timekeeping.c 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062
  1. /*
  2. * linux/kernel/time/timekeeping.c
  3. *
  4. * Kernel timekeeping code and accessor functions
  5. *
  6. * This code was moved from linux/kernel/timer.c.
  7. * Please see that file for copyright and history logs.
  8. *
  9. */
  10. #include <linux/module.h>
  11. #include <linux/interrupt.h>
  12. #include <linux/percpu.h>
  13. #include <linux/init.h>
  14. #include <linux/mm.h>
  15. #include <linux/sched.h>
  16. #include <linux/syscore_ops.h>
  17. #include <linux/clocksource.h>
  18. #include <linux/jiffies.h>
  19. #include <linux/time.h>
  20. #include <linux/tick.h>
  21. #include <linux/stop_machine.h>
  22. /* Structure holding internal timekeeping values. */
  23. struct timekeeper {
  24. /* Current clocksource used for timekeeping. */
  25. struct clocksource *clock;
  26. /* The shift value of the current clocksource. */
  27. int shift;
  28. /* Number of clock cycles in one NTP interval. */
  29. cycle_t cycle_interval;
  30. /* Number of clock shifted nano seconds in one NTP interval. */
  31. u64 xtime_interval;
  32. /* shifted nano seconds left over when rounding cycle_interval */
  33. s64 xtime_remainder;
  34. /* Raw nano seconds accumulated per NTP interval. */
  35. u32 raw_interval;
  36. /* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
  37. u64 xtime_nsec;
  38. /* Difference between accumulated time and NTP time in ntp
  39. * shifted nano seconds. */
  40. s64 ntp_error;
  41. /* Shift conversion between clock shifted nano seconds and
  42. * ntp shifted nano seconds. */
  43. int ntp_error_shift;
  44. /* NTP adjusted clock multiplier */
  45. u32 mult;
  46. };
  47. static struct timekeeper timekeeper;
  48. /**
  49. * timekeeper_setup_internals - Set up internals to use clocksource clock.
  50. *
  51. * @clock: Pointer to clocksource.
  52. *
  53. * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
  54. * pair and interval request.
  55. *
  56. * Unless you're the timekeeping code, you should not be using this!
  57. */
  58. static void timekeeper_setup_internals(struct clocksource *clock)
  59. {
  60. cycle_t interval;
  61. u64 tmp, ntpinterval;
  62. timekeeper.clock = clock;
  63. clock->cycle_last = clock->read(clock);
  64. /* Do the ns -> cycle conversion first, using original mult */
  65. tmp = NTP_INTERVAL_LENGTH;
  66. tmp <<= clock->shift;
  67. ntpinterval = tmp;
  68. tmp += clock->mult/2;
  69. do_div(tmp, clock->mult);
  70. if (tmp == 0)
  71. tmp = 1;
  72. interval = (cycle_t) tmp;
  73. timekeeper.cycle_interval = interval;
  74. /* Go back from cycles -> shifted ns */
  75. timekeeper.xtime_interval = (u64) interval * clock->mult;
  76. timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval;
  77. timekeeper.raw_interval =
  78. ((u64) interval * clock->mult) >> clock->shift;
  79. timekeeper.xtime_nsec = 0;
  80. timekeeper.shift = clock->shift;
  81. timekeeper.ntp_error = 0;
  82. timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
  83. /*
  84. * The timekeeper keeps its own mult values for the currently
  85. * active clocksource. These value will be adjusted via NTP
  86. * to counteract clock drifting.
  87. */
  88. timekeeper.mult = clock->mult;
  89. }
  90. /* Timekeeper helper functions. */
  91. static inline s64 timekeeping_get_ns(void)
  92. {
  93. cycle_t cycle_now, cycle_delta;
  94. struct clocksource *clock;
  95. /* read clocksource: */
  96. clock = timekeeper.clock;
  97. cycle_now = clock->read(clock);
  98. /* calculate the delta since the last update_wall_time: */
  99. cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
  100. /* return delta convert to nanoseconds using ntp adjusted mult. */
  101. return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
  102. timekeeper.shift);
  103. }
  104. static inline s64 timekeeping_get_ns_raw(void)
  105. {
  106. cycle_t cycle_now, cycle_delta;
  107. struct clocksource *clock;
  108. /* read clocksource: */
  109. clock = timekeeper.clock;
  110. cycle_now = clock->read(clock);
  111. /* calculate the delta since the last update_wall_time: */
  112. cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
  113. /* return delta convert to nanoseconds using ntp adjusted mult. */
  114. return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
  115. }
  116. /*
  117. * This read-write spinlock protects us from races in SMP while
  118. * playing with xtime.
  119. */
  120. __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
  121. /*
  122. * The current time
  123. * wall_to_monotonic is what we need to add to xtime (or xtime corrected
  124. * for sub jiffie times) to get to monotonic time. Monotonic is pegged
  125. * at zero at system boot time, so wall_to_monotonic will be negative,
  126. * however, we will ALWAYS keep the tv_nsec part positive so we can use
  127. * the usual normalization.
  128. *
  129. * wall_to_monotonic is moved after resume from suspend for the monotonic
  130. * time not to jump. We need to add total_sleep_time to wall_to_monotonic
  131. * to get the real boot based time offset.
  132. *
  133. * - wall_to_monotonic is no longer the boot time, getboottime must be
  134. * used instead.
  135. */
  136. static struct timespec xtime __attribute__ ((aligned (16)));
  137. static struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
  138. static struct timespec total_sleep_time;
  139. /*
  140. * The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock.
  141. */
  142. static struct timespec raw_time;
  143. /* flag for if timekeeping is suspended */
  144. int __read_mostly timekeeping_suspended;
  145. /* must hold xtime_lock */
  146. void timekeeping_leap_insert(int leapsecond)
  147. {
  148. xtime.tv_sec += leapsecond;
  149. wall_to_monotonic.tv_sec -= leapsecond;
  150. update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
  151. timekeeper.mult);
  152. }
  153. /**
  154. * timekeeping_forward_now - update clock to the current time
  155. *
  156. * Forward the current clock to update its state since the last call to
  157. * update_wall_time(). This is useful before significant clock changes,
  158. * as it avoids having to deal with this time offset explicitly.
  159. */
  160. static void timekeeping_forward_now(void)
  161. {
  162. cycle_t cycle_now, cycle_delta;
  163. struct clocksource *clock;
  164. s64 nsec;
  165. clock = timekeeper.clock;
  166. cycle_now = clock->read(clock);
  167. cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
  168. clock->cycle_last = cycle_now;
  169. nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
  170. timekeeper.shift);
  171. /* If arch requires, add in gettimeoffset() */
  172. nsec += arch_gettimeoffset();
  173. timespec_add_ns(&xtime, nsec);
  174. nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
  175. timespec_add_ns(&raw_time, nsec);
  176. }
  177. /**
  178. * getnstimeofday - Returns the time of day in a timespec
  179. * @ts: pointer to the timespec to be set
  180. *
  181. * Returns the time of day in a timespec.
  182. */
  183. void getnstimeofday(struct timespec *ts)
  184. {
  185. unsigned long seq;
  186. s64 nsecs;
  187. WARN_ON(timekeeping_suspended);
  188. do {
  189. seq = read_seqbegin(&xtime_lock);
  190. *ts = xtime;
  191. nsecs = timekeeping_get_ns();
  192. /* If arch requires, add in gettimeoffset() */
  193. nsecs += arch_gettimeoffset();
  194. } while (read_seqretry(&xtime_lock, seq));
  195. timespec_add_ns(ts, nsecs);
  196. }
  197. EXPORT_SYMBOL(getnstimeofday);
  198. ktime_t ktime_get(void)
  199. {
  200. unsigned int seq;
  201. s64 secs, nsecs;
  202. WARN_ON(timekeeping_suspended);
  203. do {
  204. seq = read_seqbegin(&xtime_lock);
  205. secs = xtime.tv_sec + wall_to_monotonic.tv_sec;
  206. nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec;
  207. nsecs += timekeeping_get_ns();
  208. } while (read_seqretry(&xtime_lock, seq));
  209. /*
  210. * Use ktime_set/ktime_add_ns to create a proper ktime on
  211. * 32-bit architectures without CONFIG_KTIME_SCALAR.
  212. */
  213. return ktime_add_ns(ktime_set(secs, 0), nsecs);
  214. }
  215. EXPORT_SYMBOL_GPL(ktime_get);
  216. /**
  217. * ktime_get_ts - get the monotonic clock in timespec format
  218. * @ts: pointer to timespec variable
  219. *
  220. * The function calculates the monotonic clock from the realtime
  221. * clock and the wall_to_monotonic offset and stores the result
  222. * in normalized timespec format in the variable pointed to by @ts.
  223. */
  224. void ktime_get_ts(struct timespec *ts)
  225. {
  226. struct timespec tomono;
  227. unsigned int seq;
  228. s64 nsecs;
  229. WARN_ON(timekeeping_suspended);
  230. do {
  231. seq = read_seqbegin(&xtime_lock);
  232. *ts = xtime;
  233. tomono = wall_to_monotonic;
  234. nsecs = timekeeping_get_ns();
  235. } while (read_seqretry(&xtime_lock, seq));
  236. set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
  237. ts->tv_nsec + tomono.tv_nsec + nsecs);
  238. }
  239. EXPORT_SYMBOL_GPL(ktime_get_ts);
  240. #ifdef CONFIG_NTP_PPS
  241. /**
  242. * getnstime_raw_and_real - get day and raw monotonic time in timespec format
  243. * @ts_raw: pointer to the timespec to be set to raw monotonic time
  244. * @ts_real: pointer to the timespec to be set to the time of day
  245. *
  246. * This function reads both the time of day and raw monotonic time at the
  247. * same time atomically and stores the resulting timestamps in timespec
  248. * format.
  249. */
  250. void getnstime_raw_and_real(struct timespec *ts_raw, struct timespec *ts_real)
  251. {
  252. unsigned long seq;
  253. s64 nsecs_raw, nsecs_real;
  254. WARN_ON_ONCE(timekeeping_suspended);
  255. do {
  256. u32 arch_offset;
  257. seq = read_seqbegin(&xtime_lock);
  258. *ts_raw = raw_time;
  259. *ts_real = xtime;
  260. nsecs_raw = timekeeping_get_ns_raw();
  261. nsecs_real = timekeeping_get_ns();
  262. /* If arch requires, add in gettimeoffset() */
  263. arch_offset = arch_gettimeoffset();
  264. nsecs_raw += arch_offset;
  265. nsecs_real += arch_offset;
  266. } while (read_seqretry(&xtime_lock, seq));
  267. timespec_add_ns(ts_raw, nsecs_raw);
  268. timespec_add_ns(ts_real, nsecs_real);
  269. }
  270. EXPORT_SYMBOL(getnstime_raw_and_real);
  271. #endif /* CONFIG_NTP_PPS */
  272. /**
  273. * do_gettimeofday - Returns the time of day in a timeval
  274. * @tv: pointer to the timeval to be set
  275. *
  276. * NOTE: Users should be converted to using getnstimeofday()
  277. */
  278. void do_gettimeofday(struct timeval *tv)
  279. {
  280. struct timespec now;
  281. getnstimeofday(&now);
  282. tv->tv_sec = now.tv_sec;
  283. tv->tv_usec = now.tv_nsec/1000;
  284. }
  285. EXPORT_SYMBOL(do_gettimeofday);
  286. /**
  287. * do_settimeofday - Sets the time of day
  288. * @tv: pointer to the timespec variable containing the new time
  289. *
  290. * Sets the time of day to the new time and update NTP and notify hrtimers
  291. */
  292. int do_settimeofday(const struct timespec *tv)
  293. {
  294. struct timespec ts_delta;
  295. unsigned long flags;
  296. if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
  297. return -EINVAL;
  298. write_seqlock_irqsave(&xtime_lock, flags);
  299. timekeeping_forward_now();
  300. ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec;
  301. ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec;
  302. wall_to_monotonic = timespec_sub(wall_to_monotonic, ts_delta);
  303. xtime = *tv;
  304. timekeeper.ntp_error = 0;
  305. ntp_clear();
  306. update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
  307. timekeeper.mult);
  308. write_sequnlock_irqrestore(&xtime_lock, flags);
  309. /* signal hrtimers about time change */
  310. clock_was_set();
  311. return 0;
  312. }
  313. EXPORT_SYMBOL(do_settimeofday);
  314. /**
  315. * timekeeping_inject_offset - Adds or subtracts from the current time.
  316. * @tv: pointer to the timespec variable containing the offset
  317. *
  318. * Adds or subtracts an offset value from the current time.
  319. */
  320. int timekeeping_inject_offset(struct timespec *ts)
  321. {
  322. unsigned long flags;
  323. if ((unsigned long)ts->tv_nsec >= NSEC_PER_SEC)
  324. return -EINVAL;
  325. write_seqlock_irqsave(&xtime_lock, flags);
  326. timekeeping_forward_now();
  327. xtime = timespec_add(xtime, *ts);
  328. wall_to_monotonic = timespec_sub(wall_to_monotonic, *ts);
  329. timekeeper.ntp_error = 0;
  330. ntp_clear();
  331. update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
  332. timekeeper.mult);
  333. write_sequnlock_irqrestore(&xtime_lock, flags);
  334. /* signal hrtimers about time change */
  335. clock_was_set();
  336. return 0;
  337. }
  338. EXPORT_SYMBOL(timekeeping_inject_offset);
  339. /**
  340. * change_clocksource - Swaps clocksources if a new one is available
  341. *
  342. * Accumulates current time interval and initializes new clocksource
  343. */
  344. static int change_clocksource(void *data)
  345. {
  346. struct clocksource *new, *old;
  347. new = (struct clocksource *) data;
  348. timekeeping_forward_now();
  349. if (!new->enable || new->enable(new) == 0) {
  350. old = timekeeper.clock;
  351. timekeeper_setup_internals(new);
  352. if (old->disable)
  353. old->disable(old);
  354. }
  355. return 0;
  356. }
  357. /**
  358. * timekeeping_notify - Install a new clock source
  359. * @clock: pointer to the clock source
  360. *
  361. * This function is called from clocksource.c after a new, better clock
  362. * source has been registered. The caller holds the clocksource_mutex.
  363. */
  364. void timekeeping_notify(struct clocksource *clock)
  365. {
  366. if (timekeeper.clock == clock)
  367. return;
  368. stop_machine(change_clocksource, clock, NULL);
  369. tick_clock_notify();
  370. }
  371. /**
  372. * ktime_get_real - get the real (wall-) time in ktime_t format
  373. *
  374. * returns the time in ktime_t format
  375. */
  376. ktime_t ktime_get_real(void)
  377. {
  378. struct timespec now;
  379. getnstimeofday(&now);
  380. return timespec_to_ktime(now);
  381. }
  382. EXPORT_SYMBOL_GPL(ktime_get_real);
  383. /**
  384. * getrawmonotonic - Returns the raw monotonic time in a timespec
  385. * @ts: pointer to the timespec to be set
  386. *
  387. * Returns the raw monotonic time (completely un-modified by ntp)
  388. */
  389. void getrawmonotonic(struct timespec *ts)
  390. {
  391. unsigned long seq;
  392. s64 nsecs;
  393. do {
  394. seq = read_seqbegin(&xtime_lock);
  395. nsecs = timekeeping_get_ns_raw();
  396. *ts = raw_time;
  397. } while (read_seqretry(&xtime_lock, seq));
  398. timespec_add_ns(ts, nsecs);
  399. }
  400. EXPORT_SYMBOL(getrawmonotonic);
  401. /**
  402. * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
  403. */
  404. int timekeeping_valid_for_hres(void)
  405. {
  406. unsigned long seq;
  407. int ret;
  408. do {
  409. seq = read_seqbegin(&xtime_lock);
  410. ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
  411. } while (read_seqretry(&xtime_lock, seq));
  412. return ret;
  413. }
  414. /**
  415. * timekeeping_max_deferment - Returns max time the clocksource can be deferred
  416. *
  417. * Caller must observe xtime_lock via read_seqbegin/read_seqretry to
  418. * ensure that the clocksource does not change!
  419. */
  420. u64 timekeeping_max_deferment(void)
  421. {
  422. return timekeeper.clock->max_idle_ns;
  423. }
  424. /**
  425. * read_persistent_clock - Return time from the persistent clock.
  426. *
  427. * Weak dummy function for arches that do not yet support it.
  428. * Reads the time from the battery backed persistent clock.
  429. * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
  430. *
  431. * XXX - Do be sure to remove it once all arches implement it.
  432. */
  433. void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
  434. {
  435. ts->tv_sec = 0;
  436. ts->tv_nsec = 0;
  437. }
  438. /**
  439. * read_boot_clock - Return time of the system start.
  440. *
  441. * Weak dummy function for arches that do not yet support it.
  442. * Function to read the exact time the system has been started.
  443. * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
  444. *
  445. * XXX - Do be sure to remove it once all arches implement it.
  446. */
  447. void __attribute__((weak)) read_boot_clock(struct timespec *ts)
  448. {
  449. ts->tv_sec = 0;
  450. ts->tv_nsec = 0;
  451. }
  452. /*
  453. * timekeeping_init - Initializes the clocksource and common timekeeping values
  454. */
  455. void __init timekeeping_init(void)
  456. {
  457. struct clocksource *clock;
  458. unsigned long flags;
  459. struct timespec now, boot;
  460. read_persistent_clock(&now);
  461. read_boot_clock(&boot);
  462. write_seqlock_irqsave(&xtime_lock, flags);
  463. ntp_init();
  464. clock = clocksource_default_clock();
  465. if (clock->enable)
  466. clock->enable(clock);
  467. timekeeper_setup_internals(clock);
  468. xtime.tv_sec = now.tv_sec;
  469. xtime.tv_nsec = now.tv_nsec;
  470. raw_time.tv_sec = 0;
  471. raw_time.tv_nsec = 0;
  472. if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
  473. boot.tv_sec = xtime.tv_sec;
  474. boot.tv_nsec = xtime.tv_nsec;
  475. }
  476. set_normalized_timespec(&wall_to_monotonic,
  477. -boot.tv_sec, -boot.tv_nsec);
  478. total_sleep_time.tv_sec = 0;
  479. total_sleep_time.tv_nsec = 0;
  480. write_sequnlock_irqrestore(&xtime_lock, flags);
  481. }
  482. /* time in seconds when suspend began */
  483. static struct timespec timekeeping_suspend_time;
  484. /**
  485. * timekeeping_resume - Resumes the generic timekeeping subsystem.
  486. *
  487. * This is for the generic clocksource timekeeping.
  488. * xtime/wall_to_monotonic/jiffies/etc are
  489. * still managed by arch specific suspend/resume code.
  490. */
  491. static void timekeeping_resume(void)
  492. {
  493. unsigned long flags;
  494. struct timespec ts;
  495. read_persistent_clock(&ts);
  496. clocksource_resume();
  497. write_seqlock_irqsave(&xtime_lock, flags);
  498. if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
  499. ts = timespec_sub(ts, timekeeping_suspend_time);
  500. xtime = timespec_add(xtime, ts);
  501. wall_to_monotonic = timespec_sub(wall_to_monotonic, ts);
  502. total_sleep_time = timespec_add(total_sleep_time, ts);
  503. }
  504. /* re-base the last cycle value */
  505. timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
  506. timekeeper.ntp_error = 0;
  507. timekeeping_suspended = 0;
  508. write_sequnlock_irqrestore(&xtime_lock, flags);
  509. touch_softlockup_watchdog();
  510. clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
  511. /* Resume hrtimers */
  512. hres_timers_resume();
  513. }
  514. static int timekeeping_suspend(void)
  515. {
  516. unsigned long flags;
  517. read_persistent_clock(&timekeeping_suspend_time);
  518. write_seqlock_irqsave(&xtime_lock, flags);
  519. timekeeping_forward_now();
  520. timekeeping_suspended = 1;
  521. write_sequnlock_irqrestore(&xtime_lock, flags);
  522. clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
  523. clocksource_suspend();
  524. return 0;
  525. }
  526. /* sysfs resume/suspend bits for timekeeping */
  527. static struct syscore_ops timekeeping_syscore_ops = {
  528. .resume = timekeeping_resume,
  529. .suspend = timekeeping_suspend,
  530. };
  531. static int __init timekeeping_init_ops(void)
  532. {
  533. register_syscore_ops(&timekeeping_syscore_ops);
  534. return 0;
  535. }
  536. device_initcall(timekeeping_init_ops);
  537. /*
  538. * If the error is already larger, we look ahead even further
  539. * to compensate for late or lost adjustments.
  540. */
  541. static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
  542. s64 *offset)
  543. {
  544. s64 tick_error, i;
  545. u32 look_ahead, adj;
  546. s32 error2, mult;
  547. /*
  548. * Use the current error value to determine how much to look ahead.
  549. * The larger the error the slower we adjust for it to avoid problems
  550. * with losing too many ticks, otherwise we would overadjust and
  551. * produce an even larger error. The smaller the adjustment the
  552. * faster we try to adjust for it, as lost ticks can do less harm
  553. * here. This is tuned so that an error of about 1 msec is adjusted
  554. * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
  555. */
  556. error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
  557. error2 = abs(error2);
  558. for (look_ahead = 0; error2 > 0; look_ahead++)
  559. error2 >>= 2;
  560. /*
  561. * Now calculate the error in (1 << look_ahead) ticks, but first
  562. * remove the single look ahead already included in the error.
  563. */
  564. tick_error = tick_length >> (timekeeper.ntp_error_shift + 1);
  565. tick_error -= timekeeper.xtime_interval >> 1;
  566. error = ((error - tick_error) >> look_ahead) + tick_error;
  567. /* Finally calculate the adjustment shift value. */
  568. i = *interval;
  569. mult = 1;
  570. if (error < 0) {
  571. error = -error;
  572. *interval = -*interval;
  573. *offset = -*offset;
  574. mult = -1;
  575. }
  576. for (adj = 0; error > i; adj++)
  577. error >>= 1;
  578. *interval <<= adj;
  579. *offset <<= adj;
  580. return mult << adj;
  581. }
  582. /*
  583. * Adjust the multiplier to reduce the error value,
  584. * this is optimized for the most common adjustments of -1,0,1,
  585. * for other values we can do a bit more work.
  586. */
  587. static void timekeeping_adjust(s64 offset)
  588. {
  589. s64 error, interval = timekeeper.cycle_interval;
  590. int adj;
  591. error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
  592. if (error > interval) {
  593. error >>= 2;
  594. if (likely(error <= interval))
  595. adj = 1;
  596. else
  597. adj = timekeeping_bigadjust(error, &interval, &offset);
  598. } else if (error < -interval) {
  599. error >>= 2;
  600. if (likely(error >= -interval)) {
  601. adj = -1;
  602. interval = -interval;
  603. offset = -offset;
  604. } else
  605. adj = timekeeping_bigadjust(error, &interval, &offset);
  606. } else
  607. return;
  608. timekeeper.mult += adj;
  609. timekeeper.xtime_interval += interval;
  610. timekeeper.xtime_nsec -= offset;
  611. timekeeper.ntp_error -= (interval - offset) <<
  612. timekeeper.ntp_error_shift;
  613. }
  614. /**
  615. * logarithmic_accumulation - shifted accumulation of cycles
  616. *
  617. * This functions accumulates a shifted interval of cycles into
  618. * into a shifted interval nanoseconds. Allows for O(log) accumulation
  619. * loop.
  620. *
  621. * Returns the unconsumed cycles.
  622. */
  623. static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
  624. {
  625. u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
  626. u64 raw_nsecs;
  627. /* If the offset is smaller then a shifted interval, do nothing */
  628. if (offset < timekeeper.cycle_interval<<shift)
  629. return offset;
  630. /* Accumulate one shifted interval */
  631. offset -= timekeeper.cycle_interval << shift;
  632. timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;
  633. timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
  634. while (timekeeper.xtime_nsec >= nsecps) {
  635. timekeeper.xtime_nsec -= nsecps;
  636. xtime.tv_sec++;
  637. second_overflow();
  638. }
  639. /* Accumulate raw time */
  640. raw_nsecs = timekeeper.raw_interval << shift;
  641. raw_nsecs += raw_time.tv_nsec;
  642. if (raw_nsecs >= NSEC_PER_SEC) {
  643. u64 raw_secs = raw_nsecs;
  644. raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
  645. raw_time.tv_sec += raw_secs;
  646. }
  647. raw_time.tv_nsec = raw_nsecs;
  648. /* Accumulate error between NTP and clock interval */
  649. timekeeper.ntp_error += tick_length << shift;
  650. timekeeper.ntp_error -=
  651. (timekeeper.xtime_interval + timekeeper.xtime_remainder) <<
  652. (timekeeper.ntp_error_shift + shift);
  653. return offset;
  654. }
  655. /**
  656. * update_wall_time - Uses the current clocksource to increment the wall time
  657. *
  658. * Called from the timer interrupt, must hold a write on xtime_lock.
  659. */
  660. static void update_wall_time(void)
  661. {
  662. struct clocksource *clock;
  663. cycle_t offset;
  664. int shift = 0, maxshift;
  665. /* Make sure we're fully resumed: */
  666. if (unlikely(timekeeping_suspended))
  667. return;
  668. clock = timekeeper.clock;
  669. #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
  670. offset = timekeeper.cycle_interval;
  671. #else
  672. offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
  673. #endif
  674. timekeeper.xtime_nsec = (s64)xtime.tv_nsec << timekeeper.shift;
  675. /*
  676. * With NO_HZ we may have to accumulate many cycle_intervals
  677. * (think "ticks") worth of time at once. To do this efficiently,
  678. * we calculate the largest doubling multiple of cycle_intervals
  679. * that is smaller then the offset. We then accumulate that
  680. * chunk in one go, and then try to consume the next smaller
  681. * doubled multiple.
  682. */
  683. shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
  684. shift = max(0, shift);
  685. /* Bound shift to one less then what overflows tick_length */
  686. maxshift = (8*sizeof(tick_length) - (ilog2(tick_length)+1)) - 1;
  687. shift = min(shift, maxshift);
  688. while (offset >= timekeeper.cycle_interval) {
  689. offset = logarithmic_accumulation(offset, shift);
  690. if(offset < timekeeper.cycle_interval<<shift)
  691. shift--;
  692. }
  693. /* correct the clock when NTP error is too big */
  694. timekeeping_adjust(offset);
  695. /*
  696. * Since in the loop above, we accumulate any amount of time
  697. * in xtime_nsec over a second into xtime.tv_sec, its possible for
  698. * xtime_nsec to be fairly small after the loop. Further, if we're
  699. * slightly speeding the clocksource up in timekeeping_adjust(),
  700. * its possible the required corrective factor to xtime_nsec could
  701. * cause it to underflow.
  702. *
  703. * Now, we cannot simply roll the accumulated second back, since
  704. * the NTP subsystem has been notified via second_overflow. So
  705. * instead we push xtime_nsec forward by the amount we underflowed,
  706. * and add that amount into the error.
  707. *
  708. * We'll correct this error next time through this function, when
  709. * xtime_nsec is not as small.
  710. */
  711. if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
  712. s64 neg = -(s64)timekeeper.xtime_nsec;
  713. timekeeper.xtime_nsec = 0;
  714. timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
  715. }
  716. /*
  717. * Store full nanoseconds into xtime after rounding it up and
  718. * add the remainder to the error difference.
  719. */
  720. xtime.tv_nsec = ((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1;
  721. timekeeper.xtime_nsec -= (s64) xtime.tv_nsec << timekeeper.shift;
  722. timekeeper.ntp_error += timekeeper.xtime_nsec <<
  723. timekeeper.ntp_error_shift;
  724. /*
  725. * Finally, make sure that after the rounding
  726. * xtime.tv_nsec isn't larger then NSEC_PER_SEC
  727. */
  728. if (unlikely(xtime.tv_nsec >= NSEC_PER_SEC)) {
  729. xtime.tv_nsec -= NSEC_PER_SEC;
  730. xtime.tv_sec++;
  731. second_overflow();
  732. }
  733. /* check to see if there is a new clocksource to use */
  734. update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
  735. timekeeper.mult);
  736. }
  737. /**
  738. * getboottime - Return the real time of system boot.
  739. * @ts: pointer to the timespec to be set
  740. *
  741. * Returns the wall-time of boot in a timespec.
  742. *
  743. * This is based on the wall_to_monotonic offset and the total suspend
  744. * time. Calls to settimeofday will affect the value returned (which
  745. * basically means that however wrong your real time clock is at boot time,
  746. * you get the right time here).
  747. */
  748. void getboottime(struct timespec *ts)
  749. {
  750. struct timespec boottime = {
  751. .tv_sec = wall_to_monotonic.tv_sec + total_sleep_time.tv_sec,
  752. .tv_nsec = wall_to_monotonic.tv_nsec + total_sleep_time.tv_nsec
  753. };
  754. set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
  755. }
  756. EXPORT_SYMBOL_GPL(getboottime);
  757. /**
  758. * get_monotonic_boottime - Returns monotonic time since boot
  759. * @ts: pointer to the timespec to be set
  760. *
  761. * Returns the monotonic time since boot in a timespec.
  762. *
  763. * This is similar to CLOCK_MONTONIC/ktime_get_ts, but also
  764. * includes the time spent in suspend.
  765. */
  766. void get_monotonic_boottime(struct timespec *ts)
  767. {
  768. struct timespec tomono, sleep;
  769. unsigned int seq;
  770. s64 nsecs;
  771. WARN_ON(timekeeping_suspended);
  772. do {
  773. seq = read_seqbegin(&xtime_lock);
  774. *ts = xtime;
  775. tomono = wall_to_monotonic;
  776. sleep = total_sleep_time;
  777. nsecs = timekeeping_get_ns();
  778. } while (read_seqretry(&xtime_lock, seq));
  779. set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec + sleep.tv_sec,
  780. ts->tv_nsec + tomono.tv_nsec + sleep.tv_nsec + nsecs);
  781. }
  782. EXPORT_SYMBOL_GPL(get_monotonic_boottime);
  783. /**
  784. * ktime_get_boottime - Returns monotonic time since boot in a ktime
  785. *
  786. * Returns the monotonic time since boot in a ktime
  787. *
  788. * This is similar to CLOCK_MONTONIC/ktime_get, but also
  789. * includes the time spent in suspend.
  790. */
  791. ktime_t ktime_get_boottime(void)
  792. {
  793. struct timespec ts;
  794. get_monotonic_boottime(&ts);
  795. return timespec_to_ktime(ts);
  796. }
  797. EXPORT_SYMBOL_GPL(ktime_get_boottime);
  798. /**
  799. * monotonic_to_bootbased - Convert the monotonic time to boot based.
  800. * @ts: pointer to the timespec to be converted
  801. */
  802. void monotonic_to_bootbased(struct timespec *ts)
  803. {
  804. *ts = timespec_add(*ts, total_sleep_time);
  805. }
  806. EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
  807. unsigned long get_seconds(void)
  808. {
  809. return xtime.tv_sec;
  810. }
  811. EXPORT_SYMBOL(get_seconds);
  812. struct timespec __current_kernel_time(void)
  813. {
  814. return xtime;
  815. }
  816. struct timespec current_kernel_time(void)
  817. {
  818. struct timespec now;
  819. unsigned long seq;
  820. do {
  821. seq = read_seqbegin(&xtime_lock);
  822. now = xtime;
  823. } while (read_seqretry(&xtime_lock, seq));
  824. return now;
  825. }
  826. EXPORT_SYMBOL(current_kernel_time);
  827. struct timespec get_monotonic_coarse(void)
  828. {
  829. struct timespec now, mono;
  830. unsigned long seq;
  831. do {
  832. seq = read_seqbegin(&xtime_lock);
  833. now = xtime;
  834. mono = wall_to_monotonic;
  835. } while (read_seqretry(&xtime_lock, seq));
  836. set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
  837. now.tv_nsec + mono.tv_nsec);
  838. return now;
  839. }
  840. /*
  841. * The 64-bit jiffies value is not atomic - you MUST NOT read it
  842. * without sampling the sequence number in xtime_lock.
  843. * jiffies is defined in the linker script...
  844. */
  845. void do_timer(unsigned long ticks)
  846. {
  847. jiffies_64 += ticks;
  848. update_wall_time();
  849. calc_global_load(ticks);
  850. }
  851. /**
  852. * get_xtime_and_monotonic_and_sleep_offset() - get xtime, wall_to_monotonic,
  853. * and sleep offsets.
  854. * @xtim: pointer to timespec to be set with xtime
  855. * @wtom: pointer to timespec to be set with wall_to_monotonic
  856. * @sleep: pointer to timespec to be set with time in suspend
  857. */
  858. void get_xtime_and_monotonic_and_sleep_offset(struct timespec *xtim,
  859. struct timespec *wtom, struct timespec *sleep)
  860. {
  861. unsigned long seq;
  862. do {
  863. seq = read_seqbegin(&xtime_lock);
  864. *xtim = xtime;
  865. *wtom = wall_to_monotonic;
  866. *sleep = total_sleep_time;
  867. } while (read_seqretry(&xtime_lock, seq));
  868. }
  869. /**
  870. * xtime_update() - advances the timekeeping infrastructure
  871. * @ticks: number of ticks, that have elapsed since the last call.
  872. *
  873. * Must be called with interrupts disabled.
  874. */
  875. void xtime_update(unsigned long ticks)
  876. {
  877. write_seqlock(&xtime_lock);
  878. do_timer(ticks);
  879. write_sequnlock(&xtime_lock);
  880. }