_map[i].start_pfn = start_pfn;
  3822. early_node_map[i].end_pfn = end_pfn;
  3823. nr_nodemap_entries = i + 1;
  3824. }
  3825. /**
  3826. * remove_active_range - Shrink an existing registered range of PFNs
  3827. * @nid: The node id the range is on that should be shrunk
  3828. * @start_pfn: The new PFN of the range
  3829. * @end_pfn: The new PFN of the range
  3830. *
  3831. * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
  3832. * The map is kept near the end physical page range that has already been
  3833. * registered. This function allows an arch to shrink an existing registered
  3834. * range.
  3835. */
  3836. void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
  3837. unsigned long end_pfn)
  3838. {
  3839. int i, j;
  3840. int removed = 0;
  3841. printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
  3842. nid, start_pfn, end_pfn);
  3843. /* Find the old active region end and shrink */
  3844. for_each_active_range_index_in_nid(i, nid) {
  3845. if (early_node_map[i].start_pfn >= start_pfn &&
  3846. early_node_map[i].end_pfn <= end_pfn) {
  3847. /* clear it */
  3848. early_node_map[i].start_pfn = 0;
  3849. early_node_map[i].end_pfn = 0;
  3850. removed = 1;
  3851. continue;
  3852. }
  3853. if (early_node_map[i].start_pfn < start_pfn &&
  3854. early_node_map[i].end_pfn > start_pfn) {
  3855. unsigned long temp_end_pfn = early_node_map[i].end_pfn;
  3856. early_node_map[i].end_pfn = start_pfn;
  3857. if (temp_end_pfn > end_pfn)
  3858. add_active_range(nid, end_pfn, temp_end_pfn);
  3859. continue;
  3860. }
  3861. if (early_node_map[i].start_pfn >= start_pfn &&
  3862. early_node_map[i].end_pfn > end_pfn &&
  3863. early_node_map[i].start_pfn < end_pfn) {
  3864. early_node_map[i].start_pfn = end_pfn;
  3865. continue;
  3866. }
  3867. }
  3868. if (!removed)
  3869. return;
  3870. /* remove the blank ones */
  3871. for (i = nr_nodemap_entries - 1; i > 0; i--) {
  3872. if (early_node_map[i].nid != nid)
  3873. continue;
  3874. if (early_node_map[i].end_pfn)
  3875. continue;
  3876. /* we found it, get rid of it */
  3877. for (j = i; j < nr_nodemap_entries - 1; j++)
  3878. memcpy(&early_node_map[j], &early_node_map[j+1],
  3879. sizeof(early_node_map[j]));
  3880. j = nr_nodemap_entries - 1;
  3881. memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
  3882. nr_nodemap_entries--;
  3883. }
  3884. }
  3885. /**
  3886. * remove_all_active_ranges - Remove all currently registered regions
  3887. *
  3888. * During discovery, it may be found that a table like SRAT is invalid
  3889. * and an alternative discovery method must be used. This function removes
  3890. * all currently registered regions.
  3891. */
  3892. void __init remove_all_active_ranges(void)
  3893. {
  3894. memset(early_node_map, 0, sizeof(early_node_map));
  3895. nr_nodemap_entries = 0;
  3896. }
  3897. /* Compare two active node_active_regions */
  3898. static int __init cmp_node_active_region(const void *a, const void *b)
  3899. {
  3900. struct node_active_region *arange = (struct node_active_region *)a;
  3901. struct node_active_region *brange = (struct node_active_region *)b;
  3902. /* Done this way to avoid overflows */
  3903. if (arange->start_pfn > brange->start_pfn)
  3904. return 1;
  3905. if (arange->start_pfn < brange->start_pfn)
  3906. return -1;
  3907. return 0;
  3908. }
  3909. /* sort the node_map by start_pfn */
  3910. void __init sort_node_map(void)
  3911. {
  3912. sort(early_node_map, (size_t)nr_nodemap_entries,
  3913. sizeof(struct node_active_region),
  3914. cmp_node_active_region, NULL);
  3915. }
  3916. /* Find the lowest pfn for a node */
  3917. static unsigned long __init find_min_pfn_for_node(int nid)
  3918. {
  3919. int i;
  3920. unsigned long min_pfn = ULONG_MAX;
  3921. /* Assuming a sorted map, the first range found has the starting pfn */
  3922. for_each_active_range_index_in_nid(i, nid)
  3923. min_pfn = min(min_pfn, early_node_map[i].start_pfn);
  3924. if (min_pfn == ULONG_MAX) {
  3925. printk(KERN_WARNING
  3926. "Could not find start_pfn for node %d\n", nid);
  3927. return 0;
  3928. }
  3929. return min_pfn;
  3930. }
  3931. /**
  3932. * find_min_pfn_with_active_regions - Find the minimum PFN registered
  3933. *
  3934. * It returns the minimum PFN based on information provided via
  3935. * add_active_range().
  3936. */
  3937. unsigned long __init find_min_pfn_with_active_regions(void)
  3938. {
  3939. return find_min_pfn_for_node(MAX_NUMNODES);
  3940. }
  3941. /*
  3942. * early_calculate_totalpages()
  3943. * Sum pages in active regions for movable zone.
  3944. * Populate N_HIGH_MEMORY for calculating usable_nodes.
  3945. */
  3946. static unsigned long __init early_calculate_totalpages(void)
  3947. {
  3948. int i;
  3949. unsigned long totalpages = 0;
  3950. for (i = 0; i < nr_nodemap_entries; i++) {
  3951. unsigned long pages = early_node_map[i].end_pfn -
  3952. early_node_map[i].start_pfn;
  3953. totalpages += pages;
  3954. if (pages)
  3955. node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
  3956. }
  3957. return totalpages;
  3958. }
  3959. /*
  3960. * Find the PFN the Movable zone begins in each node. Kernel memory
  3961. * is spread evenly between nodes as long as the nodes have enough
  3962. * memory. When they don't, some nodes will have more kernelcore than
  3963. * others
  3964. */
  3965. static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
  3966. {
  3967. int i, nid;
  3968. unsigned long usable_startpfn;
  3969. unsigned long kernelcore_node, kernelcore_remaining;
  3970. /* save the state before borrow the nodemask */
  3971. nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
  3972. unsigned long totalpages = early_calculate_totalpages();
  3973. int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
  3974. /*
  3975. * If movablecore was specified, calculate what size of
  3976. * kernelcore that corresponds so that memory usable for
  3977. * any allocation type is evenly spread. If both kernelcore
  3978. * and movablecore are specified, then the value of kernelcore
  3979. * will be used for required_kernelcore if it's greater than
  3980. * what movablecore would have allowed.
  3981. */
  3982. if (required_movablecore) {
  3983. unsigned long corepages;
  3984. /*
  3985. * Round-up so that ZONE_MOVABLE is at least as large as what
  3986. * was requested by the user
  3987. */
  3988. required_movablecore =
  3989. roundup(required_movablecore, MAX_ORDER_NR_PAGES);
  3990. corepages = totalpages - required_movablecore;
  3991. required_kernelcore = max(required_kernelcore, corepages);
  3992. }
  3993. /* If kernelcore was not specified, there is no ZONE_MOVABLE */
  3994. if (!required_kernelcore)
  3995. goto out;
  3996. /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
  3997. find_usable_zone_for_movable();
  3998. usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
  3999. restart:
  4000. /* Spread kernelcore memory as evenly as possible throughout nodes */
  4001. kernelcore_node = required_kernelcore / usable_nodes;
  4002. for_each_node_state(nid, N_HIGH_MEMORY) {
  4003. /*
  4004. * Recalculate kernelcore_node if the division per node
  4005. * now exceeds what is necessary to satisfy the requested
  4006. * amount of memory for the kernel
  4007. */
  4008. if (required_kernelcore < kernelcore_node)
  4009. kernelcore_node = required_kernelcore / usable_nodes;
  4010. /*
  4011. * As the map is walked, we track how much memory is usable
  4012. * by the kernel using kernelcore_remaining. When it is
  4013. * 0, the rest of the node is usable by ZONE_MOVABLE
  4014. */
  4015. kernelcore_remaining = kernelcore_node;
  4016. /* Go through each range of PFNs within this node */
  4017. for_each_active_range_index_in_nid(i, nid) {
  4018. unsigned long start_pfn, end_pfn;
  4019. unsigned long size_pages;
  4020. start_pfn = max(early_node_map[i].start_pfn,
  4021. zone_movable_pfn[nid]);
  4022. end_pfn = early_node_map[i].end_pfn;
  4023. if (start_pfn >= end_pfn)
  4024. continue;
  4025. /* Account for what is only usable for kernelcore */
  4026. if (start_pfn < usable_startpfn) {
  4027. unsigned long kernel_pages;
  4028. kernel_pages = min(end_pfn, usable_startpfn)
  4029. - start_pfn;
  4030. kernelcore_remaining -= min(kernel_pages,
  4031. kernelcore_remaining);
  4032. required_kernelcore -= min(kernel_pages,
  4033. required_kernelcore);
  4034. /* Continue if range is now fully accounted */
  4035. if (end_pfn <= usable_startpfn) {
  4036. /*
  4037. * Push zone_movable_pfn to the end so
  4038. * that if we have to rebalance
  4039. * kernelcore across nodes, we will
  4040. * not double account here
  4041. */
  4042. zone_movable_pfn[nid] = end_pfn;
  4043. continue;
  4044. }
  4045. start_pfn = usable_startpfn;
  4046. }
  4047. /*
  4048. * The usable PFN range for ZONE_MOVABLE is from
  4049. * start_pfn->end_pfn. Calculate size_pages as the
  4050. * number of pages used as kernelcore
  4051. */
  4052. size_pages = end_pfn - start_pfn;
  4053. if (size_pages > kernelcore_remaining)
  4054. size_pages = kernelcore_remaining;
  4055. zone_movable_pfn[nid] = start_pfn + size_pages;
  4056. /*
  4057. * Some kernelcore has been met, update counts and
  4058. * break if the kernelcore for this node has been
  4059. * satisified
  4060. */
  4061. required_kernelcore -= min(required_kernelcore,
  4062. size_pages);
  4063. kernelcore_remaining -= size_pages;
  4064. if (!kernelcore_remaining)
  4065. break;
  4066. }
  4067. }
  4068. /*
  4069. * If there is still required_kernelcore, we do another pass with one
  4070. * less node in the count. This will push zone_movable_pfn[nid] further
  4071. * along on the nodes that still have memory until kernelcore is
  4072. * satisified
  4073. */
  4074. usable_nodes--;
  4075. if (usable_nodes && required_kernelcore > usable_nodes)
  4076. goto restart;
  4077. /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
  4078. for (nid = 0; nid < MAX_NUMNODES; nid++)
  4079. zone_movable_pfn[nid] =
  4080. roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
  4081. out:
  4082. /* restore the node_state */
  4083. node_states[N_HIGH_MEMORY] = saved_node_state;
  4084. }
  4085. /* Any regular memory on that node ? */
  4086. static void check_for_regular_memory(pg_data_t *pgdat)
  4087. {
  4088. #ifdef CONFIG_HIGHMEM
  4089. enum zone_type zone_type;
  4090. for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
  4091. struct zone *zone = &pgdat->node_zones[zone_type];
  4092. if (zone->present_pages)
  4093. node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
  4094. }
  4095. #endif
  4096. }
  4097. /**
  4098. * free_area_init_nodes - Initialise all pg_data_t and zone data
  4099. * @max_zone_pfn: an array of max PFNs for each zone
  4100. *
  4101. * This will call free_area_init_node() for each active node in the system.
  4102. * Using the page ranges provided by add_active_range(), the size of each
  4103. * zone in each node and their holes is calculated. If the maximum PFN
  4104. * between two adjacent zones match, it is assumed that the zone is empty.
  4105. * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
  4106. * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
  4107. * starts where the previous one ended. For example, ZONE_DMA32 starts
  4108. * at arch_max_dma_pfn.
  4109. */
  4110. void __init free_area_init_nodes(unsigned long *max_zone_pfn)
  4111. {
  4112. unsigned long nid;
  4113. int i;
  4114. /* Sort early_node_map as initialisation assumes it is sorted */
  4115. sort_node_map();
  4116. /* Record where the zone boundaries are */
  4117. memset(arch_zone_lowest_possible_pfn, 0,
  4118. sizeof(arch_zone_lowest_possible_pfn));
  4119. memset(arch_zone_highest_possible_pfn, 0,
  4120. sizeof(arch_zone_highest_possible_pfn));
  4121. arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
  4122. arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
  4123. for (i = 1; i < MAX_NR_ZONES; i++) {
  4124. if (i == ZONE_MOVABLE)
  4125. continue;
  4126. arch_zone_lowest_possible_pfn[i] =
  4127. arch_zone_highest_possible_pfn[i-1];
  4128. arch_zone_highest_possible_pfn[i] =
  4129. max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
  4130. }
  4131. arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
  4132. arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
  4133. /* Find the PFNs that ZONE_MOVABLE begins at in each node */
  4134. memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
  4135. find_zone_movable_pfns_for_nodes(zone_movable_pfn);
  4136. /* Print out the zone ranges */
  4137. printk("Zone PFN ranges:\n");
  4138. for (i = 0; i < MAX_NR_ZONES; i++) {
  4139. if (i == ZONE_MOVABLE)
  4140. continue;
  4141. printk(" %-8s ", zone_names[i]);
  4142. if (arch_zone_lowest_possible_pfn[i] ==
  4143. arch_zone_highest_possible_pfn[i])
  4144. printk("empty\n");
  4145. else
  4146. printk("%0#10lx -> %0#10lx\n",
  4147. arch_zone_lowest_possible_pfn[i],
  4148. arch_zone_highest_possible_pfn[i]);
  4149. }
  4150. /* Print out the PFNs ZONE_MOVABLE begins at in each node */
  4151. printk("Movable zone start PFN for each node\n");
  4152. for (i = 0; i < MAX_NUMNODES; i++) {
  4153. if (zone_movable_pfn[i])
  4154. printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
  4155. }
  4156. /* Print out the early_node_map[] */
  4157. printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
  4158. for (i = 0; i < nr_nodemap_entries; i++)
  4159. printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
  4160. early_node_map[i].start_pfn,
  4161. early_node_map[i].end_pfn);
  4162. /* Initialise every node */
  4163. mminit_verify_pageflags_layout();
  4164. setup_nr_node_ids();
  4165. for_each_online_node(nid) {
  4166. pg_data_t *pgdat = NODE_DATA(nid);
  4167. free_area_init_node(nid, NULL,
  4168. find_min_pfn_for_node(nid), NULL);
  4169. /* Any memory on that node */
  4170. if (pgdat->node_present_pages)
  4171. node_set_state(nid, N_HIGH_MEMORY);
  4172. check_for_regular_memory(pgdat);
  4173. }
  4174. }
  4175. static int __init cmdline_parse_core(char *p, unsigned long *core)
  4176. {
  4177. unsigned long long coremem;
  4178. if (!p)
  4179. return -EINVAL;
  4180. coremem = memparse(p, &p);
  4181. *core = coremem >> PAGE_SHIFT;
  4182. /* Paranoid check that UL is enough for the coremem value */
  4183. WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
  4184. return 0;
  4185. }
  4186. /*
  4187. * kernelcore=size sets the amount of memory for use for allocations that
  4188. * cannot be reclaimed or migrated.
  4189. */
  4190. static int __init cmdline_parse_kernelcore(char *p)
  4191. {
  4192. return cmdline_parse_core(p, &required_kernelcore);
  4193. }
  4194. /*
  4195. * movablecore=size sets the amount of memory for use for allocations that
  4196. * can be reclaimed or migrated.
  4197. */
  4198. static int __init cmdline_parse_movablecore(char *p)
  4199. {
  4200. return cmdline_parse_core(p, &required_movablecore);
  4201. }
  4202. early_param("kernelcore", cmdline_parse_kernelcore);
  4203. early_param("movablecore", cmdline_parse_movablecore);
  4204. #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
  4205. /**
  4206. * set_dma_reserve - set the specified number of pages reserved in the first zone
  4207. * @new_dma_reserve: The number of pages to mark reserved
  4208. *
  4209. * The per-cpu batchsize and zone watermarks are determined by present_pages.
  4210. * In the DMA zone, a significant percentage may be consumed by kernel image
  4211. * and other unfreeable allocations which can skew the watermarks badly. This
  4212. * function may optionally be used to account for unfreeable pages in the
  4213. * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
  4214. * smaller per-cpu batchsize.
  4215. */
  4216. void __init set_dma_reserve(unsigned long new_dma_reserve)
  4217. {
  4218. dma_reserve = new_dma_reserve;
  4219. }
  4220. void __init free_area_init(unsigned long *zones_size)
  4221. {
  4222. free_area_init_node(0, zones_size,
  4223. __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
  4224. }
  4225. static int page_alloc_cpu_notify(struct notifier_block *self,
  4226. unsigned long action, void *hcpu)
  4227. {
  4228. int cpu = (unsigned long)hcpu;
  4229. if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
  4230. drain_pages(cpu);
  4231. /*
  4232. * Spill the event counters of the dead processor
  4233. * into the current processors event counters.
  4234. * This artificially elevates the count of the current
  4235. * processor.
  4236. */
  4237. vm_events_fold_cpu(cpu);
  4238. /*
  4239. * Zero the differential counters of the dead processor
  4240. * so that the vm statistics are consistent.
  4241. *
  4242. * This is only okay since the processor is dead and cannot
  4243. * race with what we are doing.
  4244. */
  4245. refresh_cpu_vm_stats(cpu);
  4246. }
  4247. return NOTIFY_OK;
  4248. }
  4249. void __init page_alloc_init(void)
  4250. {
  4251. hotcpu_notifier(page_alloc_cpu_notify, 0);
  4252. }
  4253. /*
  4254. * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
  4255. * or min_free_kbytes changes.
  4256. */
  4257. static void calculate_totalreserve_pages(void)
  4258. {
  4259. struct pglist_data *pgdat;
  4260. unsigned long reserve_pages = 0;
  4261. enum zone_type i, j;
  4262. for_each_online_pgdat(pgdat) {
  4263. for (i = 0; i < MAX_NR_ZONES; i++) {
  4264. struct zone *zone = pgdat->node_zones + i;
  4265. unsigned long max = 0;
  4266. /* Find valid and maximum lowmem_reserve in the zone */
  4267. for (j = i; j < MAX_NR_ZONES; j++) {
  4268. if (zone->lowmem_reserve[j] > max)
  4269. max = zone->lowmem_reserve[j];
  4270. }
  4271. /* we treat the high watermark as reserved pages. */
  4272. max += high_wmark_pages(zone);
  4273. if (max > zone->present_pages)
  4274. max = zone->present_pages;
  4275. reserve_pages += max;
  4276. }
  4277. }
  4278. totalreserve_pages = reserve_pages;
  4279. }
  4280. /*
  4281. * setup_per_zone_lowmem_reserve - called whenever
  4282. * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
  4283. * has a correct pages reserved value, so an adequate number of
  4284. * pages are left in the zone after a successful __alloc_pages().
  4285. */
  4286. static void setup_per_zone_lowmem_reserve(void)
  4287. {
  4288. struct pglist_data *pgdat;
  4289. enum zone_type j, idx;
  4290. for_each_online_pgdat(pgdat) {
  4291. for (j = 0; j < MAX_NR_ZONES; j++) {
  4292. struct zone *zone = pgdat->node_zones + j;
  4293. unsigned long present_pages = zone->present_pages;
  4294. zone->lowmem_reserve[j] = 0;
  4295. idx = j;
  4296. while (idx) {
  4297. struct zone *lower_zone;
  4298. idx--;
  4299. if (sysctl_lowmem_reserve_ratio[idx] < 1)
  4300. sysctl_lowmem_reserve_ratio[idx] = 1;
  4301. lower_zone = pgdat->node_zones + idx;
  4302. lower_zone->lowmem_reserve[j] = present_pages /
  4303. sysctl_lowmem_reserve_ratio[idx];
  4304. present_pages += lower_zone->present_pages;
  4305. }
  4306. }
  4307. }
  4308. /* update totalreserve_pages */
  4309. calculate_totalreserve_pages();
  4310. }
  4311. /**
  4312. * setup_per_zone_wmarks - called when min_free_kbytes changes
  4313. * or when memory is hot-{added|removed}
  4314. *
  4315. * Ensures that the watermark[min,low,high] values for each zone are set
  4316. * correctly with respect to min_free_kbytes.
  4317. */
  4318. void setup_per_zone_wmarks(void)
  4319. {
  4320. unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
  4321. unsigned long lowmem_pages = 0;
  4322. struct zone *zone;
  4323. unsigned long flags;
  4324. /* Calculate total number of !ZONE_HIGHMEM pages */
  4325. for_each_zone(zone) {
  4326. if (!is_highmem(zone))
  4327. lowmem_pages += zone->present_pages;
  4328. }
  4329. for_each_zone(zone) {
  4330. u64 tmp;
  4331. spin_lock_irqsave(&zone->lock, flags);
  4332. tmp = (u64)pages_min * zone->present_pages;
  4333. do_div(tmp, lowmem_pages);
  4334. if (is_highmem(zone)) {
  4335. /*
  4336. * __GFP_HIGH and PF_MEMALLOC allocations usually don't
  4337. * need highmem pages, so cap pages_min to a small
  4338. * value here.
  4339. *
  4340. * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
  4341. * deltas controls asynch page reclaim, and so should
  4342. * not be capped for highmem.
  4343. */
  4344. int min_pages;
  4345. min_pages = zone->present_pages / 1024;
  4346. if (min_pages < SWAP_CLUSTER_MAX)
  4347. min_pages = SWAP_CLUSTER_MAX;
  4348. if (min_pages > 128)
  4349. min_pages = 128;
  4350. zone->watermark[WMARK_MIN] = min_pages;
  4351. } else {
  4352. /*
  4353. * If it's a lowmem zone, reserve a number of pages
  4354. * proportionate to the zone's size.
  4355. */
  4356. zone->watermark[WMARK_MIN] = tmp;
  4357. }
  4358. zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
  4359. zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
  4360. setup_zone_migrate_reserve(zone);
  4361. spin_unlock_irqrestore(&zone->lock, flags);
  4362. }
  4363. /* update totalreserve_pages */
  4364. calculate_totalreserve_pages();
  4365. }
  4366. /*
  4367. * The inactive anon list should be small enough that the VM never has to
  4368. * do too much work, but large enough that each inactive page has a chance
  4369. * to be referenced again before it is swapped out.
  4370. *
  4371. * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
  4372. * INACTIVE_ANON pages on this zone's LRU, maintained by the
  4373. * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
  4374. * the anonymous pages are kept on the inactive list.
  4375. *
  4376. * total target max
  4377. * memory ratio inactive anon
  4378. * -------------------------------------
  4379. * 10MB 1 5MB
  4380. * 100MB 1 50MB
  4381. * 1GB 3 250MB
  4382. * 10GB 10 0.9GB
  4383. * 100GB 31 3GB
  4384. * 1TB 101 10GB
  4385. * 10TB 320 32GB
  4386. */
  4387. void calculate_zone_inactive_ratio(struct zone *zone)
  4388. {
  4389. unsigned int gb, ratio;
  4390. /* Zone size in gigabytes */
  4391. gb = zone->present_pages >> (30 - PAGE_SHIFT);
  4392. if (gb)
  4393. ratio = int_sqrt(10 * gb);
  4394. else
  4395. ratio = 1;
  4396. zone->inactive_ratio = ratio;
  4397. }
  4398. static void __init setup_per_zone_inactive_ratio(void)
  4399. {
  4400. struct zone *zone;
  4401. for_each_zone(zone)
  4402. calculate_zone_inactive_ratio(zone);
  4403. }
  4404. /*
  4405. * Initialise min_free_kbytes.
  4406. *
  4407. * For small machines we want it small (128k min). For large machines
  4408. * we want it large (64MB max). But it is not linear, because network
  4409. * bandwidth does not increase linearly with machine size. We use
  4410. *
  4411. * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
  4412. * min_free_kbytes = sqrt(lowmem_kbytes * 16)
  4413. *
  4414. * which yields
  4415. *
  4416. * 16MB: 512k
  4417. * 32MB: 724k
  4418. * 64MB: 1024k
  4419. * 128MB: 1448k
  4420. * 256MB: 2048k
  4421. * 512MB: 2896k
  4422. * 1024MB: 4096k
  4423. * 2048MB: 5792k
  4424. * 4096MB: 8192k
  4425. * 8192MB: 11584k
  4426. * 16384MB: 16384k
  4427. */
  4428. static int __init init_per_zone_wmark_min(void)
  4429. {
  4430. unsigned long lowmem_kbytes;
  4431. lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
  4432. min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
  4433. if (min_free_kbytes < 128)
  4434. min_free_kbytes = 128;
  4435. if (min_free_kbytes > 65536)
  4436. min_free_kbytes = 65536;
  4437. setup_per_zone_wmarks();
  4438. setup_per_zone_lowmem_reserve();
  4439. setup_per_zone_inactive_ratio();
  4440. return 0;
  4441. }
  4442. module_init(init_per_zone_wmark_min)
  4443. /*
  4444. * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
  4445. * that we can call two helper functions whenever min_free_kbytes
  4446. * changes.
  4447. */
  4448. int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
  4449. void __user *buffer, size_t *length, loff_t *ppos)
  4450. {
  4451. proc_dointvec(table, write, buffer, length, ppos);
  4452. if (write)
  4453. setup_per_zone_wmarks();
  4454. return 0;
  4455. }
  4456. #ifdef CONFIG_NUMA
  4457. int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
  4458. void __user *buffer, size_t *length, loff_t *ppos)
  4459. {
  4460. struct zone *zone;
  4461. int rc;
  4462. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4463. if (rc)
  4464. return rc;
  4465. for_each_zone(zone)
  4466. zone->min_unmapped_pages = (zone->present_pages *
  4467. sysctl_min_unmapped_ratio) / 100;
  4468. return 0;
  4469. }
  4470. int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
  4471. void __user *buffer, size_t *length, loff_t *ppos)
  4472. {
  4473. struct zone *zone;
  4474. int rc;
  4475. rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4476. if (rc)
  4477. return rc;
  4478. for_each_zone(zone)
  4479. zone->min_slab_pages = (zone->present_pages *
  4480. sysctl_min_slab_ratio) / 100;
  4481. return 0;
  4482. }
  4483. #endif
  4484. /*
  4485. * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
  4486. * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
  4487. * whenever sysctl_lowmem_reserve_ratio changes.
  4488. *
  4489. * The reserve ratio obviously has absolutely no relation with the
  4490. * minimum watermarks. The lowmem reserve ratio can only make sense
  4491. * if in function of the boot time zone sizes.
  4492. */
  4493. int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
  4494. void __user *buffer, size_t *length, loff_t *ppos)
  4495. {
  4496. proc_dointvec_minmax(table, write, buffer, length, ppos);
  4497. setup_per_zone_lowmem_reserve();
  4498. return 0;
  4499. }
  4500. /*
  4501. * percpu_pagelist_fraction - changes the pcp->high for each zone on each
  4502. * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
  4503. * can have before it gets flushed back to buddy allocator.
  4504. */
  4505. int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
  4506. void __user *buffer, size_t *length, loff_t *ppos)
  4507. {
  4508. struct zone *zone;
  4509. unsigned int cpu;
  4510. int ret;
  4511. ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
  4512. if (!write || (ret == -EINVAL))
  4513. return ret;
  4514. for_each_populated_zone(zone) {
  4515. for_each_possible_cpu(cpu) {
  4516. unsigned long high;
  4517. high = zone->present_pages / percpu_pagelist_fraction;
  4518. setup_pagelist_highmark(
  4519. per_cpu_ptr(zone->pageset, cpu), high);
  4520. }
  4521. }
  4522. return 0;
  4523. }
  4524. int hashdist = HASHDIST_DEFAULT;
  4525. #ifdef CONFIG_NUMA
  4526. static int __init set_hashdist(char *str)
  4527. {
  4528. if (!str)
  4529. return 0;
  4530. hashdist = simple_strtoul(str, &str, 0);
  4531. return 1;
  4532. }
  4533. __setup("hashdist=", set_hashdist);
  4534. #endif
  4535. /*
  4536. * allocate a large system hash table from bootmem
  4537. * - it is assumed that the hash table must contain an exact power-of-2
  4538. * quantity of entries
  4539. * - limit is the number of hash buckets, not the total allocation size
  4540. */
  4541. void *__init alloc_large_system_hash(const char *tablename,
  4542. unsigned long bucketsize,
  4543. unsigned long numentries,
  4544. int scale,
  4545. int flags,
  4546. unsigned int *_hash_shift,
  4547. unsigned int *_hash_mask,
  4548. unsigned long limit)
  4549. {
  4550. unsigned long long max = limit;
  4551. unsigned long log2qty, size;
  4552. void *table = NULL;
  4553. /* allow the kernel cmdline to have a say */
  4554. if (!numentries) {
  4555. /* round applicable memory size up to nearest megabyte */
  4556. numentries = nr_kernel_pages;
  4557. numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
  4558. numentries >>= 20 - PAGE_SHIFT;
  4559. numentries <<= 20 - PAGE_SHIFT;
  4560. /* limit to 1 bucket per 2^scale bytes of low memory */
  4561. if (scale > PAGE_SHIFT)
  4562. numentries >>= (scale - PAGE_SHIFT);
  4563. else
  4564. numentries <<= (PAGE_SHIFT - scale);
  4565. /* Make sure we've got at least a 0-order allocation.. */
  4566. if (unlikely(flags & HASH_SMALL)) {
  4567. /* Makes no sense without HASH_EARLY */
  4568. WARN_ON(!(flags & HASH_EARLY));
  4569. if (!(numentries >> *_hash_shift)) {
  4570. numentries = 1UL << *_hash_shift;
  4571. BUG_ON(!numentries);
  4572. }
  4573. } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
  4574. numentries = PAGE_SIZE / bucketsize;
  4575. }
  4576. numentries = roundup_pow_of_two(numentries);
  4577. /* limit allocation size to 1/16 total memory by default */
  4578. if (max == 0) {
  4579. max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
  4580. do_div(max, bucketsize);
  4581. }
  4582. if (numentries > max)
  4583. numentries = max;
  4584. log2qty = ilog2(numentries);
  4585. do {
  4586. size = bucketsize << log2qty;
  4587. if (flags & HASH_EARLY)
  4588. table = alloc_bootmem_nopanic(size);
  4589. else if (hashdist)
  4590. table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
  4591. else {
  4592. /*
  4593. * If bucketsize is not a power-of-two, we may free
  4594. * some pages at the end of hash table which
  4595. * alloc_pages_exact() automatically does
  4596. */
  4597. if (get_order(size) < MAX_ORDER) {
  4598. table = alloc_pages_exact(size, GFP_ATOMIC);
  4599. kmemleak_alloc(table, size, 1, GFP_ATOMIC);
  4600. }
  4601. }
  4602. } while (!table && size > PAGE_SIZE && --log2qty);
  4603. if (!table)
  4604. panic("Failed to allocate %s hash table\n", tablename);
  4605. printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
  4606. tablename,
  4607. (1UL << log2qty),
  4608. ilog2(size) - PAGE_SHIFT,
  4609. size);
  4610. if (_hash_shift)
  4611. *_hash_shift = log2qty;
  4612. if (_hash_mask)
  4613. *_hash_mask = (1 << log2qty) - 1;
  4614. return table;
  4615. }
  4616. /* Return a pointer to the bitmap storing bits affecting a block of pages */
  4617. static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
  4618. unsigned long pfn)
  4619. {
  4620. #ifdef CONFIG_SPARSEMEM
  4621. return __pfn_to_section(pfn)->pageblock_flags;
  4622. #else
  4623. return zone->pageblock_flags;
  4624. #endif /* CONFIG_SPARSEMEM */
  4625. }
  4626. static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
  4627. {
  4628. #ifdef CONFIG_SPARSEMEM
  4629. pfn &= (PAGES_PER_SECTION-1);
  4630. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4631. #else
  4632. pfn = pfn - zone->zone_start_pfn;
  4633. return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
  4634. #endif /* CONFIG_SPARSEMEM */
  4635. }
  4636. /**
  4637. * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
  4638. * @page: The page within the block of interest
  4639. * @start_bitidx: The first bit of interest to retrieve
  4640. * @end_bitidx: The last bit of interest
  4641. * returns pageblock_bits flags
  4642. */
  4643. unsigned long get_pageblock_flags_group(struct page *page,
  4644. int start_bitidx, int end_bitidx)
  4645. {
  4646. struct zone *zone;
  4647. unsigned long *bitmap;
  4648. unsigned long pfn, bitidx;
  4649. unsigned long flags = 0;
  4650. unsigned long value = 1;
  4651. zone = page_zone(page);
  4652. pfn = page_to_pfn(page);
  4653. bitmap = get_pageblock_bitmap(zone, pfn);
  4654. bitidx = pfn_to_bitidx(zone, pfn);
  4655. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4656. if (test_bit(bitidx + start_bitidx, bitmap))
  4657. flags |= value;
  4658. return flags;
  4659. }
  4660. /**
  4661. * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
  4662. * @page: The page within the block of interest
  4663. * @start_bitidx: The first bit of interest
  4664. * @end_bitidx: The last bit of interest
  4665. * @flags: The flags to set
  4666. */
  4667. void set_pageblock_flags_group(struct page *page, unsigned long flags,
  4668. int start_bitidx, int end_bitidx)
  4669. {
  4670. struct zone *zone;
  4671. unsigned long *bitmap;
  4672. unsigned long pfn, bitidx;
  4673. unsigned long value = 1;
  4674. zone = page_zone(page);
  4675. pfn = page_to_pfn(page);
  4676. bitmap = get_pageblock_bitmap(zone, pfn);
  4677. bitidx = pfn_to_bitidx(zone, pfn);
  4678. VM_BUG_ON(pfn < zone->zone_start_pfn);
  4679. VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
  4680. for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
  4681. if (flags & value)
  4682. __set_bit(bitidx + start_bitidx, bitmap);
  4683. else
  4684. __clear_bit(bitidx + start_bitidx, bitmap);
  4685. }
  4686. /*
  4687. * This is designed as sub function...plz see page_isolation.c also.
  4688. * set/clear page block's type to be ISOLATE.
  4689. * page allocater never alloc memory from ISOLATE block.
  4690. */
  4691. static int
  4692. __count_immobile_pages(struct zone *zone, struct page *page, int count)
  4693. {
  4694. unsigned long pfn, iter, found;
  4695. /*
  4696. * For avoiding noise data, lru_add_drain_all() should be called
  4697. * If ZONE_MOVABLE, the zone never contains immobile pages
  4698. */
  4699. if (zone_idx(zone) == ZONE_MOVABLE)
  4700. return true;
  4701. if (get_pageblock_migratetype(page) == MIGRATE_MOVABLE)
  4702. return true;
  4703. pfn = page_to_pfn(page);
  4704. for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
  4705. unsigned long check = pfn + iter;
  4706. if (!pfn_valid_within(check))
  4707. continue;
  4708. page = pfn_to_page(check);
  4709. if (!page_count(page)) {
  4710. if (PageBuddy(page))
  4711. iter += (1 << page_order(page)) - 1;
  4712. continue;
  4713. }
  4714. if (!PageLRU(page))
  4715. found++;
  4716. /*
  4717. * If there are RECLAIMABLE pages, we need to check it.
  4718. * But now, memory offline itself doesn't call shrink_slab()
  4719. * and it still to be fixed.
  4720. */
  4721. /*
  4722. * If the page is not RAM, page_count()should be 0.
  4723. * we don't need more check. This is an _used_ not-movable page.
  4724. *
  4725. * The problematic thing here is PG_reserved pages. PG_reserved
  4726. * is set to both of a memory hole page and a _used_ kernel
  4727. * page at boot.
  4728. */
  4729. if (found > count)
  4730. return false;
  4731. }
  4732. return true;
  4733. }
  4734. bool is_pageblock_removable_nolock(struct page *page)
  4735. {
  4736. struct zone *zone = page_zone(page);
  4737. return __count_immobile_pages(zone, page, 0);
  4738. }
  4739. int set_migratetype_isolate(struct page *page)
  4740. {
  4741. struct zone *zone;
  4742. unsigned long flags, pfn;
  4743. struct memory_isolate_notify arg;
  4744. int notifier_ret;
  4745. int ret = -EBUSY;
  4746. int zone_idx;
  4747. zone = page_zone(page);
  4748. zone_idx = zone_idx(zone);
  4749. spin_lock_irqsave(&zone->lock, flags);
  4750. pfn = page_to_pfn(page);
  4751. arg.start_pfn = pfn;
  4752. arg.nr_pages = pageblock_nr_pages;
  4753. arg.pages_found = 0;
  4754. /*
  4755. * It may be possible to isolate a pageblock even if the
  4756. * migratetype is not MIGRATE_MOVABLE. The memory isolation
  4757. * notifier chain is used by balloon drivers to return the
  4758. * number of pages in a range that are held by the balloon
  4759. * driver to shrink memory. If all the pages are accounted for
  4760. * by balloons, are free, or on the LRU, isolation can continue.
  4761. * Later, for example, when memory hotplug notifier runs, these
  4762. * pages reported as "can be isolated" should be isolated(freed)
  4763. * by the balloon driver through the memory notifier chain.
  4764. */
  4765. notifier_ret = memory_isolate_notify(MEM_ISOLATE_COUNT, &arg);
  4766. notifier_ret = notifier_to_errno(notifier_ret);
  4767. if (notifier_ret)
  4768. goto out;
  4769. /*
  4770. * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
  4771. * We just check MOVABLE pages.
  4772. */
  4773. if (__count_immobile_pages(zone, page, arg.pages_found))
  4774. ret = 0;
  4775. /*
  4776. * immobile means "not-on-lru" paes. If immobile is larger than
  4777. * removable-by-driver pages reported by notifier, we'll fail.
  4778. */
  4779. out:
  4780. if (!ret) {
  4781. set_pageblock_migratetype(page, MIGRATE_ISOLATE);
  4782. move_freepages_block(zone, page, MIGRATE_ISOLATE);
  4783. }
  4784. spin_unlock_irqrestore(&zone->lock, flags);
  4785. if (!ret)
  4786. drain_all_pages();
  4787. return ret;
  4788. }
  4789. void unset_migratetype_isolate(struct page *page)
  4790. {
  4791. struct zone *zone;
  4792. unsigned long flags;
  4793. zone = page_zone(page);
  4794. spin_lock_irqsave(&zone->lock, flags);
  4795. if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
  4796. goto out;
  4797. set_pageblock_migratetype(page, MIGRATE_MOVABLE);
  4798. move_freepages_block(zone, page, MIGRATE_MOVABLE);
  4799. out:
  4800. spin_unlock_irqrestore(&zone->lock, flags);
  4801. }
  4802. #ifdef CONFIG_MEMORY_HOTREMOVE
  4803. /*
  4804. * All pages in the range must be isolated before calling this.
  4805. */
  4806. void
  4807. __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
  4808. {
  4809. struct page *page;
  4810. struct zone *zone;
  4811. int order, i;
  4812. unsigned long pfn;
  4813. unsigned long flags;
  4814. /* find the first valid pfn */
  4815. for (pfn = start_pfn; pfn < end_pfn; pfn++)
  4816. if (pfn_valid(pfn))
  4817. break;
  4818. if (pfn == end_pfn)
  4819. return;
  4820. zone = page_zone(pfn_to_page(pfn));
  4821. spin_lock_irqsave(&zone->lock, flags);
  4822. pfn = start_pfn;
  4823. while (pfn < end_pfn) {
  4824. if (!pfn_valid(pfn)) {
  4825. pfn++;
  4826. continue;
  4827. }
  4828. page = pfn_to_page(pfn);
  4829. BUG_ON(page_count(page));
  4830. BUG_ON(!PageBuddy(page));
  4831. order = page_order(page);
  4832. #ifdef CONFIG_DEBUG_VM
  4833. printk(KERN_INFO "remove from free list %lx %d %lx\n",
  4834. pfn, 1 << order, end_pfn);
  4835. #endif
  4836. list_del(&page->lru);
  4837. rmv_page_order(page);
  4838. zone->free_area[order].nr_free--;
  4839. __mod_zone_page_state(zone, NR_FREE_PAGES,
  4840. - (1UL << order));
  4841. for (i = 0; i < (1 << order); i++)
  4842. SetPageReserved((page+i));
  4843. pfn += (1 << order);
  4844. }
  4845. spin_unlock_irqrestore(&zone->lock, flags);
  4846. }
  4847. #endif
  4848. #ifdef CONFIG_MEMORY_FAILURE
  4849. bool is_free_buddy_page(struct page *page)
  4850. {
  4851. struct zone *zone = page_zone(page);
  4852. unsigned long pfn = page_to_pfn(page);
  4853. unsigned long flags;
  4854. int order;
  4855. spin_lock_irqsave(&zone->lock, flags);
  4856. for (order = 0; order < MAX_ORDER; order++) {
  4857. struct page *page_head = page - (pfn & ((1 << order) - 1));
  4858. if (PageBuddy(page_head) && page_order(page_head) >= order)
  4859. break;
  4860. }
  4861. spin_unlock_irqrestore(&zone->lock, flags);
  4862. return order < MAX_ORDER;
  4863. }
  4864. #endif
  4865. static struct trace_print_flags pageflag_names[] = {
  4866. {1UL << PG_locked, "locked" },
  4867. {1UL << PG_error, "error" },
  4868. {1UL << PG_referenced, "referenced" },
  4869. {1UL << PG_uptodate, "uptodate" },
  4870. {1UL << PG_dirty, "dirty" },
  4871. {1UL << PG_lru, "lru" },
  4872. {1UL << PG_active, "active" },
  4873. {1UL << PG_slab, "slab" },
  4874. {1UL << PG_owner_priv_1, "owner_priv_1" },
  4875. {1UL << PG_arch_1, "arch_1" },
  4876. {1UL << PG_reserved, "reserved" },
  4877. {1UL << PG_private, "private" },
  4878. {1UL << PG_private_2, "private_2" },
  4879. {1UL << PG_writeback, "writeback" },
  4880. #ifdef CONFIG_PAGEFLAGS_EXTENDED
  4881. {1UL << PG_head, "head" },
  4882. {1UL << PG_tail, "tail" },
  4883. #else
  4884. {1UL << PG_compound, "compound" },
  4885. #endif
  4886. {1UL << PG_swapcache, "swapcache" },
  4887. {1UL << PG_mappedtodisk, "mappedtodisk" },
  4888. {1UL << PG_reclaim, "reclaim" },
  4889. {1UL << PG_swapbacked, "swapbacked" },
  4890. {1UL << PG_unevictable, "unevictable" },
  4891. #ifdef CONFIG_MMU
  4892. {1UL << PG_mlocked, "mlocked" },
  4893. #endif
  4894. #ifdef CONFIG_ARCH_USES_PG_UNCACHED
  4895. {1UL << PG_uncached, "uncached" },
  4896. #endif
  4897. #ifdef CONFIG_MEMORY_FAILURE
  4898. {1UL << PG_hwpoison, "hwpoison" },
  4899. #endif
  4900. {-1UL, NULL },
  4901. };
  4902. static void dump_page_flags(unsigned long flags)
  4903. {
  4904. const char *delim = "";
  4905. unsigned long mask;
  4906. int i;
  4907. printk(KERN_ALERT "page flags: %#lx(", flags);
  4908. /* remove zone id */
  4909. flags &= (1UL << NR_PAGEFLAGS) - 1;
  4910. for (i = 0; pageflag_names[i].name && flags; i++) {
  4911. mask = pageflag_names[i].mask;
  4912. if ((flags & mask) != mask)
  4913. continue;
  4914. flags &= ~mask;
  4915. printk("%s%s", delim, pageflag_names[i].name);
  4916. delim = "|";
  4917. }
  4918. /* check for left over flags */
  4919. if (flags)
  4920. printk("%s%#lx", delim, flags);
  4921. printk(")\n");
  4922. }
  4923. void dump_page(struct page *page)
  4924. {
  4925. printk(KERN_ALERT
  4926. "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
  4927. page, atomic_read(&page->_count), page_mapcount(page),
  4928. page->mapping, page->index);
  4929. dump_page_flags(page->flags);
  4930. mem_cgroup_print_bad_page(page);
  4931. }