task_mmu.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879
  1. #include <linux/mm.h>
  2. #include <linux/hugetlb.h>
  3. #include <linux/huge_mm.h>
  4. #include <linux/mount.h>
  5. #include <linux/seq_file.h>
  6. #include <linux/highmem.h>
  7. #include <linux/ptrace.h>
  8. #include <linux/slab.h>
  9. #include <linux/pagemap.h>
  10. #include <linux/mempolicy.h>
  11. #include <linux/rmap.h>
  12. #include <linux/swap.h>
  13. #include <linux/swapops.h>
  14. #include <asm/elf.h>
  15. #include <asm/uaccess.h>
  16. #include <asm/tlbflush.h>
  17. #include "internal.h"
  18. void task_mem(struct seq_file *m, struct mm_struct *mm)
  19. {
  20. unsigned long data, text, lib, swap;
  21. unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
  22. /*
  23. * Note: to minimize their overhead, mm maintains hiwater_vm and
  24. * hiwater_rss only when about to *lower* total_vm or rss. Any
  25. * collector of these hiwater stats must therefore get total_vm
  26. * and rss too, which will usually be the higher. Barriers? not
  27. * worth the effort, such snapshots can always be inconsistent.
  28. */
  29. hiwater_vm = total_vm = mm->total_vm;
  30. if (hiwater_vm < mm->hiwater_vm)
  31. hiwater_vm = mm->hiwater_vm;
  32. hiwater_rss = total_rss = get_mm_rss(mm);
  33. if (hiwater_rss < mm->hiwater_rss)
  34. hiwater_rss = mm->hiwater_rss;
  35. data = mm->total_vm - mm->shared_vm - mm->stack_vm;
  36. text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
  37. lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
  38. swap = get_mm_counter(mm, MM_SWAPENTS);
  39. seq_printf(m,
  40. "VmPeak:\t%8lu kB\n"
  41. "VmSize:\t%8lu kB\n"
  42. "VmLck:\t%8lu kB\n"
  43. "VmHWM:\t%8lu kB\n"
  44. "VmRSS:\t%8lu kB\n"
  45. "VmData:\t%8lu kB\n"
  46. "VmStk:\t%8lu kB\n"
  47. "VmExe:\t%8lu kB\n"
  48. "VmLib:\t%8lu kB\n"
  49. "VmPTE:\t%8lu kB\n"
  50. "VmSwap:\t%8lu kB\n",
  51. hiwater_vm << (PAGE_SHIFT-10),
  52. (total_vm - mm->reserved_vm) << (PAGE_SHIFT-10),
  53. mm->locked_vm << (PAGE_SHIFT-10),
  54. hiwater_rss << (PAGE_SHIFT-10),
  55. total_rss << (PAGE_SHIFT-10),
  56. data << (PAGE_SHIFT-10),
  57. mm->stack_vm << (PAGE_SHIFT-10), text, lib,
  58. (PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10,
  59. swap << (PAGE_SHIFT-10));
  60. }
  61. unsigned long task_vsize(struct mm_struct *mm)
  62. {
  63. return PAGE_SIZE * mm->total_vm;
  64. }
  65. unsigned long task_statm(struct mm_struct *mm,
  66. unsigned long *shared, unsigned long *text,
  67. unsigned long *data, unsigned long *resident)
  68. {
  69. *shared = get_mm_counter(mm, MM_FILEPAGES);
  70. *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
  71. >> PAGE_SHIFT;
  72. *data = mm->total_vm - mm->shared_vm;
  73. *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
  74. return mm->total_vm;
  75. }
  76. static void pad_len_spaces(struct seq_file *m, int len)
  77. {
  78. len = 25 + sizeof(void*) * 6 - len;
  79. if (len < 1)
  80. len = 1;
  81. seq_printf(m, "%*c", len, ' ');
  82. }
  83. static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
  84. {
  85. if (vma && vma != priv->tail_vma) {
  86. struct mm_struct *mm = vma->vm_mm;
  87. up_read(&mm->mmap_sem);
  88. mmput(mm);
  89. }
  90. }
  91. static void *m_start(struct seq_file *m, loff_t *pos)
  92. {
  93. struct proc_maps_private *priv = m->private;
  94. unsigned long last_addr = m->version;
  95. struct mm_struct *mm;
  96. struct vm_area_struct *vma, *tail_vma = NULL;
  97. loff_t l = *pos;
  98. /* Clear the per syscall fields in priv */
  99. priv->task = NULL;
  100. priv->tail_vma = NULL;
  101. /*
  102. * We remember last_addr rather than next_addr to hit with
  103. * mmap_cache most of the time. We have zero last_addr at
  104. * the beginning and also after lseek. We will have -1 last_addr
  105. * after the end of the vmas.
  106. */
  107. if (last_addr == -1UL)
  108. return NULL;
  109. priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
  110. if (!priv->task)
  111. return ERR_PTR(-ESRCH);
  112. mm = mm_for_maps(priv->task);
  113. if (!mm || IS_ERR(mm))
  114. return mm;
  115. down_read(&mm->mmap_sem);
  116. tail_vma = get_gate_vma(priv->task->mm);
  117. priv->tail_vma = tail_vma;
  118. /* Start with last addr hint */
  119. vma = find_vma(mm, last_addr);
  120. if (last_addr && vma) {
  121. vma = vma->vm_next;
  122. goto out;
  123. }
  124. /*
  125. * Check the vma index is within the range and do
  126. * sequential scan until m_index.
  127. */
  128. vma = NULL;
  129. if ((unsigned long)l < mm->map_count) {
  130. vma = mm->mmap;
  131. while (l-- && vma)
  132. vma = vma->vm_next;
  133. goto out;
  134. }
  135. if (l != mm->map_count)
  136. tail_vma = NULL; /* After gate vma */
  137. out:
  138. if (vma)
  139. return vma;
  140. /* End of vmas has been reached */
  141. m->version = (tail_vma != NULL)? 0: -1UL;
  142. up_read(&mm->mmap_sem);
  143. mmput(mm);
  144. return tail_vma;
  145. }
  146. static void *m_next(struct seq_file *m, void *v, loff_t *pos)
  147. {
  148. struct proc_maps_private *priv = m->private;
  149. struct vm_area_struct *vma = v;
  150. struct vm_area_struct *tail_vma = priv->tail_vma;
  151. (*pos)++;
  152. if (vma && (vma != tail_vma) && vma->vm_next)
  153. return vma->vm_next;
  154. vma_stop(priv, vma);
  155. return (vma != tail_vma)? tail_vma: NULL;
  156. }
  157. static void m_stop(struct seq_file *m, void *v)
  158. {
  159. struct proc_maps_private *priv = m->private;
  160. struct vm_area_struct *vma = v;
  161. if (!IS_ERR(vma))
  162. vma_stop(priv, vma);
  163. if (priv->task)
  164. put_task_struct(priv->task);
  165. }
  166. static int do_maps_open(struct inode *inode, struct file *file,
  167. const struct seq_operations *ops)
  168. {
  169. struct proc_maps_private *priv;
  170. int ret = -ENOMEM;
  171. priv = kzalloc(sizeof(*priv), GFP_KERNEL);
  172. if (priv) {
  173. priv->pid = proc_pid(inode);
  174. ret = seq_open(file, ops);
  175. if (!ret) {
  176. struct seq_file *m = file->private_data;
  177. m->private = priv;
  178. } else {
  179. kfree(priv);
  180. }
  181. }
  182. return ret;
  183. }
  184. static void show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
  185. {
  186. struct mm_struct *mm = vma->vm_mm;
  187. struct file *file = vma->vm_file;
  188. int flags = vma->vm_flags;
  189. unsigned long ino = 0;
  190. unsigned long long pgoff = 0;
  191. unsigned long start;
  192. dev_t dev = 0;
  193. int len;
  194. if (file) {
  195. struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
  196. dev = inode->i_sb->s_dev;
  197. ino = inode->i_ino;
  198. pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
  199. }
  200. /* We don't show the stack guard page in /proc/maps */
  201. start = vma->vm_start;
  202. if (vma->vm_flags & VM_GROWSDOWN)
  203. if (!vma_stack_continue(vma->vm_prev, vma->vm_start))
  204. start += PAGE_SIZE;
  205. seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n",
  206. start,
  207. vma->vm_end,
  208. flags & VM_READ ? 'r' : '-',
  209. flags & VM_WRITE ? 'w' : '-',
  210. flags & VM_EXEC ? 'x' : '-',
  211. flags & VM_MAYSHARE ? 's' : 'p',
  212. pgoff,
  213. MAJOR(dev), MINOR(dev), ino, &len);
  214. /*
  215. * Print the dentry name for named mappings, and a
  216. * special [heap] marker for the heap:
  217. */
  218. if (file) {
  219. pad_len_spaces(m, len);
  220. seq_path(m, &file->f_path, "\n");
  221. } else {
  222. const char *name = arch_vma_name(vma);
  223. if (!name) {
  224. if (mm) {
  225. if (vma->vm_start <= mm->brk &&
  226. vma->vm_end >= mm->start_brk) {
  227. name = "[heap]";
  228. } else if (vma->vm_start <= mm->start_stack &&
  229. vma->vm_end >= mm->start_stack) {
  230. name = "[stack]";
  231. }
  232. } else {
  233. name = "[vdso]";
  234. }
  235. }
  236. if (name) {
  237. pad_len_spaces(m, len);
  238. seq_puts(m, name);
  239. }
  240. }
  241. seq_putc(m, '\n');
  242. }
  243. static int show_map(struct seq_file *m, void *v)
  244. {
  245. struct vm_area_struct *vma = v;
  246. struct proc_maps_private *priv = m->private;
  247. struct task_struct *task = priv->task;
  248. show_map_vma(m, vma);
  249. if (m->count < m->size) /* vma is copied successfully */
  250. m->version = (vma != get_gate_vma(task->mm))
  251. ? vma->vm_start : 0;
  252. return 0;
  253. }
  254. static const struct seq_operations proc_pid_maps_op = {
  255. .start = m_start,
  256. .next = m_next,
  257. .stop = m_stop,
  258. .show = show_map
  259. };
  260. static int maps_open(struct inode *inode, struct file *file)
  261. {
  262. return do_maps_open(inode, file, &proc_pid_maps_op);
  263. }
  264. const struct file_operations proc_maps_operations = {
  265. .open = maps_open,
  266. .read = seq_read,
  267. .llseek = seq_lseek,
  268. .release = seq_release_private,
  269. };
  270. /*
  271. * Proportional Set Size(PSS): my share of RSS.
  272. *
  273. * PSS of a process is the count of pages it has in memory, where each
  274. * page is divided by the number of processes sharing it. So if a
  275. * process has 1000 pages all to itself, and 1000 shared with one other
  276. * process, its PSS will be 1500.
  277. *
  278. * To keep (accumulated) division errors low, we adopt a 64bit
  279. * fixed-point pss counter to minimize division errors. So (pss >>
  280. * PSS_SHIFT) would be the real byte count.
  281. *
  282. * A shift of 12 before division means (assuming 4K page size):
  283. * - 1M 3-user-pages add up to 8KB errors;
  284. * - supports mapcount up to 2^24, or 16M;
  285. * - supports PSS up to 2^52 bytes, or 4PB.
  286. */
  287. #define PSS_SHIFT 12
  288. #ifdef CONFIG_PROC_PAGE_MONITOR
  289. struct mem_size_stats {
  290. struct vm_area_struct *vma;
  291. unsigned long resident;
  292. unsigned long shared_clean;
  293. unsigned long shared_dirty;
  294. unsigned long private_clean;
  295. unsigned long private_dirty;
  296. unsigned long referenced;
  297. unsigned long anonymous;
  298. unsigned long anonymous_thp;
  299. unsigned long swap;
  300. u64 pss;
  301. };
  302. static void smaps_pte_entry(pte_t ptent, unsigned long addr,
  303. unsigned long ptent_size, struct mm_walk *walk)
  304. {
  305. struct mem_size_stats *mss = walk->private;
  306. struct vm_area_struct *vma = mss->vma;
  307. struct page *page;
  308. int mapcount;
  309. if (is_swap_pte(ptent)) {
  310. mss->swap += ptent_size;
  311. return;
  312. }
  313. if (!pte_present(ptent))
  314. return;
  315. page = vm_normal_page(vma, addr, ptent);
  316. if (!page)
  317. return;
  318. if (PageAnon(page))
  319. mss->anonymous += ptent_size;
  320. mss->resident += ptent_size;
  321. /* Accumulate the size in pages that have been accessed. */
  322. if (pte_young(ptent) || PageReferenced(page))
  323. mss->referenced += ptent_size;
  324. mapcount = page_mapcount(page);
  325. if (mapcount >= 2) {
  326. if (pte_dirty(ptent) || PageDirty(page))
  327. mss->shared_dirty += ptent_size;
  328. else
  329. mss->shared_clean += ptent_size;
  330. mss->pss += (ptent_size << PSS_SHIFT) / mapcount;
  331. } else {
  332. if (pte_dirty(ptent) || PageDirty(page))
  333. mss->private_dirty += ptent_size;
  334. else
  335. mss->private_clean += ptent_size;
  336. mss->pss += (ptent_size << PSS_SHIFT);
  337. }
  338. }
  339. static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  340. struct mm_walk *walk)
  341. {
  342. struct mem_size_stats *mss = walk->private;
  343. struct vm_area_struct *vma = mss->vma;
  344. pte_t *pte;
  345. spinlock_t *ptl;
  346. spin_lock(&walk->mm->page_table_lock);
  347. if (pmd_trans_huge(*pmd)) {
  348. if (pmd_trans_splitting(*pmd)) {
  349. spin_unlock(&walk->mm->page_table_lock);
  350. wait_split_huge_page(vma->anon_vma, pmd);
  351. } else {
  352. smaps_pte_entry(*(pte_t *)pmd, addr,
  353. HPAGE_PMD_SIZE, walk);
  354. spin_unlock(&walk->mm->page_table_lock);
  355. mss->anonymous_thp += HPAGE_PMD_SIZE;
  356. return 0;
  357. }
  358. } else {
  359. spin_unlock(&walk->mm->page_table_lock);
  360. }
  361. /*
  362. * The mmap_sem held all the way back in m_start() is what
  363. * keeps khugepaged out of here and from collapsing things
  364. * in here.
  365. */
  366. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  367. for (; addr != end; pte++, addr += PAGE_SIZE)
  368. smaps_pte_entry(*pte, addr, PAGE_SIZE, walk);
  369. pte_unmap_unlock(pte - 1, ptl);
  370. cond_resched();
  371. return 0;
  372. }
  373. static int show_smap(struct seq_file *m, void *v)
  374. {
  375. struct proc_maps_private *priv = m->private;
  376. struct task_struct *task = priv->task;
  377. struct vm_area_struct *vma = v;
  378. struct mem_size_stats mss;
  379. struct mm_walk smaps_walk = {
  380. .pmd_entry = smaps_pte_range,
  381. .mm = vma->vm_mm,
  382. .private = &mss,
  383. };
  384. memset(&mss, 0, sizeof mss);
  385. mss.vma = vma;
  386. /* mmap_sem is held in m_start */
  387. if (vma->vm_mm && !is_vm_hugetlb_page(vma))
  388. walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
  389. show_map_vma(m, vma);
  390. seq_printf(m,
  391. "Size: %8lu kB\n"
  392. "Rss: %8lu kB\n"
  393. "Pss: %8lu kB\n"
  394. "Shared_Clean: %8lu kB\n"
  395. "Shared_Dirty: %8lu kB\n"
  396. "Private_Clean: %8lu kB\n"
  397. "Private_Dirty: %8lu kB\n"
  398. "Referenced: %8lu kB\n"
  399. "Anonymous: %8lu kB\n"
  400. "AnonHugePages: %8lu kB\n"
  401. "Swap: %8lu kB\n"
  402. "KernelPageSize: %8lu kB\n"
  403. "MMUPageSize: %8lu kB\n"
  404. "Locked: %8lu kB\n",
  405. (vma->vm_end - vma->vm_start) >> 10,
  406. mss.resident >> 10,
  407. (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
  408. mss.shared_clean >> 10,
  409. mss.shared_dirty >> 10,
  410. mss.private_clean >> 10,
  411. mss.private_dirty >> 10,
  412. mss.referenced >> 10,
  413. mss.anonymous >> 10,
  414. mss.anonymous_thp >> 10,
  415. mss.swap >> 10,
  416. vma_kernel_pagesize(vma) >> 10,
  417. vma_mmu_pagesize(vma) >> 10,
  418. (vma->vm_flags & VM_LOCKED) ?
  419. (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
  420. if (m->count < m->size) /* vma is copied successfully */
  421. m->version = (vma != get_gate_vma(task->mm))
  422. ? vma->vm_start : 0;
  423. return 0;
  424. }
  425. static const struct seq_operations proc_pid_smaps_op = {
  426. .start = m_start,
  427. .next = m_next,
  428. .stop = m_stop,
  429. .show = show_smap
  430. };
  431. static int smaps_open(struct inode *inode, struct file *file)
  432. {
  433. return do_maps_open(inode, file, &proc_pid_smaps_op);
  434. }
  435. const struct file_operations proc_smaps_operations = {
  436. .open = smaps_open,
  437. .read = seq_read,
  438. .llseek = seq_lseek,
  439. .release = seq_release_private,
  440. };
  441. static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
  442. unsigned long end, struct mm_walk *walk)
  443. {
  444. struct vm_area_struct *vma = walk->private;
  445. pte_t *pte, ptent;
  446. spinlock_t *ptl;
  447. struct page *page;
  448. split_huge_page_pmd(walk->mm, pmd);
  449. pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
  450. for (; addr != end; pte++, addr += PAGE_SIZE) {
  451. ptent = *pte;
  452. if (!pte_present(ptent))
  453. continue;
  454. page = vm_normal_page(vma, addr, ptent);
  455. if (!page)
  456. continue;
  457. /* Clear accessed and referenced bits. */
  458. ptep_test_and_clear_young(vma, addr, pte);
  459. ClearPageReferenced(page);
  460. }
  461. pte_unmap_unlock(pte - 1, ptl);
  462. cond_resched();
  463. return 0;
  464. }
  465. #define CLEAR_REFS_ALL 1
  466. #define CLEAR_REFS_ANON 2
  467. #define CLEAR_REFS_MAPPED 3
  468. static ssize_t clear_refs_write(struct file *file, const char __user *buf,
  469. size_t count, loff_t *ppos)
  470. {
  471. struct task_struct *task;
  472. char buffer[PROC_NUMBUF];
  473. struct mm_struct *mm;
  474. struct vm_area_struct *vma;
  475. long type;
  476. memset(buffer, 0, sizeof(buffer));
  477. if (count > sizeof(buffer) - 1)
  478. count = sizeof(buffer) - 1;
  479. if (copy_from_user(buffer, buf, count))
  480. return -EFAULT;
  481. if (strict_strtol(strstrip(buffer), 10, &type))
  482. return -EINVAL;
  483. if (type < CLEAR_REFS_ALL || type > CLEAR_REFS_MAPPED)
  484. return -EINVAL;
  485. task = get_proc_task(file->f_path.dentry->d_inode);
  486. if (!task)
  487. return -ESRCH;
  488. mm = get_task_mm(task);
  489. if (mm) {
  490. struct mm_walk clear_refs_walk = {
  491. .pmd_entry = clear_refs_pte_range,
  492. .mm = mm,
  493. };
  494. down_read(&mm->mmap_sem);
  495. for (vma = mm->mmap; vma; vma = vma->vm_next) {
  496. clear_refs_walk.private = vma;
  497. if (is_vm_hugetlb_page(vma))
  498. continue;
  499. /*
  500. * Writing 1 to /proc/pid/clear_refs affects all pages.
  501. *
  502. * Writing 2 to /proc/pid/clear_refs only affects
  503. * Anonymous pages.
  504. *
  505. * Writing 3 to /proc/pid/clear_refs only affects file
  506. * mapped pages.
  507. */
  508. if (type == CLEAR_REFS_ANON && vma->vm_file)
  509. continue;
  510. if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
  511. continue;
  512. walk_page_range(vma->vm_start, vma->vm_end,
  513. &clear_refs_walk);
  514. }
  515. flush_tlb_mm(mm);
  516. up_read(&mm->mmap_sem);
  517. mmput(mm);
  518. }
  519. put_task_struct(task);
  520. return count;
  521. }
  522. const struct file_operations proc_clear_refs_operations = {
  523. .write = clear_refs_write,
  524. .llseek = noop_llseek,
  525. };
  526. struct pagemapread {
  527. int pos, len;
  528. u64 *buffer;
  529. };
  530. #define PM_ENTRY_BYTES sizeof(u64)
  531. #define PM_STATUS_BITS 3
  532. #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
  533. #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
  534. #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
  535. #define PM_PSHIFT_BITS 6
  536. #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
  537. #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
  538. #define PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
  539. #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
  540. #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
  541. #define PM_PRESENT PM_STATUS(4LL)
  542. #define PM_SWAP PM_STATUS(2LL)
  543. #define PM_NOT_PRESENT PM_PSHIFT(PAGE_SHIFT)
  544. #define PM_END_OF_BUFFER 1
  545. static int add_to_pagemap(unsigned long addr, u64 pfn,
  546. struct pagemapread *pm)
  547. {
  548. pm->buffer[pm->pos++] = pfn;
  549. if (pm->pos >= pm->len)
  550. return PM_END_OF_BUFFER;
  551. return 0;
  552. }
  553. static int pagemap_pte_hole(unsigned long start, unsigned long end,
  554. struct mm_walk *walk)
  555. {
  556. struct pagemapread *pm = walk->private;
  557. unsigned long addr;
  558. int err = 0;
  559. for (addr = start; addr < end; addr += PAGE_SIZE) {
  560. err = add_to_pagemap(addr, PM_NOT_PRESENT, pm);
  561. if (err)
  562. break;
  563. }
  564. return err;
  565. }
  566. static u64 swap_pte_to_pagemap_entry(pte_t pte)
  567. {
  568. swp_entry_t e = pte_to_swp_entry(pte);
  569. return swp_type(e) | (swp_offset(e) << MAX_SWAPFILES_SHIFT);
  570. }
  571. static u64 pte_to_pagemap_entry(pte_t pte)
  572. {
  573. u64 pme = 0;
  574. if (is_swap_pte(pte))
  575. pme = PM_PFRAME(swap_pte_to_pagemap_entry(pte))
  576. | PM_PSHIFT(PAGE_SHIFT) | PM_SWAP;
  577. else if (pte_present(pte))
  578. pme = PM_PFRAME(pte_pfn(pte))
  579. | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
  580. return pme;
  581. }
  582. static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
  583. struct mm_walk *walk)
  584. {
  585. struct vm_area_struct *vma;
  586. struct pagemapread *pm = walk->private;
  587. pte_t *pte;
  588. int err = 0;
  589. split_huge_page_pmd(walk->mm, pmd);
  590. /* find the first VMA at or above 'addr' */
  591. vma = find_vma(walk->mm, addr);
  592. for (; addr != end; addr += PAGE_SIZE) {
  593. u64 pfn = PM_NOT_PRESENT;
  594. /* check to see if we've left 'vma' behind
  595. * and need a new, higher one */
  596. if (vma && (addr >= vma->vm_end))
  597. vma = find_vma(walk->mm, addr);
  598. /* check that 'vma' actually covers this address,
  599. * and that it isn't a huge page vma */
  600. if (vma && (vma->vm_start <= addr) &&
  601. !is_vm_hugetlb_page(vma)) {
  602. pte = pte_offset_map(pmd, addr);
  603. pfn = pte_to_pagemap_entry(*pte);
  604. /* unmap before userspace copy */
  605. pte_unmap(pte);
  606. }
  607. err = add_to_pagemap(addr, pfn, pm);
  608. if (err)
  609. return err;
  610. }
  611. cond_resched();
  612. return err;
  613. }
  614. #ifdef CONFIG_HUGETLB_PAGE
  615. static u64 huge_pte_to_pagemap_entry(pte_t pte, int offset)
  616. {
  617. u64 pme = 0;
  618. if (pte_present(pte))
  619. pme = PM_PFRAME(pte_pfn(pte) + offset)
  620. | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
  621. return pme;
  622. }
  623. /* This function walks within one hugetlb entry in the single call */
  624. static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
  625. unsigned long addr, unsigned long end,
  626. struct mm_walk *walk)
  627. {
  628. struct pagemapread *pm = walk->private;
  629. int err = 0;
  630. u64 pfn;
  631. for (; addr != end; addr += PAGE_SIZE) {
  632. int offset = (addr & ~hmask) >> PAGE_SHIFT;
  633. pfn = huge_pte_to_pagemap_entry(*pte, offset);
  634. err = add_to_pagemap(addr, pfn, pm);
  635. if (err)
  636. return err;
  637. }
  638. cond_resched();
  639. return err;
  640. }
  641. #endif /* HUGETLB_PAGE */
  642. /*
  643. * /proc/pid/pagemap - an array mapping virtual pages to pfns
  644. *
  645. * For each page in the address space, this file contains one 64-bit entry
  646. * consisting of the following:
  647. *
  648. * Bits 0-55 page frame number (PFN) if present
  649. * Bits 0-4 swap type if swapped
  650. * Bits 5-55 swap offset if swapped
  651. * Bits 55-60 page shift (page size = 1<<page shift)
  652. * Bit 61 reserved for future use
  653. * Bit 62 page swapped
  654. * Bit 63 page present
  655. *
  656. * If the page is not present but in swap, then the PFN contains an
  657. * encoding of the swap file number and the page's offset into the
  658. * swap. Unmapped pages return a null PFN. This allows determining
  659. * precisely which pages are mapped (or in swap) and comparing mapped
  660. * pages between processes.
  661. *
  662. * Efficient users of this interface will use /proc/pid/maps to
  663. * determine which areas of memory are actually mapped and llseek to
  664. * skip over unmapped regions.
  665. */
  666. #define PAGEMAP_WALK_SIZE (PMD_SIZE)
  667. #define PAGEMAP_WALK_MASK (PMD_MASK)
  668. static ssize_t pagemap_read(struct file *file, char __user *buf,
  669. size_t count, loff_t *ppos)
  670. {
  671. struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
  672. struct mm_struct *mm;
  673. struct pagemapread pm;
  674. int ret = -ESRCH;
  675. struct mm_walk pagemap_walk = {};
  676. unsigned long src;
  677. unsigned long svpfn;
  678. unsigned long start_vaddr;
  679. unsigned long end_vaddr;
  680. int copied = 0;
  681. if (!task)
  682. goto out;
  683. mm = mm_for_maps(task);
  684. ret = PTR_ERR(mm);
  685. if (!mm || IS_ERR(mm))
  686. goto out_task;
  687. ret = -EINVAL;
  688. /* file position must be aligned */
  689. if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
  690. goto out_task;
  691. ret = 0;
  692. if (!count)
  693. goto out_task;
  694. pm.len = PM_ENTRY_BYTES * (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
  695. pm.buffer = kmalloc(pm.len, GFP_TEMPORARY);
  696. ret = -ENOMEM;
  697. if (!pm.buffer)
  698. goto out_mm;
  699. pagemap_walk.pmd_entry = pagemap_pte_range;
  700. pagemap_walk.pte_hole = pagemap_pte_hole;
  701. #ifdef CONFIG_HUGETLB_PAGE
  702. pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
  703. #endif
  704. pagemap_walk.mm = mm;
  705. pagemap_walk.private = &pm;
  706. src = *ppos;
  707. svpfn = src / PM_ENTRY_BYTES;
  708. start_vaddr = svpfn << PAGE_SHIFT;
  709. end_vaddr = TASK_SIZE_OF(task);
  710. /* watch out for wraparound */
  711. if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
  712. start_vaddr = end_vaddr;
  713. /*
  714. * The odds are that this will stop walking way
  715. * before end_vaddr, because the length of the
  716. * user buffer is tracked in "pm", and the walk
  717. * will stop when we hit the end of the buffer.
  718. */
  719. ret = 0;
  720. while (count && (start_vaddr < end_vaddr)) {
  721. int len;
  722. unsigned long end;
  723. pm.pos = 0;
  724. end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
  725. /* overflow ? */
  726. if (end < start_vaddr || end > end_vaddr)
  727. end = end_vaddr;
  728. down_read(&mm->mmap_sem);
  729. ret = walk_page_range(start_vaddr, end, &pagemap_walk);
  730. up_read(&mm->mmap_sem);
  731. start_vaddr = end;
  732. len = min(count, PM_ENTRY_BYTES * pm.pos);
  733. if (copy_to_user(buf, pm.buffer, len)) {
  734. ret = -EFAULT;
  735. goto out_free;
  736. }
  737. copied += len;
  738. buf += len;
  739. count -= len;
  740. }
  741. *ppos += copied;
  742. if (!ret || ret == PM_END_OF_BUFFER)
  743. ret = copied;
  744. out_free:
  745. kfree(pm.buffer);
  746. out_mm:
  747. mmput(mm);
  748. out_task:
  749. put_task_struct(task);
  750. out:
  751. return ret;
  752. }
  753. const struct file_operations proc_pagemap_operations = {
  754. .llseek = mem_lseek, /* borrow this */
  755. .read = pagemap_read,
  756. };
  757. #endif /* CONFIG_PROC_PAGE_MONITOR */
  758. #ifdef CONFIG_NUMA
  759. extern int show_numa_map(struct seq_file *m, void *v);
  760. static const struct seq_operations proc_pid_numa_maps_op = {
  761. .start = m_start,
  762. .next = m_next,
  763. .stop = m_stop,
  764. .show = show_numa_map,
  765. };
  766. static int numa_maps_open(struct inode *inode, struct file *file)
  767. {
  768. return do_maps_open(inode, file, &proc_pid_numa_maps_op);
  769. }
  770. const struct file_operations proc_numa_maps_operations = {
  771. .open = numa_maps_open,
  772. .read = seq_read,
  773. .llseek = seq_lseek,
  774. .release = seq_release_private,
  775. };
  776. #endif