memory.c 106 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/ksm.h>
  44. #include <linux/rmap.h>
  45. #include <linux/module.h>
  46. #include <linux/delayacct.h>
  47. #include <linux/init.h>
  48. #include <linux/writeback.h>
  49. #include <linux/memcontrol.h>
  50. #include <linux/mmu_notifier.h>
  51. #include <linux/kallsyms.h>
  52. #include <linux/swapops.h>
  53. #include <linux/elf.h>
  54. #include <linux/gfp.h>
  55. #include <asm/io.h>
  56. #include <asm/pgalloc.h>
  57. #include <asm/uaccess.h>
  58. #include <asm/tlb.h>
  59. #include <asm/tlbflush.h>
  60. #include <asm/pgtable.h>
  61. #include "internal.h"
  62. #ifndef CONFIG_NEED_MULTIPLE_NODES
  63. /* use the per-pgdat data instead for discontigmem - mbligh */
  64. unsigned long max_mapnr;
  65. struct page *mem_map;
  66. EXPORT_SYMBOL(max_mapnr);
  67. EXPORT_SYMBOL(mem_map);
  68. #endif
  69. unsigned long num_physpages;
  70. /*
  71. * A number of key systems in x86 including ioremap() rely on the assumption
  72. * that high_memory defines the upper bound on direct map memory, then end
  73. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  74. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  75. * and ZONE_HIGHMEM.
  76. */
  77. void * high_memory;
  78. EXPORT_SYMBOL(num_physpages);
  79. EXPORT_SYMBOL(high_memory);
  80. /*
  81. * Randomize the address space (stacks, mmaps, brk, etc.).
  82. *
  83. * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  84. * as ancient (libc5 based) binaries can segfault. )
  85. */
  86. int randomize_va_space __read_mostly =
  87. #ifdef CONFIG_COMPAT_BRK
  88. 1;
  89. #else
  90. 2;
  91. #endif
  92. static int __init disable_randmaps(char *s)
  93. {
  94. randomize_va_space = 0;
  95. return 1;
  96. }
  97. __setup("norandmaps", disable_randmaps);
  98. unsigned long zero_pfn __read_mostly;
  99. unsigned long highest_memmap_pfn __read_mostly;
  100. /*
  101. * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
  102. */
  103. static int __init init_zero_pfn(void)
  104. {
  105. zero_pfn = page_to_pfn(ZERO_PAGE(0));
  106. return 0;
  107. }
  108. core_initcall(init_zero_pfn);
  109. #if defined(SPLIT_RSS_COUNTING)
  110. static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm)
  111. {
  112. int i;
  113. for (i = 0; i < NR_MM_COUNTERS; i++) {
  114. if (task->rss_stat.count[i]) {
  115. add_mm_counter(mm, i, task->rss_stat.count[i]);
  116. task->rss_stat.count[i] = 0;
  117. }
  118. }
  119. task->rss_stat.events = 0;
  120. }
  121. static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
  122. {
  123. struct task_struct *task = current;
  124. if (likely(task->mm == mm))
  125. task->rss_stat.count[member] += val;
  126. else
  127. add_mm_counter(mm, member, val);
  128. }
  129. #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
  130. #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
  131. /* sync counter once per 64 page faults */
  132. #define TASK_RSS_EVENTS_THRESH (64)
  133. static void check_sync_rss_stat(struct task_struct *task)
  134. {
  135. if (unlikely(task != current))
  136. return;
  137. if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
  138. __sync_task_rss_stat(task, task->mm);
  139. }
  140. unsigned long get_mm_counter(struct mm_struct *mm, int member)
  141. {
  142. long val = 0;
  143. /*
  144. * Don't use task->mm here...for avoiding to use task_get_mm()..
  145. * The caller must guarantee task->mm is not invalid.
  146. */
  147. val = atomic_long_read(&mm->rss_stat.count[member]);
  148. /*
  149. * counter is updated in asynchronous manner and may go to minus.
  150. * But it's never be expected number for users.
  151. */
  152. if (val < 0)
  153. return 0;
  154. return (unsigned long)val;
  155. }
  156. void sync_mm_rss(struct task_struct *task, struct mm_struct *mm)
  157. {
  158. __sync_task_rss_stat(task, mm);
  159. }
  160. #else
  161. #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
  162. #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
  163. static void check_sync_rss_stat(struct task_struct *task)
  164. {
  165. }
  166. #endif
  167. /*
  168. * If a p?d_bad entry is found while walking page tables, report
  169. * the error, before resetting entry to p?d_none. Usually (but
  170. * very seldom) called out from the p?d_none_or_clear_bad macros.
  171. */
  172. void pgd_clear_bad(pgd_t *pgd)
  173. {
  174. pgd_ERROR(*pgd);
  175. pgd_clear(pgd);
  176. }
  177. void pud_clear_bad(pud_t *pud)
  178. {
  179. pud_ERROR(*pud);
  180. pud_clear(pud);
  181. }
  182. void pmd_clear_bad(pmd_t *pmd)
  183. {
  184. pmd_ERROR(*pmd);
  185. pmd_clear(pmd);
  186. }
  187. /*
  188. * Note: this doesn't free the actual pages themselves. That
  189. * has been handled earlier when unmapping all the memory regions.
  190. */
  191. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
  192. unsigned long addr)
  193. {
  194. pgtable_t token = pmd_pgtable(*pmd);
  195. pmd_clear(pmd);
  196. pte_free_tlb(tlb, token, addr);
  197. tlb->mm->nr_ptes--;
  198. }
  199. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  200. unsigned long addr, unsigned long end,
  201. unsigned long floor, unsigned long ceiling)
  202. {
  203. pmd_t *pmd;
  204. unsigned long next;
  205. unsigned long start;
  206. start = addr;
  207. pmd = pmd_offset(pud, addr);
  208. do {
  209. next = pmd_addr_end(addr, end);
  210. if (pmd_none_or_clear_bad(pmd))
  211. continue;
  212. free_pte_range(tlb, pmd, addr);
  213. } while (pmd++, addr = next, addr != end);
  214. start &= PUD_MASK;
  215. if (start < floor)
  216. return;
  217. if (ceiling) {
  218. ceiling &= PUD_MASK;
  219. if (!ceiling)
  220. return;
  221. }
  222. if (end - 1 > ceiling - 1)
  223. return;
  224. pmd = pmd_offset(pud, start);
  225. pud_clear(pud);
  226. pmd_free_tlb(tlb, pmd, start);
  227. }
  228. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  229. unsigned long addr, unsigned long end,
  230. unsigned long floor, unsigned long ceiling)
  231. {
  232. pud_t *pud;
  233. unsigned long next;
  234. unsigned long start;
  235. start = addr;
  236. pud = pud_offset(pgd, addr);
  237. do {
  238. next = pud_addr_end(addr, end);
  239. if (pud_none_or_clear_bad(pud))
  240. continue;
  241. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  242. } while (pud++, addr = next, addr != end);
  243. start &= PGDIR_MASK;
  244. if (start < floor)
  245. return;
  246. if (ceiling) {
  247. ceiling &= PGDIR_MASK;
  248. if (!ceiling)
  249. return;
  250. }
  251. if (end - 1 > ceiling - 1)
  252. return;
  253. pud = pud_offset(pgd, start);
  254. pgd_clear(pgd);
  255. pud_free_tlb(tlb, pud, start);
  256. }
  257. /*
  258. * This function frees user-level page tables of a process.
  259. *
  260. * Must be called with pagetable lock held.
  261. */
  262. void free_pgd_range(struct mmu_gather *tlb,
  263. unsigned long addr, unsigned long end,
  264. unsigned long floor, unsigned long ceiling)
  265. {
  266. pgd_t *pgd;
  267. unsigned long next;
  268. /*
  269. * The next few lines have given us lots of grief...
  270. *
  271. * Why are we testing PMD* at this top level? Because often
  272. * there will be no work to do at all, and we'd prefer not to
  273. * go all the way down to the bottom just to discover that.
  274. *
  275. * Why all these "- 1"s? Because 0 represents both the bottom
  276. * of the address space and the top of it (using -1 for the
  277. * top wouldn't help much: the masks would do the wrong thing).
  278. * The rule is that addr 0 and floor 0 refer to the bottom of
  279. * the address space, but end 0 and ceiling 0 refer to the top
  280. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  281. * that end 0 case should be mythical).
  282. *
  283. * Wherever addr is brought up or ceiling brought down, we must
  284. * be careful to reject "the opposite 0" before it confuses the
  285. * subsequent tests. But what about where end is brought down
  286. * by PMD_SIZE below? no, end can't go down to 0 there.
  287. *
  288. * Whereas we round start (addr) and ceiling down, by different
  289. * masks at different levels, in order to test whether a table
  290. * now has no other vmas using it, so can be freed, we don't
  291. * bother to round floor or end up - the tests don't need that.
  292. */
  293. addr &= PMD_MASK;
  294. if (addr < floor) {
  295. addr += PMD_SIZE;
  296. if (!addr)
  297. return;
  298. }
  299. if (ceiling) {
  300. ceiling &= PMD_MASK;
  301. if (!ceiling)
  302. return;
  303. }
  304. if (end - 1 > ceiling - 1)
  305. end -= PMD_SIZE;
  306. if (addr > end - 1)
  307. return;
  308. pgd = pgd_offset(tlb->mm, addr);
  309. do {
  310. next = pgd_addr_end(addr, end);
  311. if (pgd_none_or_clear_bad(pgd))
  312. continue;
  313. free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  314. } while (pgd++, addr = next, addr != end);
  315. }
  316. void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
  317. unsigned long floor, unsigned long ceiling)
  318. {
  319. while (vma) {
  320. struct vm_area_struct *next = vma->vm_next;
  321. unsigned long addr = vma->vm_start;
  322. /*
  323. * Hide vma from rmap and truncate_pagecache before freeing
  324. * pgtables
  325. */
  326. unlink_anon_vmas(vma);
  327. unlink_file_vma(vma);
  328. if (is_vm_hugetlb_page(vma)) {
  329. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  330. floor, next? next->vm_start: ceiling);
  331. } else {
  332. /*
  333. * Optimization: gather nearby vmas into one call down
  334. */
  335. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  336. && !is_vm_hugetlb_page(next)) {
  337. vma = next;
  338. next = vma->vm_next;
  339. unlink_anon_vmas(vma);
  340. unlink_file_vma(vma);
  341. }
  342. free_pgd_range(tlb, addr, vma->vm_end,
  343. floor, next? next->vm_start: ceiling);
  344. }
  345. vma = next;
  346. }
  347. }
  348. int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
  349. pmd_t *pmd, unsigned long address)
  350. {
  351. pgtable_t new = pte_alloc_one(mm, address);
  352. int wait_split_huge_page;
  353. if (!new)
  354. return -ENOMEM;
  355. /*
  356. * Ensure all pte setup (eg. pte page lock and page clearing) are
  357. * visible before the pte is made visible to other CPUs by being
  358. * put into page tables.
  359. *
  360. * The other side of the story is the pointer chasing in the page
  361. * table walking code (when walking the page table without locking;
  362. * ie. most of the time). Fortunately, these data accesses consist
  363. * of a chain of data-dependent loads, meaning most CPUs (alpha
  364. * being the notable exception) will already guarantee loads are
  365. * seen in-order. See the alpha page table accessors for the
  366. * smp_read_barrier_depends() barriers in page table walking code.
  367. */
  368. smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
  369. spin_lock(&mm->page_table_lock);
  370. wait_split_huge_page = 0;
  371. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  372. mm->nr_ptes++;
  373. pmd_populate(mm, pmd, new);
  374. new = NULL;
  375. } else if (unlikely(pmd_trans_splitting(*pmd)))
  376. wait_split_huge_page = 1;
  377. spin_unlock(&mm->page_table_lock);
  378. if (new)
  379. pte_free(mm, new);
  380. if (wait_split_huge_page)
  381. wait_split_huge_page(vma->anon_vma, pmd);
  382. return 0;
  383. }
  384. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  385. {
  386. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  387. if (!new)
  388. return -ENOMEM;
  389. smp_wmb(); /* See comment in __pte_alloc */
  390. spin_lock(&init_mm.page_table_lock);
  391. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  392. pmd_populate_kernel(&init_mm, pmd, new);
  393. new = NULL;
  394. } else
  395. VM_BUG_ON(pmd_trans_splitting(*pmd));
  396. spin_unlock(&init_mm.page_table_lock);
  397. if (new)
  398. pte_free_kernel(&init_mm, new);
  399. return 0;
  400. }
  401. static inline void init_rss_vec(int *rss)
  402. {
  403. memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
  404. }
  405. static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
  406. {
  407. int i;
  408. if (current->mm == mm)
  409. sync_mm_rss(current, mm);
  410. for (i = 0; i < NR_MM_COUNTERS; i++)
  411. if (rss[i])
  412. add_mm_counter(mm, i, rss[i]);
  413. }
  414. /*
  415. * This function is called to print an error when a bad pte
  416. * is found. For example, we might have a PFN-mapped pte in
  417. * a region that doesn't allow it.
  418. *
  419. * The calling function must still handle the error.
  420. */
  421. static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
  422. pte_t pte, struct page *page)
  423. {
  424. pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
  425. pud_t *pud = pud_offset(pgd, addr);
  426. pmd_t *pmd = pmd_offset(pud, addr);
  427. struct address_space *mapping;
  428. pgoff_t index;
  429. static unsigned long resume;
  430. static unsigned long nr_shown;
  431. static unsigned long nr_unshown;
  432. /*
  433. * Allow a burst of 60 reports, then keep quiet for that minute;
  434. * or allow a steady drip of one report per second.
  435. */
  436. if (nr_shown == 60) {
  437. if (time_before(jiffies, resume)) {
  438. nr_unshown++;
  439. return;
  440. }
  441. if (nr_unshown) {
  442. printk(KERN_ALERT
  443. "BUG: Bad page map: %lu messages suppressed\n",
  444. nr_unshown);
  445. nr_unshown = 0;
  446. }
  447. nr_shown = 0;
  448. }
  449. if (nr_shown++ == 0)
  450. resume = jiffies + 60 * HZ;
  451. mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
  452. index = linear_page_index(vma, addr);
  453. printk(KERN_ALERT
  454. "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
  455. current->comm,
  456. (long long)pte_val(pte), (long long)pmd_val(*pmd));
  457. if (page)
  458. dump_page(page);
  459. printk(KERN_ALERT
  460. "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
  461. (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
  462. /*
  463. * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
  464. */
  465. if (vma->vm_ops)
  466. print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
  467. (unsigned long)vma->vm_ops->fault);
  468. if (vma->vm_file && vma->vm_file->f_op)
  469. print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
  470. (unsigned long)vma->vm_file->f_op->mmap);
  471. dump_stack();
  472. add_taint(TAINT_BAD_PAGE);
  473. }
  474. static inline int is_cow_mapping(unsigned int flags)
  475. {
  476. return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  477. }
  478. #ifndef is_zero_pfn
  479. static inline int is_zero_pfn(unsigned long pfn)
  480. {
  481. return pfn == zero_pfn;
  482. }
  483. #endif
  484. #ifndef my_zero_pfn
  485. static inline unsigned long my_zero_pfn(unsigned long addr)
  486. {
  487. return zero_pfn;
  488. }
  489. #endif
  490. /*
  491. * vm_normal_page -- This function gets the "struct page" associated with a pte.
  492. *
  493. * "Special" mappings do not wish to be associated with a "struct page" (either
  494. * it doesn't exist, or it exists but they don't want to touch it). In this
  495. * case, NULL is returned here. "Normal" mappings do have a struct page.
  496. *
  497. * There are 2 broad cases. Firstly, an architecture may define a pte_special()
  498. * pte bit, in which case this function is trivial. Secondly, an architecture
  499. * may not have a spare pte bit, which requires a more complicated scheme,
  500. * described below.
  501. *
  502. * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
  503. * special mapping (even if there are underlying and valid "struct pages").
  504. * COWed pages of a VM_PFNMAP are always normal.
  505. *
  506. * The way we recognize COWed pages within VM_PFNMAP mappings is through the
  507. * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
  508. * set, and the vm_pgoff will point to the first PFN mapped: thus every special
  509. * mapping will always honor the rule
  510. *
  511. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  512. *
  513. * And for normal mappings this is false.
  514. *
  515. * This restricts such mappings to be a linear translation from virtual address
  516. * to pfn. To get around this restriction, we allow arbitrary mappings so long
  517. * as the vma is not a COW mapping; in that case, we know that all ptes are
  518. * special (because none can have been COWed).
  519. *
  520. *
  521. * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
  522. *
  523. * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
  524. * page" backing, however the difference is that _all_ pages with a struct
  525. * page (that is, those where pfn_valid is true) are refcounted and considered
  526. * normal pages by the VM. The disadvantage is that pages are refcounted
  527. * (which can be slower and simply not an option for some PFNMAP users). The
  528. * advantage is that we don't have to follow the strict linearity rule of
  529. * PFNMAP mappings in order to support COWable mappings.
  530. *
  531. */
  532. #ifdef __HAVE_ARCH_PTE_SPECIAL
  533. # define HAVE_PTE_SPECIAL 1
  534. #else
  535. # define HAVE_PTE_SPECIAL 0
  536. #endif
  537. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  538. pte_t pte)
  539. {
  540. unsigned long pfn = pte_pfn(pte);
  541. if (HAVE_PTE_SPECIAL) {
  542. if (likely(!pte_special(pte)))
  543. goto check_pfn;
  544. if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
  545. return NULL;
  546. if (!is_zero_pfn(pfn))
  547. print_bad_pte(vma, addr, pte, NULL);
  548. return NULL;
  549. }
  550. /* !HAVE_PTE_SPECIAL case follows: */
  551. if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  552. if (vma->vm_flags & VM_MIXEDMAP) {
  553. if (!pfn_valid(pfn))
  554. return NULL;
  555. goto out;
  556. } else {
  557. unsigned long off;
  558. off = (addr - vma->vm_start) >> PAGE_SHIFT;
  559. if (pfn == vma->vm_pgoff + off)
  560. return NULL;
  561. if (!is_cow_mapping(vma->vm_flags))
  562. return NULL;
  563. }
  564. }
  565. if (is_zero_pfn(pfn))
  566. return NULL;
  567. check_pfn:
  568. if (unlikely(pfn > highest_memmap_pfn)) {
  569. print_bad_pte(vma, addr, pte, NULL);
  570. return NULL;
  571. }
  572. /*
  573. * NOTE! We still have PageReserved() pages in the page tables.
  574. * eg. VDSO mappings can cause them to exist.
  575. */
  576. out:
  577. return pfn_to_page(pfn);
  578. }
  579. /*
  580. * copy one vm_area from one task to the other. Assumes the page tables
  581. * already present in the new task to be cleared in the whole range
  582. * covered by this vma.
  583. */
  584. static inline unsigned long
  585. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  586. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  587. unsigned long addr, int *rss)
  588. {
  589. unsigned long vm_flags = vma->vm_flags;
  590. pte_t pte = *src_pte;
  591. struct page *page;
  592. /* pte contains position in swap or file, so copy. */
  593. if (unlikely(!pte_present(pte))) {
  594. if (!pte_file(pte)) {
  595. swp_entry_t entry = pte_to_swp_entry(pte);
  596. if (swap_duplicate(entry) < 0)
  597. return entry.val;
  598. /* make sure dst_mm is on swapoff's mmlist. */
  599. if (unlikely(list_empty(&dst_mm->mmlist))) {
  600. spin_lock(&mmlist_lock);
  601. if (list_empty(&dst_mm->mmlist))
  602. list_add(&dst_mm->mmlist,
  603. &src_mm->mmlist);
  604. spin_unlock(&mmlist_lock);
  605. }
  606. if (likely(!non_swap_entry(entry)))
  607. rss[MM_SWAPENTS]++;
  608. else if (is_write_migration_entry(entry) &&
  609. is_cow_mapping(vm_flags)) {
  610. /*
  611. * COW mappings require pages in both parent
  612. * and child to be set to read.
  613. */
  614. make_migration_entry_read(&entry);
  615. pte = swp_entry_to_pte(entry);
  616. set_pte_at(src_mm, addr, src_pte, pte);
  617. }
  618. }
  619. goto out_set_pte;
  620. }
  621. /*
  622. * If it's a COW mapping, write protect it both
  623. * in the parent and the child
  624. */
  625. if (is_cow_mapping(vm_flags)) {
  626. ptep_set_wrprotect(src_mm, addr, src_pte);
  627. pte = pte_wrprotect(pte);
  628. }
  629. /*
  630. * If it's a shared mapping, mark it clean in
  631. * the child
  632. */
  633. if (vm_flags & VM_SHARED)
  634. pte = pte_mkclean(pte);
  635. pte = pte_mkold(pte);
  636. page = vm_normal_page(vma, addr, pte);
  637. if (page) {
  638. get_page(page);
  639. page_dup_rmap(page);
  640. if (PageAnon(page))
  641. rss[MM_ANONPAGES]++;
  642. else
  643. rss[MM_FILEPAGES]++;
  644. }
  645. out_set_pte:
  646. set_pte_at(dst_mm, addr, dst_pte, pte);
  647. return 0;
  648. }
  649. int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  650. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  651. unsigned long addr, unsigned long end)
  652. {
  653. pte_t *orig_src_pte, *orig_dst_pte;
  654. pte_t *src_pte, *dst_pte;
  655. spinlock_t *src_ptl, *dst_ptl;
  656. int progress = 0;
  657. int rss[NR_MM_COUNTERS];
  658. swp_entry_t entry = (swp_entry_t){0};
  659. again:
  660. init_rss_vec(rss);
  661. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  662. if (!dst_pte)
  663. return -ENOMEM;
  664. src_pte = pte_offset_map(src_pmd, addr);
  665. src_ptl = pte_lockptr(src_mm, src_pmd);
  666. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  667. orig_src_pte = src_pte;
  668. orig_dst_pte = dst_pte;
  669. arch_enter_lazy_mmu_mode();
  670. do {
  671. /*
  672. * We are holding two locks at this point - either of them
  673. * could generate latencies in another task on another CPU.
  674. */
  675. if (progress >= 32) {
  676. progress = 0;
  677. if (need_resched() ||
  678. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  679. break;
  680. }
  681. if (pte_none(*src_pte)) {
  682. progress++;
  683. continue;
  684. }
  685. entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
  686. vma, addr, rss);
  687. if (entry.val)
  688. break;
  689. progress += 8;
  690. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  691. arch_leave_lazy_mmu_mode();
  692. spin_unlock(src_ptl);
  693. pte_unmap(orig_src_pte);
  694. add_mm_rss_vec(dst_mm, rss);
  695. pte_unmap_unlock(orig_dst_pte, dst_ptl);
  696. cond_resched();
  697. if (entry.val) {
  698. if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
  699. return -ENOMEM;
  700. progress = 0;
  701. }
  702. if (addr != end)
  703. goto again;
  704. return 0;
  705. }
  706. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  707. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  708. unsigned long addr, unsigned long end)
  709. {
  710. pmd_t *src_pmd, *dst_pmd;
  711. unsigned long next;
  712. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  713. if (!dst_pmd)
  714. return -ENOMEM;
  715. src_pmd = pmd_offset(src_pud, addr);
  716. do {
  717. next = pmd_addr_end(addr, end);
  718. if (pmd_trans_huge(*src_pmd)) {
  719. int err;
  720. VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
  721. err = copy_huge_pmd(dst_mm, src_mm,
  722. dst_pmd, src_pmd, addr, vma);
  723. if (err == -ENOMEM)
  724. return -ENOMEM;
  725. if (!err)
  726. continue;
  727. /* fall through */
  728. }
  729. if (pmd_none_or_clear_bad(src_pmd))
  730. continue;
  731. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  732. vma, addr, next))
  733. return -ENOMEM;
  734. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  735. return 0;
  736. }
  737. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  738. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  739. unsigned long addr, unsigned long end)
  740. {
  741. pud_t *src_pud, *dst_pud;
  742. unsigned long next;
  743. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  744. if (!dst_pud)
  745. return -ENOMEM;
  746. src_pud = pud_offset(src_pgd, addr);
  747. do {
  748. next = pud_addr_end(addr, end);
  749. if (pud_none_or_clear_bad(src_pud))
  750. continue;
  751. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  752. vma, addr, next))
  753. return -ENOMEM;
  754. } while (dst_pud++, src_pud++, addr = next, addr != end);
  755. return 0;
  756. }
  757. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  758. struct vm_area_struct *vma)
  759. {
  760. pgd_t *src_pgd, *dst_pgd;
  761. unsigned long next;
  762. unsigned long addr = vma->vm_start;
  763. unsigned long end = vma->vm_end;
  764. int ret;
  765. /*
  766. * Don't copy ptes where a page fault will fill them correctly.
  767. * Fork becomes much lighter when there are big shared or private
  768. * readonly mappings. The tradeoff is that copy_page_range is more
  769. * efficient than faulting.
  770. */
  771. if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
  772. if (!vma->anon_vma)
  773. return 0;
  774. }
  775. if (is_vm_hugetlb_page(vma))
  776. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  777. if (unlikely(is_pfn_mapping(vma))) {
  778. /*
  779. * We do not free on error cases below as remove_vma
  780. * gets called on error from higher level routine
  781. */
  782. ret = track_pfn_vma_copy(vma);
  783. if (ret)
  784. return ret;
  785. }
  786. /*
  787. * We need to invalidate the secondary MMU mappings only when
  788. * there could be a permission downgrade on the ptes of the
  789. * parent mm. And a permission downgrade will only happen if
  790. * is_cow_mapping() returns true.
  791. */
  792. if (is_cow_mapping(vma->vm_flags))
  793. mmu_notifier_invalidate_range_start(src_mm, addr, end);
  794. ret = 0;
  795. dst_pgd = pgd_offset(dst_mm, addr);
  796. src_pgd = pgd_offset(src_mm, addr);
  797. do {
  798. next = pgd_addr_end(addr, end);
  799. if (pgd_none_or_clear_bad(src_pgd))
  800. continue;
  801. if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  802. vma, addr, next))) {
  803. ret = -ENOMEM;
  804. break;
  805. }
  806. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  807. if (is_cow_mapping(vma->vm_flags))
  808. mmu_notifier_invalidate_range_end(src_mm,
  809. vma->vm_start, end);
  810. return ret;
  811. }
  812. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  813. struct vm_area_struct *vma, pmd_t *pmd,
  814. unsigned long addr, unsigned long end,
  815. long *zap_work, struct zap_details *details)
  816. {
  817. struct mm_struct *mm = tlb->mm;
  818. pte_t *pte;
  819. spinlock_t *ptl;
  820. int rss[NR_MM_COUNTERS];
  821. init_rss_vec(rss);
  822. pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  823. arch_enter_lazy_mmu_mode();
  824. do {
  825. pte_t ptent = *pte;
  826. if (pte_none(ptent)) {
  827. (*zap_work)--;
  828. continue;
  829. }
  830. (*zap_work) -= PAGE_SIZE;
  831. if (pte_present(ptent)) {
  832. struct page *page;
  833. page = vm_normal_page(vma, addr, ptent);
  834. if (unlikely(details) && page) {
  835. /*
  836. * unmap_shared_mapping_pages() wants to
  837. * invalidate cache without truncating:
  838. * unmap shared but keep private pages.
  839. */
  840. if (details->check_mapping &&
  841. details->check_mapping != page->mapping)
  842. continue;
  843. /*
  844. * Each page->index must be checked when
  845. * invalidating or truncating nonlinear.
  846. */
  847. if (details->nonlinear_vma &&
  848. (page->index < details->first_index ||
  849. page->index > details->last_index))
  850. continue;
  851. }
  852. ptent = ptep_get_and_clear_full(mm, addr, pte,
  853. tlb->fullmm);
  854. tlb_remove_tlb_entry(tlb, pte, addr);
  855. if (unlikely(!page))
  856. continue;
  857. if (unlikely(details) && details->nonlinear_vma
  858. && linear_page_index(details->nonlinear_vma,
  859. addr) != page->index)
  860. set_pte_at(mm, addr, pte,
  861. pgoff_to_pte(page->index));
  862. if (PageAnon(page))
  863. rss[MM_ANONPAGES]--;
  864. else {
  865. if (pte_dirty(ptent))
  866. set_page_dirty(page);
  867. if (pte_young(ptent) &&
  868. likely(!VM_SequentialReadHint(vma)))
  869. mark_page_accessed(page);
  870. rss[MM_FILEPAGES]--;
  871. }
  872. page_remove_rmap(page);
  873. if (unlikely(page_mapcount(page) < 0))
  874. print_bad_pte(vma, addr, ptent, page);
  875. tlb_remove_page(tlb, page);
  876. continue;
  877. }
  878. /*
  879. * If details->check_mapping, we leave swap entries;
  880. * if details->nonlinear_vma, we leave file entries.
  881. */
  882. if (unlikely(details))
  883. continue;
  884. if (pte_file(ptent)) {
  885. if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
  886. print_bad_pte(vma, addr, ptent, NULL);
  887. } else {
  888. swp_entry_t entry = pte_to_swp_entry(ptent);
  889. if (!non_swap_entry(entry))
  890. rss[MM_SWAPENTS]--;
  891. if (unlikely(!free_swap_and_cache(entry)))
  892. print_bad_pte(vma, addr, ptent, NULL);
  893. }
  894. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  895. } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
  896. add_mm_rss_vec(mm, rss);
  897. arch_leave_lazy_mmu_mode();
  898. pte_unmap_unlock(pte - 1, ptl);
  899. return addr;
  900. }
  901. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  902. struct vm_area_struct *vma, pud_t *pud,
  903. unsigned long addr, unsigned long end,
  904. long *zap_work, struct zap_details *details)
  905. {
  906. pmd_t *pmd;
  907. unsigned long next;
  908. pmd = pmd_offset(pud, addr);
  909. do {
  910. next = pmd_addr_end(addr, end);
  911. if (pmd_trans_huge(*pmd)) {
  912. if (next-addr != HPAGE_PMD_SIZE) {
  913. VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem));
  914. split_huge_page_pmd(vma->vm_mm, pmd);
  915. } else if (zap_huge_pmd(tlb, vma, pmd)) {
  916. (*zap_work)--;
  917. continue;
  918. }
  919. /* fall through */
  920. }
  921. if (pmd_none_or_clear_bad(pmd)) {
  922. (*zap_work)--;
  923. continue;
  924. }
  925. next = zap_pte_range(tlb, vma, pmd, addr, next,
  926. zap_work, details);
  927. } while (pmd++, addr = next, (addr != end && *zap_work > 0));
  928. return addr;
  929. }
  930. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  931. struct vm_area_struct *vma, pgd_t *pgd,
  932. unsigned long addr, unsigned long end,
  933. long *zap_work, struct zap_details *details)
  934. {
  935. pud_t *pud;
  936. unsigned long next;
  937. pud = pud_offset(pgd, addr);
  938. do {
  939. next = pud_addr_end(addr, end);
  940. if (pud_none_or_clear_bad(pud)) {
  941. (*zap_work)--;
  942. continue;
  943. }
  944. next = zap_pmd_range(tlb, vma, pud, addr, next,
  945. zap_work, details);
  946. } while (pud++, addr = next, (addr != end && *zap_work > 0));
  947. return addr;
  948. }
  949. static unsigned long unmap_page_range(struct mmu_gather *tlb,
  950. struct vm_area_struct *vma,
  951. unsigned long addr, unsigned long end,
  952. long *zap_work, struct zap_details *details)
  953. {
  954. pgd_t *pgd;
  955. unsigned long next;
  956. if (details && !details->check_mapping && !details->nonlinear_vma)
  957. details = NULL;
  958. BUG_ON(addr >= end);
  959. mem_cgroup_uncharge_start();
  960. tlb_start_vma(tlb, vma);
  961. pgd = pgd_offset(vma->vm_mm, addr);
  962. do {
  963. next = pgd_addr_end(addr, end);
  964. if (pgd_none_or_clear_bad(pgd)) {
  965. (*zap_work)--;
  966. continue;
  967. }
  968. next = zap_pud_range(tlb, vma, pgd, addr, next,
  969. zap_work, details);
  970. } while (pgd++, addr = next, (addr != end && *zap_work > 0));
  971. tlb_end_vma(tlb, vma);
  972. mem_cgroup_uncharge_end();
  973. return addr;
  974. }
  975. #ifdef CONFIG_PREEMPT
  976. # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
  977. #else
  978. /* No preempt: go for improved straight-line efficiency */
  979. # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
  980. #endif
  981. /**
  982. * unmap_vmas - unmap a range of memory covered by a list of vma's
  983. * @tlbp: address of the caller's struct mmu_gather
  984. * @vma: the starting vma
  985. * @start_addr: virtual address at which to start unmapping
  986. * @end_addr: virtual address at which to end unmapping
  987. * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
  988. * @details: details of nonlinear truncation or shared cache invalidation
  989. *
  990. * Returns the end address of the unmapping (restart addr if interrupted).
  991. *
  992. * Unmap all pages in the vma list.
  993. *
  994. * We aim to not hold locks for too long (for scheduling latency reasons).
  995. * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
  996. * return the ending mmu_gather to the caller.
  997. *
  998. * Only addresses between `start' and `end' will be unmapped.
  999. *
  1000. * The VMA list must be sorted in ascending virtual address order.
  1001. *
  1002. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  1003. * range after unmap_vmas() returns. So the only responsibility here is to
  1004. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  1005. * drops the lock and schedules.
  1006. */
  1007. unsigned long unmap_vmas(struct mmu_gather **tlbp,
  1008. struct vm_area_struct *vma, unsigned long start_addr,
  1009. unsigned long end_addr, unsigned long *nr_accounted,
  1010. struct zap_details *details)
  1011. {
  1012. long zap_work = ZAP_BLOCK_SIZE;
  1013. unsigned long tlb_start = 0; /* For tlb_finish_mmu */
  1014. int tlb_start_valid = 0;
  1015. unsigned long start = start_addr;
  1016. spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
  1017. int fullmm = (*tlbp)->fullmm;
  1018. struct mm_struct *mm = vma->vm_mm;
  1019. mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
  1020. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
  1021. unsigned long end;
  1022. start = max(vma->vm_start, start_addr);
  1023. if (start >= vma->vm_end)
  1024. continue;
  1025. end = min(vma->vm_end, end_addr);
  1026. if (end <= vma->vm_start)
  1027. continue;
  1028. if (vma->vm_flags & VM_ACCOUNT)
  1029. *nr_accounted += (end - start) >> PAGE_SHIFT;
  1030. if (unlikely(is_pfn_mapping(vma)))
  1031. untrack_pfn_vma(vma, 0, 0);
  1032. while (start != end) {
  1033. if (!tlb_start_valid) {
  1034. tlb_start = start;
  1035. tlb_start_valid = 1;
  1036. }
  1037. if (unlikely(is_vm_hugetlb_page(vma))) {
  1038. /*
  1039. * It is undesirable to test vma->vm_file as it
  1040. * should be non-null for valid hugetlb area.
  1041. * However, vm_file will be NULL in the error
  1042. * cleanup path of do_mmap_pgoff. When
  1043. * hugetlbfs ->mmap method fails,
  1044. * do_mmap_pgoff() nullifies vma->vm_file
  1045. * before calling this function to clean up.
  1046. * Since no pte has actually been setup, it is
  1047. * safe to do nothing in this case.
  1048. */
  1049. if (vma->vm_file) {
  1050. unmap_hugepage_range(vma, start, end, NULL);
  1051. zap_work -= (end - start) /
  1052. pages_per_huge_page(hstate_vma(vma));
  1053. }
  1054. start = end;
  1055. } else
  1056. start = unmap_page_range(*tlbp, vma,
  1057. start, end, &zap_work, details);
  1058. if (zap_work > 0) {
  1059. BUG_ON(start != end);
  1060. break;
  1061. }
  1062. tlb_finish_mmu(*tlbp, tlb_start, start);
  1063. if (need_resched() ||
  1064. (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
  1065. if (i_mmap_lock) {
  1066. *tlbp = NULL;
  1067. goto out;
  1068. }
  1069. cond_resched();
  1070. }
  1071. *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
  1072. tlb_start_valid = 0;
  1073. zap_work = ZAP_BLOCK_SIZE;
  1074. }
  1075. }
  1076. out:
  1077. mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
  1078. return start; /* which is now the end (or restart) address */
  1079. }
  1080. /**
  1081. * zap_page_range - remove user pages in a given range
  1082. * @vma: vm_area_struct holding the applicable pages
  1083. * @address: starting address of pages to zap
  1084. * @size: number of bytes to zap
  1085. * @details: details of nonlinear truncation or shared cache invalidation
  1086. */
  1087. unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
  1088. unsigned long size, struct zap_details *details)
  1089. {
  1090. struct mm_struct *mm = vma->vm_mm;
  1091. struct mmu_gather *tlb;
  1092. unsigned long end = address + size;
  1093. unsigned long nr_accounted = 0;
  1094. lru_add_drain();
  1095. tlb = tlb_gather_mmu(mm, 0);
  1096. update_hiwater_rss(mm);
  1097. end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
  1098. if (tlb)
  1099. tlb_finish_mmu(tlb, address, end);
  1100. return end;
  1101. }
  1102. /**
  1103. * zap_vma_ptes - remove ptes mapping the vma
  1104. * @vma: vm_area_struct holding ptes to be zapped
  1105. * @address: starting address of pages to zap
  1106. * @size: number of bytes to zap
  1107. *
  1108. * This function only unmaps ptes assigned to VM_PFNMAP vmas.
  1109. *
  1110. * The entire address range must be fully contained within the vma.
  1111. *
  1112. * Returns 0 if successful.
  1113. */
  1114. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  1115. unsigned long size)
  1116. {
  1117. if (address < vma->vm_start || address + size > vma->vm_end ||
  1118. !(vma->vm_flags & VM_PFNMAP))
  1119. return -1;
  1120. zap_page_range(vma, address, size, NULL);
  1121. return 0;
  1122. }
  1123. EXPORT_SYMBOL_GPL(zap_vma_ptes);
  1124. /**
  1125. * follow_page - look up a page descriptor from a user-virtual address
  1126. * @vma: vm_area_struct mapping @address
  1127. * @address: virtual address to look up
  1128. * @flags: flags modifying lookup behaviour
  1129. *
  1130. * @flags can have FOLL_ flags set, defined in <linux/mm.h>
  1131. *
  1132. * Returns the mapped (struct page *), %NULL if no mapping exists, or
  1133. * an error pointer if there is a mapping to something not represented
  1134. * by a page descriptor (see also vm_normal_page()).
  1135. */
  1136. struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
  1137. unsigned int flags)
  1138. {
  1139. pgd_t *pgd;
  1140. pud_t *pud;
  1141. pmd_t *pmd;
  1142. pte_t *ptep, pte;
  1143. spinlock_t *ptl;
  1144. struct page *page;
  1145. struct mm_struct *mm = vma->vm_mm;
  1146. page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
  1147. if (!IS_ERR(page)) {
  1148. BUG_ON(flags & FOLL_GET);
  1149. goto out;
  1150. }
  1151. page = NULL;
  1152. pgd = pgd_offset(mm, address);
  1153. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  1154. goto no_page_table;
  1155. pud = pud_offset(pgd, address);
  1156. if (pud_none(*pud))
  1157. goto no_page_table;
  1158. if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
  1159. BUG_ON(flags & FOLL_GET);
  1160. page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
  1161. goto out;
  1162. }
  1163. if (unlikely(pud_bad(*pud)))
  1164. goto no_page_table;
  1165. pmd = pmd_offset(pud, address);
  1166. if (pmd_none(*pmd))
  1167. goto no_page_table;
  1168. if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
  1169. BUG_ON(flags & FOLL_GET);
  1170. page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
  1171. goto out;
  1172. }
  1173. if (pmd_trans_huge(*pmd)) {
  1174. if (flags & FOLL_SPLIT) {
  1175. split_huge_page_pmd(mm, pmd);
  1176. goto split_fallthrough;
  1177. }
  1178. spin_lock(&mm->page_table_lock);
  1179. if (likely(pmd_trans_huge(*pmd))) {
  1180. if (unlikely(pmd_trans_splitting(*pmd))) {
  1181. spin_unlock(&mm->page_table_lock);
  1182. wait_split_huge_page(vma->anon_vma, pmd);
  1183. } else {
  1184. page = follow_trans_huge_pmd(mm, address,
  1185. pmd, flags);
  1186. spin_unlock(&mm->page_table_lock);
  1187. goto out;
  1188. }
  1189. } else
  1190. spin_unlock(&mm->page_table_lock);
  1191. /* fall through */
  1192. }
  1193. split_fallthrough:
  1194. if (unlikely(pmd_bad(*pmd)))
  1195. goto no_page_table;
  1196. ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
  1197. pte = *ptep;
  1198. if (!pte_present(pte))
  1199. goto no_page;
  1200. if ((flags & FOLL_WRITE) && !pte_write(pte))
  1201. goto unlock;
  1202. page = vm_normal_page(vma, address, pte);
  1203. if (unlikely(!page)) {
  1204. if ((flags & FOLL_DUMP) ||
  1205. !is_zero_pfn(pte_pfn(pte)))
  1206. goto bad_page;
  1207. page = pte_page(pte);
  1208. }
  1209. if (flags & FOLL_GET)
  1210. get_page(page);
  1211. if (flags & FOLL_TOUCH) {
  1212. if ((flags & FOLL_WRITE) &&
  1213. !pte_dirty(pte) && !PageDirty(page))
  1214. set_page_dirty(page);
  1215. /*
  1216. * pte_mkyoung() would be more correct here, but atomic care
  1217. * is needed to avoid losing the dirty bit: it is easier to use
  1218. * mark_page_accessed().
  1219. */
  1220. mark_page_accessed(page);
  1221. }
  1222. if (flags & FOLL_MLOCK) {
  1223. /*
  1224. * The preliminary mapping check is mainly to avoid the
  1225. * pointless overhead of lock_page on the ZERO_PAGE
  1226. * which might bounce very badly if there is contention.
  1227. *
  1228. * If the page is already locked, we don't need to
  1229. * handle it now - vmscan will handle it later if and
  1230. * when it attempts to reclaim the page.
  1231. */
  1232. if (page->mapping && trylock_page(page)) {
  1233. lru_add_drain(); /* push cached pages to LRU */
  1234. /*
  1235. * Because we lock page here and migration is
  1236. * blocked by the pte's page reference, we need
  1237. * only check for file-cache page truncation.
  1238. */
  1239. if (page->mapping)
  1240. mlock_vma_page(page);
  1241. unlock_page(page);
  1242. }
  1243. }
  1244. unlock:
  1245. pte_unmap_unlock(ptep, ptl);
  1246. out:
  1247. return page;
  1248. bad_page:
  1249. pte_unmap_unlock(ptep, ptl);
  1250. return ERR_PTR(-EFAULT);
  1251. no_page:
  1252. pte_unmap_unlock(ptep, ptl);
  1253. if (!pte_none(pte))
  1254. return page;
  1255. no_page_table:
  1256. /*
  1257. * When core dumping an enormous anonymous area that nobody
  1258. * has touched so far, we don't want to allocate unnecessary pages or
  1259. * page tables. Return error instead of NULL to skip handle_mm_fault,
  1260. * then get_dump_page() will return NULL to leave a hole in the dump.
  1261. * But we can only make this optimization where a hole would surely
  1262. * be zero-filled if handle_mm_fault() actually did handle it.
  1263. */
  1264. if ((flags & FOLL_DUMP) &&
  1265. (!vma->vm_ops || !vma->vm_ops->fault))
  1266. return ERR_PTR(-EFAULT);
  1267. return page;
  1268. }
  1269. /**
  1270. * __get_user_pages() - pin user pages in memory
  1271. * @tsk: task_struct of target task
  1272. * @mm: mm_struct of target mm
  1273. * @start: starting user address
  1274. * @nr_pages: number of pages from start to pin
  1275. * @gup_flags: flags modifying pin behaviour
  1276. * @pages: array that receives pointers to the pages pinned.
  1277. * Should be at least nr_pages long. Or NULL, if caller
  1278. * only intends to ensure the pages are faulted in.
  1279. * @vmas: array of pointers to vmas corresponding to each page.
  1280. * Or NULL if the caller does not require them.
  1281. * @nonblocking: whether waiting for disk IO or mmap_sem contention
  1282. *
  1283. * Returns number of pages pinned. This may be fewer than the number
  1284. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  1285. * were pinned, returns -errno. Each page returned must be released
  1286. * with a put_page() call when it is finished with. vmas will only
  1287. * remain valid while mmap_sem is held.
  1288. *
  1289. * Must be called with mmap_sem held for read or write.
  1290. *
  1291. * __get_user_pages walks a process's page tables and takes a reference to
  1292. * each struct page that each user address corresponds to at a given
  1293. * instant. That is, it takes the page that would be accessed if a user
  1294. * thread accesses the given user virtual address at that instant.
  1295. *
  1296. * This does not guarantee that the page exists in the user mappings when
  1297. * __get_user_pages returns, and there may even be a completely different
  1298. * page there in some cases (eg. if mmapped pagecache has been invalidated
  1299. * and subsequently re faulted). However it does guarantee that the page
  1300. * won't be freed completely. And mostly callers simply care that the page
  1301. * contains data that was valid *at some point in time*. Typically, an IO
  1302. * or similar operation cannot guarantee anything stronger anyway because
  1303. * locks can't be held over the syscall boundary.
  1304. *
  1305. * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
  1306. * the page is written to, set_page_dirty (or set_page_dirty_lock, as
  1307. * appropriate) must be called after the page is finished with, and
  1308. * before put_page is called.
  1309. *
  1310. * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
  1311. * or mmap_sem contention, and if waiting is needed to pin all pages,
  1312. * *@nonblocking will be set to 0.
  1313. *
  1314. * In most cases, get_user_pages or get_user_pages_fast should be used
  1315. * instead of __get_user_pages. __get_user_pages should be used only if
  1316. * you need some special @gup_flags.
  1317. */
  1318. int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1319. unsigned long start, int nr_pages, unsigned int gup_flags,
  1320. struct page **pages, struct vm_area_struct **vmas,
  1321. int *nonblocking)
  1322. {
  1323. int i;
  1324. unsigned long vm_flags;
  1325. if (nr_pages <= 0)
  1326. return 0;
  1327. VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
  1328. /*
  1329. * Require read or write permissions.
  1330. * If FOLL_FORCE is set, we only require the "MAY" flags.
  1331. */
  1332. vm_flags = (gup_flags & FOLL_WRITE) ?
  1333. (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
  1334. vm_flags &= (gup_flags & FOLL_FORCE) ?
  1335. (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
  1336. i = 0;
  1337. do {
  1338. struct vm_area_struct *vma;
  1339. vma = find_extend_vma(mm, start);
  1340. if (!vma && in_gate_area(mm, start)) {
  1341. unsigned long pg = start & PAGE_MASK;
  1342. struct vm_area_struct *gate_vma = get_gate_vma(mm);
  1343. pgd_t *pgd;
  1344. pud_t *pud;
  1345. pmd_t *pmd;
  1346. pte_t *pte;
  1347. /* user gate pages are read-only */
  1348. if (gup_flags & FOLL_WRITE)
  1349. return i ? : -EFAULT;
  1350. if (pg > TASK_SIZE)
  1351. pgd = pgd_offset_k(pg);
  1352. else
  1353. pgd = pgd_offset_gate(mm, pg);
  1354. BUG_ON(pgd_none(*pgd));
  1355. pud = pud_offset(pgd, pg);
  1356. BUG_ON(pud_none(*pud));
  1357. pmd = pmd_offset(pud, pg);
  1358. if (pmd_none(*pmd))
  1359. return i ? : -EFAULT;
  1360. VM_BUG_ON(pmd_trans_huge(*pmd));
  1361. pte = pte_offset_map(pmd, pg);
  1362. if (pte_none(*pte)) {
  1363. pte_unmap(pte);
  1364. return i ? : -EFAULT;
  1365. }
  1366. if (pages) {
  1367. struct page *page;
  1368. page = vm_normal_page(gate_vma, start, *pte);
  1369. if (!page) {
  1370. if (!(gup_flags & FOLL_DUMP) &&
  1371. is_zero_pfn(pte_pfn(*pte)))
  1372. page = pte_page(*pte);
  1373. else {
  1374. pte_unmap(pte);
  1375. return i ? : -EFAULT;
  1376. }
  1377. }
  1378. pages[i] = page;
  1379. get_page(page);
  1380. }
  1381. pte_unmap(pte);
  1382. if (vmas)
  1383. vmas[i] = gate_vma;
  1384. i++;
  1385. start += PAGE_SIZE;
  1386. nr_pages--;
  1387. continue;
  1388. }
  1389. if (!vma ||
  1390. (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
  1391. !(vm_flags & vma->vm_flags))
  1392. return i ? : -EFAULT;
  1393. if (is_vm_hugetlb_page(vma)) {
  1394. i = follow_hugetlb_page(mm, vma, pages, vmas,
  1395. &start, &nr_pages, i, gup_flags);
  1396. continue;
  1397. }
  1398. do {
  1399. struct page *page;
  1400. unsigned int foll_flags = gup_flags;
  1401. /*
  1402. * If we have a pending SIGKILL, don't keep faulting
  1403. * pages and potentially allocating memory.
  1404. */
  1405. if (unlikely(fatal_signal_pending(current)))
  1406. return i ? i : -ERESTARTSYS;
  1407. cond_resched();
  1408. while (!(page = follow_page(vma, start, foll_flags))) {
  1409. int ret;
  1410. unsigned int fault_flags = 0;
  1411. if (foll_flags & FOLL_WRITE)
  1412. fault_flags |= FAULT_FLAG_WRITE;
  1413. if (nonblocking)
  1414. fault_flags |= FAULT_FLAG_ALLOW_RETRY;
  1415. if (foll_flags & FOLL_NOWAIT)
  1416. fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
  1417. ret = handle_mm_fault(mm, vma, start,
  1418. fault_flags);
  1419. if (ret & VM_FAULT_ERROR) {
  1420. if (ret & VM_FAULT_OOM)
  1421. return i ? i : -ENOMEM;
  1422. if (ret & (VM_FAULT_HWPOISON |
  1423. VM_FAULT_HWPOISON_LARGE)) {
  1424. if (i)
  1425. return i;
  1426. else if (gup_flags & FOLL_HWPOISON)
  1427. return -EHWPOISON;
  1428. else
  1429. return -EFAULT;
  1430. }
  1431. if (ret & VM_FAULT_SIGBUS)
  1432. return i ? i : -EFAULT;
  1433. BUG();
  1434. }
  1435. if (tsk) {
  1436. if (ret & VM_FAULT_MAJOR)
  1437. tsk->maj_flt++;
  1438. else
  1439. tsk->min_flt++;
  1440. }
  1441. if (ret & VM_FAULT_RETRY) {
  1442. if (nonblocking)
  1443. *nonblocking = 0;
  1444. return i;
  1445. }
  1446. /*
  1447. * The VM_FAULT_WRITE bit tells us that
  1448. * do_wp_page has broken COW when necessary,
  1449. * even if maybe_mkwrite decided not to set
  1450. * pte_write. We can thus safely do subsequent
  1451. * page lookups as if they were reads. But only
  1452. * do so when looping for pte_write is futile:
  1453. * in some cases userspace may also be wanting
  1454. * to write to the gotten user page, which a
  1455. * read fault here might prevent (a readonly
  1456. * page might get reCOWed by userspace write).
  1457. */
  1458. if ((ret & VM_FAULT_WRITE) &&
  1459. !(vma->vm_flags & VM_WRITE))
  1460. foll_flags &= ~FOLL_WRITE;
  1461. cond_resched();
  1462. }
  1463. if (IS_ERR(page))
  1464. return i ? i : PTR_ERR(page);
  1465. if (pages) {
  1466. pages[i] = page;
  1467. flush_anon_page(vma, page, start);
  1468. flush_dcache_page(page);
  1469. }
  1470. if (vmas)
  1471. vmas[i] = vma;
  1472. i++;
  1473. start += PAGE_SIZE;
  1474. nr_pages--;
  1475. } while (nr_pages && start < vma->vm_end);
  1476. } while (nr_pages);
  1477. return i;
  1478. }
  1479. EXPORT_SYMBOL(__get_user_pages);
  1480. /**
  1481. * get_user_pages() - pin user pages in memory
  1482. * @tsk: the task_struct to use for page fault accounting, or
  1483. * NULL if faults are not to be recorded.
  1484. * @mm: mm_struct of target mm
  1485. * @start: starting user address
  1486. * @nr_pages: number of pages from start to pin
  1487. * @write: whether pages will be written to by the caller
  1488. * @force: whether to force write access even if user mapping is
  1489. * readonly. This will result in the page being COWed even
  1490. * in MAP_SHARED mappings. You do not want this.
  1491. * @pages: array that receives pointers to the pages pinned.
  1492. * Should be at least nr_pages long. Or NULL, if caller
  1493. * only intends to ensure the pages are faulted in.
  1494. * @vmas: array of pointers to vmas corresponding to each page.
  1495. * Or NULL if the caller does not require them.
  1496. *
  1497. * Returns number of pages pinned. This may be fewer than the number
  1498. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  1499. * were pinned, returns -errno. Each page returned must be released
  1500. * with a put_page() call when it is finished with. vmas will only
  1501. * remain valid while mmap_sem is held.
  1502. *
  1503. * Must be called with mmap_sem held for read or write.
  1504. *
  1505. * get_user_pages walks a process's page tables and takes a reference to
  1506. * each struct page that each user address corresponds to at a given
  1507. * instant. That is, it takes the page that would be accessed if a user
  1508. * thread accesses the given user virtual address at that instant.
  1509. *
  1510. * This does not guarantee that the page exists in the user mappings when
  1511. * get_user_pages returns, and there may even be a completely different
  1512. * page there in some cases (eg. if mmapped pagecache has been invalidated
  1513. * and subsequently re faulted). However it does guarantee that the page
  1514. * won't be freed completely. And mostly callers simply care that the page
  1515. * contains data that was valid *at some point in time*. Typically, an IO
  1516. * or similar operation cannot guarantee anything stronger anyway because
  1517. * locks can't be held over the syscall boundary.
  1518. *
  1519. * If write=0, the page must not be written to. If the page is written to,
  1520. * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
  1521. * after the page is finished with, and before put_page is called.
  1522. *
  1523. * get_user_pages is typically used for fewer-copy IO operations, to get a
  1524. * handle on the memory by some means other than accesses via the user virtual
  1525. * addresses. The pages may be submitted for DMA to devices or accessed via
  1526. * their kernel linear mapping (via the kmap APIs). Care should be taken to
  1527. * use the correct cache flushing APIs.
  1528. *
  1529. * See also get_user_pages_fast, for performance critical applications.
  1530. */
  1531. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1532. unsigned long start, int nr_pages, int write, int force,
  1533. struct page **pages, struct vm_area_struct **vmas)
  1534. {
  1535. int flags = FOLL_TOUCH;
  1536. if (pages)
  1537. flags |= FOLL_GET;
  1538. if (write)
  1539. flags |= FOLL_WRITE;
  1540. if (force)
  1541. flags |= FOLL_FORCE;
  1542. return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
  1543. NULL);
  1544. }
  1545. EXPORT_SYMBOL(get_user_pages);
  1546. /**
  1547. * get_dump_page() - pin user page in memory while writing it to core dump
  1548. * @addr: user address
  1549. *
  1550. * Returns struct page pointer of user page pinned for dump,
  1551. * to be freed afterwards by page_cache_release() or put_page().
  1552. *
  1553. * Returns NULL on any kind of failure - a hole must then be inserted into
  1554. * the corefile, to preserve alignment with its headers; and also returns
  1555. * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
  1556. * allowing a hole to be left in the corefile to save diskspace.
  1557. *
  1558. * Called without mmap_sem, but after all other threads have been killed.
  1559. */
  1560. #ifdef CONFIG_ELF_CORE
  1561. struct page *get_dump_page(unsigned long addr)
  1562. {
  1563. struct vm_area_struct *vma;
  1564. struct page *page;
  1565. if (__get_user_pages(current, current->mm, addr, 1,
  1566. FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
  1567. NULL) < 1)
  1568. return NULL;
  1569. flush_cache_page(vma, addr, page_to_pfn(page));
  1570. return page;
  1571. }
  1572. #endif /* CONFIG_ELF_CORE */
  1573. pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1574. spinlock_t **ptl)
  1575. {
  1576. pgd_t * pgd = pgd_offset(mm, addr);
  1577. pud_t * pud = pud_alloc(mm, pgd, addr);
  1578. if (pud) {
  1579. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1580. if (pmd) {
  1581. VM_BUG_ON(pmd_trans_huge(*pmd));
  1582. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1583. }
  1584. }
  1585. return NULL;
  1586. }
  1587. /*
  1588. * This is the old fallback for page remapping.
  1589. *
  1590. * For historical reasons, it only allows reserved pages. Only
  1591. * old drivers should use this, and they needed to mark their
  1592. * pages reserved for the old functions anyway.
  1593. */
  1594. static int insert_page(struct vm_area_struct *vma, unsigned long addr,
  1595. struct page *page, pgprot_t prot)
  1596. {
  1597. struct mm_struct *mm = vma->vm_mm;
  1598. int retval;
  1599. pte_t *pte;
  1600. spinlock_t *ptl;
  1601. retval = -EINVAL;
  1602. if (PageAnon(page))
  1603. goto out;
  1604. retval = -ENOMEM;
  1605. flush_dcache_page(page);
  1606. pte = get_locked_pte(mm, addr, &ptl);
  1607. if (!pte)
  1608. goto out;
  1609. retval = -EBUSY;
  1610. if (!pte_none(*pte))
  1611. goto out_unlock;
  1612. /* Ok, finally just insert the thing.. */
  1613. get_page(page);
  1614. inc_mm_counter_fast(mm, MM_FILEPAGES);
  1615. page_add_file_rmap(page);
  1616. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1617. retval = 0;
  1618. pte_unmap_unlock(pte, ptl);
  1619. return retval;
  1620. out_unlock:
  1621. pte_unmap_unlock(pte, ptl);
  1622. out:
  1623. return retval;
  1624. }
  1625. /**
  1626. * vm_insert_page - insert single page into user vma
  1627. * @vma: user vma to map to
  1628. * @addr: target user address of this page
  1629. * @page: source kernel page
  1630. *
  1631. * This allows drivers to insert individual pages they've allocated
  1632. * into a user vma.
  1633. *
  1634. * The page has to be a nice clean _individual_ kernel allocation.
  1635. * If you allocate a compound page, you need to have marked it as
  1636. * such (__GFP_COMP), or manually just split the page up yourself
  1637. * (see split_page()).
  1638. *
  1639. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1640. * took an arbitrary page protection parameter. This doesn't allow
  1641. * that. Your vma protection will have to be set up correctly, which
  1642. * means that if you want a shared writable mapping, you'd better
  1643. * ask for a shared writable mapping!
  1644. *
  1645. * The page does not need to be reserved.
  1646. */
  1647. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
  1648. struct page *page)
  1649. {
  1650. if (addr < vma->vm_start || addr >= vma->vm_end)
  1651. return -EFAULT;
  1652. if (!page_count(page))
  1653. return -EINVAL;
  1654. vma->vm_flags |= VM_INSERTPAGE;
  1655. return insert_page(vma, addr, page, vma->vm_page_prot);
  1656. }
  1657. EXPORT_SYMBOL(vm_insert_page);
  1658. static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1659. unsigned long pfn, pgprot_t prot)
  1660. {
  1661. struct mm_struct *mm = vma->vm_mm;
  1662. int retval;
  1663. pte_t *pte, entry;
  1664. spinlock_t *ptl;
  1665. retval = -ENOMEM;
  1666. pte = get_locked_pte(mm, addr, &ptl);
  1667. if (!pte)
  1668. goto out;
  1669. retval = -EBUSY;
  1670. if (!pte_none(*pte))
  1671. goto out_unlock;
  1672. /* Ok, finally just insert the thing.. */
  1673. entry = pte_mkspecial(pfn_pte(pfn, prot));
  1674. set_pte_at(mm, addr, pte, entry);
  1675. update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
  1676. retval = 0;
  1677. out_unlock:
  1678. pte_unmap_unlock(pte, ptl);
  1679. out:
  1680. return retval;
  1681. }
  1682. /**
  1683. * vm_insert_pfn - insert single pfn into user vma
  1684. * @vma: user vma to map to
  1685. * @addr: target user address of this page
  1686. * @pfn: source kernel pfn
  1687. *
  1688. * Similar to vm_inert_page, this allows drivers to insert individual pages
  1689. * they've allocated into a user vma. Same comments apply.
  1690. *
  1691. * This function should only be called from a vm_ops->fault handler, and
  1692. * in that case the handler should return NULL.
  1693. *
  1694. * vma cannot be a COW mapping.
  1695. *
  1696. * As this is called only for pages that do not currently exist, we
  1697. * do not need to flush old virtual caches or the TLB.
  1698. */
  1699. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1700. unsigned long pfn)
  1701. {
  1702. int ret;
  1703. pgprot_t pgprot = vma->vm_page_prot;
  1704. /*
  1705. * Technically, architectures with pte_special can avoid all these
  1706. * restrictions (same for remap_pfn_range). However we would like
  1707. * consistency in testing and feature parity among all, so we should
  1708. * try to keep these invariants in place for everybody.
  1709. */
  1710. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  1711. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  1712. (VM_PFNMAP|VM_MIXEDMAP));
  1713. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  1714. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  1715. if (addr < vma->vm_start || addr >= vma->vm_end)
  1716. return -EFAULT;
  1717. if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
  1718. return -EINVAL;
  1719. ret = insert_pfn(vma, addr, pfn, pgprot);
  1720. if (ret)
  1721. untrack_pfn_vma(vma, pfn, PAGE_SIZE);
  1722. return ret;
  1723. }
  1724. EXPORT_SYMBOL(vm_insert_pfn);
  1725. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1726. unsigned long pfn)
  1727. {
  1728. BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
  1729. if (addr < vma->vm_start || addr >= vma->vm_end)
  1730. return -EFAULT;
  1731. /*
  1732. * If we don't have pte special, then we have to use the pfn_valid()
  1733. * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
  1734. * refcount the page if pfn_valid is true (hence insert_page rather
  1735. * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
  1736. * without pte special, it would there be refcounted as a normal page.
  1737. */
  1738. if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
  1739. struct page *page;
  1740. page = pfn_to_page(pfn);
  1741. return insert_page(vma, addr, page, vma->vm_page_prot);
  1742. }
  1743. return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  1744. }
  1745. EXPORT_SYMBOL(vm_insert_mixed);
  1746. /*
  1747. * maps a range of physical memory into the requested pages. the old
  1748. * mappings are removed. any references to nonexistent pages results
  1749. * in null mappings (currently treated as "copy-on-access")
  1750. */
  1751. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1752. unsigned long addr, unsigned long end,
  1753. unsigned long pfn, pgprot_t prot)
  1754. {
  1755. pte_t *pte;
  1756. spinlock_t *ptl;
  1757. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1758. if (!pte)
  1759. return -ENOMEM;
  1760. arch_enter_lazy_mmu_mode();
  1761. do {
  1762. BUG_ON(!pte_none(*pte));
  1763. set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
  1764. pfn++;
  1765. } while (pte++, addr += PAGE_SIZE, addr != end);
  1766. arch_leave_lazy_mmu_mode();
  1767. pte_unmap_unlock(pte - 1, ptl);
  1768. return 0;
  1769. }
  1770. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  1771. unsigned long addr, unsigned long end,
  1772. unsigned long pfn, pgprot_t prot)
  1773. {
  1774. pmd_t *pmd;
  1775. unsigned long next;
  1776. pfn -= addr >> PAGE_SHIFT;
  1777. pmd = pmd_alloc(mm, pud, addr);
  1778. if (!pmd)
  1779. return -ENOMEM;
  1780. VM_BUG_ON(pmd_trans_huge(*pmd));
  1781. do {
  1782. next = pmd_addr_end(addr, end);
  1783. if (remap_pte_range(mm, pmd, addr, next,
  1784. pfn + (addr >> PAGE_SHIFT), prot))
  1785. return -ENOMEM;
  1786. } while (pmd++, addr = next, addr != end);
  1787. return 0;
  1788. }
  1789. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1790. unsigned long addr, unsigned long end,
  1791. unsigned long pfn, pgprot_t prot)
  1792. {
  1793. pud_t *pud;
  1794. unsigned long next;
  1795. pfn -= addr >> PAGE_SHIFT;
  1796. pud = pud_alloc(mm, pgd, addr);
  1797. if (!pud)
  1798. return -ENOMEM;
  1799. do {
  1800. next = pud_addr_end(addr, end);
  1801. if (remap_pmd_range(mm, pud, addr, next,
  1802. pfn + (addr >> PAGE_SHIFT), prot))
  1803. return -ENOMEM;
  1804. } while (pud++, addr = next, addr != end);
  1805. return 0;
  1806. }
  1807. /**
  1808. * remap_pfn_range - remap kernel memory to userspace
  1809. * @vma: user vma to map to
  1810. * @addr: target user address to start at
  1811. * @pfn: physical address of kernel memory
  1812. * @size: size of map area
  1813. * @prot: page protection flags for this mapping
  1814. *
  1815. * Note: this is only safe if the mm semaphore is held when called.
  1816. */
  1817. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  1818. unsigned long pfn, unsigned long size, pgprot_t prot)
  1819. {
  1820. pgd_t *pgd;
  1821. unsigned long next;
  1822. unsigned long end = addr + PAGE_ALIGN(size);
  1823. struct mm_struct *mm = vma->vm_mm;
  1824. int err;
  1825. /*
  1826. * Physically remapped pages are special. Tell the
  1827. * rest of the world about it:
  1828. * VM_IO tells people not to look at these pages
  1829. * (accesses can have side effects).
  1830. * VM_RESERVED is specified all over the place, because
  1831. * in 2.4 it kept swapout's vma scan off this vma; but
  1832. * in 2.6 the LRU scan won't even find its pages, so this
  1833. * flag means no more than count its pages in reserved_vm,
  1834. * and omit it from core dump, even when VM_IO turned off.
  1835. * VM_PFNMAP tells the core MM that the base pages are just
  1836. * raw PFN mappings, and do not have a "struct page" associated
  1837. * with them.
  1838. *
  1839. * There's a horrible special case to handle copy-on-write
  1840. * behaviour that some programs depend on. We mark the "original"
  1841. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  1842. */
  1843. if (addr == vma->vm_start && end == vma->vm_end) {
  1844. vma->vm_pgoff = pfn;
  1845. vma->vm_flags |= VM_PFN_AT_MMAP;
  1846. } else if (is_cow_mapping(vma->vm_flags))
  1847. return -EINVAL;
  1848. vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
  1849. err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
  1850. if (err) {
  1851. /*
  1852. * To indicate that track_pfn related cleanup is not
  1853. * needed from higher level routine calling unmap_vmas
  1854. */
  1855. vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
  1856. vma->vm_flags &= ~VM_PFN_AT_MMAP;
  1857. return -EINVAL;
  1858. }
  1859. BUG_ON(addr >= end);
  1860. pfn -= addr >> PAGE_SHIFT;
  1861. pgd = pgd_offset(mm, addr);
  1862. flush_cache_range(vma, addr, end);
  1863. do {
  1864. next = pgd_addr_end(addr, end);
  1865. err = remap_pud_range(mm, pgd, addr, next,
  1866. pfn + (addr >> PAGE_SHIFT), prot);
  1867. if (err)
  1868. break;
  1869. } while (pgd++, addr = next, addr != end);
  1870. if (err)
  1871. untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
  1872. return err;
  1873. }
  1874. EXPORT_SYMBOL(remap_pfn_range);
  1875. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  1876. unsigned long addr, unsigned long end,
  1877. pte_fn_t fn, void *data)
  1878. {
  1879. pte_t *pte;
  1880. int err;
  1881. pgtable_t token;
  1882. spinlock_t *uninitialized_var(ptl);
  1883. pte = (mm == &init_mm) ?
  1884. pte_alloc_kernel(pmd, addr) :
  1885. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  1886. if (!pte)
  1887. return -ENOMEM;
  1888. BUG_ON(pmd_huge(*pmd));
  1889. arch_enter_lazy_mmu_mode();
  1890. token = pmd_pgtable(*pmd);
  1891. do {
  1892. err = fn(pte++, token, addr, data);
  1893. if (err)
  1894. break;
  1895. } while (addr += PAGE_SIZE, addr != end);
  1896. arch_leave_lazy_mmu_mode();
  1897. if (mm != &init_mm)
  1898. pte_unmap_unlock(pte-1, ptl);
  1899. return err;
  1900. }
  1901. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  1902. unsigned long addr, unsigned long end,
  1903. pte_fn_t fn, void *data)
  1904. {
  1905. pmd_t *pmd;
  1906. unsigned long next;
  1907. int err;
  1908. BUG_ON(pud_huge(*pud));
  1909. pmd = pmd_alloc(mm, pud, addr);
  1910. if (!pmd)
  1911. return -ENOMEM;
  1912. do {
  1913. next = pmd_addr_end(addr, end);
  1914. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  1915. if (err)
  1916. break;
  1917. } while (pmd++, addr = next, addr != end);
  1918. return err;
  1919. }
  1920. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  1921. unsigned long addr, unsigned long end,
  1922. pte_fn_t fn, void *data)
  1923. {
  1924. pud_t *pud;
  1925. unsigned long next;
  1926. int err;
  1927. pud = pud_alloc(mm, pgd, addr);
  1928. if (!pud)
  1929. return -ENOMEM;
  1930. do {
  1931. next = pud_addr_end(addr, end);
  1932. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  1933. if (err)
  1934. break;
  1935. } while (pud++, addr = next, addr != end);
  1936. return err;
  1937. }
  1938. /*
  1939. * Scan a region of virtual memory, filling in page tables as necessary
  1940. * and calling a provided function on each leaf page table.
  1941. */
  1942. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  1943. unsigned long size, pte_fn_t fn, void *data)
  1944. {
  1945. pgd_t *pgd;
  1946. unsigned long next;
  1947. unsigned long end = addr + size;
  1948. int err;
  1949. BUG_ON(addr >= end);
  1950. pgd = pgd_offset(mm, addr);
  1951. do {
  1952. next = pgd_addr_end(addr, end);
  1953. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  1954. if (err)
  1955. break;
  1956. } while (pgd++, addr = next, addr != end);
  1957. return err;
  1958. }
  1959. EXPORT_SYMBOL_GPL(apply_to_page_range);
  1960. /*
  1961. * handle_pte_fault chooses page fault handler according to an entry
  1962. * which was read non-atomically. Before making any commitment, on
  1963. * those architectures or configurations (e.g. i386 with PAE) which
  1964. * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
  1965. * must check under lock before unmapping the pte and proceeding
  1966. * (but do_wp_page is only called after already making such a check;
  1967. * and do_anonymous_page can safely check later on).
  1968. */
  1969. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  1970. pte_t *page_table, pte_t orig_pte)
  1971. {
  1972. int same = 1;
  1973. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  1974. if (sizeof(pte_t) > sizeof(unsigned long)) {
  1975. spinlock_t *ptl = pte_lockptr(mm, pmd);
  1976. spin_lock(ptl);
  1977. same = pte_same(*page_table, orig_pte);
  1978. spin_unlock(ptl);
  1979. }
  1980. #endif
  1981. pte_unmap(page_table);
  1982. return same;
  1983. }
  1984. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  1985. {
  1986. /*
  1987. * If the source page was a PFN mapping, we don't have
  1988. * a "struct page" for it. We do a best-effort copy by
  1989. * just copying from the original user address. If that
  1990. * fails, we just zero-fill it. Live with it.
  1991. */
  1992. if (unlikely(!src)) {
  1993. void *kaddr = kmap_atomic(dst, KM_USER0);
  1994. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  1995. /*
  1996. * This really shouldn't fail, because the page is there
  1997. * in the page tables. But it might just be unreadable,
  1998. * in which case we just give up and fill the result with
  1999. * zeroes.
  2000. */
  2001. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  2002. clear_page(kaddr);
  2003. kunmap_atomic(kaddr, KM_USER0);
  2004. flush_dcache_page(dst);
  2005. } else
  2006. copy_user_highpage(dst, src, va, vma);
  2007. }
  2008. /*
  2009. * This routine handles present pages, when users try to write
  2010. * to a shared page. It is done by copying the page to a new address
  2011. * and decrementing the shared-page counter for the old page.
  2012. *
  2013. * Note that this routine assumes that the protection checks have been
  2014. * done by the caller (the low-level page fault routine in most cases).
  2015. * Thus we can safely just mark it writable once we've done any necessary
  2016. * COW.
  2017. *
  2018. * We also mark the page dirty at this point even though the page will
  2019. * change only once the write actually happens. This avoids a few races,
  2020. * and potentially makes it more efficient.
  2021. *
  2022. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2023. * but allow concurrent faults), with pte both mapped and locked.
  2024. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2025. */
  2026. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2027. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2028. spinlock_t *ptl, pte_t orig_pte)
  2029. __releases(ptl)
  2030. {
  2031. struct page *old_page, *new_page;
  2032. pte_t entry;
  2033. int ret = 0;
  2034. int page_mkwrite = 0;
  2035. struct page *dirty_page = NULL;
  2036. old_page = vm_normal_page(vma, address, orig_pte);
  2037. if (!old_page) {
  2038. /*
  2039. * VM_MIXEDMAP !pfn_valid() case
  2040. *
  2041. * We should not cow pages in a shared writeable mapping.
  2042. * Just mark the pages writable as we can't do any dirty
  2043. * accounting on raw pfn maps.
  2044. */
  2045. if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  2046. (VM_WRITE|VM_SHARED))
  2047. goto reuse;
  2048. goto gotten;
  2049. }
  2050. /*
  2051. * Take out anonymous pages first, anonymous shared vmas are
  2052. * not dirty accountable.
  2053. */
  2054. if (PageAnon(old_page) && !PageKsm(old_page)) {
  2055. if (!trylock_page(old_page)) {
  2056. page_cache_get(old_page);
  2057. pte_unmap_unlock(page_table, ptl);
  2058. lock_page(old_page);
  2059. page_table = pte_offset_map_lock(mm, pmd, address,
  2060. &ptl);
  2061. if (!pte_same(*page_table, orig_pte)) {
  2062. unlock_page(old_page);
  2063. goto unlock;
  2064. }
  2065. page_cache_release(old_page);
  2066. }
  2067. if (reuse_swap_page(old_page)) {
  2068. /*
  2069. * The page is all ours. Move it to our anon_vma so
  2070. * the rmap code will not search our parent or siblings.
  2071. * Protected against the rmap code by the page lock.
  2072. */
  2073. page_move_anon_rmap(old_page, vma, address);
  2074. unlock_page(old_page);
  2075. goto reuse;
  2076. }
  2077. unlock_page(old_page);
  2078. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  2079. (VM_WRITE|VM_SHARED))) {
  2080. /*
  2081. * Only catch write-faults on shared writable pages,
  2082. * read-only shared pages can get COWed by
  2083. * get_user_pages(.write=1, .force=1).
  2084. */
  2085. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  2086. struct vm_fault vmf;
  2087. int tmp;
  2088. vmf.virtual_address = (void __user *)(address &
  2089. PAGE_MASK);
  2090. vmf.pgoff = old_page->index;
  2091. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  2092. vmf.page = old_page;
  2093. /*
  2094. * Notify the address space that the page is about to
  2095. * become writable so that it can prohibit this or wait
  2096. * for the page to get into an appropriate state.
  2097. *
  2098. * We do this without the lock held, so that it can
  2099. * sleep if it needs to.
  2100. */
  2101. page_cache_get(old_page);
  2102. pte_unmap_unlock(page_table, ptl);
  2103. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  2104. if (unlikely(tmp &
  2105. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  2106. ret = tmp;
  2107. goto unwritable_page;
  2108. }
  2109. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  2110. lock_page(old_page);
  2111. if (!old_page->mapping) {
  2112. ret = 0; /* retry the fault */
  2113. unlock_page(old_page);
  2114. goto unwritable_page;
  2115. }
  2116. } else
  2117. VM_BUG_ON(!PageLocked(old_page));
  2118. /*
  2119. * Since we dropped the lock we need to revalidate
  2120. * the PTE as someone else may have changed it. If
  2121. * they did, we just return, as we can count on the
  2122. * MMU to tell us if they didn't also make it writable.
  2123. */
  2124. page_table = pte_offset_map_lock(mm, pmd, address,
  2125. &ptl);
  2126. if (!pte_same(*page_table, orig_pte)) {
  2127. unlock_page(old_page);
  2128. goto unlock;
  2129. }
  2130. page_mkwrite = 1;
  2131. }
  2132. dirty_page = old_page;
  2133. get_page(dirty_page);
  2134. reuse:
  2135. flush_cache_page(vma, address, pte_pfn(orig_pte));
  2136. entry = pte_mkyoung(orig_pte);
  2137. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2138. if (ptep_set_access_flags(vma, address, page_table, entry,1))
  2139. update_mmu_cache(vma, address, page_table);
  2140. pte_unmap_unlock(page_table, ptl);
  2141. ret |= VM_FAULT_WRITE;
  2142. if (!dirty_page)
  2143. return ret;
  2144. /*
  2145. * Yes, Virginia, this is actually required to prevent a race
  2146. * with clear_page_dirty_for_io() from clearing the page dirty
  2147. * bit after it clear all dirty ptes, but before a racing
  2148. * do_wp_page installs a dirty pte.
  2149. *
  2150. * __do_fault is protected similarly.
  2151. */
  2152. if (!page_mkwrite) {
  2153. wait_on_page_locked(dirty_page);
  2154. set_page_dirty_balance(dirty_page, page_mkwrite);
  2155. }
  2156. put_page(dirty_page);
  2157. if (page_mkwrite) {
  2158. struct address_space *mapping = dirty_page->mapping;
  2159. set_page_dirty(dirty_page);
  2160. unlock_page(dirty_page);
  2161. page_cache_release(dirty_page);
  2162. if (mapping) {
  2163. /*
  2164. * Some device drivers do not set page.mapping
  2165. * but still dirty their pages
  2166. */
  2167. balance_dirty_pages_ratelimited(mapping);
  2168. }
  2169. }
  2170. /* file_update_time outside page_lock */
  2171. if (vma->vm_file)
  2172. file_update_time(vma->vm_file);
  2173. return ret;
  2174. }
  2175. /*
  2176. * Ok, we need to copy. Oh, well..
  2177. */
  2178. page_cache_get(old_page);
  2179. gotten:
  2180. pte_unmap_unlock(page_table, ptl);
  2181. if (unlikely(anon_vma_prepare(vma)))
  2182. goto oom;
  2183. if (is_zero_pfn(pte_pfn(orig_pte))) {
  2184. new_page = alloc_zeroed_user_highpage_movable(vma, address);
  2185. if (!new_page)
  2186. goto oom;
  2187. } else {
  2188. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  2189. if (!new_page)
  2190. goto oom;
  2191. cow_user_page(new_page, old_page, address, vma);
  2192. }
  2193. __SetPageUptodate(new_page);
  2194. if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
  2195. goto oom_free_new;
  2196. /*
  2197. * Re-check the pte - we dropped the lock
  2198. */
  2199. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2200. if (likely(pte_same(*page_table, orig_pte))) {
  2201. if (old_page) {
  2202. if (!PageAnon(old_page)) {
  2203. dec_mm_counter_fast(mm, MM_FILEPAGES);
  2204. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2205. }
  2206. } else
  2207. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2208. flush_cache_page(vma, address, pte_pfn(orig_pte));
  2209. entry = mk_pte(new_page, vma->vm_page_prot);
  2210. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2211. /*
  2212. * Clear the pte entry and flush it first, before updating the
  2213. * pte with the new entry. This will avoid a race condition
  2214. * seen in the presence of one thread doing SMC and another
  2215. * thread doing COW.
  2216. */
  2217. ptep_clear_flush(vma, address, page_table);
  2218. page_add_new_anon_rmap(new_page, vma, address);
  2219. /*
  2220. * We call the notify macro here because, when using secondary
  2221. * mmu page tables (such as kvm shadow page tables), we want the
  2222. * new page to be mapped directly into the secondary page table.
  2223. */
  2224. set_pte_at_notify(mm, address, page_table, entry);
  2225. update_mmu_cache(vma, address, page_table);
  2226. if (old_page) {
  2227. /*
  2228. * Only after switching the pte to the new page may
  2229. * we remove the mapcount here. Otherwise another
  2230. * process may come and find the rmap count decremented
  2231. * before the pte is switched to the new page, and
  2232. * "reuse" the old page writing into it while our pte
  2233. * here still points into it and can be read by other
  2234. * threads.
  2235. *
  2236. * The critical issue is to order this
  2237. * page_remove_rmap with the ptp_clear_flush above.
  2238. * Those stores are ordered by (if nothing else,)
  2239. * the barrier present in the atomic_add_negative
  2240. * in page_remove_rmap.
  2241. *
  2242. * Then the TLB flush in ptep_clear_flush ensures that
  2243. * no process can access the old page before the
  2244. * decremented mapcount is visible. And the old page
  2245. * cannot be reused until after the decremented
  2246. * mapcount is visible. So transitively, TLBs to
  2247. * old page will be flushed before it can be reused.
  2248. */
  2249. page_remove_rmap(old_page);
  2250. }
  2251. /* Free the old page.. */
  2252. new_page = old_page;
  2253. ret |= VM_FAULT_WRITE;
  2254. } else
  2255. mem_cgroup_uncharge_page(new_page);
  2256. if (new_page)
  2257. page_cache_release(new_page);
  2258. unlock:
  2259. pte_unmap_unlock(page_table, ptl);
  2260. if (old_page) {
  2261. /*
  2262. * Don't let another task, with possibly unlocked vma,
  2263. * keep the mlocked page.
  2264. */
  2265. if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
  2266. lock_page(old_page); /* LRU manipulation */
  2267. munlock_vma_page(old_page);
  2268. unlock_page(old_page);
  2269. }
  2270. page_cache_release(old_page);
  2271. }
  2272. return ret;
  2273. oom_free_new:
  2274. page_cache_release(new_page);
  2275. oom:
  2276. if (old_page) {
  2277. if (page_mkwrite) {
  2278. unlock_page(old_page);
  2279. page_cache_release(old_page);
  2280. }
  2281. page_cache_release(old_page);
  2282. }
  2283. return VM_FAULT_OOM;
  2284. unwritable_page:
  2285. page_cache_release(old_page);
  2286. return ret;
  2287. }
  2288. /*
  2289. * Helper functions for unmap_mapping_range().
  2290. *
  2291. * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
  2292. *
  2293. * We have to restart searching the prio_tree whenever we drop the lock,
  2294. * since the iterator is only valid while the lock is held, and anyway
  2295. * a later vma might be split and reinserted earlier while lock dropped.
  2296. *
  2297. * The list of nonlinear vmas could be handled more efficiently, using
  2298. * a placeholder, but handle it in the same way until a need is shown.
  2299. * It is important to search the prio_tree before nonlinear list: a vma
  2300. * may become nonlinear and be shifted from prio_tree to nonlinear list
  2301. * while the lock is dropped; but never shifted from list to prio_tree.
  2302. *
  2303. * In order to make forward progress despite restarting the search,
  2304. * vm_truncate_count is used to mark a vma as now dealt with, so we can
  2305. * quickly skip it next time around. Since the prio_tree search only
  2306. * shows us those vmas affected by unmapping the range in question, we
  2307. * can't efficiently keep all vmas in step with mapping->truncate_count:
  2308. * so instead reset them all whenever it wraps back to 0 (then go to 1).
  2309. * mapping->truncate_count and vma->vm_truncate_count are protected by
  2310. * i_mmap_lock.
  2311. *
  2312. * In order to make forward progress despite repeatedly restarting some
  2313. * large vma, note the restart_addr from unmap_vmas when it breaks out:
  2314. * and restart from that address when we reach that vma again. It might
  2315. * have been split or merged, shrunk or extended, but never shifted: so
  2316. * restart_addr remains valid so long as it remains in the vma's range.
  2317. * unmap_mapping_range forces truncate_count to leap over page-aligned
  2318. * values so we can save vma's restart_addr in its truncate_count field.
  2319. */
  2320. #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
  2321. static void reset_vma_truncate_counts(struct address_space *mapping)
  2322. {
  2323. struct vm_area_struct *vma;
  2324. struct prio_tree_iter iter;
  2325. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
  2326. vma->vm_truncate_count = 0;
  2327. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  2328. vma->vm_truncate_count = 0;
  2329. }
  2330. static int unmap_mapping_range_vma(struct vm_area_struct *vma,
  2331. unsigned long start_addr, unsigned long end_addr,
  2332. struct zap_details *details)
  2333. {
  2334. unsigned long restart_addr;
  2335. int need_break;
  2336. /*
  2337. * files that support invalidating or truncating portions of the
  2338. * file from under mmaped areas must have their ->fault function
  2339. * return a locked page (and set VM_FAULT_LOCKED in the return).
  2340. * This provides synchronisation against concurrent unmapping here.
  2341. */
  2342. again:
  2343. restart_addr = vma->vm_truncate_count;
  2344. if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
  2345. start_addr = restart_addr;
  2346. if (start_addr >= end_addr) {
  2347. /* Top of vma has been split off since last time */
  2348. vma->vm_truncate_count = details->truncate_count;
  2349. return 0;
  2350. }
  2351. }
  2352. restart_addr = zap_page_range(vma, start_addr,
  2353. end_addr - start_addr, details);
  2354. need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
  2355. if (restart_addr >= end_addr) {
  2356. /* We have now completed this vma: mark it so */
  2357. vma->vm_truncate_count = details->truncate_count;
  2358. if (!need_break)
  2359. return 0;
  2360. } else {
  2361. /* Note restart_addr in vma's truncate_count field */
  2362. vma->vm_truncate_count = restart_addr;
  2363. if (!need_break)
  2364. goto again;
  2365. }
  2366. spin_unlock(details->i_mmap_lock);
  2367. cond_resched();
  2368. spin_lock(details->i_mmap_lock);
  2369. return -EINTR;
  2370. }
  2371. static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
  2372. struct zap_details *details)
  2373. {
  2374. struct vm_area_struct *vma;
  2375. struct prio_tree_iter iter;
  2376. pgoff_t vba, vea, zba, zea;
  2377. restart:
  2378. vma_prio_tree_foreach(vma, &iter, root,
  2379. details->first_index, details->last_index) {
  2380. /* Skip quickly over those we have already dealt with */
  2381. if (vma->vm_truncate_count == details->truncate_count)
  2382. continue;
  2383. vba = vma->vm_pgoff;
  2384. vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
  2385. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  2386. zba = details->first_index;
  2387. if (zba < vba)
  2388. zba = vba;
  2389. zea = details->last_index;
  2390. if (zea > vea)
  2391. zea = vea;
  2392. if (unmap_mapping_range_vma(vma,
  2393. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  2394. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  2395. details) < 0)
  2396. goto restart;
  2397. }
  2398. }
  2399. static inline void unmap_mapping_range_list(struct list_head *head,
  2400. struct zap_details *details)
  2401. {
  2402. struct vm_area_struct *vma;
  2403. /*
  2404. * In nonlinear VMAs there is no correspondence between virtual address
  2405. * offset and file offset. So we must perform an exhaustive search
  2406. * across *all* the pages in each nonlinear VMA, not just the pages
  2407. * whose virtual address lies outside the file truncation point.
  2408. */
  2409. restart:
  2410. list_for_each_entry(vma, head, shared.vm_set.list) {
  2411. /* Skip quickly over those we have already dealt with */
  2412. if (vma->vm_truncate_count == details->truncate_count)
  2413. continue;
  2414. details->nonlinear_vma = vma;
  2415. if (unmap_mapping_range_vma(vma, vma->vm_start,
  2416. vma->vm_end, details) < 0)
  2417. goto restart;
  2418. }
  2419. }
  2420. /**
  2421. * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
  2422. * @mapping: the address space containing mmaps to be unmapped.
  2423. * @holebegin: byte in first page to unmap, relative to the start of
  2424. * the underlying file. This will be rounded down to a PAGE_SIZE
  2425. * boundary. Note that this is different from truncate_pagecache(), which
  2426. * must keep the partial page. In contrast, we must get rid of
  2427. * partial pages.
  2428. * @holelen: size of prospective hole in bytes. This will be rounded
  2429. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  2430. * end of the file.
  2431. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  2432. * but 0 when invalidating pagecache, don't throw away private data.
  2433. */
  2434. void unmap_mapping_range(struct address_space *mapping,
  2435. loff_t const holebegin, loff_t const holelen, int even_cows)
  2436. {
  2437. struct zap_details details;
  2438. pgoff_t hba = holebegin >> PAGE_SHIFT;
  2439. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2440. /* Check for overflow. */
  2441. if (sizeof(holelen) > sizeof(hlen)) {
  2442. long long holeend =
  2443. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2444. if (holeend & ~(long long)ULONG_MAX)
  2445. hlen = ULONG_MAX - hba + 1;
  2446. }
  2447. details.check_mapping = even_cows? NULL: mapping;
  2448. details.nonlinear_vma = NULL;
  2449. details.first_index = hba;
  2450. details.last_index = hba + hlen - 1;
  2451. if (details.last_index < details.first_index)
  2452. details.last_index = ULONG_MAX;
  2453. details.i_mmap_lock = &mapping->i_mmap_lock;
  2454. mutex_lock(&mapping->unmap_mutex);
  2455. spin_lock(&mapping->i_mmap_lock);
  2456. /* Protect against endless unmapping loops */
  2457. mapping->truncate_count++;
  2458. if (unlikely(is_restart_addr(mapping->truncate_count))) {
  2459. if (mapping->truncate_count == 0)
  2460. reset_vma_truncate_counts(mapping);
  2461. mapping->truncate_count++;
  2462. }
  2463. details.truncate_count = mapping->truncate_count;
  2464. if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
  2465. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  2466. if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
  2467. unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
  2468. spin_unlock(&mapping->i_mmap_lock);
  2469. mutex_unlock(&mapping->unmap_mutex);
  2470. }
  2471. EXPORT_SYMBOL(unmap_mapping_range);
  2472. int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
  2473. {
  2474. struct address_space *mapping = inode->i_mapping;
  2475. /*
  2476. * If the underlying filesystem is not going to provide
  2477. * a way to truncate a range of blocks (punch a hole) -
  2478. * we should return failure right now.
  2479. */
  2480. if (!inode->i_op->truncate_range)
  2481. return -ENOSYS;
  2482. mutex_lock(&inode->i_mutex);
  2483. down_write(&inode->i_alloc_sem);
  2484. unmap_mapping_range(mapping, offset, (end - offset), 1);
  2485. truncate_inode_pages_range(mapping, offset, end);
  2486. unmap_mapping_range(mapping, offset, (end - offset), 1);
  2487. inode->i_op->truncate_range(inode, offset, end);
  2488. up_write(&inode->i_alloc_sem);
  2489. mutex_unlock(&inode->i_mutex);
  2490. return 0;
  2491. }
  2492. /*
  2493. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2494. * but allow concurrent faults), and pte mapped but not yet locked.
  2495. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2496. */
  2497. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2498. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2499. unsigned int flags, pte_t orig_pte)
  2500. {
  2501. spinlock_t *ptl;
  2502. struct page *page, *swapcache = NULL;
  2503. swp_entry_t entry;
  2504. pte_t pte;
  2505. int locked;
  2506. struct mem_cgroup *ptr;
  2507. int exclusive = 0;
  2508. int ret = 0;
  2509. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2510. goto out;
  2511. entry = pte_to_swp_entry(orig_pte);
  2512. if (unlikely(non_swap_entry(entry))) {
  2513. if (is_migration_entry(entry)) {
  2514. migration_entry_wait(mm, pmd, address);
  2515. } else if (is_hwpoison_entry(entry)) {
  2516. ret = VM_FAULT_HWPOISON;
  2517. } else {
  2518. print_bad_pte(vma, address, orig_pte, NULL);
  2519. ret = VM_FAULT_SIGBUS;
  2520. }
  2521. goto out;
  2522. }
  2523. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  2524. page = lookup_swap_cache(entry);
  2525. if (!page) {
  2526. grab_swap_token(mm); /* Contend for token _before_ read-in */
  2527. page = swapin_readahead(entry,
  2528. GFP_HIGHUSER_MOVABLE, vma, address);
  2529. if (!page) {
  2530. /*
  2531. * Back out if somebody else faulted in this pte
  2532. * while we released the pte lock.
  2533. */
  2534. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2535. if (likely(pte_same(*page_table, orig_pte)))
  2536. ret = VM_FAULT_OOM;
  2537. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2538. goto unlock;
  2539. }
  2540. /* Had to read the page from swap area: Major fault */
  2541. ret = VM_FAULT_MAJOR;
  2542. count_vm_event(PGMAJFAULT);
  2543. } else if (PageHWPoison(page)) {
  2544. /*
  2545. * hwpoisoned dirty swapcache pages are kept for killing
  2546. * owner processes (which may be unknown at hwpoison time)
  2547. */
  2548. ret = VM_FAULT_HWPOISON;
  2549. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2550. goto out_release;
  2551. }
  2552. locked = lock_page_or_retry(page, mm, flags);
  2553. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2554. if (!locked) {
  2555. ret |= VM_FAULT_RETRY;
  2556. goto out_release;
  2557. }
  2558. /*
  2559. * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
  2560. * release the swapcache from under us. The page pin, and pte_same
  2561. * test below, are not enough to exclude that. Even if it is still
  2562. * swapcache, we need to check that the page's swap has not changed.
  2563. */
  2564. if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
  2565. goto out_page;
  2566. if (ksm_might_need_to_copy(page, vma, address)) {
  2567. swapcache = page;
  2568. page = ksm_does_need_to_copy(page, vma, address);
  2569. if (unlikely(!page)) {
  2570. ret = VM_FAULT_OOM;
  2571. page = swapcache;
  2572. swapcache = NULL;
  2573. goto out_page;
  2574. }
  2575. }
  2576. if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
  2577. ret = VM_FAULT_OOM;
  2578. goto out_page;
  2579. }
  2580. /*
  2581. * Back out if somebody else already faulted in this pte.
  2582. */
  2583. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2584. if (unlikely(!pte_same(*page_table, orig_pte)))
  2585. goto out_nomap;
  2586. if (unlikely(!PageUptodate(page))) {
  2587. ret = VM_FAULT_SIGBUS;
  2588. goto out_nomap;
  2589. }
  2590. /*
  2591. * The page isn't present yet, go ahead with the fault.
  2592. *
  2593. * Be careful about the sequence of operations here.
  2594. * To get its accounting right, reuse_swap_page() must be called
  2595. * while the page is counted on swap but not yet in mapcount i.e.
  2596. * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
  2597. * must be called after the swap_free(), or it will never succeed.
  2598. * Because delete_from_swap_page() may be called by reuse_swap_page(),
  2599. * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
  2600. * in page->private. In this case, a record in swap_cgroup is silently
  2601. * discarded at swap_free().
  2602. */
  2603. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2604. dec_mm_counter_fast(mm, MM_SWAPENTS);
  2605. pte = mk_pte(page, vma->vm_page_prot);
  2606. if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
  2607. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  2608. flags &= ~FAULT_FLAG_WRITE;
  2609. ret |= VM_FAULT_WRITE;
  2610. exclusive = 1;
  2611. }
  2612. flush_icache_page(vma, page);
  2613. set_pte_at(mm, address, page_table, pte);
  2614. do_page_add_anon_rmap(page, vma, address, exclusive);
  2615. /* It's better to call commit-charge after rmap is established */
  2616. mem_cgroup_commit_charge_swapin(page, ptr);
  2617. swap_free(entry);
  2618. if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
  2619. try_to_free_swap(page);
  2620. unlock_page(page);
  2621. if (swapcache) {
  2622. /*
  2623. * Hold the lock to avoid the swap entry to be reused
  2624. * until we take the PT lock for the pte_same() check
  2625. * (to avoid false positives from pte_same). For
  2626. * further safety release the lock after the swap_free
  2627. * so that the swap count won't change under a
  2628. * parallel locked swapcache.
  2629. */
  2630. unlock_page(swapcache);
  2631. page_cache_release(swapcache);
  2632. }
  2633. if (flags & FAULT_FLAG_WRITE) {
  2634. ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
  2635. if (ret & VM_FAULT_ERROR)
  2636. ret &= VM_FAULT_ERROR;
  2637. goto out;
  2638. }
  2639. /* No need to invalidate - it was non-present before */
  2640. update_mmu_cache(vma, address, page_table);
  2641. unlock:
  2642. pte_unmap_unlock(page_table, ptl);
  2643. out:
  2644. return ret;
  2645. out_nomap:
  2646. mem_cgroup_cancel_charge_swapin(ptr);
  2647. pte_unmap_unlock(page_table, ptl);
  2648. out_page:
  2649. unlock_page(page);
  2650. out_release:
  2651. page_cache_release(page);
  2652. if (swapcache) {
  2653. unlock_page(swapcache);
  2654. page_cache_release(swapcache);
  2655. }
  2656. return ret;
  2657. }
  2658. /*
  2659. * This is like a special single-page "expand_{down|up}wards()",
  2660. * except we must first make sure that 'address{-|+}PAGE_SIZE'
  2661. * doesn't hit another vma.
  2662. */
  2663. static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
  2664. {
  2665. address &= PAGE_MASK;
  2666. if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
  2667. struct vm_area_struct *prev = vma->vm_prev;
  2668. /*
  2669. * Is there a mapping abutting this one below?
  2670. *
  2671. * That's only ok if it's the same stack mapping
  2672. * that has gotten split..
  2673. */
  2674. if (prev && prev->vm_end == address)
  2675. return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
  2676. expand_stack(vma, address - PAGE_SIZE);
  2677. }
  2678. if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
  2679. struct vm_area_struct *next = vma->vm_next;
  2680. /* As VM_GROWSDOWN but s/below/above/ */
  2681. if (next && next->vm_start == address + PAGE_SIZE)
  2682. return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
  2683. expand_upwards(vma, address + PAGE_SIZE);
  2684. }
  2685. return 0;
  2686. }
  2687. /*
  2688. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2689. * but allow concurrent faults), and pte mapped but not yet locked.
  2690. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2691. */
  2692. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2693. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2694. unsigned int flags)
  2695. {
  2696. struct page *page;
  2697. spinlock_t *ptl;
  2698. pte_t entry;
  2699. pte_unmap(page_table);
  2700. /* Check if we need to add a guard page to the stack */
  2701. if (check_stack_guard_page(vma, address) < 0)
  2702. return VM_FAULT_SIGBUS;
  2703. /* Use the zero-page for reads */
  2704. if (!(flags & FAULT_FLAG_WRITE)) {
  2705. entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
  2706. vma->vm_page_prot));
  2707. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2708. if (!pte_none(*page_table))
  2709. goto unlock;
  2710. goto setpte;
  2711. }
  2712. /* Allocate our own private page. */
  2713. if (unlikely(anon_vma_prepare(vma)))
  2714. goto oom;
  2715. page = alloc_zeroed_user_highpage_movable(vma, address);
  2716. if (!page)
  2717. goto oom;
  2718. __SetPageUptodate(page);
  2719. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
  2720. goto oom_free_page;
  2721. entry = mk_pte(page, vma->vm_page_prot);
  2722. if (vma->vm_flags & VM_WRITE)
  2723. entry = pte_mkwrite(pte_mkdirty(entry));
  2724. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2725. if (!pte_none(*page_table))
  2726. goto release;
  2727. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2728. page_add_new_anon_rmap(page, vma, address);
  2729. setpte:
  2730. set_pte_at(mm, address, page_table, entry);
  2731. /* No need to invalidate - it was non-present before */
  2732. update_mmu_cache(vma, address, page_table);
  2733. unlock:
  2734. pte_unmap_unlock(page_table, ptl);
  2735. return 0;
  2736. release:
  2737. mem_cgroup_uncharge_page(page);
  2738. page_cache_release(page);
  2739. goto unlock;
  2740. oom_free_page:
  2741. page_cache_release(page);
  2742. oom:
  2743. return VM_FAULT_OOM;
  2744. }
  2745. /*
  2746. * __do_fault() tries to create a new page mapping. It aggressively
  2747. * tries to share with existing pages, but makes a separate copy if
  2748. * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
  2749. * the next page fault.
  2750. *
  2751. * As this is called only for pages that do not currently exist, we
  2752. * do not need to flush old virtual caches or the TLB.
  2753. *
  2754. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2755. * but allow concurrent faults), and pte neither mapped nor locked.
  2756. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2757. */
  2758. static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2759. unsigned long address, pmd_t *pmd,
  2760. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2761. {
  2762. pte_t *page_table;
  2763. spinlock_t *ptl;
  2764. struct page *page;
  2765. pte_t entry;
  2766. int anon = 0;
  2767. int charged = 0;
  2768. struct page *dirty_page = NULL;
  2769. struct vm_fault vmf;
  2770. int ret;
  2771. int page_mkwrite = 0;
  2772. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  2773. vmf.pgoff = pgoff;
  2774. vmf.flags = flags;
  2775. vmf.page = NULL;
  2776. ret = vma->vm_ops->fault(vma, &vmf);
  2777. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
  2778. VM_FAULT_RETRY)))
  2779. return ret;
  2780. if (unlikely(PageHWPoison(vmf.page))) {
  2781. if (ret & VM_FAULT_LOCKED)
  2782. unlock_page(vmf.page);
  2783. return VM_FAULT_HWPOISON;
  2784. }
  2785. /*
  2786. * For consistency in subsequent calls, make the faulted page always
  2787. * locked.
  2788. */
  2789. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  2790. lock_page(vmf.page);
  2791. else
  2792. VM_BUG_ON(!PageLocked(vmf.page));
  2793. /*
  2794. * Should we do an early C-O-W break?
  2795. */
  2796. page = vmf.page;
  2797. if (flags & FAULT_FLAG_WRITE) {
  2798. if (!(vma->vm_flags & VM_SHARED)) {
  2799. anon = 1;
  2800. if (unlikely(anon_vma_prepare(vma))) {
  2801. ret = VM_FAULT_OOM;
  2802. goto out;
  2803. }
  2804. page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
  2805. vma, address);
  2806. if (!page) {
  2807. ret = VM_FAULT_OOM;
  2808. goto out;
  2809. }
  2810. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
  2811. ret = VM_FAULT_OOM;
  2812. page_cache_release(page);
  2813. goto out;
  2814. }
  2815. charged = 1;
  2816. copy_user_highpage(page, vmf.page, address, vma);
  2817. __SetPageUptodate(page);
  2818. } else {
  2819. /*
  2820. * If the page will be shareable, see if the backing
  2821. * address space wants to know that the page is about
  2822. * to become writable
  2823. */
  2824. if (vma->vm_ops->page_mkwrite) {
  2825. int tmp;
  2826. unlock_page(page);
  2827. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  2828. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  2829. if (unlikely(tmp &
  2830. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  2831. ret = tmp;
  2832. goto unwritable_page;
  2833. }
  2834. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  2835. lock_page(page);
  2836. if (!page->mapping) {
  2837. ret = 0; /* retry the fault */
  2838. unlock_page(page);
  2839. goto unwritable_page;
  2840. }
  2841. } else
  2842. VM_BUG_ON(!PageLocked(page));
  2843. page_mkwrite = 1;
  2844. }
  2845. }
  2846. }
  2847. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2848. /*
  2849. * This silly early PAGE_DIRTY setting removes a race
  2850. * due to the bad i386 page protection. But it's valid
  2851. * for other architectures too.
  2852. *
  2853. * Note that if FAULT_FLAG_WRITE is set, we either now have
  2854. * an exclusive copy of the page, or this is a shared mapping,
  2855. * so we can make it writable and dirty to avoid having to
  2856. * handle that later.
  2857. */
  2858. /* Only go through if we didn't race with anybody else... */
  2859. if (likely(pte_same(*page_table, orig_pte))) {
  2860. flush_icache_page(vma, page);
  2861. entry = mk_pte(page, vma->vm_page_prot);
  2862. if (flags & FAULT_FLAG_WRITE)
  2863. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2864. if (anon) {
  2865. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2866. page_add_new_anon_rmap(page, vma, address);
  2867. } else {
  2868. inc_mm_counter_fast(mm, MM_FILEPAGES);
  2869. page_add_file_rmap(page);
  2870. if (flags & FAULT_FLAG_WRITE) {
  2871. dirty_page = page;
  2872. get_page(dirty_page);
  2873. }
  2874. }
  2875. set_pte_at(mm, address, page_table, entry);
  2876. /* no need to invalidate: a not-present page won't be cached */
  2877. update_mmu_cache(vma, address, page_table);
  2878. } else {
  2879. if (charged)
  2880. mem_cgroup_uncharge_page(page);
  2881. if (anon)
  2882. page_cache_release(page);
  2883. else
  2884. anon = 1; /* no anon but release faulted_page */
  2885. }
  2886. pte_unmap_unlock(page_table, ptl);
  2887. out:
  2888. if (dirty_page) {
  2889. struct address_space *mapping = page->mapping;
  2890. if (set_page_dirty(dirty_page))
  2891. page_mkwrite = 1;
  2892. unlock_page(dirty_page);
  2893. put_page(dirty_page);
  2894. if (page_mkwrite && mapping) {
  2895. /*
  2896. * Some device drivers do not set page.mapping but still
  2897. * dirty their pages
  2898. */
  2899. balance_dirty_pages_ratelimited(mapping);
  2900. }
  2901. /* file_update_time outside page_lock */
  2902. if (vma->vm_file)
  2903. file_update_time(vma->vm_file);
  2904. } else {
  2905. unlock_page(vmf.page);
  2906. if (anon)
  2907. page_cache_release(vmf.page);
  2908. }
  2909. return ret;
  2910. unwritable_page:
  2911. page_cache_release(page);
  2912. return ret;
  2913. }
  2914. static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2915. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2916. unsigned int flags, pte_t orig_pte)
  2917. {
  2918. pgoff_t pgoff = (((address & PAGE_MASK)
  2919. - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2920. pte_unmap(page_table);
  2921. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2922. }
  2923. /*
  2924. * Fault of a previously existing named mapping. Repopulate the pte
  2925. * from the encoded file_pte if possible. This enables swappable
  2926. * nonlinear vmas.
  2927. *
  2928. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2929. * but allow concurrent faults), and pte mapped but not yet locked.
  2930. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2931. */
  2932. static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2933. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2934. unsigned int flags, pte_t orig_pte)
  2935. {
  2936. pgoff_t pgoff;
  2937. flags |= FAULT_FLAG_NONLINEAR;
  2938. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2939. return 0;
  2940. if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
  2941. /*
  2942. * Page table corrupted: show pte and kill process.
  2943. */
  2944. print_bad_pte(vma, address, orig_pte, NULL);
  2945. return VM_FAULT_SIGBUS;
  2946. }
  2947. pgoff = pte_to_pgoff(orig_pte);
  2948. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  2949. }
  2950. /*
  2951. * These routines also need to handle stuff like marking pages dirty
  2952. * and/or accessed for architectures that don't do it in hardware (most
  2953. * RISC architectures). The early dirtying is also good on the i386.
  2954. *
  2955. * There is also a hook called "update_mmu_cache()" that architectures
  2956. * with external mmu caches can use to update those (ie the Sparc or
  2957. * PowerPC hashed page tables that act as extended TLBs).
  2958. *
  2959. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2960. * but allow concurrent faults), and pte mapped but not yet locked.
  2961. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2962. */
  2963. int handle_pte_fault(struct mm_struct *mm,
  2964. struct vm_area_struct *vma, unsigned long address,
  2965. pte_t *pte, pmd_t *pmd, unsigned int flags)
  2966. {
  2967. pte_t entry;
  2968. spinlock_t *ptl;
  2969. entry = *pte;
  2970. if (!pte_present(entry)) {
  2971. if (pte_none(entry)) {
  2972. if (vma->vm_ops) {
  2973. if (likely(vma->vm_ops->fault))
  2974. return do_linear_fault(mm, vma, address,
  2975. pte, pmd, flags, entry);
  2976. }
  2977. return do_anonymous_page(mm, vma, address,
  2978. pte, pmd, flags);
  2979. }
  2980. if (pte_file(entry))
  2981. return do_nonlinear_fault(mm, vma, address,
  2982. pte, pmd, flags, entry);
  2983. return do_swap_page(mm, vma, address,
  2984. pte, pmd, flags, entry);
  2985. }
  2986. ptl = pte_lockptr(mm, pmd);
  2987. spin_lock(ptl);
  2988. if (unlikely(!pte_same(*pte, entry)))
  2989. goto unlock;
  2990. if (flags & FAULT_FLAG_WRITE) {
  2991. if (!pte_write(entry))
  2992. return do_wp_page(mm, vma, address,
  2993. pte, pmd, ptl, entry);
  2994. entry = pte_mkdirty(entry);
  2995. }
  2996. entry = pte_mkyoung(entry);
  2997. if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
  2998. update_mmu_cache(vma, address, pte);
  2999. } else {
  3000. /*
  3001. * This is needed only for protection faults but the arch code
  3002. * is not yet telling us if this is a protection fault or not.
  3003. * This still avoids useless tlb flushes for .text page faults
  3004. * with threads.
  3005. */
  3006. if (flags & FAULT_FLAG_WRITE)
  3007. flush_tlb_fix_spurious_fault(vma, address);
  3008. }
  3009. unlock:
  3010. pte_unmap_unlock(pte, ptl);
  3011. return 0;
  3012. }
  3013. /*
  3014. * By the time we get here, we already hold the mm semaphore
  3015. */
  3016. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  3017. unsigned long address, unsigned int flags)
  3018. {
  3019. pgd_t *pgd;
  3020. pud_t *pud;
  3021. pmd_t *pmd;
  3022. pte_t *pte;
  3023. __set_current_state(TASK_RUNNING);
  3024. count_vm_event(PGFAULT);
  3025. /* do counter updates before entering really critical section. */
  3026. check_sync_rss_stat(current);
  3027. if (unlikely(is_vm_hugetlb_page(vma)))
  3028. return hugetlb_fault(mm, vma, address, flags);
  3029. pgd = pgd_offset(mm, address);
  3030. pud = pud_alloc(mm, pgd, address);
  3031. if (!pud)
  3032. return VM_FAULT_OOM;
  3033. pmd = pmd_alloc(mm, pud, address);
  3034. if (!pmd)
  3035. return VM_FAULT_OOM;
  3036. if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
  3037. if (!vma->vm_ops)
  3038. return do_huge_pmd_anonymous_page(mm, vma, address,
  3039. pmd, flags);
  3040. } else {
  3041. pmd_t orig_pmd = *pmd;
  3042. barrier();
  3043. if (pmd_trans_huge(orig_pmd)) {
  3044. if (flags & FAULT_FLAG_WRITE &&
  3045. !pmd_write(orig_pmd) &&
  3046. !pmd_trans_splitting(orig_pmd))
  3047. return do_huge_pmd_wp_page(mm, vma, address,
  3048. pmd, orig_pmd);
  3049. return 0;
  3050. }
  3051. }
  3052. /*
  3053. * Use __pte_alloc instead of pte_alloc_map, because we can't
  3054. * run pte_offset_map on the pmd, if an huge pmd could
  3055. * materialize from under us from a different thread.
  3056. */
  3057. if (unlikely(__pte_alloc(mm, vma, pmd, address)))
  3058. return VM_FAULT_OOM;
  3059. /* if an huge pmd materialized from under us just retry later */
  3060. if (unlikely(pmd_trans_huge(*pmd)))
  3061. return 0;
  3062. /*
  3063. * A regular pmd is established and it can't morph into a huge pmd
  3064. * from under us anymore at this point because we hold the mmap_sem
  3065. * read mode and khugepaged takes it in write mode. So now it's
  3066. * safe to run pte_offset_map().
  3067. */
  3068. pte = pte_offset_map(pmd, address);
  3069. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  3070. }
  3071. #ifndef __PAGETABLE_PUD_FOLDED
  3072. /*
  3073. * Allocate page upper directory.
  3074. * We've already handled the fast-path in-line.
  3075. */
  3076. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  3077. {
  3078. pud_t *new = pud_alloc_one(mm, address);
  3079. if (!new)
  3080. return -ENOMEM;
  3081. smp_wmb(); /* See comment in __pte_alloc */
  3082. spin_lock(&mm->page_table_lock);
  3083. if (pgd_present(*pgd)) /* Another has populated it */
  3084. pud_free(mm, new);
  3085. else
  3086. pgd_populate(mm, pgd, new);
  3087. spin_unlock(&mm->page_table_lock);
  3088. return 0;
  3089. }
  3090. #endif /* __PAGETABLE_PUD_FOLDED */
  3091. #ifndef __PAGETABLE_PMD_FOLDED
  3092. /*
  3093. * Allocate page middle directory.
  3094. * We've already handled the fast-path in-line.
  3095. */
  3096. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  3097. {
  3098. pmd_t *new = pmd_alloc_one(mm, address);
  3099. if (!new)
  3100. return -ENOMEM;
  3101. smp_wmb(); /* See comment in __pte_alloc */
  3102. spin_lock(&mm->page_table_lock);
  3103. #ifndef __ARCH_HAS_4LEVEL_HACK
  3104. if (pud_present(*pud)) /* Another has populated it */
  3105. pmd_free(mm, new);
  3106. else
  3107. pud_populate(mm, pud, new);
  3108. #else
  3109. if (pgd_present(*pud)) /* Another has populated it */
  3110. pmd_free(mm, new);
  3111. else
  3112. pgd_populate(mm, pud, new);
  3113. #endif /* __ARCH_HAS_4LEVEL_HACK */
  3114. spin_unlock(&mm->page_table_lock);
  3115. return 0;
  3116. }
  3117. #endif /* __PAGETABLE_PMD_FOLDED */
  3118. int make_pages_present(unsigned long addr, unsigned long end)
  3119. {
  3120. int ret, len, write;
  3121. struct vm_area_struct * vma;
  3122. vma = find_vma(current->mm, addr);
  3123. if (!vma)
  3124. return -ENOMEM;
  3125. /*
  3126. * We want to touch writable mappings with a write fault in order
  3127. * to break COW, except for shared mappings because these don't COW
  3128. * and we would not want to dirty them for nothing.
  3129. */
  3130. write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
  3131. BUG_ON(addr >= end);
  3132. BUG_ON(end > vma->vm_end);
  3133. len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
  3134. ret = get_user_pages(current, current->mm, addr,
  3135. len, write, 0, NULL, NULL);
  3136. if (ret < 0)
  3137. return ret;
  3138. return ret == len ? 0 : -EFAULT;
  3139. }
  3140. #if !defined(__HAVE_ARCH_GATE_AREA)
  3141. #if defined(AT_SYSINFO_EHDR)
  3142. static struct vm_area_struct gate_vma;
  3143. static int __init gate_vma_init(void)
  3144. {
  3145. gate_vma.vm_mm = NULL;
  3146. gate_vma.vm_start = FIXADDR_USER_START;
  3147. gate_vma.vm_end = FIXADDR_USER_END;
  3148. gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
  3149. gate_vma.vm_page_prot = __P101;
  3150. /*
  3151. * Make sure the vDSO gets into every core dump.
  3152. * Dumping its contents makes post-mortem fully interpretable later
  3153. * without matching up the same kernel and hardware config to see
  3154. * what PC values meant.
  3155. */
  3156. gate_vma.vm_flags |= VM_ALWAYSDUMP;
  3157. return 0;
  3158. }
  3159. __initcall(gate_vma_init);
  3160. #endif
  3161. struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  3162. {
  3163. #ifdef AT_SYSINFO_EHDR
  3164. return &gate_vma;
  3165. #else
  3166. return NULL;
  3167. #endif
  3168. }
  3169. int in_gate_area_no_mm(unsigned long addr)
  3170. {
  3171. #ifdef AT_SYSINFO_EHDR
  3172. if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
  3173. return 1;
  3174. #endif
  3175. return 0;
  3176. }
  3177. #endif /* __HAVE_ARCH_GATE_AREA */
  3178. static int __follow_pte(struct mm_struct *mm, unsigned long address,
  3179. pte_t **ptepp, spinlock_t **ptlp)
  3180. {
  3181. pgd_t *pgd;
  3182. pud_t *pud;
  3183. pmd_t *pmd;
  3184. pte_t *ptep;
  3185. pgd = pgd_offset(mm, address);
  3186. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  3187. goto out;
  3188. pud = pud_offset(pgd, address);
  3189. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  3190. goto out;
  3191. pmd = pmd_offset(pud, address);
  3192. VM_BUG_ON(pmd_trans_huge(*pmd));
  3193. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  3194. goto out;
  3195. /* We cannot handle huge page PFN maps. Luckily they don't exist. */
  3196. if (pmd_huge(*pmd))
  3197. goto out;
  3198. ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
  3199. if (!ptep)
  3200. goto out;
  3201. if (!pte_present(*ptep))
  3202. goto unlock;
  3203. *ptepp = ptep;
  3204. return 0;
  3205. unlock:
  3206. pte_unmap_unlock(ptep, *ptlp);
  3207. out:
  3208. return -EINVAL;
  3209. }
  3210. static inline int follow_pte(struct mm_struct *mm, unsigned long address,
  3211. pte_t **ptepp, spinlock_t **ptlp)
  3212. {
  3213. int res;
  3214. /* (void) is needed to make gcc happy */
  3215. (void) __cond_lock(*ptlp,
  3216. !(res = __follow_pte(mm, address, ptepp, ptlp)));
  3217. return res;
  3218. }
  3219. /**
  3220. * follow_pfn - look up PFN at a user virtual address
  3221. * @vma: memory mapping
  3222. * @address: user virtual address
  3223. * @pfn: location to store found PFN
  3224. *
  3225. * Only IO mappings and raw PFN mappings are allowed.
  3226. *
  3227. * Returns zero and the pfn at @pfn on success, -ve otherwise.
  3228. */
  3229. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  3230. unsigned long *pfn)
  3231. {
  3232. int ret = -EINVAL;
  3233. spinlock_t *ptl;
  3234. pte_t *ptep;
  3235. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3236. return ret;
  3237. ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
  3238. if (ret)
  3239. return ret;
  3240. *pfn = pte_pfn(*ptep);
  3241. pte_unmap_unlock(ptep, ptl);
  3242. return 0;
  3243. }
  3244. EXPORT_SYMBOL(follow_pfn);
  3245. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3246. int follow_phys(struct vm_area_struct *vma,
  3247. unsigned long address, unsigned int flags,
  3248. unsigned long *prot, resource_size_t *phys)
  3249. {
  3250. int ret = -EINVAL;
  3251. pte_t *ptep, pte;
  3252. spinlock_t *ptl;
  3253. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3254. goto out;
  3255. if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
  3256. goto out;
  3257. pte = *ptep;
  3258. if ((flags & FOLL_WRITE) && !pte_write(pte))
  3259. goto unlock;
  3260. *prot = pgprot_val(pte_pgprot(pte));
  3261. *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
  3262. ret = 0;
  3263. unlock:
  3264. pte_unmap_unlock(ptep, ptl);
  3265. out:
  3266. return ret;
  3267. }
  3268. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  3269. void *buf, int len, int write)
  3270. {
  3271. resource_size_t phys_addr;
  3272. unsigned long prot = 0;
  3273. void __iomem *maddr;
  3274. int offset = addr & (PAGE_SIZE-1);
  3275. if (follow_phys(vma, addr, write, &prot, &phys_addr))
  3276. return -EINVAL;
  3277. maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
  3278. if (write)
  3279. memcpy_toio(maddr + offset, buf, len);
  3280. else
  3281. memcpy_fromio(buf, maddr + offset, len);
  3282. iounmap(maddr);
  3283. return len;
  3284. }
  3285. #endif
  3286. /*
  3287. * Access another process' address space as given in mm. If non-NULL, use the
  3288. * given task for page fault accounting.
  3289. */
  3290. static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
  3291. unsigned long addr, void *buf, int len, int write)
  3292. {
  3293. struct vm_area_struct *vma;
  3294. void *old_buf = buf;
  3295. down_read(&mm->mmap_sem);
  3296. /* ignore errors, just check how much was successfully transferred */
  3297. while (len) {
  3298. int bytes, ret, offset;
  3299. void *maddr;
  3300. struct page *page = NULL;
  3301. ret = get_user_pages(tsk, mm, addr, 1,
  3302. write, 1, &page, &vma);
  3303. if (ret <= 0) {
  3304. /*
  3305. * Check if this is a VM_IO | VM_PFNMAP VMA, which
  3306. * we can access using slightly different code.
  3307. */
  3308. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3309. vma = find_vma(mm, addr);
  3310. if (!vma)
  3311. break;
  3312. if (vma->vm_ops && vma->vm_ops->access)
  3313. ret = vma->vm_ops->access(vma, addr, buf,
  3314. len, write);
  3315. if (ret <= 0)
  3316. #endif
  3317. break;
  3318. bytes = ret;
  3319. } else {
  3320. bytes = len;
  3321. offset = addr & (PAGE_SIZE-1);
  3322. if (bytes > PAGE_SIZE-offset)
  3323. bytes = PAGE_SIZE-offset;
  3324. maddr = kmap(page);
  3325. if (write) {
  3326. copy_to_user_page(vma, page, addr,
  3327. maddr + offset, buf, bytes);
  3328. set_page_dirty_lock(page);
  3329. } else {
  3330. copy_from_user_page(vma, page, addr,
  3331. buf, maddr + offset, bytes);
  3332. }
  3333. kunmap(page);
  3334. page_cache_release(page);
  3335. }
  3336. len -= bytes;
  3337. buf += bytes;
  3338. addr += bytes;
  3339. }
  3340. up_read(&mm->mmap_sem);
  3341. return buf - old_buf;
  3342. }
  3343. /**
  3344. * access_remote_vm - access another process' address space
  3345. * @mm: the mm_struct of the target address space
  3346. * @addr: start address to access
  3347. * @buf: source or destination buffer
  3348. * @len: number of bytes to transfer
  3349. * @write: whether the access is a write
  3350. *
  3351. * The caller must hold a reference on @mm.
  3352. */
  3353. int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  3354. void *buf, int len, int write)
  3355. {
  3356. return __access_remote_vm(NULL, mm, addr, buf, len, write);
  3357. }
  3358. /*
  3359. * Access another process' address space.
  3360. * Source/target buffer must be kernel space,
  3361. * Do not walk the page table directly, use get_user_pages
  3362. */
  3363. int access_process_vm(struct task_struct *tsk, unsigned long addr,
  3364. void *buf, int len, int write)
  3365. {
  3366. struct mm_struct *mm;
  3367. int ret;
  3368. mm = get_task_mm(tsk);
  3369. if (!mm)
  3370. return 0;
  3371. ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
  3372. mmput(mm);
  3373. return ret;
  3374. }
  3375. /*
  3376. * Print the name of a VMA.
  3377. */
  3378. void print_vma_addr(char *prefix, unsigned long ip)
  3379. {
  3380. struct mm_struct *mm = current->mm;
  3381. struct vm_area_struct *vma;
  3382. /*
  3383. * Do not print if we are in atomic
  3384. * contexts (in exception stacks, etc.):
  3385. */
  3386. if (preempt_count())
  3387. return;
  3388. down_read(&mm->mmap_sem);
  3389. vma = find_vma(mm, ip);
  3390. if (vma && vma->vm_file) {
  3391. struct file *f = vma->vm_file;
  3392. char *buf = (char *)__get_free_page(GFP_KERNEL);
  3393. if (buf) {
  3394. char *p, *s;
  3395. p = d_path(&f->f_path, buf, PAGE_SIZE);
  3396. if (IS_ERR(p))
  3397. p = "?";
  3398. s = strrchr(p, '/');
  3399. if (s)
  3400. p = s+1;
  3401. printk("%s%s[%lx+%lx]", prefix, p,
  3402. vma->vm_start,
  3403. vma->vm_end - vma->vm_start);
  3404. free_page((unsigned long)buf);
  3405. }
  3406. }
  3407. up_read(&current->mm->mmap_sem);
  3408. }
  3409. #ifdef CONFIG_PROVE_LOCKING
  3410. void might_fault(void)
  3411. {
  3412. /*
  3413. * Some code (nfs/sunrpc) uses socket ops on kernel memory while
  3414. * holding the mmap_sem, this is safe because kernel memory doesn't
  3415. * get paged out, therefore we'll never actually fault, and the
  3416. * below annotations will generate false positives.
  3417. */
  3418. if (segment_eq(get_fs(), KERNEL_DS))
  3419. return;
  3420. might_sleep();
  3421. /*
  3422. * it would be nicer only to annotate paths which are not under
  3423. * pagefault_disable, however that requires a larger audit and
  3424. * providing helpers like get_user_atomic.
  3425. */
  3426. if (!in_atomic() && current->mm)
  3427. might_lock_read(&current->mm->mmap_sem);
  3428. }
  3429. EXPORT_SYMBOL(might_fault);
  3430. #endif
  3431. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  3432. static void clear_gigantic_page(struct page *page,
  3433. unsigned long addr,
  3434. unsigned int pages_per_huge_page)
  3435. {
  3436. int i;
  3437. struct page *p = page;
  3438. might_sleep();
  3439. for (i = 0; i < pages_per_huge_page;
  3440. i++, p = mem_map_next(p, page, i)) {
  3441. cond_resched();
  3442. clear_user_highpage(p, addr + i * PAGE_SIZE);
  3443. }
  3444. }
  3445. void clear_huge_page(struct page *page,
  3446. unsigned long addr, unsigned int pages_per_huge_page)
  3447. {
  3448. int i;
  3449. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3450. clear_gigantic_page(page, addr, pages_per_huge_page);
  3451. return;
  3452. }
  3453. might_sleep();
  3454. for (i = 0; i < pages_per_huge_page; i++) {
  3455. cond_resched();
  3456. clear_user_highpage(page + i, addr + i * PAGE_SIZE);
  3457. }
  3458. }
  3459. static void copy_user_gigantic_page(struct page *dst, struct page *src,
  3460. unsigned long addr,
  3461. struct vm_area_struct *vma,
  3462. unsigned int pages_per_huge_page)
  3463. {
  3464. int i;
  3465. struct page *dst_base = dst;
  3466. struct page *src_base = src;
  3467. for (i = 0; i < pages_per_huge_page; ) {
  3468. cond_resched();
  3469. copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
  3470. i++;
  3471. dst = mem_map_next(dst, dst_base, i);
  3472. src = mem_map_next(src, src_base, i);
  3473. }
  3474. }
  3475. void copy_user_huge_page(struct page *dst, struct page *src,
  3476. unsigned long addr, struct vm_area_struct *vma,
  3477. unsigned int pages_per_huge_page)
  3478. {
  3479. int i;
  3480. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3481. copy_user_gigantic_page(dst, src, addr, vma,
  3482. pages_per_huge_page);
  3483. return;
  3484. }
  3485. might_sleep();
  3486. for (i = 0; i < pages_per_huge_page; i++) {
  3487. cond_resched();
  3488. copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
  3489. }
  3490. }
  3491. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */