xfs_log_recover.c 104 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853
  1. /*
  2. * Copyright (c) 2000-2006 Silicon Graphics, Inc.
  3. * All Rights Reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or
  6. * modify it under the terms of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it would be useful,
  10. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. * GNU General Public License for more details.
  13. *
  14. * You should have received a copy of the GNU General Public License
  15. * along with this program; if not, write the Free Software Foundation,
  16. * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  17. */
  18. #include "xfs.h"
  19. #include "xfs_fs.h"
  20. #include "xfs_types.h"
  21. #include "xfs_bit.h"
  22. #include "xfs_log.h"
  23. #include "xfs_inum.h"
  24. #include "xfs_trans.h"
  25. #include "xfs_sb.h"
  26. #include "xfs_ag.h"
  27. #include "xfs_mount.h"
  28. #include "xfs_error.h"
  29. #include "xfs_bmap_btree.h"
  30. #include "xfs_alloc_btree.h"
  31. #include "xfs_ialloc_btree.h"
  32. #include "xfs_dinode.h"
  33. #include "xfs_inode.h"
  34. #include "xfs_inode_item.h"
  35. #include "xfs_alloc.h"
  36. #include "xfs_ialloc.h"
  37. #include "xfs_log_priv.h"
  38. #include "xfs_buf_item.h"
  39. #include "xfs_log_recover.h"
  40. #include "xfs_extfree_item.h"
  41. #include "xfs_trans_priv.h"
  42. #include "xfs_quota.h"
  43. #include "xfs_rw.h"
  44. #include "xfs_utils.h"
  45. #include "xfs_trace.h"
  46. STATIC int xlog_find_zeroed(xlog_t *, xfs_daddr_t *);
  47. STATIC int xlog_clear_stale_blocks(xlog_t *, xfs_lsn_t);
  48. #if defined(DEBUG)
  49. STATIC void xlog_recover_check_summary(xlog_t *);
  50. #else
  51. #define xlog_recover_check_summary(log)
  52. #endif
  53. /*
  54. * This structure is used during recovery to record the buf log items which
  55. * have been canceled and should not be replayed.
  56. */
  57. struct xfs_buf_cancel {
  58. xfs_daddr_t bc_blkno;
  59. uint bc_len;
  60. int bc_refcount;
  61. struct list_head bc_list;
  62. };
  63. /*
  64. * Sector aligned buffer routines for buffer create/read/write/access
  65. */
  66. /*
  67. * Verify the given count of basic blocks is valid number of blocks
  68. * to specify for an operation involving the given XFS log buffer.
  69. * Returns nonzero if the count is valid, 0 otherwise.
  70. */
  71. static inline int
  72. xlog_buf_bbcount_valid(
  73. xlog_t *log,
  74. int bbcount)
  75. {
  76. return bbcount > 0 && bbcount <= log->l_logBBsize;
  77. }
  78. /*
  79. * Allocate a buffer to hold log data. The buffer needs to be able
  80. * to map to a range of nbblks basic blocks at any valid (basic
  81. * block) offset within the log.
  82. */
  83. STATIC xfs_buf_t *
  84. xlog_get_bp(
  85. xlog_t *log,
  86. int nbblks)
  87. {
  88. if (!xlog_buf_bbcount_valid(log, nbblks)) {
  89. xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
  90. nbblks);
  91. XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
  92. return NULL;
  93. }
  94. /*
  95. * We do log I/O in units of log sectors (a power-of-2
  96. * multiple of the basic block size), so we round up the
  97. * requested size to acommodate the basic blocks required
  98. * for complete log sectors.
  99. *
  100. * In addition, the buffer may be used for a non-sector-
  101. * aligned block offset, in which case an I/O of the
  102. * requested size could extend beyond the end of the
  103. * buffer. If the requested size is only 1 basic block it
  104. * will never straddle a sector boundary, so this won't be
  105. * an issue. Nor will this be a problem if the log I/O is
  106. * done in basic blocks (sector size 1). But otherwise we
  107. * extend the buffer by one extra log sector to ensure
  108. * there's space to accomodate this possiblility.
  109. */
  110. if (nbblks > 1 && log->l_sectBBsize > 1)
  111. nbblks += log->l_sectBBsize;
  112. nbblks = round_up(nbblks, log->l_sectBBsize);
  113. return xfs_buf_get_uncached(log->l_mp->m_logdev_targp,
  114. BBTOB(nbblks), 0);
  115. }
  116. STATIC void
  117. xlog_put_bp(
  118. xfs_buf_t *bp)
  119. {
  120. xfs_buf_free(bp);
  121. }
  122. /*
  123. * Return the address of the start of the given block number's data
  124. * in a log buffer. The buffer covers a log sector-aligned region.
  125. */
  126. STATIC xfs_caddr_t
  127. xlog_align(
  128. xlog_t *log,
  129. xfs_daddr_t blk_no,
  130. int nbblks,
  131. xfs_buf_t *bp)
  132. {
  133. xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
  134. ASSERT(BBTOB(offset + nbblks) <= XFS_BUF_SIZE(bp));
  135. return XFS_BUF_PTR(bp) + BBTOB(offset);
  136. }
  137. /*
  138. * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
  139. */
  140. STATIC int
  141. xlog_bread_noalign(
  142. xlog_t *log,
  143. xfs_daddr_t blk_no,
  144. int nbblks,
  145. xfs_buf_t *bp)
  146. {
  147. int error;
  148. if (!xlog_buf_bbcount_valid(log, nbblks)) {
  149. xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
  150. nbblks);
  151. XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
  152. return EFSCORRUPTED;
  153. }
  154. blk_no = round_down(blk_no, log->l_sectBBsize);
  155. nbblks = round_up(nbblks, log->l_sectBBsize);
  156. ASSERT(nbblks > 0);
  157. ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
  158. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  159. XFS_BUF_READ(bp);
  160. XFS_BUF_BUSY(bp);
  161. XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
  162. XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
  163. xfsbdstrat(log->l_mp, bp);
  164. error = xfs_buf_iowait(bp);
  165. if (error)
  166. xfs_ioerror_alert("xlog_bread", log->l_mp,
  167. bp, XFS_BUF_ADDR(bp));
  168. return error;
  169. }
  170. STATIC int
  171. xlog_bread(
  172. xlog_t *log,
  173. xfs_daddr_t blk_no,
  174. int nbblks,
  175. xfs_buf_t *bp,
  176. xfs_caddr_t *offset)
  177. {
  178. int error;
  179. error = xlog_bread_noalign(log, blk_no, nbblks, bp);
  180. if (error)
  181. return error;
  182. *offset = xlog_align(log, blk_no, nbblks, bp);
  183. return 0;
  184. }
  185. /*
  186. * Write out the buffer at the given block for the given number of blocks.
  187. * The buffer is kept locked across the write and is returned locked.
  188. * This can only be used for synchronous log writes.
  189. */
  190. STATIC int
  191. xlog_bwrite(
  192. xlog_t *log,
  193. xfs_daddr_t blk_no,
  194. int nbblks,
  195. xfs_buf_t *bp)
  196. {
  197. int error;
  198. if (!xlog_buf_bbcount_valid(log, nbblks)) {
  199. xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
  200. nbblks);
  201. XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
  202. return EFSCORRUPTED;
  203. }
  204. blk_no = round_down(blk_no, log->l_sectBBsize);
  205. nbblks = round_up(nbblks, log->l_sectBBsize);
  206. ASSERT(nbblks > 0);
  207. ASSERT(BBTOB(nbblks) <= XFS_BUF_SIZE(bp));
  208. XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
  209. XFS_BUF_ZEROFLAGS(bp);
  210. XFS_BUF_BUSY(bp);
  211. XFS_BUF_HOLD(bp);
  212. XFS_BUF_PSEMA(bp, PRIBIO);
  213. XFS_BUF_SET_COUNT(bp, BBTOB(nbblks));
  214. XFS_BUF_SET_TARGET(bp, log->l_mp->m_logdev_targp);
  215. if ((error = xfs_bwrite(log->l_mp, bp)))
  216. xfs_ioerror_alert("xlog_bwrite", log->l_mp,
  217. bp, XFS_BUF_ADDR(bp));
  218. return error;
  219. }
  220. #ifdef DEBUG
  221. /*
  222. * dump debug superblock and log record information
  223. */
  224. STATIC void
  225. xlog_header_check_dump(
  226. xfs_mount_t *mp,
  227. xlog_rec_header_t *head)
  228. {
  229. xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d\n",
  230. __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
  231. xfs_debug(mp, " log : uuid = %pU, fmt = %d\n",
  232. &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
  233. }
  234. #else
  235. #define xlog_header_check_dump(mp, head)
  236. #endif
  237. /*
  238. * check log record header for recovery
  239. */
  240. STATIC int
  241. xlog_header_check_recover(
  242. xfs_mount_t *mp,
  243. xlog_rec_header_t *head)
  244. {
  245. ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
  246. /*
  247. * IRIX doesn't write the h_fmt field and leaves it zeroed
  248. * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
  249. * a dirty log created in IRIX.
  250. */
  251. if (unlikely(be32_to_cpu(head->h_fmt) != XLOG_FMT)) {
  252. xfs_warn(mp,
  253. "dirty log written in incompatible format - can't recover");
  254. xlog_header_check_dump(mp, head);
  255. XFS_ERROR_REPORT("xlog_header_check_recover(1)",
  256. XFS_ERRLEVEL_HIGH, mp);
  257. return XFS_ERROR(EFSCORRUPTED);
  258. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  259. xfs_warn(mp,
  260. "dirty log entry has mismatched uuid - can't recover");
  261. xlog_header_check_dump(mp, head);
  262. XFS_ERROR_REPORT("xlog_header_check_recover(2)",
  263. XFS_ERRLEVEL_HIGH, mp);
  264. return XFS_ERROR(EFSCORRUPTED);
  265. }
  266. return 0;
  267. }
  268. /*
  269. * read the head block of the log and check the header
  270. */
  271. STATIC int
  272. xlog_header_check_mount(
  273. xfs_mount_t *mp,
  274. xlog_rec_header_t *head)
  275. {
  276. ASSERT(be32_to_cpu(head->h_magicno) == XLOG_HEADER_MAGIC_NUM);
  277. if (uuid_is_nil(&head->h_fs_uuid)) {
  278. /*
  279. * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
  280. * h_fs_uuid is nil, we assume this log was last mounted
  281. * by IRIX and continue.
  282. */
  283. xfs_warn(mp, "nil uuid in log - IRIX style log");
  284. } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
  285. xfs_warn(mp, "log has mismatched uuid - can't recover");
  286. xlog_header_check_dump(mp, head);
  287. XFS_ERROR_REPORT("xlog_header_check_mount",
  288. XFS_ERRLEVEL_HIGH, mp);
  289. return XFS_ERROR(EFSCORRUPTED);
  290. }
  291. return 0;
  292. }
  293. STATIC void
  294. xlog_recover_iodone(
  295. struct xfs_buf *bp)
  296. {
  297. if (XFS_BUF_GETERROR(bp)) {
  298. /*
  299. * We're not going to bother about retrying
  300. * this during recovery. One strike!
  301. */
  302. xfs_ioerror_alert("xlog_recover_iodone",
  303. bp->b_target->bt_mount, bp,
  304. XFS_BUF_ADDR(bp));
  305. xfs_force_shutdown(bp->b_target->bt_mount,
  306. SHUTDOWN_META_IO_ERROR);
  307. }
  308. XFS_BUF_CLR_IODONE_FUNC(bp);
  309. xfs_buf_ioend(bp, 0);
  310. }
  311. /*
  312. * This routine finds (to an approximation) the first block in the physical
  313. * log which contains the given cycle. It uses a binary search algorithm.
  314. * Note that the algorithm can not be perfect because the disk will not
  315. * necessarily be perfect.
  316. */
  317. STATIC int
  318. xlog_find_cycle_start(
  319. xlog_t *log,
  320. xfs_buf_t *bp,
  321. xfs_daddr_t first_blk,
  322. xfs_daddr_t *last_blk,
  323. uint cycle)
  324. {
  325. xfs_caddr_t offset;
  326. xfs_daddr_t mid_blk;
  327. xfs_daddr_t end_blk;
  328. uint mid_cycle;
  329. int error;
  330. end_blk = *last_blk;
  331. mid_blk = BLK_AVG(first_blk, end_blk);
  332. while (mid_blk != first_blk && mid_blk != end_blk) {
  333. error = xlog_bread(log, mid_blk, 1, bp, &offset);
  334. if (error)
  335. return error;
  336. mid_cycle = xlog_get_cycle(offset);
  337. if (mid_cycle == cycle)
  338. end_blk = mid_blk; /* last_half_cycle == mid_cycle */
  339. else
  340. first_blk = mid_blk; /* first_half_cycle == mid_cycle */
  341. mid_blk = BLK_AVG(first_blk, end_blk);
  342. }
  343. ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
  344. (mid_blk == end_blk && mid_blk-1 == first_blk));
  345. *last_blk = end_blk;
  346. return 0;
  347. }
  348. /*
  349. * Check that a range of blocks does not contain stop_on_cycle_no.
  350. * Fill in *new_blk with the block offset where such a block is
  351. * found, or with -1 (an invalid block number) if there is no such
  352. * block in the range. The scan needs to occur from front to back
  353. * and the pointer into the region must be updated since a later
  354. * routine will need to perform another test.
  355. */
  356. STATIC int
  357. xlog_find_verify_cycle(
  358. xlog_t *log,
  359. xfs_daddr_t start_blk,
  360. int nbblks,
  361. uint stop_on_cycle_no,
  362. xfs_daddr_t *new_blk)
  363. {
  364. xfs_daddr_t i, j;
  365. uint cycle;
  366. xfs_buf_t *bp;
  367. xfs_daddr_t bufblks;
  368. xfs_caddr_t buf = NULL;
  369. int error = 0;
  370. /*
  371. * Greedily allocate a buffer big enough to handle the full
  372. * range of basic blocks we'll be examining. If that fails,
  373. * try a smaller size. We need to be able to read at least
  374. * a log sector, or we're out of luck.
  375. */
  376. bufblks = 1 << ffs(nbblks);
  377. while (!(bp = xlog_get_bp(log, bufblks))) {
  378. bufblks >>= 1;
  379. if (bufblks < log->l_sectBBsize)
  380. return ENOMEM;
  381. }
  382. for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
  383. int bcount;
  384. bcount = min(bufblks, (start_blk + nbblks - i));
  385. error = xlog_bread(log, i, bcount, bp, &buf);
  386. if (error)
  387. goto out;
  388. for (j = 0; j < bcount; j++) {
  389. cycle = xlog_get_cycle(buf);
  390. if (cycle == stop_on_cycle_no) {
  391. *new_blk = i+j;
  392. goto out;
  393. }
  394. buf += BBSIZE;
  395. }
  396. }
  397. *new_blk = -1;
  398. out:
  399. xlog_put_bp(bp);
  400. return error;
  401. }
  402. /*
  403. * Potentially backup over partial log record write.
  404. *
  405. * In the typical case, last_blk is the number of the block directly after
  406. * a good log record. Therefore, we subtract one to get the block number
  407. * of the last block in the given buffer. extra_bblks contains the number
  408. * of blocks we would have read on a previous read. This happens when the
  409. * last log record is split over the end of the physical log.
  410. *
  411. * extra_bblks is the number of blocks potentially verified on a previous
  412. * call to this routine.
  413. */
  414. STATIC int
  415. xlog_find_verify_log_record(
  416. xlog_t *log,
  417. xfs_daddr_t start_blk,
  418. xfs_daddr_t *last_blk,
  419. int extra_bblks)
  420. {
  421. xfs_daddr_t i;
  422. xfs_buf_t *bp;
  423. xfs_caddr_t offset = NULL;
  424. xlog_rec_header_t *head = NULL;
  425. int error = 0;
  426. int smallmem = 0;
  427. int num_blks = *last_blk - start_blk;
  428. int xhdrs;
  429. ASSERT(start_blk != 0 || *last_blk != start_blk);
  430. if (!(bp = xlog_get_bp(log, num_blks))) {
  431. if (!(bp = xlog_get_bp(log, 1)))
  432. return ENOMEM;
  433. smallmem = 1;
  434. } else {
  435. error = xlog_bread(log, start_blk, num_blks, bp, &offset);
  436. if (error)
  437. goto out;
  438. offset += ((num_blks - 1) << BBSHIFT);
  439. }
  440. for (i = (*last_blk) - 1; i >= 0; i--) {
  441. if (i < start_blk) {
  442. /* valid log record not found */
  443. xfs_warn(log->l_mp,
  444. "Log inconsistent (didn't find previous header)");
  445. ASSERT(0);
  446. error = XFS_ERROR(EIO);
  447. goto out;
  448. }
  449. if (smallmem) {
  450. error = xlog_bread(log, i, 1, bp, &offset);
  451. if (error)
  452. goto out;
  453. }
  454. head = (xlog_rec_header_t *)offset;
  455. if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(head->h_magicno))
  456. break;
  457. if (!smallmem)
  458. offset -= BBSIZE;
  459. }
  460. /*
  461. * We hit the beginning of the physical log & still no header. Return
  462. * to caller. If caller can handle a return of -1, then this routine
  463. * will be called again for the end of the physical log.
  464. */
  465. if (i == -1) {
  466. error = -1;
  467. goto out;
  468. }
  469. /*
  470. * We have the final block of the good log (the first block
  471. * of the log record _before_ the head. So we check the uuid.
  472. */
  473. if ((error = xlog_header_check_mount(log->l_mp, head)))
  474. goto out;
  475. /*
  476. * We may have found a log record header before we expected one.
  477. * last_blk will be the 1st block # with a given cycle #. We may end
  478. * up reading an entire log record. In this case, we don't want to
  479. * reset last_blk. Only when last_blk points in the middle of a log
  480. * record do we update last_blk.
  481. */
  482. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  483. uint h_size = be32_to_cpu(head->h_size);
  484. xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
  485. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  486. xhdrs++;
  487. } else {
  488. xhdrs = 1;
  489. }
  490. if (*last_blk - i + extra_bblks !=
  491. BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
  492. *last_blk = i;
  493. out:
  494. xlog_put_bp(bp);
  495. return error;
  496. }
  497. /*
  498. * Head is defined to be the point of the log where the next log write
  499. * write could go. This means that incomplete LR writes at the end are
  500. * eliminated when calculating the head. We aren't guaranteed that previous
  501. * LR have complete transactions. We only know that a cycle number of
  502. * current cycle number -1 won't be present in the log if we start writing
  503. * from our current block number.
  504. *
  505. * last_blk contains the block number of the first block with a given
  506. * cycle number.
  507. *
  508. * Return: zero if normal, non-zero if error.
  509. */
  510. STATIC int
  511. xlog_find_head(
  512. xlog_t *log,
  513. xfs_daddr_t *return_head_blk)
  514. {
  515. xfs_buf_t *bp;
  516. xfs_caddr_t offset;
  517. xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
  518. int num_scan_bblks;
  519. uint first_half_cycle, last_half_cycle;
  520. uint stop_on_cycle;
  521. int error, log_bbnum = log->l_logBBsize;
  522. /* Is the end of the log device zeroed? */
  523. if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
  524. *return_head_blk = first_blk;
  525. /* Is the whole lot zeroed? */
  526. if (!first_blk) {
  527. /* Linux XFS shouldn't generate totally zeroed logs -
  528. * mkfs etc write a dummy unmount record to a fresh
  529. * log so we can store the uuid in there
  530. */
  531. xfs_warn(log->l_mp, "totally zeroed log");
  532. }
  533. return 0;
  534. } else if (error) {
  535. xfs_warn(log->l_mp, "empty log check failed");
  536. return error;
  537. }
  538. first_blk = 0; /* get cycle # of 1st block */
  539. bp = xlog_get_bp(log, 1);
  540. if (!bp)
  541. return ENOMEM;
  542. error = xlog_bread(log, 0, 1, bp, &offset);
  543. if (error)
  544. goto bp_err;
  545. first_half_cycle = xlog_get_cycle(offset);
  546. last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
  547. error = xlog_bread(log, last_blk, 1, bp, &offset);
  548. if (error)
  549. goto bp_err;
  550. last_half_cycle = xlog_get_cycle(offset);
  551. ASSERT(last_half_cycle != 0);
  552. /*
  553. * If the 1st half cycle number is equal to the last half cycle number,
  554. * then the entire log is stamped with the same cycle number. In this
  555. * case, head_blk can't be set to zero (which makes sense). The below
  556. * math doesn't work out properly with head_blk equal to zero. Instead,
  557. * we set it to log_bbnum which is an invalid block number, but this
  558. * value makes the math correct. If head_blk doesn't changed through
  559. * all the tests below, *head_blk is set to zero at the very end rather
  560. * than log_bbnum. In a sense, log_bbnum and zero are the same block
  561. * in a circular file.
  562. */
  563. if (first_half_cycle == last_half_cycle) {
  564. /*
  565. * In this case we believe that the entire log should have
  566. * cycle number last_half_cycle. We need to scan backwards
  567. * from the end verifying that there are no holes still
  568. * containing last_half_cycle - 1. If we find such a hole,
  569. * then the start of that hole will be the new head. The
  570. * simple case looks like
  571. * x | x ... | x - 1 | x
  572. * Another case that fits this picture would be
  573. * x | x + 1 | x ... | x
  574. * In this case the head really is somewhere at the end of the
  575. * log, as one of the latest writes at the beginning was
  576. * incomplete.
  577. * One more case is
  578. * x | x + 1 | x ... | x - 1 | x
  579. * This is really the combination of the above two cases, and
  580. * the head has to end up at the start of the x-1 hole at the
  581. * end of the log.
  582. *
  583. * In the 256k log case, we will read from the beginning to the
  584. * end of the log and search for cycle numbers equal to x-1.
  585. * We don't worry about the x+1 blocks that we encounter,
  586. * because we know that they cannot be the head since the log
  587. * started with x.
  588. */
  589. head_blk = log_bbnum;
  590. stop_on_cycle = last_half_cycle - 1;
  591. } else {
  592. /*
  593. * In this case we want to find the first block with cycle
  594. * number matching last_half_cycle. We expect the log to be
  595. * some variation on
  596. * x + 1 ... | x ... | x
  597. * The first block with cycle number x (last_half_cycle) will
  598. * be where the new head belongs. First we do a binary search
  599. * for the first occurrence of last_half_cycle. The binary
  600. * search may not be totally accurate, so then we scan back
  601. * from there looking for occurrences of last_half_cycle before
  602. * us. If that backwards scan wraps around the beginning of
  603. * the log, then we look for occurrences of last_half_cycle - 1
  604. * at the end of the log. The cases we're looking for look
  605. * like
  606. * v binary search stopped here
  607. * x + 1 ... | x | x + 1 | x ... | x
  608. * ^ but we want to locate this spot
  609. * or
  610. * <---------> less than scan distance
  611. * x + 1 ... | x ... | x - 1 | x
  612. * ^ we want to locate this spot
  613. */
  614. stop_on_cycle = last_half_cycle;
  615. if ((error = xlog_find_cycle_start(log, bp, first_blk,
  616. &head_blk, last_half_cycle)))
  617. goto bp_err;
  618. }
  619. /*
  620. * Now validate the answer. Scan back some number of maximum possible
  621. * blocks and make sure each one has the expected cycle number. The
  622. * maximum is determined by the total possible amount of buffering
  623. * in the in-core log. The following number can be made tighter if
  624. * we actually look at the block size of the filesystem.
  625. */
  626. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  627. if (head_blk >= num_scan_bblks) {
  628. /*
  629. * We are guaranteed that the entire check can be performed
  630. * in one buffer.
  631. */
  632. start_blk = head_blk - num_scan_bblks;
  633. if ((error = xlog_find_verify_cycle(log,
  634. start_blk, num_scan_bblks,
  635. stop_on_cycle, &new_blk)))
  636. goto bp_err;
  637. if (new_blk != -1)
  638. head_blk = new_blk;
  639. } else { /* need to read 2 parts of log */
  640. /*
  641. * We are going to scan backwards in the log in two parts.
  642. * First we scan the physical end of the log. In this part
  643. * of the log, we are looking for blocks with cycle number
  644. * last_half_cycle - 1.
  645. * If we find one, then we know that the log starts there, as
  646. * we've found a hole that didn't get written in going around
  647. * the end of the physical log. The simple case for this is
  648. * x + 1 ... | x ... | x - 1 | x
  649. * <---------> less than scan distance
  650. * If all of the blocks at the end of the log have cycle number
  651. * last_half_cycle, then we check the blocks at the start of
  652. * the log looking for occurrences of last_half_cycle. If we
  653. * find one, then our current estimate for the location of the
  654. * first occurrence of last_half_cycle is wrong and we move
  655. * back to the hole we've found. This case looks like
  656. * x + 1 ... | x | x + 1 | x ...
  657. * ^ binary search stopped here
  658. * Another case we need to handle that only occurs in 256k
  659. * logs is
  660. * x + 1 ... | x ... | x+1 | x ...
  661. * ^ binary search stops here
  662. * In a 256k log, the scan at the end of the log will see the
  663. * x + 1 blocks. We need to skip past those since that is
  664. * certainly not the head of the log. By searching for
  665. * last_half_cycle-1 we accomplish that.
  666. */
  667. ASSERT(head_blk <= INT_MAX &&
  668. (xfs_daddr_t) num_scan_bblks >= head_blk);
  669. start_blk = log_bbnum - (num_scan_bblks - head_blk);
  670. if ((error = xlog_find_verify_cycle(log, start_blk,
  671. num_scan_bblks - (int)head_blk,
  672. (stop_on_cycle - 1), &new_blk)))
  673. goto bp_err;
  674. if (new_blk != -1) {
  675. head_blk = new_blk;
  676. goto validate_head;
  677. }
  678. /*
  679. * Scan beginning of log now. The last part of the physical
  680. * log is good. This scan needs to verify that it doesn't find
  681. * the last_half_cycle.
  682. */
  683. start_blk = 0;
  684. ASSERT(head_blk <= INT_MAX);
  685. if ((error = xlog_find_verify_cycle(log,
  686. start_blk, (int)head_blk,
  687. stop_on_cycle, &new_blk)))
  688. goto bp_err;
  689. if (new_blk != -1)
  690. head_blk = new_blk;
  691. }
  692. validate_head:
  693. /*
  694. * Now we need to make sure head_blk is not pointing to a block in
  695. * the middle of a log record.
  696. */
  697. num_scan_bblks = XLOG_REC_SHIFT(log);
  698. if (head_blk >= num_scan_bblks) {
  699. start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
  700. /* start ptr at last block ptr before head_blk */
  701. if ((error = xlog_find_verify_log_record(log, start_blk,
  702. &head_blk, 0)) == -1) {
  703. error = XFS_ERROR(EIO);
  704. goto bp_err;
  705. } else if (error)
  706. goto bp_err;
  707. } else {
  708. start_blk = 0;
  709. ASSERT(head_blk <= INT_MAX);
  710. if ((error = xlog_find_verify_log_record(log, start_blk,
  711. &head_blk, 0)) == -1) {
  712. /* We hit the beginning of the log during our search */
  713. start_blk = log_bbnum - (num_scan_bblks - head_blk);
  714. new_blk = log_bbnum;
  715. ASSERT(start_blk <= INT_MAX &&
  716. (xfs_daddr_t) log_bbnum-start_blk >= 0);
  717. ASSERT(head_blk <= INT_MAX);
  718. if ((error = xlog_find_verify_log_record(log,
  719. start_blk, &new_blk,
  720. (int)head_blk)) == -1) {
  721. error = XFS_ERROR(EIO);
  722. goto bp_err;
  723. } else if (error)
  724. goto bp_err;
  725. if (new_blk != log_bbnum)
  726. head_blk = new_blk;
  727. } else if (error)
  728. goto bp_err;
  729. }
  730. xlog_put_bp(bp);
  731. if (head_blk == log_bbnum)
  732. *return_head_blk = 0;
  733. else
  734. *return_head_blk = head_blk;
  735. /*
  736. * When returning here, we have a good block number. Bad block
  737. * means that during a previous crash, we didn't have a clean break
  738. * from cycle number N to cycle number N-1. In this case, we need
  739. * to find the first block with cycle number N-1.
  740. */
  741. return 0;
  742. bp_err:
  743. xlog_put_bp(bp);
  744. if (error)
  745. xfs_warn(log->l_mp, "failed to find log head");
  746. return error;
  747. }
  748. /*
  749. * Find the sync block number or the tail of the log.
  750. *
  751. * This will be the block number of the last record to have its
  752. * associated buffers synced to disk. Every log record header has
  753. * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
  754. * to get a sync block number. The only concern is to figure out which
  755. * log record header to believe.
  756. *
  757. * The following algorithm uses the log record header with the largest
  758. * lsn. The entire log record does not need to be valid. We only care
  759. * that the header is valid.
  760. *
  761. * We could speed up search by using current head_blk buffer, but it is not
  762. * available.
  763. */
  764. STATIC int
  765. xlog_find_tail(
  766. xlog_t *log,
  767. xfs_daddr_t *head_blk,
  768. xfs_daddr_t *tail_blk)
  769. {
  770. xlog_rec_header_t *rhead;
  771. xlog_op_header_t *op_head;
  772. xfs_caddr_t offset = NULL;
  773. xfs_buf_t *bp;
  774. int error, i, found;
  775. xfs_daddr_t umount_data_blk;
  776. xfs_daddr_t after_umount_blk;
  777. xfs_lsn_t tail_lsn;
  778. int hblks;
  779. found = 0;
  780. /*
  781. * Find previous log record
  782. */
  783. if ((error = xlog_find_head(log, head_blk)))
  784. return error;
  785. bp = xlog_get_bp(log, 1);
  786. if (!bp)
  787. return ENOMEM;
  788. if (*head_blk == 0) { /* special case */
  789. error = xlog_bread(log, 0, 1, bp, &offset);
  790. if (error)
  791. goto done;
  792. if (xlog_get_cycle(offset) == 0) {
  793. *tail_blk = 0;
  794. /* leave all other log inited values alone */
  795. goto done;
  796. }
  797. }
  798. /*
  799. * Search backwards looking for log record header block
  800. */
  801. ASSERT(*head_blk < INT_MAX);
  802. for (i = (int)(*head_blk) - 1; i >= 0; i--) {
  803. error = xlog_bread(log, i, 1, bp, &offset);
  804. if (error)
  805. goto done;
  806. if (XLOG_HEADER_MAGIC_NUM == be32_to_cpu(*(__be32 *)offset)) {
  807. found = 1;
  808. break;
  809. }
  810. }
  811. /*
  812. * If we haven't found the log record header block, start looking
  813. * again from the end of the physical log. XXXmiken: There should be
  814. * a check here to make sure we didn't search more than N blocks in
  815. * the previous code.
  816. */
  817. if (!found) {
  818. for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
  819. error = xlog_bread(log, i, 1, bp, &offset);
  820. if (error)
  821. goto done;
  822. if (XLOG_HEADER_MAGIC_NUM ==
  823. be32_to_cpu(*(__be32 *)offset)) {
  824. found = 2;
  825. break;
  826. }
  827. }
  828. }
  829. if (!found) {
  830. xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
  831. ASSERT(0);
  832. return XFS_ERROR(EIO);
  833. }
  834. /* find blk_no of tail of log */
  835. rhead = (xlog_rec_header_t *)offset;
  836. *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
  837. /*
  838. * Reset log values according to the state of the log when we
  839. * crashed. In the case where head_blk == 0, we bump curr_cycle
  840. * one because the next write starts a new cycle rather than
  841. * continuing the cycle of the last good log record. At this
  842. * point we have guaranteed that all partial log records have been
  843. * accounted for. Therefore, we know that the last good log record
  844. * written was complete and ended exactly on the end boundary
  845. * of the physical log.
  846. */
  847. log->l_prev_block = i;
  848. log->l_curr_block = (int)*head_blk;
  849. log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
  850. if (found == 2)
  851. log->l_curr_cycle++;
  852. atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
  853. atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
  854. xlog_assign_grant_head(&log->l_grant_reserve_head, log->l_curr_cycle,
  855. BBTOB(log->l_curr_block));
  856. xlog_assign_grant_head(&log->l_grant_write_head, log->l_curr_cycle,
  857. BBTOB(log->l_curr_block));
  858. /*
  859. * Look for unmount record. If we find it, then we know there
  860. * was a clean unmount. Since 'i' could be the last block in
  861. * the physical log, we convert to a log block before comparing
  862. * to the head_blk.
  863. *
  864. * Save the current tail lsn to use to pass to
  865. * xlog_clear_stale_blocks() below. We won't want to clear the
  866. * unmount record if there is one, so we pass the lsn of the
  867. * unmount record rather than the block after it.
  868. */
  869. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  870. int h_size = be32_to_cpu(rhead->h_size);
  871. int h_version = be32_to_cpu(rhead->h_version);
  872. if ((h_version & XLOG_VERSION_2) &&
  873. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  874. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  875. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  876. hblks++;
  877. } else {
  878. hblks = 1;
  879. }
  880. } else {
  881. hblks = 1;
  882. }
  883. after_umount_blk = (i + hblks + (int)
  884. BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
  885. tail_lsn = atomic64_read(&log->l_tail_lsn);
  886. if (*head_blk == after_umount_blk &&
  887. be32_to_cpu(rhead->h_num_logops) == 1) {
  888. umount_data_blk = (i + hblks) % log->l_logBBsize;
  889. error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
  890. if (error)
  891. goto done;
  892. op_head = (xlog_op_header_t *)offset;
  893. if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
  894. /*
  895. * Set tail and last sync so that newly written
  896. * log records will point recovery to after the
  897. * current unmount record.
  898. */
  899. xlog_assign_atomic_lsn(&log->l_tail_lsn,
  900. log->l_curr_cycle, after_umount_blk);
  901. xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
  902. log->l_curr_cycle, after_umount_blk);
  903. *tail_blk = after_umount_blk;
  904. /*
  905. * Note that the unmount was clean. If the unmount
  906. * was not clean, we need to know this to rebuild the
  907. * superblock counters from the perag headers if we
  908. * have a filesystem using non-persistent counters.
  909. */
  910. log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
  911. }
  912. }
  913. /*
  914. * Make sure that there are no blocks in front of the head
  915. * with the same cycle number as the head. This can happen
  916. * because we allow multiple outstanding log writes concurrently,
  917. * and the later writes might make it out before earlier ones.
  918. *
  919. * We use the lsn from before modifying it so that we'll never
  920. * overwrite the unmount record after a clean unmount.
  921. *
  922. * Do this only if we are going to recover the filesystem
  923. *
  924. * NOTE: This used to say "if (!readonly)"
  925. * However on Linux, we can & do recover a read-only filesystem.
  926. * We only skip recovery if NORECOVERY is specified on mount,
  927. * in which case we would not be here.
  928. *
  929. * But... if the -device- itself is readonly, just skip this.
  930. * We can't recover this device anyway, so it won't matter.
  931. */
  932. if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
  933. error = xlog_clear_stale_blocks(log, tail_lsn);
  934. done:
  935. xlog_put_bp(bp);
  936. if (error)
  937. xfs_warn(log->l_mp, "failed to locate log tail");
  938. return error;
  939. }
  940. /*
  941. * Is the log zeroed at all?
  942. *
  943. * The last binary search should be changed to perform an X block read
  944. * once X becomes small enough. You can then search linearly through
  945. * the X blocks. This will cut down on the number of reads we need to do.
  946. *
  947. * If the log is partially zeroed, this routine will pass back the blkno
  948. * of the first block with cycle number 0. It won't have a complete LR
  949. * preceding it.
  950. *
  951. * Return:
  952. * 0 => the log is completely written to
  953. * -1 => use *blk_no as the first block of the log
  954. * >0 => error has occurred
  955. */
  956. STATIC int
  957. xlog_find_zeroed(
  958. xlog_t *log,
  959. xfs_daddr_t *blk_no)
  960. {
  961. xfs_buf_t *bp;
  962. xfs_caddr_t offset;
  963. uint first_cycle, last_cycle;
  964. xfs_daddr_t new_blk, last_blk, start_blk;
  965. xfs_daddr_t num_scan_bblks;
  966. int error, log_bbnum = log->l_logBBsize;
  967. *blk_no = 0;
  968. /* check totally zeroed log */
  969. bp = xlog_get_bp(log, 1);
  970. if (!bp)
  971. return ENOMEM;
  972. error = xlog_bread(log, 0, 1, bp, &offset);
  973. if (error)
  974. goto bp_err;
  975. first_cycle = xlog_get_cycle(offset);
  976. if (first_cycle == 0) { /* completely zeroed log */
  977. *blk_no = 0;
  978. xlog_put_bp(bp);
  979. return -1;
  980. }
  981. /* check partially zeroed log */
  982. error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
  983. if (error)
  984. goto bp_err;
  985. last_cycle = xlog_get_cycle(offset);
  986. if (last_cycle != 0) { /* log completely written to */
  987. xlog_put_bp(bp);
  988. return 0;
  989. } else if (first_cycle != 1) {
  990. /*
  991. * If the cycle of the last block is zero, the cycle of
  992. * the first block must be 1. If it's not, maybe we're
  993. * not looking at a log... Bail out.
  994. */
  995. xfs_warn(log->l_mp,
  996. "Log inconsistent or not a log (last==0, first!=1)");
  997. return XFS_ERROR(EINVAL);
  998. }
  999. /* we have a partially zeroed log */
  1000. last_blk = log_bbnum-1;
  1001. if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
  1002. goto bp_err;
  1003. /*
  1004. * Validate the answer. Because there is no way to guarantee that
  1005. * the entire log is made up of log records which are the same size,
  1006. * we scan over the defined maximum blocks. At this point, the maximum
  1007. * is not chosen to mean anything special. XXXmiken
  1008. */
  1009. num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
  1010. ASSERT(num_scan_bblks <= INT_MAX);
  1011. if (last_blk < num_scan_bblks)
  1012. num_scan_bblks = last_blk;
  1013. start_blk = last_blk - num_scan_bblks;
  1014. /*
  1015. * We search for any instances of cycle number 0 that occur before
  1016. * our current estimate of the head. What we're trying to detect is
  1017. * 1 ... | 0 | 1 | 0...
  1018. * ^ binary search ends here
  1019. */
  1020. if ((error = xlog_find_verify_cycle(log, start_blk,
  1021. (int)num_scan_bblks, 0, &new_blk)))
  1022. goto bp_err;
  1023. if (new_blk != -1)
  1024. last_blk = new_blk;
  1025. /*
  1026. * Potentially backup over partial log record write. We don't need
  1027. * to search the end of the log because we know it is zero.
  1028. */
  1029. if ((error = xlog_find_verify_log_record(log, start_blk,
  1030. &last_blk, 0)) == -1) {
  1031. error = XFS_ERROR(EIO);
  1032. goto bp_err;
  1033. } else if (error)
  1034. goto bp_err;
  1035. *blk_no = last_blk;
  1036. bp_err:
  1037. xlog_put_bp(bp);
  1038. if (error)
  1039. return error;
  1040. return -1;
  1041. }
  1042. /*
  1043. * These are simple subroutines used by xlog_clear_stale_blocks() below
  1044. * to initialize a buffer full of empty log record headers and write
  1045. * them into the log.
  1046. */
  1047. STATIC void
  1048. xlog_add_record(
  1049. xlog_t *log,
  1050. xfs_caddr_t buf,
  1051. int cycle,
  1052. int block,
  1053. int tail_cycle,
  1054. int tail_block)
  1055. {
  1056. xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
  1057. memset(buf, 0, BBSIZE);
  1058. recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
  1059. recp->h_cycle = cpu_to_be32(cycle);
  1060. recp->h_version = cpu_to_be32(
  1061. xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
  1062. recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
  1063. recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
  1064. recp->h_fmt = cpu_to_be32(XLOG_FMT);
  1065. memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
  1066. }
  1067. STATIC int
  1068. xlog_write_log_records(
  1069. xlog_t *log,
  1070. int cycle,
  1071. int start_block,
  1072. int blocks,
  1073. int tail_cycle,
  1074. int tail_block)
  1075. {
  1076. xfs_caddr_t offset;
  1077. xfs_buf_t *bp;
  1078. int balign, ealign;
  1079. int sectbb = log->l_sectBBsize;
  1080. int end_block = start_block + blocks;
  1081. int bufblks;
  1082. int error = 0;
  1083. int i, j = 0;
  1084. /*
  1085. * Greedily allocate a buffer big enough to handle the full
  1086. * range of basic blocks to be written. If that fails, try
  1087. * a smaller size. We need to be able to write at least a
  1088. * log sector, or we're out of luck.
  1089. */
  1090. bufblks = 1 << ffs(blocks);
  1091. while (!(bp = xlog_get_bp(log, bufblks))) {
  1092. bufblks >>= 1;
  1093. if (bufblks < sectbb)
  1094. return ENOMEM;
  1095. }
  1096. /* We may need to do a read at the start to fill in part of
  1097. * the buffer in the starting sector not covered by the first
  1098. * write below.
  1099. */
  1100. balign = round_down(start_block, sectbb);
  1101. if (balign != start_block) {
  1102. error = xlog_bread_noalign(log, start_block, 1, bp);
  1103. if (error)
  1104. goto out_put_bp;
  1105. j = start_block - balign;
  1106. }
  1107. for (i = start_block; i < end_block; i += bufblks) {
  1108. int bcount, endcount;
  1109. bcount = min(bufblks, end_block - start_block);
  1110. endcount = bcount - j;
  1111. /* We may need to do a read at the end to fill in part of
  1112. * the buffer in the final sector not covered by the write.
  1113. * If this is the same sector as the above read, skip it.
  1114. */
  1115. ealign = round_down(end_block, sectbb);
  1116. if (j == 0 && (start_block + endcount > ealign)) {
  1117. offset = XFS_BUF_PTR(bp);
  1118. balign = BBTOB(ealign - start_block);
  1119. error = XFS_BUF_SET_PTR(bp, offset + balign,
  1120. BBTOB(sectbb));
  1121. if (error)
  1122. break;
  1123. error = xlog_bread_noalign(log, ealign, sectbb, bp);
  1124. if (error)
  1125. break;
  1126. error = XFS_BUF_SET_PTR(bp, offset, bufblks);
  1127. if (error)
  1128. break;
  1129. }
  1130. offset = xlog_align(log, start_block, endcount, bp);
  1131. for (; j < endcount; j++) {
  1132. xlog_add_record(log, offset, cycle, i+j,
  1133. tail_cycle, tail_block);
  1134. offset += BBSIZE;
  1135. }
  1136. error = xlog_bwrite(log, start_block, endcount, bp);
  1137. if (error)
  1138. break;
  1139. start_block += endcount;
  1140. j = 0;
  1141. }
  1142. out_put_bp:
  1143. xlog_put_bp(bp);
  1144. return error;
  1145. }
  1146. /*
  1147. * This routine is called to blow away any incomplete log writes out
  1148. * in front of the log head. We do this so that we won't become confused
  1149. * if we come up, write only a little bit more, and then crash again.
  1150. * If we leave the partial log records out there, this situation could
  1151. * cause us to think those partial writes are valid blocks since they
  1152. * have the current cycle number. We get rid of them by overwriting them
  1153. * with empty log records with the old cycle number rather than the
  1154. * current one.
  1155. *
  1156. * The tail lsn is passed in rather than taken from
  1157. * the log so that we will not write over the unmount record after a
  1158. * clean unmount in a 512 block log. Doing so would leave the log without
  1159. * any valid log records in it until a new one was written. If we crashed
  1160. * during that time we would not be able to recover.
  1161. */
  1162. STATIC int
  1163. xlog_clear_stale_blocks(
  1164. xlog_t *log,
  1165. xfs_lsn_t tail_lsn)
  1166. {
  1167. int tail_cycle, head_cycle;
  1168. int tail_block, head_block;
  1169. int tail_distance, max_distance;
  1170. int distance;
  1171. int error;
  1172. tail_cycle = CYCLE_LSN(tail_lsn);
  1173. tail_block = BLOCK_LSN(tail_lsn);
  1174. head_cycle = log->l_curr_cycle;
  1175. head_block = log->l_curr_block;
  1176. /*
  1177. * Figure out the distance between the new head of the log
  1178. * and the tail. We want to write over any blocks beyond the
  1179. * head that we may have written just before the crash, but
  1180. * we don't want to overwrite the tail of the log.
  1181. */
  1182. if (head_cycle == tail_cycle) {
  1183. /*
  1184. * The tail is behind the head in the physical log,
  1185. * so the distance from the head to the tail is the
  1186. * distance from the head to the end of the log plus
  1187. * the distance from the beginning of the log to the
  1188. * tail.
  1189. */
  1190. if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
  1191. XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
  1192. XFS_ERRLEVEL_LOW, log->l_mp);
  1193. return XFS_ERROR(EFSCORRUPTED);
  1194. }
  1195. tail_distance = tail_block + (log->l_logBBsize - head_block);
  1196. } else {
  1197. /*
  1198. * The head is behind the tail in the physical log,
  1199. * so the distance from the head to the tail is just
  1200. * the tail block minus the head block.
  1201. */
  1202. if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
  1203. XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
  1204. XFS_ERRLEVEL_LOW, log->l_mp);
  1205. return XFS_ERROR(EFSCORRUPTED);
  1206. }
  1207. tail_distance = tail_block - head_block;
  1208. }
  1209. /*
  1210. * If the head is right up against the tail, we can't clear
  1211. * anything.
  1212. */
  1213. if (tail_distance <= 0) {
  1214. ASSERT(tail_distance == 0);
  1215. return 0;
  1216. }
  1217. max_distance = XLOG_TOTAL_REC_SHIFT(log);
  1218. /*
  1219. * Take the smaller of the maximum amount of outstanding I/O
  1220. * we could have and the distance to the tail to clear out.
  1221. * We take the smaller so that we don't overwrite the tail and
  1222. * we don't waste all day writing from the head to the tail
  1223. * for no reason.
  1224. */
  1225. max_distance = MIN(max_distance, tail_distance);
  1226. if ((head_block + max_distance) <= log->l_logBBsize) {
  1227. /*
  1228. * We can stomp all the blocks we need to without
  1229. * wrapping around the end of the log. Just do it
  1230. * in a single write. Use the cycle number of the
  1231. * current cycle minus one so that the log will look like:
  1232. * n ... | n - 1 ...
  1233. */
  1234. error = xlog_write_log_records(log, (head_cycle - 1),
  1235. head_block, max_distance, tail_cycle,
  1236. tail_block);
  1237. if (error)
  1238. return error;
  1239. } else {
  1240. /*
  1241. * We need to wrap around the end of the physical log in
  1242. * order to clear all the blocks. Do it in two separate
  1243. * I/Os. The first write should be from the head to the
  1244. * end of the physical log, and it should use the current
  1245. * cycle number minus one just like above.
  1246. */
  1247. distance = log->l_logBBsize - head_block;
  1248. error = xlog_write_log_records(log, (head_cycle - 1),
  1249. head_block, distance, tail_cycle,
  1250. tail_block);
  1251. if (error)
  1252. return error;
  1253. /*
  1254. * Now write the blocks at the start of the physical log.
  1255. * This writes the remainder of the blocks we want to clear.
  1256. * It uses the current cycle number since we're now on the
  1257. * same cycle as the head so that we get:
  1258. * n ... n ... | n - 1 ...
  1259. * ^^^^^ blocks we're writing
  1260. */
  1261. distance = max_distance - (log->l_logBBsize - head_block);
  1262. error = xlog_write_log_records(log, head_cycle, 0, distance,
  1263. tail_cycle, tail_block);
  1264. if (error)
  1265. return error;
  1266. }
  1267. return 0;
  1268. }
  1269. /******************************************************************************
  1270. *
  1271. * Log recover routines
  1272. *
  1273. ******************************************************************************
  1274. */
  1275. STATIC xlog_recover_t *
  1276. xlog_recover_find_tid(
  1277. struct hlist_head *head,
  1278. xlog_tid_t tid)
  1279. {
  1280. xlog_recover_t *trans;
  1281. struct hlist_node *n;
  1282. hlist_for_each_entry(trans, n, head, r_list) {
  1283. if (trans->r_log_tid == tid)
  1284. return trans;
  1285. }
  1286. return NULL;
  1287. }
  1288. STATIC void
  1289. xlog_recover_new_tid(
  1290. struct hlist_head *head,
  1291. xlog_tid_t tid,
  1292. xfs_lsn_t lsn)
  1293. {
  1294. xlog_recover_t *trans;
  1295. trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
  1296. trans->r_log_tid = tid;
  1297. trans->r_lsn = lsn;
  1298. INIT_LIST_HEAD(&trans->r_itemq);
  1299. INIT_HLIST_NODE(&trans->r_list);
  1300. hlist_add_head(&trans->r_list, head);
  1301. }
  1302. STATIC void
  1303. xlog_recover_add_item(
  1304. struct list_head *head)
  1305. {
  1306. xlog_recover_item_t *item;
  1307. item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
  1308. INIT_LIST_HEAD(&item->ri_list);
  1309. list_add_tail(&item->ri_list, head);
  1310. }
  1311. STATIC int
  1312. xlog_recover_add_to_cont_trans(
  1313. struct log *log,
  1314. xlog_recover_t *trans,
  1315. xfs_caddr_t dp,
  1316. int len)
  1317. {
  1318. xlog_recover_item_t *item;
  1319. xfs_caddr_t ptr, old_ptr;
  1320. int old_len;
  1321. if (list_empty(&trans->r_itemq)) {
  1322. /* finish copying rest of trans header */
  1323. xlog_recover_add_item(&trans->r_itemq);
  1324. ptr = (xfs_caddr_t) &trans->r_theader +
  1325. sizeof(xfs_trans_header_t) - len;
  1326. memcpy(ptr, dp, len); /* d, s, l */
  1327. return 0;
  1328. }
  1329. /* take the tail entry */
  1330. item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
  1331. old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
  1332. old_len = item->ri_buf[item->ri_cnt-1].i_len;
  1333. ptr = kmem_realloc(old_ptr, len+old_len, old_len, 0u);
  1334. memcpy(&ptr[old_len], dp, len); /* d, s, l */
  1335. item->ri_buf[item->ri_cnt-1].i_len += len;
  1336. item->ri_buf[item->ri_cnt-1].i_addr = ptr;
  1337. trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
  1338. return 0;
  1339. }
  1340. /*
  1341. * The next region to add is the start of a new region. It could be
  1342. * a whole region or it could be the first part of a new region. Because
  1343. * of this, the assumption here is that the type and size fields of all
  1344. * format structures fit into the first 32 bits of the structure.
  1345. *
  1346. * This works because all regions must be 32 bit aligned. Therefore, we
  1347. * either have both fields or we have neither field. In the case we have
  1348. * neither field, the data part of the region is zero length. We only have
  1349. * a log_op_header and can throw away the header since a new one will appear
  1350. * later. If we have at least 4 bytes, then we can determine how many regions
  1351. * will appear in the current log item.
  1352. */
  1353. STATIC int
  1354. xlog_recover_add_to_trans(
  1355. struct log *log,
  1356. xlog_recover_t *trans,
  1357. xfs_caddr_t dp,
  1358. int len)
  1359. {
  1360. xfs_inode_log_format_t *in_f; /* any will do */
  1361. xlog_recover_item_t *item;
  1362. xfs_caddr_t ptr;
  1363. if (!len)
  1364. return 0;
  1365. if (list_empty(&trans->r_itemq)) {
  1366. /* we need to catch log corruptions here */
  1367. if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
  1368. xfs_warn(log->l_mp, "%s: bad header magic number",
  1369. __func__);
  1370. ASSERT(0);
  1371. return XFS_ERROR(EIO);
  1372. }
  1373. if (len == sizeof(xfs_trans_header_t))
  1374. xlog_recover_add_item(&trans->r_itemq);
  1375. memcpy(&trans->r_theader, dp, len); /* d, s, l */
  1376. return 0;
  1377. }
  1378. ptr = kmem_alloc(len, KM_SLEEP);
  1379. memcpy(ptr, dp, len);
  1380. in_f = (xfs_inode_log_format_t *)ptr;
  1381. /* take the tail entry */
  1382. item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
  1383. if (item->ri_total != 0 &&
  1384. item->ri_total == item->ri_cnt) {
  1385. /* tail item is in use, get a new one */
  1386. xlog_recover_add_item(&trans->r_itemq);
  1387. item = list_entry(trans->r_itemq.prev,
  1388. xlog_recover_item_t, ri_list);
  1389. }
  1390. if (item->ri_total == 0) { /* first region to be added */
  1391. if (in_f->ilf_size == 0 ||
  1392. in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
  1393. xfs_warn(log->l_mp,
  1394. "bad number of regions (%d) in inode log format",
  1395. in_f->ilf_size);
  1396. ASSERT(0);
  1397. return XFS_ERROR(EIO);
  1398. }
  1399. item->ri_total = in_f->ilf_size;
  1400. item->ri_buf =
  1401. kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
  1402. KM_SLEEP);
  1403. }
  1404. ASSERT(item->ri_total > item->ri_cnt);
  1405. /* Description region is ri_buf[0] */
  1406. item->ri_buf[item->ri_cnt].i_addr = ptr;
  1407. item->ri_buf[item->ri_cnt].i_len = len;
  1408. item->ri_cnt++;
  1409. trace_xfs_log_recover_item_add(log, trans, item, 0);
  1410. return 0;
  1411. }
  1412. /*
  1413. * Sort the log items in the transaction. Cancelled buffers need
  1414. * to be put first so they are processed before any items that might
  1415. * modify the buffers. If they are cancelled, then the modifications
  1416. * don't need to be replayed.
  1417. */
  1418. STATIC int
  1419. xlog_recover_reorder_trans(
  1420. struct log *log,
  1421. xlog_recover_t *trans,
  1422. int pass)
  1423. {
  1424. xlog_recover_item_t *item, *n;
  1425. LIST_HEAD(sort_list);
  1426. list_splice_init(&trans->r_itemq, &sort_list);
  1427. list_for_each_entry_safe(item, n, &sort_list, ri_list) {
  1428. xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
  1429. switch (ITEM_TYPE(item)) {
  1430. case XFS_LI_BUF:
  1431. if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
  1432. trace_xfs_log_recover_item_reorder_head(log,
  1433. trans, item, pass);
  1434. list_move(&item->ri_list, &trans->r_itemq);
  1435. break;
  1436. }
  1437. case XFS_LI_INODE:
  1438. case XFS_LI_DQUOT:
  1439. case XFS_LI_QUOTAOFF:
  1440. case XFS_LI_EFD:
  1441. case XFS_LI_EFI:
  1442. trace_xfs_log_recover_item_reorder_tail(log,
  1443. trans, item, pass);
  1444. list_move_tail(&item->ri_list, &trans->r_itemq);
  1445. break;
  1446. default:
  1447. xfs_warn(log->l_mp,
  1448. "%s: unrecognized type of log operation",
  1449. __func__);
  1450. ASSERT(0);
  1451. return XFS_ERROR(EIO);
  1452. }
  1453. }
  1454. ASSERT(list_empty(&sort_list));
  1455. return 0;
  1456. }
  1457. /*
  1458. * Build up the table of buf cancel records so that we don't replay
  1459. * cancelled data in the second pass. For buffer records that are
  1460. * not cancel records, there is nothing to do here so we just return.
  1461. *
  1462. * If we get a cancel record which is already in the table, this indicates
  1463. * that the buffer was cancelled multiple times. In order to ensure
  1464. * that during pass 2 we keep the record in the table until we reach its
  1465. * last occurrence in the log, we keep a reference count in the cancel
  1466. * record in the table to tell us how many times we expect to see this
  1467. * record during the second pass.
  1468. */
  1469. STATIC int
  1470. xlog_recover_buffer_pass1(
  1471. struct log *log,
  1472. xlog_recover_item_t *item)
  1473. {
  1474. xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
  1475. struct list_head *bucket;
  1476. struct xfs_buf_cancel *bcp;
  1477. /*
  1478. * If this isn't a cancel buffer item, then just return.
  1479. */
  1480. if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
  1481. trace_xfs_log_recover_buf_not_cancel(log, buf_f);
  1482. return 0;
  1483. }
  1484. /*
  1485. * Insert an xfs_buf_cancel record into the hash table of them.
  1486. * If there is already an identical record, bump its reference count.
  1487. */
  1488. bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
  1489. list_for_each_entry(bcp, bucket, bc_list) {
  1490. if (bcp->bc_blkno == buf_f->blf_blkno &&
  1491. bcp->bc_len == buf_f->blf_len) {
  1492. bcp->bc_refcount++;
  1493. trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
  1494. return 0;
  1495. }
  1496. }
  1497. bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
  1498. bcp->bc_blkno = buf_f->blf_blkno;
  1499. bcp->bc_len = buf_f->blf_len;
  1500. bcp->bc_refcount = 1;
  1501. list_add_tail(&bcp->bc_list, bucket);
  1502. trace_xfs_log_recover_buf_cancel_add(log, buf_f);
  1503. return 0;
  1504. }
  1505. /*
  1506. * Check to see whether the buffer being recovered has a corresponding
  1507. * entry in the buffer cancel record table. If it does then return 1
  1508. * so that it will be cancelled, otherwise return 0. If the buffer is
  1509. * actually a buffer cancel item (XFS_BLF_CANCEL is set), then decrement
  1510. * the refcount on the entry in the table and remove it from the table
  1511. * if this is the last reference.
  1512. *
  1513. * We remove the cancel record from the table when we encounter its
  1514. * last occurrence in the log so that if the same buffer is re-used
  1515. * again after its last cancellation we actually replay the changes
  1516. * made at that point.
  1517. */
  1518. STATIC int
  1519. xlog_check_buffer_cancelled(
  1520. struct log *log,
  1521. xfs_daddr_t blkno,
  1522. uint len,
  1523. ushort flags)
  1524. {
  1525. struct list_head *bucket;
  1526. struct xfs_buf_cancel *bcp;
  1527. if (log->l_buf_cancel_table == NULL) {
  1528. /*
  1529. * There is nothing in the table built in pass one,
  1530. * so this buffer must not be cancelled.
  1531. */
  1532. ASSERT(!(flags & XFS_BLF_CANCEL));
  1533. return 0;
  1534. }
  1535. /*
  1536. * Search for an entry in the cancel table that matches our buffer.
  1537. */
  1538. bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
  1539. list_for_each_entry(bcp, bucket, bc_list) {
  1540. if (bcp->bc_blkno == blkno && bcp->bc_len == len)
  1541. goto found;
  1542. }
  1543. /*
  1544. * We didn't find a corresponding entry in the table, so return 0 so
  1545. * that the buffer is NOT cancelled.
  1546. */
  1547. ASSERT(!(flags & XFS_BLF_CANCEL));
  1548. return 0;
  1549. found:
  1550. /*
  1551. * We've go a match, so return 1 so that the recovery of this buffer
  1552. * is cancelled. If this buffer is actually a buffer cancel log
  1553. * item, then decrement the refcount on the one in the table and
  1554. * remove it if this is the last reference.
  1555. */
  1556. if (flags & XFS_BLF_CANCEL) {
  1557. if (--bcp->bc_refcount == 0) {
  1558. list_del(&bcp->bc_list);
  1559. kmem_free(bcp);
  1560. }
  1561. }
  1562. return 1;
  1563. }
  1564. /*
  1565. * Perform recovery for a buffer full of inodes. In these buffers, the only
  1566. * data which should be recovered is that which corresponds to the
  1567. * di_next_unlinked pointers in the on disk inode structures. The rest of the
  1568. * data for the inodes is always logged through the inodes themselves rather
  1569. * than the inode buffer and is recovered in xlog_recover_inode_pass2().
  1570. *
  1571. * The only time when buffers full of inodes are fully recovered is when the
  1572. * buffer is full of newly allocated inodes. In this case the buffer will
  1573. * not be marked as an inode buffer and so will be sent to
  1574. * xlog_recover_do_reg_buffer() below during recovery.
  1575. */
  1576. STATIC int
  1577. xlog_recover_do_inode_buffer(
  1578. struct xfs_mount *mp,
  1579. xlog_recover_item_t *item,
  1580. struct xfs_buf *bp,
  1581. xfs_buf_log_format_t *buf_f)
  1582. {
  1583. int i;
  1584. int item_index = 0;
  1585. int bit = 0;
  1586. int nbits = 0;
  1587. int reg_buf_offset = 0;
  1588. int reg_buf_bytes = 0;
  1589. int next_unlinked_offset;
  1590. int inodes_per_buf;
  1591. xfs_agino_t *logged_nextp;
  1592. xfs_agino_t *buffer_nextp;
  1593. trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
  1594. inodes_per_buf = XFS_BUF_COUNT(bp) >> mp->m_sb.sb_inodelog;
  1595. for (i = 0; i < inodes_per_buf; i++) {
  1596. next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
  1597. offsetof(xfs_dinode_t, di_next_unlinked);
  1598. while (next_unlinked_offset >=
  1599. (reg_buf_offset + reg_buf_bytes)) {
  1600. /*
  1601. * The next di_next_unlinked field is beyond
  1602. * the current logged region. Find the next
  1603. * logged region that contains or is beyond
  1604. * the current di_next_unlinked field.
  1605. */
  1606. bit += nbits;
  1607. bit = xfs_next_bit(buf_f->blf_data_map,
  1608. buf_f->blf_map_size, bit);
  1609. /*
  1610. * If there are no more logged regions in the
  1611. * buffer, then we're done.
  1612. */
  1613. if (bit == -1)
  1614. return 0;
  1615. nbits = xfs_contig_bits(buf_f->blf_data_map,
  1616. buf_f->blf_map_size, bit);
  1617. ASSERT(nbits > 0);
  1618. reg_buf_offset = bit << XFS_BLF_SHIFT;
  1619. reg_buf_bytes = nbits << XFS_BLF_SHIFT;
  1620. item_index++;
  1621. }
  1622. /*
  1623. * If the current logged region starts after the current
  1624. * di_next_unlinked field, then move on to the next
  1625. * di_next_unlinked field.
  1626. */
  1627. if (next_unlinked_offset < reg_buf_offset)
  1628. continue;
  1629. ASSERT(item->ri_buf[item_index].i_addr != NULL);
  1630. ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
  1631. ASSERT((reg_buf_offset + reg_buf_bytes) <= XFS_BUF_COUNT(bp));
  1632. /*
  1633. * The current logged region contains a copy of the
  1634. * current di_next_unlinked field. Extract its value
  1635. * and copy it to the buffer copy.
  1636. */
  1637. logged_nextp = item->ri_buf[item_index].i_addr +
  1638. next_unlinked_offset - reg_buf_offset;
  1639. if (unlikely(*logged_nextp == 0)) {
  1640. xfs_alert(mp,
  1641. "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
  1642. "Trying to replay bad (0) inode di_next_unlinked field.",
  1643. item, bp);
  1644. XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
  1645. XFS_ERRLEVEL_LOW, mp);
  1646. return XFS_ERROR(EFSCORRUPTED);
  1647. }
  1648. buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
  1649. next_unlinked_offset);
  1650. *buffer_nextp = *logged_nextp;
  1651. }
  1652. return 0;
  1653. }
  1654. /*
  1655. * Perform a 'normal' buffer recovery. Each logged region of the
  1656. * buffer should be copied over the corresponding region in the
  1657. * given buffer. The bitmap in the buf log format structure indicates
  1658. * where to place the logged data.
  1659. */
  1660. STATIC void
  1661. xlog_recover_do_reg_buffer(
  1662. struct xfs_mount *mp,
  1663. xlog_recover_item_t *item,
  1664. struct xfs_buf *bp,
  1665. xfs_buf_log_format_t *buf_f)
  1666. {
  1667. int i;
  1668. int bit;
  1669. int nbits;
  1670. int error;
  1671. trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
  1672. bit = 0;
  1673. i = 1; /* 0 is the buf format structure */
  1674. while (1) {
  1675. bit = xfs_next_bit(buf_f->blf_data_map,
  1676. buf_f->blf_map_size, bit);
  1677. if (bit == -1)
  1678. break;
  1679. nbits = xfs_contig_bits(buf_f->blf_data_map,
  1680. buf_f->blf_map_size, bit);
  1681. ASSERT(nbits > 0);
  1682. ASSERT(item->ri_buf[i].i_addr != NULL);
  1683. ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
  1684. ASSERT(XFS_BUF_COUNT(bp) >=
  1685. ((uint)bit << XFS_BLF_SHIFT)+(nbits<<XFS_BLF_SHIFT));
  1686. /*
  1687. * Do a sanity check if this is a dquot buffer. Just checking
  1688. * the first dquot in the buffer should do. XXXThis is
  1689. * probably a good thing to do for other buf types also.
  1690. */
  1691. error = 0;
  1692. if (buf_f->blf_flags &
  1693. (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
  1694. if (item->ri_buf[i].i_addr == NULL) {
  1695. xfs_alert(mp,
  1696. "XFS: NULL dquot in %s.", __func__);
  1697. goto next;
  1698. }
  1699. if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
  1700. xfs_alert(mp,
  1701. "XFS: dquot too small (%d) in %s.",
  1702. item->ri_buf[i].i_len, __func__);
  1703. goto next;
  1704. }
  1705. error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr,
  1706. -1, 0, XFS_QMOPT_DOWARN,
  1707. "dquot_buf_recover");
  1708. if (error)
  1709. goto next;
  1710. }
  1711. memcpy(xfs_buf_offset(bp,
  1712. (uint)bit << XFS_BLF_SHIFT), /* dest */
  1713. item->ri_buf[i].i_addr, /* source */
  1714. nbits<<XFS_BLF_SHIFT); /* length */
  1715. next:
  1716. i++;
  1717. bit += nbits;
  1718. }
  1719. /* Shouldn't be any more regions */
  1720. ASSERT(i == item->ri_total);
  1721. }
  1722. /*
  1723. * Do some primitive error checking on ondisk dquot data structures.
  1724. */
  1725. int
  1726. xfs_qm_dqcheck(
  1727. struct xfs_mount *mp,
  1728. xfs_disk_dquot_t *ddq,
  1729. xfs_dqid_t id,
  1730. uint type, /* used only when IO_dorepair is true */
  1731. uint flags,
  1732. char *str)
  1733. {
  1734. xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
  1735. int errs = 0;
  1736. /*
  1737. * We can encounter an uninitialized dquot buffer for 2 reasons:
  1738. * 1. If we crash while deleting the quotainode(s), and those blks got
  1739. * used for user data. This is because we take the path of regular
  1740. * file deletion; however, the size field of quotainodes is never
  1741. * updated, so all the tricks that we play in itruncate_finish
  1742. * don't quite matter.
  1743. *
  1744. * 2. We don't play the quota buffers when there's a quotaoff logitem.
  1745. * But the allocation will be replayed so we'll end up with an
  1746. * uninitialized quota block.
  1747. *
  1748. * This is all fine; things are still consistent, and we haven't lost
  1749. * any quota information. Just don't complain about bad dquot blks.
  1750. */
  1751. if (be16_to_cpu(ddq->d_magic) != XFS_DQUOT_MAGIC) {
  1752. if (flags & XFS_QMOPT_DOWARN)
  1753. xfs_alert(mp,
  1754. "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
  1755. str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
  1756. errs++;
  1757. }
  1758. if (ddq->d_version != XFS_DQUOT_VERSION) {
  1759. if (flags & XFS_QMOPT_DOWARN)
  1760. xfs_alert(mp,
  1761. "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
  1762. str, id, ddq->d_version, XFS_DQUOT_VERSION);
  1763. errs++;
  1764. }
  1765. if (ddq->d_flags != XFS_DQ_USER &&
  1766. ddq->d_flags != XFS_DQ_PROJ &&
  1767. ddq->d_flags != XFS_DQ_GROUP) {
  1768. if (flags & XFS_QMOPT_DOWARN)
  1769. xfs_alert(mp,
  1770. "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
  1771. str, id, ddq->d_flags);
  1772. errs++;
  1773. }
  1774. if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
  1775. if (flags & XFS_QMOPT_DOWARN)
  1776. xfs_alert(mp,
  1777. "%s : ondisk-dquot 0x%p, ID mismatch: "
  1778. "0x%x expected, found id 0x%x",
  1779. str, ddq, id, be32_to_cpu(ddq->d_id));
  1780. errs++;
  1781. }
  1782. if (!errs && ddq->d_id) {
  1783. if (ddq->d_blk_softlimit &&
  1784. be64_to_cpu(ddq->d_bcount) >=
  1785. be64_to_cpu(ddq->d_blk_softlimit)) {
  1786. if (!ddq->d_btimer) {
  1787. if (flags & XFS_QMOPT_DOWARN)
  1788. xfs_alert(mp,
  1789. "%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
  1790. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1791. errs++;
  1792. }
  1793. }
  1794. if (ddq->d_ino_softlimit &&
  1795. be64_to_cpu(ddq->d_icount) >=
  1796. be64_to_cpu(ddq->d_ino_softlimit)) {
  1797. if (!ddq->d_itimer) {
  1798. if (flags & XFS_QMOPT_DOWARN)
  1799. xfs_alert(mp,
  1800. "%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
  1801. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1802. errs++;
  1803. }
  1804. }
  1805. if (ddq->d_rtb_softlimit &&
  1806. be64_to_cpu(ddq->d_rtbcount) >=
  1807. be64_to_cpu(ddq->d_rtb_softlimit)) {
  1808. if (!ddq->d_rtbtimer) {
  1809. if (flags & XFS_QMOPT_DOWARN)
  1810. xfs_alert(mp,
  1811. "%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
  1812. str, (int)be32_to_cpu(ddq->d_id), ddq);
  1813. errs++;
  1814. }
  1815. }
  1816. }
  1817. if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
  1818. return errs;
  1819. if (flags & XFS_QMOPT_DOWARN)
  1820. xfs_notice(mp, "Re-initializing dquot ID 0x%x", id);
  1821. /*
  1822. * Typically, a repair is only requested by quotacheck.
  1823. */
  1824. ASSERT(id != -1);
  1825. ASSERT(flags & XFS_QMOPT_DQREPAIR);
  1826. memset(d, 0, sizeof(xfs_dqblk_t));
  1827. d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
  1828. d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
  1829. d->dd_diskdq.d_flags = type;
  1830. d->dd_diskdq.d_id = cpu_to_be32(id);
  1831. return errs;
  1832. }
  1833. /*
  1834. * Perform a dquot buffer recovery.
  1835. * Simple algorithm: if we have found a QUOTAOFF logitem of the same type
  1836. * (ie. USR or GRP), then just toss this buffer away; don't recover it.
  1837. * Else, treat it as a regular buffer and do recovery.
  1838. */
  1839. STATIC void
  1840. xlog_recover_do_dquot_buffer(
  1841. xfs_mount_t *mp,
  1842. xlog_t *log,
  1843. xlog_recover_item_t *item,
  1844. xfs_buf_t *bp,
  1845. xfs_buf_log_format_t *buf_f)
  1846. {
  1847. uint type;
  1848. trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
  1849. /*
  1850. * Filesystems are required to send in quota flags at mount time.
  1851. */
  1852. if (mp->m_qflags == 0) {
  1853. return;
  1854. }
  1855. type = 0;
  1856. if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
  1857. type |= XFS_DQ_USER;
  1858. if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
  1859. type |= XFS_DQ_PROJ;
  1860. if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
  1861. type |= XFS_DQ_GROUP;
  1862. /*
  1863. * This type of quotas was turned off, so ignore this buffer
  1864. */
  1865. if (log->l_quotaoffs_flag & type)
  1866. return;
  1867. xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
  1868. }
  1869. /*
  1870. * This routine replays a modification made to a buffer at runtime.
  1871. * There are actually two types of buffer, regular and inode, which
  1872. * are handled differently. Inode buffers are handled differently
  1873. * in that we only recover a specific set of data from them, namely
  1874. * the inode di_next_unlinked fields. This is because all other inode
  1875. * data is actually logged via inode records and any data we replay
  1876. * here which overlaps that may be stale.
  1877. *
  1878. * When meta-data buffers are freed at run time we log a buffer item
  1879. * with the XFS_BLF_CANCEL bit set to indicate that previous copies
  1880. * of the buffer in the log should not be replayed at recovery time.
  1881. * This is so that if the blocks covered by the buffer are reused for
  1882. * file data before we crash we don't end up replaying old, freed
  1883. * meta-data into a user's file.
  1884. *
  1885. * To handle the cancellation of buffer log items, we make two passes
  1886. * over the log during recovery. During the first we build a table of
  1887. * those buffers which have been cancelled, and during the second we
  1888. * only replay those buffers which do not have corresponding cancel
  1889. * records in the table. See xlog_recover_do_buffer_pass[1,2] above
  1890. * for more details on the implementation of the table of cancel records.
  1891. */
  1892. STATIC int
  1893. xlog_recover_buffer_pass2(
  1894. xlog_t *log,
  1895. xlog_recover_item_t *item)
  1896. {
  1897. xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
  1898. xfs_mount_t *mp = log->l_mp;
  1899. xfs_buf_t *bp;
  1900. int error;
  1901. uint buf_flags;
  1902. /*
  1903. * In this pass we only want to recover all the buffers which have
  1904. * not been cancelled and are not cancellation buffers themselves.
  1905. */
  1906. if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
  1907. buf_f->blf_len, buf_f->blf_flags)) {
  1908. trace_xfs_log_recover_buf_cancel(log, buf_f);
  1909. return 0;
  1910. }
  1911. trace_xfs_log_recover_buf_recover(log, buf_f);
  1912. buf_flags = XBF_LOCK;
  1913. if (!(buf_f->blf_flags & XFS_BLF_INODE_BUF))
  1914. buf_flags |= XBF_MAPPED;
  1915. bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
  1916. buf_flags);
  1917. if (XFS_BUF_ISERROR(bp)) {
  1918. xfs_ioerror_alert("xlog_recover_do..(read#1)", mp,
  1919. bp, buf_f->blf_blkno);
  1920. error = XFS_BUF_GETERROR(bp);
  1921. xfs_buf_relse(bp);
  1922. return error;
  1923. }
  1924. error = 0;
  1925. if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
  1926. error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
  1927. } else if (buf_f->blf_flags &
  1928. (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
  1929. xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
  1930. } else {
  1931. xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
  1932. }
  1933. if (error)
  1934. return XFS_ERROR(error);
  1935. /*
  1936. * Perform delayed write on the buffer. Asynchronous writes will be
  1937. * slower when taking into account all the buffers to be flushed.
  1938. *
  1939. * Also make sure that only inode buffers with good sizes stay in
  1940. * the buffer cache. The kernel moves inodes in buffers of 1 block
  1941. * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
  1942. * buffers in the log can be a different size if the log was generated
  1943. * by an older kernel using unclustered inode buffers or a newer kernel
  1944. * running with a different inode cluster size. Regardless, if the
  1945. * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
  1946. * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
  1947. * the buffer out of the buffer cache so that the buffer won't
  1948. * overlap with future reads of those inodes.
  1949. */
  1950. if (XFS_DINODE_MAGIC ==
  1951. be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
  1952. (XFS_BUF_COUNT(bp) != MAX(log->l_mp->m_sb.sb_blocksize,
  1953. (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
  1954. XFS_BUF_STALE(bp);
  1955. error = xfs_bwrite(mp, bp);
  1956. } else {
  1957. ASSERT(bp->b_target->bt_mount == mp);
  1958. XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
  1959. xfs_bdwrite(mp, bp);
  1960. }
  1961. return (error);
  1962. }
  1963. STATIC int
  1964. xlog_recover_inode_pass2(
  1965. xlog_t *log,
  1966. xlog_recover_item_t *item)
  1967. {
  1968. xfs_inode_log_format_t *in_f;
  1969. xfs_mount_t *mp = log->l_mp;
  1970. xfs_buf_t *bp;
  1971. xfs_dinode_t *dip;
  1972. int len;
  1973. xfs_caddr_t src;
  1974. xfs_caddr_t dest;
  1975. int error;
  1976. int attr_index;
  1977. uint fields;
  1978. xfs_icdinode_t *dicp;
  1979. int need_free = 0;
  1980. if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
  1981. in_f = item->ri_buf[0].i_addr;
  1982. } else {
  1983. in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
  1984. need_free = 1;
  1985. error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
  1986. if (error)
  1987. goto error;
  1988. }
  1989. /*
  1990. * Inode buffers can be freed, look out for it,
  1991. * and do not replay the inode.
  1992. */
  1993. if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
  1994. in_f->ilf_len, 0)) {
  1995. error = 0;
  1996. trace_xfs_log_recover_inode_cancel(log, in_f);
  1997. goto error;
  1998. }
  1999. trace_xfs_log_recover_inode_recover(log, in_f);
  2000. bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len,
  2001. XBF_LOCK);
  2002. if (XFS_BUF_ISERROR(bp)) {
  2003. xfs_ioerror_alert("xlog_recover_do..(read#2)", mp,
  2004. bp, in_f->ilf_blkno);
  2005. error = XFS_BUF_GETERROR(bp);
  2006. xfs_buf_relse(bp);
  2007. goto error;
  2008. }
  2009. error = 0;
  2010. ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
  2011. dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
  2012. /*
  2013. * Make sure the place we're flushing out to really looks
  2014. * like an inode!
  2015. */
  2016. if (unlikely(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC)) {
  2017. xfs_buf_relse(bp);
  2018. xfs_alert(mp,
  2019. "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
  2020. __func__, dip, bp, in_f->ilf_ino);
  2021. XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
  2022. XFS_ERRLEVEL_LOW, mp);
  2023. error = EFSCORRUPTED;
  2024. goto error;
  2025. }
  2026. dicp = item->ri_buf[1].i_addr;
  2027. if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
  2028. xfs_buf_relse(bp);
  2029. xfs_alert(mp,
  2030. "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
  2031. __func__, item, in_f->ilf_ino);
  2032. XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
  2033. XFS_ERRLEVEL_LOW, mp);
  2034. error = EFSCORRUPTED;
  2035. goto error;
  2036. }
  2037. /* Skip replay when the on disk inode is newer than the log one */
  2038. if (dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
  2039. /*
  2040. * Deal with the wrap case, DI_MAX_FLUSH is less
  2041. * than smaller numbers
  2042. */
  2043. if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
  2044. dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
  2045. /* do nothing */
  2046. } else {
  2047. xfs_buf_relse(bp);
  2048. trace_xfs_log_recover_inode_skip(log, in_f);
  2049. error = 0;
  2050. goto error;
  2051. }
  2052. }
  2053. /* Take the opportunity to reset the flush iteration count */
  2054. dicp->di_flushiter = 0;
  2055. if (unlikely((dicp->di_mode & S_IFMT) == S_IFREG)) {
  2056. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2057. (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
  2058. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
  2059. XFS_ERRLEVEL_LOW, mp, dicp);
  2060. xfs_buf_relse(bp);
  2061. xfs_alert(mp,
  2062. "%s: Bad regular inode log record, rec ptr 0x%p, "
  2063. "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2064. __func__, item, dip, bp, in_f->ilf_ino);
  2065. error = EFSCORRUPTED;
  2066. goto error;
  2067. }
  2068. } else if (unlikely((dicp->di_mode & S_IFMT) == S_IFDIR)) {
  2069. if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
  2070. (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
  2071. (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
  2072. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
  2073. XFS_ERRLEVEL_LOW, mp, dicp);
  2074. xfs_buf_relse(bp);
  2075. xfs_alert(mp,
  2076. "%s: Bad dir inode log record, rec ptr 0x%p, "
  2077. "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
  2078. __func__, item, dip, bp, in_f->ilf_ino);
  2079. error = EFSCORRUPTED;
  2080. goto error;
  2081. }
  2082. }
  2083. if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
  2084. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
  2085. XFS_ERRLEVEL_LOW, mp, dicp);
  2086. xfs_buf_relse(bp);
  2087. xfs_alert(mp,
  2088. "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
  2089. "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
  2090. __func__, item, dip, bp, in_f->ilf_ino,
  2091. dicp->di_nextents + dicp->di_anextents,
  2092. dicp->di_nblocks);
  2093. error = EFSCORRUPTED;
  2094. goto error;
  2095. }
  2096. if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
  2097. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
  2098. XFS_ERRLEVEL_LOW, mp, dicp);
  2099. xfs_buf_relse(bp);
  2100. xfs_alert(mp,
  2101. "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
  2102. "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
  2103. item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
  2104. error = EFSCORRUPTED;
  2105. goto error;
  2106. }
  2107. if (unlikely(item->ri_buf[1].i_len > sizeof(struct xfs_icdinode))) {
  2108. XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
  2109. XFS_ERRLEVEL_LOW, mp, dicp);
  2110. xfs_buf_relse(bp);
  2111. xfs_alert(mp,
  2112. "%s: Bad inode log record length %d, rec ptr 0x%p",
  2113. __func__, item->ri_buf[1].i_len, item);
  2114. error = EFSCORRUPTED;
  2115. goto error;
  2116. }
  2117. /* The core is in in-core format */
  2118. xfs_dinode_to_disk(dip, item->ri_buf[1].i_addr);
  2119. /* the rest is in on-disk format */
  2120. if (item->ri_buf[1].i_len > sizeof(struct xfs_icdinode)) {
  2121. memcpy((xfs_caddr_t) dip + sizeof(struct xfs_icdinode),
  2122. item->ri_buf[1].i_addr + sizeof(struct xfs_icdinode),
  2123. item->ri_buf[1].i_len - sizeof(struct xfs_icdinode));
  2124. }
  2125. fields = in_f->ilf_fields;
  2126. switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
  2127. case XFS_ILOG_DEV:
  2128. xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
  2129. break;
  2130. case XFS_ILOG_UUID:
  2131. memcpy(XFS_DFORK_DPTR(dip),
  2132. &in_f->ilf_u.ilfu_uuid,
  2133. sizeof(uuid_t));
  2134. break;
  2135. }
  2136. if (in_f->ilf_size == 2)
  2137. goto write_inode_buffer;
  2138. len = item->ri_buf[2].i_len;
  2139. src = item->ri_buf[2].i_addr;
  2140. ASSERT(in_f->ilf_size <= 4);
  2141. ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
  2142. ASSERT(!(fields & XFS_ILOG_DFORK) ||
  2143. (len == in_f->ilf_dsize));
  2144. switch (fields & XFS_ILOG_DFORK) {
  2145. case XFS_ILOG_DDATA:
  2146. case XFS_ILOG_DEXT:
  2147. memcpy(XFS_DFORK_DPTR(dip), src, len);
  2148. break;
  2149. case XFS_ILOG_DBROOT:
  2150. xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
  2151. (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
  2152. XFS_DFORK_DSIZE(dip, mp));
  2153. break;
  2154. default:
  2155. /*
  2156. * There are no data fork flags set.
  2157. */
  2158. ASSERT((fields & XFS_ILOG_DFORK) == 0);
  2159. break;
  2160. }
  2161. /*
  2162. * If we logged any attribute data, recover it. There may or
  2163. * may not have been any other non-core data logged in this
  2164. * transaction.
  2165. */
  2166. if (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2167. if (in_f->ilf_fields & XFS_ILOG_DFORK) {
  2168. attr_index = 3;
  2169. } else {
  2170. attr_index = 2;
  2171. }
  2172. len = item->ri_buf[attr_index].i_len;
  2173. src = item->ri_buf[attr_index].i_addr;
  2174. ASSERT(len == in_f->ilf_asize);
  2175. switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
  2176. case XFS_ILOG_ADATA:
  2177. case XFS_ILOG_AEXT:
  2178. dest = XFS_DFORK_APTR(dip);
  2179. ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
  2180. memcpy(dest, src, len);
  2181. break;
  2182. case XFS_ILOG_ABROOT:
  2183. dest = XFS_DFORK_APTR(dip);
  2184. xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
  2185. len, (xfs_bmdr_block_t*)dest,
  2186. XFS_DFORK_ASIZE(dip, mp));
  2187. break;
  2188. default:
  2189. xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
  2190. ASSERT(0);
  2191. xfs_buf_relse(bp);
  2192. error = EIO;
  2193. goto error;
  2194. }
  2195. }
  2196. write_inode_buffer:
  2197. ASSERT(bp->b_target->bt_mount == mp);
  2198. XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
  2199. xfs_bdwrite(mp, bp);
  2200. error:
  2201. if (need_free)
  2202. kmem_free(in_f);
  2203. return XFS_ERROR(error);
  2204. }
  2205. /*
  2206. * Recover QUOTAOFF records. We simply make a note of it in the xlog_t
  2207. * structure, so that we know not to do any dquot item or dquot buffer recovery,
  2208. * of that type.
  2209. */
  2210. STATIC int
  2211. xlog_recover_quotaoff_pass1(
  2212. xlog_t *log,
  2213. xlog_recover_item_t *item)
  2214. {
  2215. xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
  2216. ASSERT(qoff_f);
  2217. /*
  2218. * The logitem format's flag tells us if this was user quotaoff,
  2219. * group/project quotaoff or both.
  2220. */
  2221. if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
  2222. log->l_quotaoffs_flag |= XFS_DQ_USER;
  2223. if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
  2224. log->l_quotaoffs_flag |= XFS_DQ_PROJ;
  2225. if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
  2226. log->l_quotaoffs_flag |= XFS_DQ_GROUP;
  2227. return (0);
  2228. }
  2229. /*
  2230. * Recover a dquot record
  2231. */
  2232. STATIC int
  2233. xlog_recover_dquot_pass2(
  2234. xlog_t *log,
  2235. xlog_recover_item_t *item)
  2236. {
  2237. xfs_mount_t *mp = log->l_mp;
  2238. xfs_buf_t *bp;
  2239. struct xfs_disk_dquot *ddq, *recddq;
  2240. int error;
  2241. xfs_dq_logformat_t *dq_f;
  2242. uint type;
  2243. /*
  2244. * Filesystems are required to send in quota flags at mount time.
  2245. */
  2246. if (mp->m_qflags == 0)
  2247. return (0);
  2248. recddq = item->ri_buf[1].i_addr;
  2249. if (recddq == NULL) {
  2250. xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
  2251. return XFS_ERROR(EIO);
  2252. }
  2253. if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
  2254. xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
  2255. item->ri_buf[1].i_len, __func__);
  2256. return XFS_ERROR(EIO);
  2257. }
  2258. /*
  2259. * This type of quotas was turned off, so ignore this record.
  2260. */
  2261. type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
  2262. ASSERT(type);
  2263. if (log->l_quotaoffs_flag & type)
  2264. return (0);
  2265. /*
  2266. * At this point we know that quota was _not_ turned off.
  2267. * Since the mount flags are not indicating to us otherwise, this
  2268. * must mean that quota is on, and the dquot needs to be replayed.
  2269. * Remember that we may not have fully recovered the superblock yet,
  2270. * so we can't do the usual trick of looking at the SB quota bits.
  2271. *
  2272. * The other possibility, of course, is that the quota subsystem was
  2273. * removed since the last mount - ENOSYS.
  2274. */
  2275. dq_f = item->ri_buf[0].i_addr;
  2276. ASSERT(dq_f);
  2277. error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
  2278. "xlog_recover_dquot_pass2 (log copy)");
  2279. if (error)
  2280. return XFS_ERROR(EIO);
  2281. ASSERT(dq_f->qlf_len == 1);
  2282. error = xfs_read_buf(mp, mp->m_ddev_targp,
  2283. dq_f->qlf_blkno,
  2284. XFS_FSB_TO_BB(mp, dq_f->qlf_len),
  2285. 0, &bp);
  2286. if (error) {
  2287. xfs_ioerror_alert("xlog_recover_do..(read#3)", mp,
  2288. bp, dq_f->qlf_blkno);
  2289. return error;
  2290. }
  2291. ASSERT(bp);
  2292. ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
  2293. /*
  2294. * At least the magic num portion should be on disk because this
  2295. * was among a chunk of dquots created earlier, and we did some
  2296. * minimal initialization then.
  2297. */
  2298. error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
  2299. "xlog_recover_dquot_pass2");
  2300. if (error) {
  2301. xfs_buf_relse(bp);
  2302. return XFS_ERROR(EIO);
  2303. }
  2304. memcpy(ddq, recddq, item->ri_buf[1].i_len);
  2305. ASSERT(dq_f->qlf_size == 2);
  2306. ASSERT(bp->b_target->bt_mount == mp);
  2307. XFS_BUF_SET_IODONE_FUNC(bp, xlog_recover_iodone);
  2308. xfs_bdwrite(mp, bp);
  2309. return (0);
  2310. }
  2311. /*
  2312. * This routine is called to create an in-core extent free intent
  2313. * item from the efi format structure which was logged on disk.
  2314. * It allocates an in-core efi, copies the extents from the format
  2315. * structure into it, and adds the efi to the AIL with the given
  2316. * LSN.
  2317. */
  2318. STATIC int
  2319. xlog_recover_efi_pass2(
  2320. xlog_t *log,
  2321. xlog_recover_item_t *item,
  2322. xfs_lsn_t lsn)
  2323. {
  2324. int error;
  2325. xfs_mount_t *mp = log->l_mp;
  2326. xfs_efi_log_item_t *efip;
  2327. xfs_efi_log_format_t *efi_formatp;
  2328. efi_formatp = item->ri_buf[0].i_addr;
  2329. efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
  2330. if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
  2331. &(efip->efi_format)))) {
  2332. xfs_efi_item_free(efip);
  2333. return error;
  2334. }
  2335. atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
  2336. spin_lock(&log->l_ailp->xa_lock);
  2337. /*
  2338. * xfs_trans_ail_update() drops the AIL lock.
  2339. */
  2340. xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
  2341. return 0;
  2342. }
  2343. /*
  2344. * This routine is called when an efd format structure is found in
  2345. * a committed transaction in the log. It's purpose is to cancel
  2346. * the corresponding efi if it was still in the log. To do this
  2347. * it searches the AIL for the efi with an id equal to that in the
  2348. * efd format structure. If we find it, we remove the efi from the
  2349. * AIL and free it.
  2350. */
  2351. STATIC int
  2352. xlog_recover_efd_pass2(
  2353. xlog_t *log,
  2354. xlog_recover_item_t *item)
  2355. {
  2356. xfs_efd_log_format_t *efd_formatp;
  2357. xfs_efi_log_item_t *efip = NULL;
  2358. xfs_log_item_t *lip;
  2359. __uint64_t efi_id;
  2360. struct xfs_ail_cursor cur;
  2361. struct xfs_ail *ailp = log->l_ailp;
  2362. efd_formatp = item->ri_buf[0].i_addr;
  2363. ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
  2364. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
  2365. (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
  2366. ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
  2367. efi_id = efd_formatp->efd_efi_id;
  2368. /*
  2369. * Search for the efi with the id in the efd format structure
  2370. * in the AIL.
  2371. */
  2372. spin_lock(&ailp->xa_lock);
  2373. lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
  2374. while (lip != NULL) {
  2375. if (lip->li_type == XFS_LI_EFI) {
  2376. efip = (xfs_efi_log_item_t *)lip;
  2377. if (efip->efi_format.efi_id == efi_id) {
  2378. /*
  2379. * xfs_trans_ail_delete() drops the
  2380. * AIL lock.
  2381. */
  2382. xfs_trans_ail_delete(ailp, lip);
  2383. xfs_efi_item_free(efip);
  2384. spin_lock(&ailp->xa_lock);
  2385. break;
  2386. }
  2387. }
  2388. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2389. }
  2390. xfs_trans_ail_cursor_done(ailp, &cur);
  2391. spin_unlock(&ailp->xa_lock);
  2392. return 0;
  2393. }
  2394. /*
  2395. * Free up any resources allocated by the transaction
  2396. *
  2397. * Remember that EFIs, EFDs, and IUNLINKs are handled later.
  2398. */
  2399. STATIC void
  2400. xlog_recover_free_trans(
  2401. struct xlog_recover *trans)
  2402. {
  2403. xlog_recover_item_t *item, *n;
  2404. int i;
  2405. list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
  2406. /* Free the regions in the item. */
  2407. list_del(&item->ri_list);
  2408. for (i = 0; i < item->ri_cnt; i++)
  2409. kmem_free(item->ri_buf[i].i_addr);
  2410. /* Free the item itself */
  2411. kmem_free(item->ri_buf);
  2412. kmem_free(item);
  2413. }
  2414. /* Free the transaction recover structure */
  2415. kmem_free(trans);
  2416. }
  2417. STATIC int
  2418. xlog_recover_commit_pass1(
  2419. struct log *log,
  2420. struct xlog_recover *trans,
  2421. xlog_recover_item_t *item)
  2422. {
  2423. trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
  2424. switch (ITEM_TYPE(item)) {
  2425. case XFS_LI_BUF:
  2426. return xlog_recover_buffer_pass1(log, item);
  2427. case XFS_LI_QUOTAOFF:
  2428. return xlog_recover_quotaoff_pass1(log, item);
  2429. case XFS_LI_INODE:
  2430. case XFS_LI_EFI:
  2431. case XFS_LI_EFD:
  2432. case XFS_LI_DQUOT:
  2433. /* nothing to do in pass 1 */
  2434. return 0;
  2435. default:
  2436. xfs_warn(log->l_mp, "%s: invalid item type (%d)",
  2437. __func__, ITEM_TYPE(item));
  2438. ASSERT(0);
  2439. return XFS_ERROR(EIO);
  2440. }
  2441. }
  2442. STATIC int
  2443. xlog_recover_commit_pass2(
  2444. struct log *log,
  2445. struct xlog_recover *trans,
  2446. xlog_recover_item_t *item)
  2447. {
  2448. trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
  2449. switch (ITEM_TYPE(item)) {
  2450. case XFS_LI_BUF:
  2451. return xlog_recover_buffer_pass2(log, item);
  2452. case XFS_LI_INODE:
  2453. return xlog_recover_inode_pass2(log, item);
  2454. case XFS_LI_EFI:
  2455. return xlog_recover_efi_pass2(log, item, trans->r_lsn);
  2456. case XFS_LI_EFD:
  2457. return xlog_recover_efd_pass2(log, item);
  2458. case XFS_LI_DQUOT:
  2459. return xlog_recover_dquot_pass2(log, item);
  2460. case XFS_LI_QUOTAOFF:
  2461. /* nothing to do in pass2 */
  2462. return 0;
  2463. default:
  2464. xfs_warn(log->l_mp, "%s: invalid item type (%d)",
  2465. __func__, ITEM_TYPE(item));
  2466. ASSERT(0);
  2467. return XFS_ERROR(EIO);
  2468. }
  2469. }
  2470. /*
  2471. * Perform the transaction.
  2472. *
  2473. * If the transaction modifies a buffer or inode, do it now. Otherwise,
  2474. * EFIs and EFDs get queued up by adding entries into the AIL for them.
  2475. */
  2476. STATIC int
  2477. xlog_recover_commit_trans(
  2478. struct log *log,
  2479. struct xlog_recover *trans,
  2480. int pass)
  2481. {
  2482. int error = 0;
  2483. xlog_recover_item_t *item;
  2484. hlist_del(&trans->r_list);
  2485. error = xlog_recover_reorder_trans(log, trans, pass);
  2486. if (error)
  2487. return error;
  2488. list_for_each_entry(item, &trans->r_itemq, ri_list) {
  2489. if (pass == XLOG_RECOVER_PASS1)
  2490. error = xlog_recover_commit_pass1(log, trans, item);
  2491. else
  2492. error = xlog_recover_commit_pass2(log, trans, item);
  2493. if (error)
  2494. return error;
  2495. }
  2496. xlog_recover_free_trans(trans);
  2497. return 0;
  2498. }
  2499. STATIC int
  2500. xlog_recover_unmount_trans(
  2501. struct log *log,
  2502. xlog_recover_t *trans)
  2503. {
  2504. /* Do nothing now */
  2505. xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
  2506. return 0;
  2507. }
  2508. /*
  2509. * There are two valid states of the r_state field. 0 indicates that the
  2510. * transaction structure is in a normal state. We have either seen the
  2511. * start of the transaction or the last operation we added was not a partial
  2512. * operation. If the last operation we added to the transaction was a
  2513. * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
  2514. *
  2515. * NOTE: skip LRs with 0 data length.
  2516. */
  2517. STATIC int
  2518. xlog_recover_process_data(
  2519. xlog_t *log,
  2520. struct hlist_head rhash[],
  2521. xlog_rec_header_t *rhead,
  2522. xfs_caddr_t dp,
  2523. int pass)
  2524. {
  2525. xfs_caddr_t lp;
  2526. int num_logops;
  2527. xlog_op_header_t *ohead;
  2528. xlog_recover_t *trans;
  2529. xlog_tid_t tid;
  2530. int error;
  2531. unsigned long hash;
  2532. uint flags;
  2533. lp = dp + be32_to_cpu(rhead->h_len);
  2534. num_logops = be32_to_cpu(rhead->h_num_logops);
  2535. /* check the log format matches our own - else we can't recover */
  2536. if (xlog_header_check_recover(log->l_mp, rhead))
  2537. return (XFS_ERROR(EIO));
  2538. while ((dp < lp) && num_logops) {
  2539. ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
  2540. ohead = (xlog_op_header_t *)dp;
  2541. dp += sizeof(xlog_op_header_t);
  2542. if (ohead->oh_clientid != XFS_TRANSACTION &&
  2543. ohead->oh_clientid != XFS_LOG) {
  2544. xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
  2545. __func__, ohead->oh_clientid);
  2546. ASSERT(0);
  2547. return (XFS_ERROR(EIO));
  2548. }
  2549. tid = be32_to_cpu(ohead->oh_tid);
  2550. hash = XLOG_RHASH(tid);
  2551. trans = xlog_recover_find_tid(&rhash[hash], tid);
  2552. if (trans == NULL) { /* not found; add new tid */
  2553. if (ohead->oh_flags & XLOG_START_TRANS)
  2554. xlog_recover_new_tid(&rhash[hash], tid,
  2555. be64_to_cpu(rhead->h_lsn));
  2556. } else {
  2557. if (dp + be32_to_cpu(ohead->oh_len) > lp) {
  2558. xfs_warn(log->l_mp, "%s: bad length 0x%x",
  2559. __func__, be32_to_cpu(ohead->oh_len));
  2560. WARN_ON(1);
  2561. return (XFS_ERROR(EIO));
  2562. }
  2563. flags = ohead->oh_flags & ~XLOG_END_TRANS;
  2564. if (flags & XLOG_WAS_CONT_TRANS)
  2565. flags &= ~XLOG_CONTINUE_TRANS;
  2566. switch (flags) {
  2567. case XLOG_COMMIT_TRANS:
  2568. error = xlog_recover_commit_trans(log,
  2569. trans, pass);
  2570. break;
  2571. case XLOG_UNMOUNT_TRANS:
  2572. error = xlog_recover_unmount_trans(log, trans);
  2573. break;
  2574. case XLOG_WAS_CONT_TRANS:
  2575. error = xlog_recover_add_to_cont_trans(log,
  2576. trans, dp,
  2577. be32_to_cpu(ohead->oh_len));
  2578. break;
  2579. case XLOG_START_TRANS:
  2580. xfs_warn(log->l_mp, "%s: bad transaction",
  2581. __func__);
  2582. ASSERT(0);
  2583. error = XFS_ERROR(EIO);
  2584. break;
  2585. case 0:
  2586. case XLOG_CONTINUE_TRANS:
  2587. error = xlog_recover_add_to_trans(log, trans,
  2588. dp, be32_to_cpu(ohead->oh_len));
  2589. break;
  2590. default:
  2591. xfs_warn(log->l_mp, "%s: bad flag 0x%x",
  2592. __func__, flags);
  2593. ASSERT(0);
  2594. error = XFS_ERROR(EIO);
  2595. break;
  2596. }
  2597. if (error)
  2598. return error;
  2599. }
  2600. dp += be32_to_cpu(ohead->oh_len);
  2601. num_logops--;
  2602. }
  2603. return 0;
  2604. }
  2605. /*
  2606. * Process an extent free intent item that was recovered from
  2607. * the log. We need to free the extents that it describes.
  2608. */
  2609. STATIC int
  2610. xlog_recover_process_efi(
  2611. xfs_mount_t *mp,
  2612. xfs_efi_log_item_t *efip)
  2613. {
  2614. xfs_efd_log_item_t *efdp;
  2615. xfs_trans_t *tp;
  2616. int i;
  2617. int error = 0;
  2618. xfs_extent_t *extp;
  2619. xfs_fsblock_t startblock_fsb;
  2620. ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
  2621. /*
  2622. * First check the validity of the extents described by the
  2623. * EFI. If any are bad, then assume that all are bad and
  2624. * just toss the EFI.
  2625. */
  2626. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  2627. extp = &(efip->efi_format.efi_extents[i]);
  2628. startblock_fsb = XFS_BB_TO_FSB(mp,
  2629. XFS_FSB_TO_DADDR(mp, extp->ext_start));
  2630. if ((startblock_fsb == 0) ||
  2631. (extp->ext_len == 0) ||
  2632. (startblock_fsb >= mp->m_sb.sb_dblocks) ||
  2633. (extp->ext_len >= mp->m_sb.sb_agblocks)) {
  2634. /*
  2635. * This will pull the EFI from the AIL and
  2636. * free the memory associated with it.
  2637. */
  2638. xfs_efi_release(efip, efip->efi_format.efi_nextents);
  2639. return XFS_ERROR(EIO);
  2640. }
  2641. }
  2642. tp = xfs_trans_alloc(mp, 0);
  2643. error = xfs_trans_reserve(tp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0, 0, 0);
  2644. if (error)
  2645. goto abort_error;
  2646. efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
  2647. for (i = 0; i < efip->efi_format.efi_nextents; i++) {
  2648. extp = &(efip->efi_format.efi_extents[i]);
  2649. error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
  2650. if (error)
  2651. goto abort_error;
  2652. xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
  2653. extp->ext_len);
  2654. }
  2655. set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
  2656. error = xfs_trans_commit(tp, 0);
  2657. return error;
  2658. abort_error:
  2659. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  2660. return error;
  2661. }
  2662. /*
  2663. * When this is called, all of the EFIs which did not have
  2664. * corresponding EFDs should be in the AIL. What we do now
  2665. * is free the extents associated with each one.
  2666. *
  2667. * Since we process the EFIs in normal transactions, they
  2668. * will be removed at some point after the commit. This prevents
  2669. * us from just walking down the list processing each one.
  2670. * We'll use a flag in the EFI to skip those that we've already
  2671. * processed and use the AIL iteration mechanism's generation
  2672. * count to try to speed this up at least a bit.
  2673. *
  2674. * When we start, we know that the EFIs are the only things in
  2675. * the AIL. As we process them, however, other items are added
  2676. * to the AIL. Since everything added to the AIL must come after
  2677. * everything already in the AIL, we stop processing as soon as
  2678. * we see something other than an EFI in the AIL.
  2679. */
  2680. STATIC int
  2681. xlog_recover_process_efis(
  2682. xlog_t *log)
  2683. {
  2684. xfs_log_item_t *lip;
  2685. xfs_efi_log_item_t *efip;
  2686. int error = 0;
  2687. struct xfs_ail_cursor cur;
  2688. struct xfs_ail *ailp;
  2689. ailp = log->l_ailp;
  2690. spin_lock(&ailp->xa_lock);
  2691. lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
  2692. while (lip != NULL) {
  2693. /*
  2694. * We're done when we see something other than an EFI.
  2695. * There should be no EFIs left in the AIL now.
  2696. */
  2697. if (lip->li_type != XFS_LI_EFI) {
  2698. #ifdef DEBUG
  2699. for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
  2700. ASSERT(lip->li_type != XFS_LI_EFI);
  2701. #endif
  2702. break;
  2703. }
  2704. /*
  2705. * Skip EFIs that we've already processed.
  2706. */
  2707. efip = (xfs_efi_log_item_t *)lip;
  2708. if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
  2709. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2710. continue;
  2711. }
  2712. spin_unlock(&ailp->xa_lock);
  2713. error = xlog_recover_process_efi(log->l_mp, efip);
  2714. spin_lock(&ailp->xa_lock);
  2715. if (error)
  2716. goto out;
  2717. lip = xfs_trans_ail_cursor_next(ailp, &cur);
  2718. }
  2719. out:
  2720. xfs_trans_ail_cursor_done(ailp, &cur);
  2721. spin_unlock(&ailp->xa_lock);
  2722. return error;
  2723. }
  2724. /*
  2725. * This routine performs a transaction to null out a bad inode pointer
  2726. * in an agi unlinked inode hash bucket.
  2727. */
  2728. STATIC void
  2729. xlog_recover_clear_agi_bucket(
  2730. xfs_mount_t *mp,
  2731. xfs_agnumber_t agno,
  2732. int bucket)
  2733. {
  2734. xfs_trans_t *tp;
  2735. xfs_agi_t *agi;
  2736. xfs_buf_t *agibp;
  2737. int offset;
  2738. int error;
  2739. tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
  2740. error = xfs_trans_reserve(tp, 0, XFS_CLEAR_AGI_BUCKET_LOG_RES(mp),
  2741. 0, 0, 0);
  2742. if (error)
  2743. goto out_abort;
  2744. error = xfs_read_agi(mp, tp, agno, &agibp);
  2745. if (error)
  2746. goto out_abort;
  2747. agi = XFS_BUF_TO_AGI(agibp);
  2748. agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
  2749. offset = offsetof(xfs_agi_t, agi_unlinked) +
  2750. (sizeof(xfs_agino_t) * bucket);
  2751. xfs_trans_log_buf(tp, agibp, offset,
  2752. (offset + sizeof(xfs_agino_t) - 1));
  2753. error = xfs_trans_commit(tp, 0);
  2754. if (error)
  2755. goto out_error;
  2756. return;
  2757. out_abort:
  2758. xfs_trans_cancel(tp, XFS_TRANS_ABORT);
  2759. out_error:
  2760. xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
  2761. return;
  2762. }
  2763. STATIC xfs_agino_t
  2764. xlog_recover_process_one_iunlink(
  2765. struct xfs_mount *mp,
  2766. xfs_agnumber_t agno,
  2767. xfs_agino_t agino,
  2768. int bucket)
  2769. {
  2770. struct xfs_buf *ibp;
  2771. struct xfs_dinode *dip;
  2772. struct xfs_inode *ip;
  2773. xfs_ino_t ino;
  2774. int error;
  2775. ino = XFS_AGINO_TO_INO(mp, agno, agino);
  2776. error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
  2777. if (error)
  2778. goto fail;
  2779. /*
  2780. * Get the on disk inode to find the next inode in the bucket.
  2781. */
  2782. error = xfs_itobp(mp, NULL, ip, &dip, &ibp, XBF_LOCK);
  2783. if (error)
  2784. goto fail_iput;
  2785. ASSERT(ip->i_d.di_nlink == 0);
  2786. ASSERT(ip->i_d.di_mode != 0);
  2787. /* setup for the next pass */
  2788. agino = be32_to_cpu(dip->di_next_unlinked);
  2789. xfs_buf_relse(ibp);
  2790. /*
  2791. * Prevent any DMAPI event from being sent when the reference on
  2792. * the inode is dropped.
  2793. */
  2794. ip->i_d.di_dmevmask = 0;
  2795. IRELE(ip);
  2796. return agino;
  2797. fail_iput:
  2798. IRELE(ip);
  2799. fail:
  2800. /*
  2801. * We can't read in the inode this bucket points to, or this inode
  2802. * is messed up. Just ditch this bucket of inodes. We will lose
  2803. * some inodes and space, but at least we won't hang.
  2804. *
  2805. * Call xlog_recover_clear_agi_bucket() to perform a transaction to
  2806. * clear the inode pointer in the bucket.
  2807. */
  2808. xlog_recover_clear_agi_bucket(mp, agno, bucket);
  2809. return NULLAGINO;
  2810. }
  2811. /*
  2812. * xlog_iunlink_recover
  2813. *
  2814. * This is called during recovery to process any inodes which
  2815. * we unlinked but not freed when the system crashed. These
  2816. * inodes will be on the lists in the AGI blocks. What we do
  2817. * here is scan all the AGIs and fully truncate and free any
  2818. * inodes found on the lists. Each inode is removed from the
  2819. * lists when it has been fully truncated and is freed. The
  2820. * freeing of the inode and its removal from the list must be
  2821. * atomic.
  2822. */
  2823. STATIC void
  2824. xlog_recover_process_iunlinks(
  2825. xlog_t *log)
  2826. {
  2827. xfs_mount_t *mp;
  2828. xfs_agnumber_t agno;
  2829. xfs_agi_t *agi;
  2830. xfs_buf_t *agibp;
  2831. xfs_agino_t agino;
  2832. int bucket;
  2833. int error;
  2834. uint mp_dmevmask;
  2835. mp = log->l_mp;
  2836. /*
  2837. * Prevent any DMAPI event from being sent while in this function.
  2838. */
  2839. mp_dmevmask = mp->m_dmevmask;
  2840. mp->m_dmevmask = 0;
  2841. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  2842. /*
  2843. * Find the agi for this ag.
  2844. */
  2845. error = xfs_read_agi(mp, NULL, agno, &agibp);
  2846. if (error) {
  2847. /*
  2848. * AGI is b0rked. Don't process it.
  2849. *
  2850. * We should probably mark the filesystem as corrupt
  2851. * after we've recovered all the ag's we can....
  2852. */
  2853. continue;
  2854. }
  2855. agi = XFS_BUF_TO_AGI(agibp);
  2856. for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
  2857. agino = be32_to_cpu(agi->agi_unlinked[bucket]);
  2858. while (agino != NULLAGINO) {
  2859. /*
  2860. * Release the agi buffer so that it can
  2861. * be acquired in the normal course of the
  2862. * transaction to truncate and free the inode.
  2863. */
  2864. xfs_buf_relse(agibp);
  2865. agino = xlog_recover_process_one_iunlink(mp,
  2866. agno, agino, bucket);
  2867. /*
  2868. * Reacquire the agibuffer and continue around
  2869. * the loop. This should never fail as we know
  2870. * the buffer was good earlier on.
  2871. */
  2872. error = xfs_read_agi(mp, NULL, agno, &agibp);
  2873. ASSERT(error == 0);
  2874. agi = XFS_BUF_TO_AGI(agibp);
  2875. }
  2876. }
  2877. /*
  2878. * Release the buffer for the current agi so we can
  2879. * go on to the next one.
  2880. */
  2881. xfs_buf_relse(agibp);
  2882. }
  2883. mp->m_dmevmask = mp_dmevmask;
  2884. }
  2885. #ifdef DEBUG
  2886. STATIC void
  2887. xlog_pack_data_checksum(
  2888. xlog_t *log,
  2889. xlog_in_core_t *iclog,
  2890. int size)
  2891. {
  2892. int i;
  2893. __be32 *up;
  2894. uint chksum = 0;
  2895. up = (__be32 *)iclog->ic_datap;
  2896. /* divide length by 4 to get # words */
  2897. for (i = 0; i < (size >> 2); i++) {
  2898. chksum ^= be32_to_cpu(*up);
  2899. up++;
  2900. }
  2901. iclog->ic_header.h_chksum = cpu_to_be32(chksum);
  2902. }
  2903. #else
  2904. #define xlog_pack_data_checksum(log, iclog, size)
  2905. #endif
  2906. /*
  2907. * Stamp cycle number in every block
  2908. */
  2909. void
  2910. xlog_pack_data(
  2911. xlog_t *log,
  2912. xlog_in_core_t *iclog,
  2913. int roundoff)
  2914. {
  2915. int i, j, k;
  2916. int size = iclog->ic_offset + roundoff;
  2917. __be32 cycle_lsn;
  2918. xfs_caddr_t dp;
  2919. xlog_pack_data_checksum(log, iclog, size);
  2920. cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
  2921. dp = iclog->ic_datap;
  2922. for (i = 0; i < BTOBB(size) &&
  2923. i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
  2924. iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
  2925. *(__be32 *)dp = cycle_lsn;
  2926. dp += BBSIZE;
  2927. }
  2928. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  2929. xlog_in_core_2_t *xhdr = iclog->ic_data;
  2930. for ( ; i < BTOBB(size); i++) {
  2931. j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  2932. k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  2933. xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
  2934. *(__be32 *)dp = cycle_lsn;
  2935. dp += BBSIZE;
  2936. }
  2937. for (i = 1; i < log->l_iclog_heads; i++) {
  2938. xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
  2939. }
  2940. }
  2941. }
  2942. STATIC void
  2943. xlog_unpack_data(
  2944. xlog_rec_header_t *rhead,
  2945. xfs_caddr_t dp,
  2946. xlog_t *log)
  2947. {
  2948. int i, j, k;
  2949. for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
  2950. i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
  2951. *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
  2952. dp += BBSIZE;
  2953. }
  2954. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  2955. xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
  2956. for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
  2957. j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  2958. k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
  2959. *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
  2960. dp += BBSIZE;
  2961. }
  2962. }
  2963. }
  2964. STATIC int
  2965. xlog_valid_rec_header(
  2966. xlog_t *log,
  2967. xlog_rec_header_t *rhead,
  2968. xfs_daddr_t blkno)
  2969. {
  2970. int hlen;
  2971. if (unlikely(be32_to_cpu(rhead->h_magicno) != XLOG_HEADER_MAGIC_NUM)) {
  2972. XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
  2973. XFS_ERRLEVEL_LOW, log->l_mp);
  2974. return XFS_ERROR(EFSCORRUPTED);
  2975. }
  2976. if (unlikely(
  2977. (!rhead->h_version ||
  2978. (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
  2979. xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
  2980. __func__, be32_to_cpu(rhead->h_version));
  2981. return XFS_ERROR(EIO);
  2982. }
  2983. /* LR body must have data or it wouldn't have been written */
  2984. hlen = be32_to_cpu(rhead->h_len);
  2985. if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
  2986. XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
  2987. XFS_ERRLEVEL_LOW, log->l_mp);
  2988. return XFS_ERROR(EFSCORRUPTED);
  2989. }
  2990. if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
  2991. XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
  2992. XFS_ERRLEVEL_LOW, log->l_mp);
  2993. return XFS_ERROR(EFSCORRUPTED);
  2994. }
  2995. return 0;
  2996. }
  2997. /*
  2998. * Read the log from tail to head and process the log records found.
  2999. * Handle the two cases where the tail and head are in the same cycle
  3000. * and where the active portion of the log wraps around the end of
  3001. * the physical log separately. The pass parameter is passed through
  3002. * to the routines called to process the data and is not looked at
  3003. * here.
  3004. */
  3005. STATIC int
  3006. xlog_do_recovery_pass(
  3007. xlog_t *log,
  3008. xfs_daddr_t head_blk,
  3009. xfs_daddr_t tail_blk,
  3010. int pass)
  3011. {
  3012. xlog_rec_header_t *rhead;
  3013. xfs_daddr_t blk_no;
  3014. xfs_caddr_t offset;
  3015. xfs_buf_t *hbp, *dbp;
  3016. int error = 0, h_size;
  3017. int bblks, split_bblks;
  3018. int hblks, split_hblks, wrapped_hblks;
  3019. struct hlist_head rhash[XLOG_RHASH_SIZE];
  3020. ASSERT(head_blk != tail_blk);
  3021. /*
  3022. * Read the header of the tail block and get the iclog buffer size from
  3023. * h_size. Use this to tell how many sectors make up the log header.
  3024. */
  3025. if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
  3026. /*
  3027. * When using variable length iclogs, read first sector of
  3028. * iclog header and extract the header size from it. Get a
  3029. * new hbp that is the correct size.
  3030. */
  3031. hbp = xlog_get_bp(log, 1);
  3032. if (!hbp)
  3033. return ENOMEM;
  3034. error = xlog_bread(log, tail_blk, 1, hbp, &offset);
  3035. if (error)
  3036. goto bread_err1;
  3037. rhead = (xlog_rec_header_t *)offset;
  3038. error = xlog_valid_rec_header(log, rhead, tail_blk);
  3039. if (error)
  3040. goto bread_err1;
  3041. h_size = be32_to_cpu(rhead->h_size);
  3042. if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
  3043. (h_size > XLOG_HEADER_CYCLE_SIZE)) {
  3044. hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
  3045. if (h_size % XLOG_HEADER_CYCLE_SIZE)
  3046. hblks++;
  3047. xlog_put_bp(hbp);
  3048. hbp = xlog_get_bp(log, hblks);
  3049. } else {
  3050. hblks = 1;
  3051. }
  3052. } else {
  3053. ASSERT(log->l_sectBBsize == 1);
  3054. hblks = 1;
  3055. hbp = xlog_get_bp(log, 1);
  3056. h_size = XLOG_BIG_RECORD_BSIZE;
  3057. }
  3058. if (!hbp)
  3059. return ENOMEM;
  3060. dbp = xlog_get_bp(log, BTOBB(h_size));
  3061. if (!dbp) {
  3062. xlog_put_bp(hbp);
  3063. return ENOMEM;
  3064. }
  3065. memset(rhash, 0, sizeof(rhash));
  3066. if (tail_blk <= head_blk) {
  3067. for (blk_no = tail_blk; blk_no < head_blk; ) {
  3068. error = xlog_bread(log, blk_no, hblks, hbp, &offset);
  3069. if (error)
  3070. goto bread_err2;
  3071. rhead = (xlog_rec_header_t *)offset;
  3072. error = xlog_valid_rec_header(log, rhead, blk_no);
  3073. if (error)
  3074. goto bread_err2;
  3075. /* blocks in data section */
  3076. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3077. error = xlog_bread(log, blk_no + hblks, bblks, dbp,
  3078. &offset);
  3079. if (error)
  3080. goto bread_err2;
  3081. xlog_unpack_data(rhead, offset, log);
  3082. if ((error = xlog_recover_process_data(log,
  3083. rhash, rhead, offset, pass)))
  3084. goto bread_err2;
  3085. blk_no += bblks + hblks;
  3086. }
  3087. } else {
  3088. /*
  3089. * Perform recovery around the end of the physical log.
  3090. * When the head is not on the same cycle number as the tail,
  3091. * we can't do a sequential recovery as above.
  3092. */
  3093. blk_no = tail_blk;
  3094. while (blk_no < log->l_logBBsize) {
  3095. /*
  3096. * Check for header wrapping around physical end-of-log
  3097. */
  3098. offset = XFS_BUF_PTR(hbp);
  3099. split_hblks = 0;
  3100. wrapped_hblks = 0;
  3101. if (blk_no + hblks <= log->l_logBBsize) {
  3102. /* Read header in one read */
  3103. error = xlog_bread(log, blk_no, hblks, hbp,
  3104. &offset);
  3105. if (error)
  3106. goto bread_err2;
  3107. } else {
  3108. /* This LR is split across physical log end */
  3109. if (blk_no != log->l_logBBsize) {
  3110. /* some data before physical log end */
  3111. ASSERT(blk_no <= INT_MAX);
  3112. split_hblks = log->l_logBBsize - (int)blk_no;
  3113. ASSERT(split_hblks > 0);
  3114. error = xlog_bread(log, blk_no,
  3115. split_hblks, hbp,
  3116. &offset);
  3117. if (error)
  3118. goto bread_err2;
  3119. }
  3120. /*
  3121. * Note: this black magic still works with
  3122. * large sector sizes (non-512) only because:
  3123. * - we increased the buffer size originally
  3124. * by 1 sector giving us enough extra space
  3125. * for the second read;
  3126. * - the log start is guaranteed to be sector
  3127. * aligned;
  3128. * - we read the log end (LR header start)
  3129. * _first_, then the log start (LR header end)
  3130. * - order is important.
  3131. */
  3132. wrapped_hblks = hblks - split_hblks;
  3133. error = XFS_BUF_SET_PTR(hbp,
  3134. offset + BBTOB(split_hblks),
  3135. BBTOB(hblks - split_hblks));
  3136. if (error)
  3137. goto bread_err2;
  3138. error = xlog_bread_noalign(log, 0,
  3139. wrapped_hblks, hbp);
  3140. if (error)
  3141. goto bread_err2;
  3142. error = XFS_BUF_SET_PTR(hbp, offset,
  3143. BBTOB(hblks));
  3144. if (error)
  3145. goto bread_err2;
  3146. }
  3147. rhead = (xlog_rec_header_t *)offset;
  3148. error = xlog_valid_rec_header(log, rhead,
  3149. split_hblks ? blk_no : 0);
  3150. if (error)
  3151. goto bread_err2;
  3152. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3153. blk_no += hblks;
  3154. /* Read in data for log record */
  3155. if (blk_no + bblks <= log->l_logBBsize) {
  3156. error = xlog_bread(log, blk_no, bblks, dbp,
  3157. &offset);
  3158. if (error)
  3159. goto bread_err2;
  3160. } else {
  3161. /* This log record is split across the
  3162. * physical end of log */
  3163. offset = XFS_BUF_PTR(dbp);
  3164. split_bblks = 0;
  3165. if (blk_no != log->l_logBBsize) {
  3166. /* some data is before the physical
  3167. * end of log */
  3168. ASSERT(!wrapped_hblks);
  3169. ASSERT(blk_no <= INT_MAX);
  3170. split_bblks =
  3171. log->l_logBBsize - (int)blk_no;
  3172. ASSERT(split_bblks > 0);
  3173. error = xlog_bread(log, blk_no,
  3174. split_bblks, dbp,
  3175. &offset);
  3176. if (error)
  3177. goto bread_err2;
  3178. }
  3179. /*
  3180. * Note: this black magic still works with
  3181. * large sector sizes (non-512) only because:
  3182. * - we increased the buffer size originally
  3183. * by 1 sector giving us enough extra space
  3184. * for the second read;
  3185. * - the log start is guaranteed to be sector
  3186. * aligned;
  3187. * - we read the log end (LR header start)
  3188. * _first_, then the log start (LR header end)
  3189. * - order is important.
  3190. */
  3191. error = XFS_BUF_SET_PTR(dbp,
  3192. offset + BBTOB(split_bblks),
  3193. BBTOB(bblks - split_bblks));
  3194. if (error)
  3195. goto bread_err2;
  3196. error = xlog_bread_noalign(log, wrapped_hblks,
  3197. bblks - split_bblks,
  3198. dbp);
  3199. if (error)
  3200. goto bread_err2;
  3201. error = XFS_BUF_SET_PTR(dbp, offset, h_size);
  3202. if (error)
  3203. goto bread_err2;
  3204. }
  3205. xlog_unpack_data(rhead, offset, log);
  3206. if ((error = xlog_recover_process_data(log, rhash,
  3207. rhead, offset, pass)))
  3208. goto bread_err2;
  3209. blk_no += bblks;
  3210. }
  3211. ASSERT(blk_no >= log->l_logBBsize);
  3212. blk_no -= log->l_logBBsize;
  3213. /* read first part of physical log */
  3214. while (blk_no < head_blk) {
  3215. error = xlog_bread(log, blk_no, hblks, hbp, &offset);
  3216. if (error)
  3217. goto bread_err2;
  3218. rhead = (xlog_rec_header_t *)offset;
  3219. error = xlog_valid_rec_header(log, rhead, blk_no);
  3220. if (error)
  3221. goto bread_err2;
  3222. bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
  3223. error = xlog_bread(log, blk_no+hblks, bblks, dbp,
  3224. &offset);
  3225. if (error)
  3226. goto bread_err2;
  3227. xlog_unpack_data(rhead, offset, log);
  3228. if ((error = xlog_recover_process_data(log, rhash,
  3229. rhead, offset, pass)))
  3230. goto bread_err2;
  3231. blk_no += bblks + hblks;
  3232. }
  3233. }
  3234. bread_err2:
  3235. xlog_put_bp(dbp);
  3236. bread_err1:
  3237. xlog_put_bp(hbp);
  3238. return error;
  3239. }
  3240. /*
  3241. * Do the recovery of the log. We actually do this in two phases.
  3242. * The two passes are necessary in order to implement the function
  3243. * of cancelling a record written into the log. The first pass
  3244. * determines those things which have been cancelled, and the
  3245. * second pass replays log items normally except for those which
  3246. * have been cancelled. The handling of the replay and cancellations
  3247. * takes place in the log item type specific routines.
  3248. *
  3249. * The table of items which have cancel records in the log is allocated
  3250. * and freed at this level, since only here do we know when all of
  3251. * the log recovery has been completed.
  3252. */
  3253. STATIC int
  3254. xlog_do_log_recovery(
  3255. xlog_t *log,
  3256. xfs_daddr_t head_blk,
  3257. xfs_daddr_t tail_blk)
  3258. {
  3259. int error, i;
  3260. ASSERT(head_blk != tail_blk);
  3261. /*
  3262. * First do a pass to find all of the cancelled buf log items.
  3263. * Store them in the buf_cancel_table for use in the second pass.
  3264. */
  3265. log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
  3266. sizeof(struct list_head),
  3267. KM_SLEEP);
  3268. for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
  3269. INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
  3270. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3271. XLOG_RECOVER_PASS1);
  3272. if (error != 0) {
  3273. kmem_free(log->l_buf_cancel_table);
  3274. log->l_buf_cancel_table = NULL;
  3275. return error;
  3276. }
  3277. /*
  3278. * Then do a second pass to actually recover the items in the log.
  3279. * When it is complete free the table of buf cancel items.
  3280. */
  3281. error = xlog_do_recovery_pass(log, head_blk, tail_blk,
  3282. XLOG_RECOVER_PASS2);
  3283. #ifdef DEBUG
  3284. if (!error) {
  3285. int i;
  3286. for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
  3287. ASSERT(list_empty(&log->l_buf_cancel_table[i]));
  3288. }
  3289. #endif /* DEBUG */
  3290. kmem_free(log->l_buf_cancel_table);
  3291. log->l_buf_cancel_table = NULL;
  3292. return error;
  3293. }
  3294. /*
  3295. * Do the actual recovery
  3296. */
  3297. STATIC int
  3298. xlog_do_recover(
  3299. xlog_t *log,
  3300. xfs_daddr_t head_blk,
  3301. xfs_daddr_t tail_blk)
  3302. {
  3303. int error;
  3304. xfs_buf_t *bp;
  3305. xfs_sb_t *sbp;
  3306. /*
  3307. * First replay the images in the log.
  3308. */
  3309. error = xlog_do_log_recovery(log, head_blk, tail_blk);
  3310. if (error) {
  3311. return error;
  3312. }
  3313. XFS_bflush(log->l_mp->m_ddev_targp);
  3314. /*
  3315. * If IO errors happened during recovery, bail out.
  3316. */
  3317. if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
  3318. return (EIO);
  3319. }
  3320. /*
  3321. * We now update the tail_lsn since much of the recovery has completed
  3322. * and there may be space available to use. If there were no extent
  3323. * or iunlinks, we can free up the entire log and set the tail_lsn to
  3324. * be the last_sync_lsn. This was set in xlog_find_tail to be the
  3325. * lsn of the last known good LR on disk. If there are extent frees
  3326. * or iunlinks they will have some entries in the AIL; so we look at
  3327. * the AIL to determine how to set the tail_lsn.
  3328. */
  3329. xlog_assign_tail_lsn(log->l_mp);
  3330. /*
  3331. * Now that we've finished replaying all buffer and inode
  3332. * updates, re-read in the superblock.
  3333. */
  3334. bp = xfs_getsb(log->l_mp, 0);
  3335. XFS_BUF_UNDONE(bp);
  3336. ASSERT(!(XFS_BUF_ISWRITE(bp)));
  3337. ASSERT(!(XFS_BUF_ISDELAYWRITE(bp)));
  3338. XFS_BUF_READ(bp);
  3339. XFS_BUF_UNASYNC(bp);
  3340. xfsbdstrat(log->l_mp, bp);
  3341. error = xfs_buf_iowait(bp);
  3342. if (error) {
  3343. xfs_ioerror_alert("xlog_do_recover",
  3344. log->l_mp, bp, XFS_BUF_ADDR(bp));
  3345. ASSERT(0);
  3346. xfs_buf_relse(bp);
  3347. return error;
  3348. }
  3349. /* Convert superblock from on-disk format */
  3350. sbp = &log->l_mp->m_sb;
  3351. xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
  3352. ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
  3353. ASSERT(xfs_sb_good_version(sbp));
  3354. xfs_buf_relse(bp);
  3355. /* We've re-read the superblock so re-initialize per-cpu counters */
  3356. xfs_icsb_reinit_counters(log->l_mp);
  3357. xlog_recover_check_summary(log);
  3358. /* Normal transactions can now occur */
  3359. log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
  3360. return 0;
  3361. }
  3362. /*
  3363. * Perform recovery and re-initialize some log variables in xlog_find_tail.
  3364. *
  3365. * Return error or zero.
  3366. */
  3367. int
  3368. xlog_recover(
  3369. xlog_t *log)
  3370. {
  3371. xfs_daddr_t head_blk, tail_blk;
  3372. int error;
  3373. /* find the tail of the log */
  3374. if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
  3375. return error;
  3376. if (tail_blk != head_blk) {
  3377. /* There used to be a comment here:
  3378. *
  3379. * disallow recovery on read-only mounts. note -- mount
  3380. * checks for ENOSPC and turns it into an intelligent
  3381. * error message.
  3382. * ...but this is no longer true. Now, unless you specify
  3383. * NORECOVERY (in which case this function would never be
  3384. * called), we just go ahead and recover. We do this all
  3385. * under the vfs layer, so we can get away with it unless
  3386. * the device itself is read-only, in which case we fail.
  3387. */
  3388. if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
  3389. return error;
  3390. }
  3391. xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
  3392. log->l_mp->m_logname ? log->l_mp->m_logname
  3393. : "internal");
  3394. error = xlog_do_recover(log, head_blk, tail_blk);
  3395. log->l_flags |= XLOG_RECOVERY_NEEDED;
  3396. }
  3397. return error;
  3398. }
  3399. /*
  3400. * In the first part of recovery we replay inodes and buffers and build
  3401. * up the list of extent free items which need to be processed. Here
  3402. * we process the extent free items and clean up the on disk unlinked
  3403. * inode lists. This is separated from the first part of recovery so
  3404. * that the root and real-time bitmap inodes can be read in from disk in
  3405. * between the two stages. This is necessary so that we can free space
  3406. * in the real-time portion of the file system.
  3407. */
  3408. int
  3409. xlog_recover_finish(
  3410. xlog_t *log)
  3411. {
  3412. /*
  3413. * Now we're ready to do the transactions needed for the
  3414. * rest of recovery. Start with completing all the extent
  3415. * free intent records and then process the unlinked inode
  3416. * lists. At this point, we essentially run in normal mode
  3417. * except that we're still performing recovery actions
  3418. * rather than accepting new requests.
  3419. */
  3420. if (log->l_flags & XLOG_RECOVERY_NEEDED) {
  3421. int error;
  3422. error = xlog_recover_process_efis(log);
  3423. if (error) {
  3424. xfs_alert(log->l_mp, "Failed to recover EFIs");
  3425. return error;
  3426. }
  3427. /*
  3428. * Sync the log to get all the EFIs out of the AIL.
  3429. * This isn't absolutely necessary, but it helps in
  3430. * case the unlink transactions would have problems
  3431. * pushing the EFIs out of the way.
  3432. */
  3433. xfs_log_force(log->l_mp, XFS_LOG_SYNC);
  3434. xlog_recover_process_iunlinks(log);
  3435. xlog_recover_check_summary(log);
  3436. xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
  3437. log->l_mp->m_logname ? log->l_mp->m_logname
  3438. : "internal");
  3439. log->l_flags &= ~XLOG_RECOVERY_NEEDED;
  3440. } else {
  3441. xfs_info(log->l_mp, "Ending clean mount");
  3442. }
  3443. return 0;
  3444. }
  3445. #if defined(DEBUG)
  3446. /*
  3447. * Read all of the agf and agi counters and check that they
  3448. * are consistent with the superblock counters.
  3449. */
  3450. void
  3451. xlog_recover_check_summary(
  3452. xlog_t *log)
  3453. {
  3454. xfs_mount_t *mp;
  3455. xfs_agf_t *agfp;
  3456. xfs_buf_t *agfbp;
  3457. xfs_buf_t *agibp;
  3458. xfs_agnumber_t agno;
  3459. __uint64_t freeblks;
  3460. __uint64_t itotal;
  3461. __uint64_t ifree;
  3462. int error;
  3463. mp = log->l_mp;
  3464. freeblks = 0LL;
  3465. itotal = 0LL;
  3466. ifree = 0LL;
  3467. for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
  3468. error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
  3469. if (error) {
  3470. xfs_alert(mp, "%s agf read failed agno %d error %d",
  3471. __func__, agno, error);
  3472. } else {
  3473. agfp = XFS_BUF_TO_AGF(agfbp);
  3474. freeblks += be32_to_cpu(agfp->agf_freeblks) +
  3475. be32_to_cpu(agfp->agf_flcount);
  3476. xfs_buf_relse(agfbp);
  3477. }
  3478. error = xfs_read_agi(mp, NULL, agno, &agibp);
  3479. if (error) {
  3480. xfs_alert(mp, "%s agi read failed agno %d error %d",
  3481. __func__, agno, error);
  3482. } else {
  3483. struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
  3484. itotal += be32_to_cpu(agi->agi_count);
  3485. ifree += be32_to_cpu(agi->agi_freecount);
  3486. xfs_buf_relse(agibp);
  3487. }
  3488. }
  3489. }
  3490. #endif /* DEBUG */