write.c 44 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737
  1. /*
  2. * linux/fs/nfs/write.c
  3. *
  4. * Write file data over NFS.
  5. *
  6. * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
  7. */
  8. #include <linux/types.h>
  9. #include <linux/slab.h>
  10. #include <linux/mm.h>
  11. #include <linux/pagemap.h>
  12. #include <linux/file.h>
  13. #include <linux/writeback.h>
  14. #include <linux/swap.h>
  15. #include <linux/migrate.h>
  16. #include <linux/sunrpc/clnt.h>
  17. #include <linux/nfs_fs.h>
  18. #include <linux/nfs_mount.h>
  19. #include <linux/nfs_page.h>
  20. #include <linux/backing-dev.h>
  21. #include <asm/uaccess.h>
  22. #include "delegation.h"
  23. #include "internal.h"
  24. #include "iostat.h"
  25. #include "nfs4_fs.h"
  26. #include "fscache.h"
  27. #include "pnfs.h"
  28. #define NFSDBG_FACILITY NFSDBG_PAGECACHE
  29. #define MIN_POOL_WRITE (32)
  30. #define MIN_POOL_COMMIT (4)
  31. /*
  32. * Local function declarations
  33. */
  34. static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc,
  35. struct inode *inode, int ioflags);
  36. static void nfs_redirty_request(struct nfs_page *req);
  37. static const struct rpc_call_ops nfs_write_partial_ops;
  38. static const struct rpc_call_ops nfs_write_full_ops;
  39. static const struct rpc_call_ops nfs_commit_ops;
  40. static struct kmem_cache *nfs_wdata_cachep;
  41. static mempool_t *nfs_wdata_mempool;
  42. static mempool_t *nfs_commit_mempool;
  43. struct nfs_write_data *nfs_commitdata_alloc(void)
  44. {
  45. struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
  46. if (p) {
  47. memset(p, 0, sizeof(*p));
  48. INIT_LIST_HEAD(&p->pages);
  49. }
  50. return p;
  51. }
  52. EXPORT_SYMBOL_GPL(nfs_commitdata_alloc);
  53. void nfs_commit_free(struct nfs_write_data *p)
  54. {
  55. if (p && (p->pagevec != &p->page_array[0]))
  56. kfree(p->pagevec);
  57. mempool_free(p, nfs_commit_mempool);
  58. }
  59. EXPORT_SYMBOL_GPL(nfs_commit_free);
  60. struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount)
  61. {
  62. struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
  63. if (p) {
  64. memset(p, 0, sizeof(*p));
  65. INIT_LIST_HEAD(&p->pages);
  66. p->npages = pagecount;
  67. if (pagecount <= ARRAY_SIZE(p->page_array))
  68. p->pagevec = p->page_array;
  69. else {
  70. p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
  71. if (!p->pagevec) {
  72. mempool_free(p, nfs_wdata_mempool);
  73. p = NULL;
  74. }
  75. }
  76. }
  77. return p;
  78. }
  79. void nfs_writedata_free(struct nfs_write_data *p)
  80. {
  81. if (p && (p->pagevec != &p->page_array[0]))
  82. kfree(p->pagevec);
  83. mempool_free(p, nfs_wdata_mempool);
  84. }
  85. static void nfs_writedata_release(struct nfs_write_data *wdata)
  86. {
  87. put_lseg(wdata->lseg);
  88. put_nfs_open_context(wdata->args.context);
  89. nfs_writedata_free(wdata);
  90. }
  91. static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
  92. {
  93. ctx->error = error;
  94. smp_wmb();
  95. set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
  96. }
  97. static struct nfs_page *nfs_page_find_request_locked(struct page *page)
  98. {
  99. struct nfs_page *req = NULL;
  100. if (PagePrivate(page)) {
  101. req = (struct nfs_page *)page_private(page);
  102. if (req != NULL)
  103. kref_get(&req->wb_kref);
  104. }
  105. return req;
  106. }
  107. static struct nfs_page *nfs_page_find_request(struct page *page)
  108. {
  109. struct inode *inode = page->mapping->host;
  110. struct nfs_page *req = NULL;
  111. spin_lock(&inode->i_lock);
  112. req = nfs_page_find_request_locked(page);
  113. spin_unlock(&inode->i_lock);
  114. return req;
  115. }
  116. /* Adjust the file length if we're writing beyond the end */
  117. static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
  118. {
  119. struct inode *inode = page->mapping->host;
  120. loff_t end, i_size;
  121. pgoff_t end_index;
  122. spin_lock(&inode->i_lock);
  123. i_size = i_size_read(inode);
  124. end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
  125. if (i_size > 0 && page->index < end_index)
  126. goto out;
  127. end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
  128. if (i_size >= end)
  129. goto out;
  130. i_size_write(inode, end);
  131. nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
  132. out:
  133. spin_unlock(&inode->i_lock);
  134. }
  135. /* A writeback failed: mark the page as bad, and invalidate the page cache */
  136. static void nfs_set_pageerror(struct page *page)
  137. {
  138. SetPageError(page);
  139. nfs_zap_mapping(page->mapping->host, page->mapping);
  140. }
  141. /* We can set the PG_uptodate flag if we see that a write request
  142. * covers the full page.
  143. */
  144. static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
  145. {
  146. if (PageUptodate(page))
  147. return;
  148. if (base != 0)
  149. return;
  150. if (count != nfs_page_length(page))
  151. return;
  152. SetPageUptodate(page);
  153. }
  154. static int wb_priority(struct writeback_control *wbc)
  155. {
  156. if (wbc->for_reclaim)
  157. return FLUSH_HIGHPRI | FLUSH_STABLE;
  158. if (wbc->for_kupdate || wbc->for_background)
  159. return FLUSH_LOWPRI | FLUSH_COND_STABLE;
  160. return FLUSH_COND_STABLE;
  161. }
  162. /*
  163. * NFS congestion control
  164. */
  165. int nfs_congestion_kb;
  166. #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10))
  167. #define NFS_CONGESTION_OFF_THRESH \
  168. (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
  169. static int nfs_set_page_writeback(struct page *page)
  170. {
  171. int ret = test_set_page_writeback(page);
  172. if (!ret) {
  173. struct inode *inode = page->mapping->host;
  174. struct nfs_server *nfss = NFS_SERVER(inode);
  175. page_cache_get(page);
  176. if (atomic_long_inc_return(&nfss->writeback) >
  177. NFS_CONGESTION_ON_THRESH) {
  178. set_bdi_congested(&nfss->backing_dev_info,
  179. BLK_RW_ASYNC);
  180. }
  181. }
  182. return ret;
  183. }
  184. static void nfs_end_page_writeback(struct page *page)
  185. {
  186. struct inode *inode = page->mapping->host;
  187. struct nfs_server *nfss = NFS_SERVER(inode);
  188. end_page_writeback(page);
  189. page_cache_release(page);
  190. if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
  191. clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC);
  192. }
  193. static struct nfs_page *nfs_find_and_lock_request(struct page *page, bool nonblock)
  194. {
  195. struct inode *inode = page->mapping->host;
  196. struct nfs_page *req;
  197. int ret;
  198. spin_lock(&inode->i_lock);
  199. for (;;) {
  200. req = nfs_page_find_request_locked(page);
  201. if (req == NULL)
  202. break;
  203. if (nfs_set_page_tag_locked(req))
  204. break;
  205. /* Note: If we hold the page lock, as is the case in nfs_writepage,
  206. * then the call to nfs_set_page_tag_locked() will always
  207. * succeed provided that someone hasn't already marked the
  208. * request as dirty (in which case we don't care).
  209. */
  210. spin_unlock(&inode->i_lock);
  211. if (!nonblock)
  212. ret = nfs_wait_on_request(req);
  213. else
  214. ret = -EAGAIN;
  215. nfs_release_request(req);
  216. if (ret != 0)
  217. return ERR_PTR(ret);
  218. spin_lock(&inode->i_lock);
  219. }
  220. spin_unlock(&inode->i_lock);
  221. return req;
  222. }
  223. /*
  224. * Find an associated nfs write request, and prepare to flush it out
  225. * May return an error if the user signalled nfs_wait_on_request().
  226. */
  227. static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
  228. struct page *page, bool nonblock)
  229. {
  230. struct nfs_page *req;
  231. int ret = 0;
  232. req = nfs_find_and_lock_request(page, nonblock);
  233. if (!req)
  234. goto out;
  235. ret = PTR_ERR(req);
  236. if (IS_ERR(req))
  237. goto out;
  238. ret = nfs_set_page_writeback(page);
  239. BUG_ON(ret != 0);
  240. BUG_ON(test_bit(PG_CLEAN, &req->wb_flags));
  241. if (!nfs_pageio_add_request(pgio, req)) {
  242. nfs_redirty_request(req);
  243. ret = pgio->pg_error;
  244. }
  245. out:
  246. return ret;
  247. }
  248. static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
  249. {
  250. struct inode *inode = page->mapping->host;
  251. int ret;
  252. nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
  253. nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
  254. nfs_pageio_cond_complete(pgio, page->index);
  255. ret = nfs_page_async_flush(pgio, page, wbc->sync_mode == WB_SYNC_NONE);
  256. if (ret == -EAGAIN) {
  257. redirty_page_for_writepage(wbc, page);
  258. ret = 0;
  259. }
  260. return ret;
  261. }
  262. /*
  263. * Write an mmapped page to the server.
  264. */
  265. static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
  266. {
  267. struct nfs_pageio_descriptor pgio;
  268. int err;
  269. nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc));
  270. err = nfs_do_writepage(page, wbc, &pgio);
  271. nfs_pageio_complete(&pgio);
  272. if (err < 0)
  273. return err;
  274. if (pgio.pg_error < 0)
  275. return pgio.pg_error;
  276. return 0;
  277. }
  278. int nfs_writepage(struct page *page, struct writeback_control *wbc)
  279. {
  280. int ret;
  281. ret = nfs_writepage_locked(page, wbc);
  282. unlock_page(page);
  283. return ret;
  284. }
  285. static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
  286. {
  287. int ret;
  288. ret = nfs_do_writepage(page, wbc, data);
  289. unlock_page(page);
  290. return ret;
  291. }
  292. int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
  293. {
  294. struct inode *inode = mapping->host;
  295. unsigned long *bitlock = &NFS_I(inode)->flags;
  296. struct nfs_pageio_descriptor pgio;
  297. int err;
  298. /* Stop dirtying of new pages while we sync */
  299. err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING,
  300. nfs_wait_bit_killable, TASK_KILLABLE);
  301. if (err)
  302. goto out_err;
  303. nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
  304. nfs_pageio_init_write(&pgio, inode, wb_priority(wbc));
  305. err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
  306. nfs_pageio_complete(&pgio);
  307. clear_bit_unlock(NFS_INO_FLUSHING, bitlock);
  308. smp_mb__after_clear_bit();
  309. wake_up_bit(bitlock, NFS_INO_FLUSHING);
  310. if (err < 0)
  311. goto out_err;
  312. err = pgio.pg_error;
  313. if (err < 0)
  314. goto out_err;
  315. return 0;
  316. out_err:
  317. return err;
  318. }
  319. /*
  320. * Insert a write request into an inode
  321. */
  322. static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
  323. {
  324. struct nfs_inode *nfsi = NFS_I(inode);
  325. int error;
  326. error = radix_tree_preload(GFP_NOFS);
  327. if (error != 0)
  328. goto out;
  329. /* Lock the request! */
  330. nfs_lock_request_dontget(req);
  331. spin_lock(&inode->i_lock);
  332. error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
  333. BUG_ON(error);
  334. if (!nfsi->npages && nfs_have_delegation(inode, FMODE_WRITE))
  335. nfsi->change_attr++;
  336. set_bit(PG_MAPPED, &req->wb_flags);
  337. SetPagePrivate(req->wb_page);
  338. set_page_private(req->wb_page, (unsigned long)req);
  339. nfsi->npages++;
  340. kref_get(&req->wb_kref);
  341. radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index,
  342. NFS_PAGE_TAG_LOCKED);
  343. spin_unlock(&inode->i_lock);
  344. radix_tree_preload_end();
  345. out:
  346. return error;
  347. }
  348. /*
  349. * Remove a write request from an inode
  350. */
  351. static void nfs_inode_remove_request(struct nfs_page *req)
  352. {
  353. struct inode *inode = req->wb_context->path.dentry->d_inode;
  354. struct nfs_inode *nfsi = NFS_I(inode);
  355. BUG_ON (!NFS_WBACK_BUSY(req));
  356. spin_lock(&inode->i_lock);
  357. set_page_private(req->wb_page, 0);
  358. ClearPagePrivate(req->wb_page);
  359. clear_bit(PG_MAPPED, &req->wb_flags);
  360. radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
  361. nfsi->npages--;
  362. spin_unlock(&inode->i_lock);
  363. nfs_release_request(req);
  364. }
  365. static void
  366. nfs_mark_request_dirty(struct nfs_page *req)
  367. {
  368. __set_page_dirty_nobuffers(req->wb_page);
  369. __mark_inode_dirty(req->wb_page->mapping->host, I_DIRTY_DATASYNC);
  370. }
  371. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  372. /*
  373. * Add a request to the inode's commit list.
  374. */
  375. static void
  376. nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg)
  377. {
  378. struct inode *inode = req->wb_context->path.dentry->d_inode;
  379. struct nfs_inode *nfsi = NFS_I(inode);
  380. spin_lock(&inode->i_lock);
  381. set_bit(PG_CLEAN, &(req)->wb_flags);
  382. radix_tree_tag_set(&nfsi->nfs_page_tree,
  383. req->wb_index,
  384. NFS_PAGE_TAG_COMMIT);
  385. nfsi->ncommit++;
  386. spin_unlock(&inode->i_lock);
  387. pnfs_mark_request_commit(req, lseg);
  388. inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
  389. inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE);
  390. __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
  391. }
  392. static int
  393. nfs_clear_request_commit(struct nfs_page *req)
  394. {
  395. struct page *page = req->wb_page;
  396. if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) {
  397. dec_zone_page_state(page, NR_UNSTABLE_NFS);
  398. dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE);
  399. return 1;
  400. }
  401. return 0;
  402. }
  403. static inline
  404. int nfs_write_need_commit(struct nfs_write_data *data)
  405. {
  406. if (data->verf.committed == NFS_DATA_SYNC)
  407. return data->lseg == NULL;
  408. else
  409. return data->verf.committed != NFS_FILE_SYNC;
  410. }
  411. static inline
  412. int nfs_reschedule_unstable_write(struct nfs_page *req,
  413. struct nfs_write_data *data)
  414. {
  415. if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) {
  416. nfs_mark_request_commit(req, data->lseg);
  417. return 1;
  418. }
  419. if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) {
  420. nfs_mark_request_dirty(req);
  421. return 1;
  422. }
  423. return 0;
  424. }
  425. #else
  426. static inline void
  427. nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg)
  428. {
  429. }
  430. static inline int
  431. nfs_clear_request_commit(struct nfs_page *req)
  432. {
  433. return 0;
  434. }
  435. static inline
  436. int nfs_write_need_commit(struct nfs_write_data *data)
  437. {
  438. return 0;
  439. }
  440. static inline
  441. int nfs_reschedule_unstable_write(struct nfs_page *req,
  442. struct nfs_write_data *data)
  443. {
  444. return 0;
  445. }
  446. #endif
  447. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  448. static int
  449. nfs_need_commit(struct nfs_inode *nfsi)
  450. {
  451. return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT);
  452. }
  453. /*
  454. * nfs_scan_commit - Scan an inode for commit requests
  455. * @inode: NFS inode to scan
  456. * @dst: destination list
  457. * @idx_start: lower bound of page->index to scan.
  458. * @npages: idx_start + npages sets the upper bound to scan.
  459. *
  460. * Moves requests from the inode's 'commit' request list.
  461. * The requests are *not* checked to ensure that they form a contiguous set.
  462. */
  463. static int
  464. nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
  465. {
  466. struct nfs_inode *nfsi = NFS_I(inode);
  467. int ret;
  468. if (!nfs_need_commit(nfsi))
  469. return 0;
  470. ret = nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT);
  471. if (ret > 0)
  472. nfsi->ncommit -= ret;
  473. if (nfs_need_commit(NFS_I(inode)))
  474. __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
  475. return ret;
  476. }
  477. #else
  478. static inline int nfs_need_commit(struct nfs_inode *nfsi)
  479. {
  480. return 0;
  481. }
  482. static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
  483. {
  484. return 0;
  485. }
  486. #endif
  487. /*
  488. * Search for an existing write request, and attempt to update
  489. * it to reflect a new dirty region on a given page.
  490. *
  491. * If the attempt fails, then the existing request is flushed out
  492. * to disk.
  493. */
  494. static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
  495. struct page *page,
  496. unsigned int offset,
  497. unsigned int bytes)
  498. {
  499. struct nfs_page *req;
  500. unsigned int rqend;
  501. unsigned int end;
  502. int error;
  503. if (!PagePrivate(page))
  504. return NULL;
  505. end = offset + bytes;
  506. spin_lock(&inode->i_lock);
  507. for (;;) {
  508. req = nfs_page_find_request_locked(page);
  509. if (req == NULL)
  510. goto out_unlock;
  511. rqend = req->wb_offset + req->wb_bytes;
  512. /*
  513. * Tell the caller to flush out the request if
  514. * the offsets are non-contiguous.
  515. * Note: nfs_flush_incompatible() will already
  516. * have flushed out requests having wrong owners.
  517. */
  518. if (offset > rqend
  519. || end < req->wb_offset)
  520. goto out_flushme;
  521. if (nfs_set_page_tag_locked(req))
  522. break;
  523. /* The request is locked, so wait and then retry */
  524. spin_unlock(&inode->i_lock);
  525. error = nfs_wait_on_request(req);
  526. nfs_release_request(req);
  527. if (error != 0)
  528. goto out_err;
  529. spin_lock(&inode->i_lock);
  530. }
  531. if (nfs_clear_request_commit(req) &&
  532. radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree,
  533. req->wb_index, NFS_PAGE_TAG_COMMIT) != NULL) {
  534. NFS_I(inode)->ncommit--;
  535. pnfs_clear_request_commit(req);
  536. }
  537. /* Okay, the request matches. Update the region */
  538. if (offset < req->wb_offset) {
  539. req->wb_offset = offset;
  540. req->wb_pgbase = offset;
  541. }
  542. if (end > rqend)
  543. req->wb_bytes = end - req->wb_offset;
  544. else
  545. req->wb_bytes = rqend - req->wb_offset;
  546. out_unlock:
  547. spin_unlock(&inode->i_lock);
  548. return req;
  549. out_flushme:
  550. spin_unlock(&inode->i_lock);
  551. nfs_release_request(req);
  552. error = nfs_wb_page(inode, page);
  553. out_err:
  554. return ERR_PTR(error);
  555. }
  556. /*
  557. * Try to update an existing write request, or create one if there is none.
  558. *
  559. * Note: Should always be called with the Page Lock held to prevent races
  560. * if we have to add a new request. Also assumes that the caller has
  561. * already called nfs_flush_incompatible() if necessary.
  562. */
  563. static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
  564. struct page *page, unsigned int offset, unsigned int bytes)
  565. {
  566. struct inode *inode = page->mapping->host;
  567. struct nfs_page *req;
  568. int error;
  569. req = nfs_try_to_update_request(inode, page, offset, bytes);
  570. if (req != NULL)
  571. goto out;
  572. req = nfs_create_request(ctx, inode, page, offset, bytes);
  573. if (IS_ERR(req))
  574. goto out;
  575. error = nfs_inode_add_request(inode, req);
  576. if (error != 0) {
  577. nfs_release_request(req);
  578. req = ERR_PTR(error);
  579. }
  580. out:
  581. return req;
  582. }
  583. static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
  584. unsigned int offset, unsigned int count)
  585. {
  586. struct nfs_page *req;
  587. req = nfs_setup_write_request(ctx, page, offset, count);
  588. if (IS_ERR(req))
  589. return PTR_ERR(req);
  590. nfs_mark_request_dirty(req);
  591. /* Update file length */
  592. nfs_grow_file(page, offset, count);
  593. nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
  594. nfs_mark_request_dirty(req);
  595. nfs_clear_page_tag_locked(req);
  596. return 0;
  597. }
  598. int nfs_flush_incompatible(struct file *file, struct page *page)
  599. {
  600. struct nfs_open_context *ctx = nfs_file_open_context(file);
  601. struct nfs_page *req;
  602. int do_flush, status;
  603. /*
  604. * Look for a request corresponding to this page. If there
  605. * is one, and it belongs to another file, we flush it out
  606. * before we try to copy anything into the page. Do this
  607. * due to the lack of an ACCESS-type call in NFSv2.
  608. * Also do the same if we find a request from an existing
  609. * dropped page.
  610. */
  611. do {
  612. req = nfs_page_find_request(page);
  613. if (req == NULL)
  614. return 0;
  615. do_flush = req->wb_page != page || req->wb_context != ctx ||
  616. req->wb_lock_context->lockowner != current->files ||
  617. req->wb_lock_context->pid != current->tgid;
  618. nfs_release_request(req);
  619. if (!do_flush)
  620. return 0;
  621. status = nfs_wb_page(page->mapping->host, page);
  622. } while (status == 0);
  623. return status;
  624. }
  625. /*
  626. * If the page cache is marked as unsafe or invalid, then we can't rely on
  627. * the PageUptodate() flag. In this case, we will need to turn off
  628. * write optimisations that depend on the page contents being correct.
  629. */
  630. static int nfs_write_pageuptodate(struct page *page, struct inode *inode)
  631. {
  632. return PageUptodate(page) &&
  633. !(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA));
  634. }
  635. /*
  636. * Update and possibly write a cached page of an NFS file.
  637. *
  638. * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
  639. * things with a page scheduled for an RPC call (e.g. invalidate it).
  640. */
  641. int nfs_updatepage(struct file *file, struct page *page,
  642. unsigned int offset, unsigned int count)
  643. {
  644. struct nfs_open_context *ctx = nfs_file_open_context(file);
  645. struct inode *inode = page->mapping->host;
  646. int status = 0;
  647. nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
  648. dprintk("NFS: nfs_updatepage(%s/%s %d@%lld)\n",
  649. file->f_path.dentry->d_parent->d_name.name,
  650. file->f_path.dentry->d_name.name, count,
  651. (long long)(page_offset(page) + offset));
  652. /* If we're not using byte range locks, and we know the page
  653. * is up to date, it may be more efficient to extend the write
  654. * to cover the entire page in order to avoid fragmentation
  655. * inefficiencies.
  656. */
  657. if (nfs_write_pageuptodate(page, inode) &&
  658. inode->i_flock == NULL &&
  659. !(file->f_flags & O_DSYNC)) {
  660. count = max(count + offset, nfs_page_length(page));
  661. offset = 0;
  662. }
  663. status = nfs_writepage_setup(ctx, page, offset, count);
  664. if (status < 0)
  665. nfs_set_pageerror(page);
  666. dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n",
  667. status, (long long)i_size_read(inode));
  668. return status;
  669. }
  670. static void nfs_writepage_release(struct nfs_page *req,
  671. struct nfs_write_data *data)
  672. {
  673. struct page *page = req->wb_page;
  674. if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req, data))
  675. nfs_inode_remove_request(req);
  676. nfs_clear_page_tag_locked(req);
  677. nfs_end_page_writeback(page);
  678. }
  679. static int flush_task_priority(int how)
  680. {
  681. switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
  682. case FLUSH_HIGHPRI:
  683. return RPC_PRIORITY_HIGH;
  684. case FLUSH_LOWPRI:
  685. return RPC_PRIORITY_LOW;
  686. }
  687. return RPC_PRIORITY_NORMAL;
  688. }
  689. int nfs_initiate_write(struct nfs_write_data *data,
  690. struct rpc_clnt *clnt,
  691. const struct rpc_call_ops *call_ops,
  692. int how)
  693. {
  694. struct inode *inode = data->inode;
  695. int priority = flush_task_priority(how);
  696. struct rpc_task *task;
  697. struct rpc_message msg = {
  698. .rpc_argp = &data->args,
  699. .rpc_resp = &data->res,
  700. .rpc_cred = data->cred,
  701. };
  702. struct rpc_task_setup task_setup_data = {
  703. .rpc_client = clnt,
  704. .task = &data->task,
  705. .rpc_message = &msg,
  706. .callback_ops = call_ops,
  707. .callback_data = data,
  708. .workqueue = nfsiod_workqueue,
  709. .flags = RPC_TASK_ASYNC,
  710. .priority = priority,
  711. };
  712. int ret = 0;
  713. /* Set up the initial task struct. */
  714. NFS_PROTO(inode)->write_setup(data, &msg);
  715. dprintk("NFS: %5u initiated write call "
  716. "(req %s/%lld, %u bytes @ offset %llu)\n",
  717. data->task.tk_pid,
  718. inode->i_sb->s_id,
  719. (long long)NFS_FILEID(inode),
  720. data->args.count,
  721. (unsigned long long)data->args.offset);
  722. task = rpc_run_task(&task_setup_data);
  723. if (IS_ERR(task)) {
  724. ret = PTR_ERR(task);
  725. goto out;
  726. }
  727. if (how & FLUSH_SYNC) {
  728. ret = rpc_wait_for_completion_task(task);
  729. if (ret == 0)
  730. ret = task->tk_status;
  731. }
  732. rpc_put_task(task);
  733. out:
  734. return ret;
  735. }
  736. EXPORT_SYMBOL_GPL(nfs_initiate_write);
  737. /*
  738. * Set up the argument/result storage required for the RPC call.
  739. */
  740. static int nfs_write_rpcsetup(struct nfs_page *req,
  741. struct nfs_write_data *data,
  742. const struct rpc_call_ops *call_ops,
  743. unsigned int count, unsigned int offset,
  744. struct pnfs_layout_segment *lseg,
  745. int how)
  746. {
  747. struct inode *inode = req->wb_context->path.dentry->d_inode;
  748. /* Set up the RPC argument and reply structs
  749. * NB: take care not to mess about with data->commit et al. */
  750. data->req = req;
  751. data->inode = inode = req->wb_context->path.dentry->d_inode;
  752. data->cred = req->wb_context->cred;
  753. data->lseg = get_lseg(lseg);
  754. data->args.fh = NFS_FH(inode);
  755. data->args.offset = req_offset(req) + offset;
  756. data->args.pgbase = req->wb_pgbase + offset;
  757. data->args.pages = data->pagevec;
  758. data->args.count = count;
  759. data->args.context = get_nfs_open_context(req->wb_context);
  760. data->args.lock_context = req->wb_lock_context;
  761. data->args.stable = NFS_UNSTABLE;
  762. if (how & (FLUSH_STABLE | FLUSH_COND_STABLE)) {
  763. data->args.stable = NFS_DATA_SYNC;
  764. if (!nfs_need_commit(NFS_I(inode)))
  765. data->args.stable = NFS_FILE_SYNC;
  766. }
  767. data->res.fattr = &data->fattr;
  768. data->res.count = count;
  769. data->res.verf = &data->verf;
  770. nfs_fattr_init(&data->fattr);
  771. if (data->lseg &&
  772. (pnfs_try_to_write_data(data, call_ops, how) == PNFS_ATTEMPTED))
  773. return 0;
  774. return nfs_initiate_write(data, NFS_CLIENT(inode), call_ops, how);
  775. }
  776. /* If a nfs_flush_* function fails, it should remove reqs from @head and
  777. * call this on each, which will prepare them to be retried on next
  778. * writeback using standard nfs.
  779. */
  780. static void nfs_redirty_request(struct nfs_page *req)
  781. {
  782. struct page *page = req->wb_page;
  783. nfs_mark_request_dirty(req);
  784. nfs_clear_page_tag_locked(req);
  785. nfs_end_page_writeback(page);
  786. }
  787. /*
  788. * Generate multiple small requests to write out a single
  789. * contiguous dirty area on one page.
  790. */
  791. static int nfs_flush_multi(struct nfs_pageio_descriptor *desc)
  792. {
  793. struct nfs_page *req = nfs_list_entry(desc->pg_list.next);
  794. struct page *page = req->wb_page;
  795. struct nfs_write_data *data;
  796. size_t wsize = NFS_SERVER(desc->pg_inode)->wsize, nbytes;
  797. unsigned int offset;
  798. int requests = 0;
  799. int ret = 0;
  800. struct pnfs_layout_segment *lseg;
  801. LIST_HEAD(list);
  802. nfs_list_remove_request(req);
  803. if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
  804. (desc->pg_moreio || NFS_I(desc->pg_inode)->ncommit ||
  805. desc->pg_count > wsize))
  806. desc->pg_ioflags &= ~FLUSH_COND_STABLE;
  807. nbytes = desc->pg_count;
  808. do {
  809. size_t len = min(nbytes, wsize);
  810. data = nfs_writedata_alloc(1);
  811. if (!data)
  812. goto out_bad;
  813. list_add(&data->pages, &list);
  814. requests++;
  815. nbytes -= len;
  816. } while (nbytes != 0);
  817. atomic_set(&req->wb_complete, requests);
  818. BUG_ON(desc->pg_lseg);
  819. lseg = pnfs_update_layout(desc->pg_inode, req->wb_context, IOMODE_RW);
  820. ClearPageError(page);
  821. offset = 0;
  822. nbytes = desc->pg_count;
  823. do {
  824. int ret2;
  825. data = list_entry(list.next, struct nfs_write_data, pages);
  826. list_del_init(&data->pages);
  827. data->pagevec[0] = page;
  828. if (nbytes < wsize)
  829. wsize = nbytes;
  830. ret2 = nfs_write_rpcsetup(req, data, &nfs_write_partial_ops,
  831. wsize, offset, lseg, desc->pg_ioflags);
  832. if (ret == 0)
  833. ret = ret2;
  834. offset += wsize;
  835. nbytes -= wsize;
  836. } while (nbytes != 0);
  837. put_lseg(lseg);
  838. desc->pg_lseg = NULL;
  839. return ret;
  840. out_bad:
  841. while (!list_empty(&list)) {
  842. data = list_entry(list.next, struct nfs_write_data, pages);
  843. list_del(&data->pages);
  844. nfs_writedata_free(data);
  845. }
  846. nfs_redirty_request(req);
  847. return -ENOMEM;
  848. }
  849. /*
  850. * Create an RPC task for the given write request and kick it.
  851. * The page must have been locked by the caller.
  852. *
  853. * It may happen that the page we're passed is not marked dirty.
  854. * This is the case if nfs_updatepage detects a conflicting request
  855. * that has been written but not committed.
  856. */
  857. static int nfs_flush_one(struct nfs_pageio_descriptor *desc)
  858. {
  859. struct nfs_page *req;
  860. struct page **pages;
  861. struct nfs_write_data *data;
  862. struct list_head *head = &desc->pg_list;
  863. struct pnfs_layout_segment *lseg = desc->pg_lseg;
  864. int ret;
  865. data = nfs_writedata_alloc(nfs_page_array_len(desc->pg_base,
  866. desc->pg_count));
  867. if (!data) {
  868. while (!list_empty(head)) {
  869. req = nfs_list_entry(head->next);
  870. nfs_list_remove_request(req);
  871. nfs_redirty_request(req);
  872. }
  873. ret = -ENOMEM;
  874. goto out;
  875. }
  876. pages = data->pagevec;
  877. while (!list_empty(head)) {
  878. req = nfs_list_entry(head->next);
  879. nfs_list_remove_request(req);
  880. nfs_list_add_request(req, &data->pages);
  881. ClearPageError(req->wb_page);
  882. *pages++ = req->wb_page;
  883. }
  884. req = nfs_list_entry(data->pages.next);
  885. if ((!lseg) && list_is_singular(&data->pages))
  886. lseg = pnfs_update_layout(desc->pg_inode, req->wb_context, IOMODE_RW);
  887. if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
  888. (desc->pg_moreio || NFS_I(desc->pg_inode)->ncommit))
  889. desc->pg_ioflags &= ~FLUSH_COND_STABLE;
  890. /* Set up the argument struct */
  891. ret = nfs_write_rpcsetup(req, data, &nfs_write_full_ops, desc->pg_count, 0, lseg, desc->pg_ioflags);
  892. out:
  893. put_lseg(lseg); /* Cleans any gotten in ->pg_test */
  894. desc->pg_lseg = NULL;
  895. return ret;
  896. }
  897. static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
  898. struct inode *inode, int ioflags)
  899. {
  900. size_t wsize = NFS_SERVER(inode)->wsize;
  901. pnfs_pageio_init_write(pgio, inode);
  902. if (wsize < PAGE_CACHE_SIZE)
  903. nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags);
  904. else
  905. nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags);
  906. }
  907. /*
  908. * Handle a write reply that flushed part of a page.
  909. */
  910. static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
  911. {
  912. struct nfs_write_data *data = calldata;
  913. dprintk("NFS: %5u write(%s/%lld %d@%lld)",
  914. task->tk_pid,
  915. data->req->wb_context->path.dentry->d_inode->i_sb->s_id,
  916. (long long)
  917. NFS_FILEID(data->req->wb_context->path.dentry->d_inode),
  918. data->req->wb_bytes, (long long)req_offset(data->req));
  919. nfs_writeback_done(task, data);
  920. }
  921. static void nfs_writeback_release_partial(void *calldata)
  922. {
  923. struct nfs_write_data *data = calldata;
  924. struct nfs_page *req = data->req;
  925. struct page *page = req->wb_page;
  926. int status = data->task.tk_status;
  927. if (status < 0) {
  928. nfs_set_pageerror(page);
  929. nfs_context_set_write_error(req->wb_context, status);
  930. dprintk(", error = %d\n", status);
  931. goto out;
  932. }
  933. if (nfs_write_need_commit(data)) {
  934. struct inode *inode = page->mapping->host;
  935. spin_lock(&inode->i_lock);
  936. if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) {
  937. /* Do nothing we need to resend the writes */
  938. } else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) {
  939. memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
  940. dprintk(" defer commit\n");
  941. } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
  942. set_bit(PG_NEED_RESCHED, &req->wb_flags);
  943. clear_bit(PG_NEED_COMMIT, &req->wb_flags);
  944. dprintk(" server reboot detected\n");
  945. }
  946. spin_unlock(&inode->i_lock);
  947. } else
  948. dprintk(" OK\n");
  949. out:
  950. if (atomic_dec_and_test(&req->wb_complete))
  951. nfs_writepage_release(req, data);
  952. nfs_writedata_release(calldata);
  953. }
  954. #if defined(CONFIG_NFS_V4_1)
  955. void nfs_write_prepare(struct rpc_task *task, void *calldata)
  956. {
  957. struct nfs_write_data *data = calldata;
  958. if (nfs4_setup_sequence(NFS_SERVER(data->inode),
  959. &data->args.seq_args,
  960. &data->res.seq_res, 1, task))
  961. return;
  962. rpc_call_start(task);
  963. }
  964. #endif /* CONFIG_NFS_V4_1 */
  965. static const struct rpc_call_ops nfs_write_partial_ops = {
  966. #if defined(CONFIG_NFS_V4_1)
  967. .rpc_call_prepare = nfs_write_prepare,
  968. #endif /* CONFIG_NFS_V4_1 */
  969. .rpc_call_done = nfs_writeback_done_partial,
  970. .rpc_release = nfs_writeback_release_partial,
  971. };
  972. /*
  973. * Handle a write reply that flushes a whole page.
  974. *
  975. * FIXME: There is an inherent race with invalidate_inode_pages and
  976. * writebacks since the page->count is kept > 1 for as long
  977. * as the page has a write request pending.
  978. */
  979. static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
  980. {
  981. struct nfs_write_data *data = calldata;
  982. nfs_writeback_done(task, data);
  983. }
  984. static void nfs_writeback_release_full(void *calldata)
  985. {
  986. struct nfs_write_data *data = calldata;
  987. int status = data->task.tk_status;
  988. /* Update attributes as result of writeback. */
  989. while (!list_empty(&data->pages)) {
  990. struct nfs_page *req = nfs_list_entry(data->pages.next);
  991. struct page *page = req->wb_page;
  992. nfs_list_remove_request(req);
  993. dprintk("NFS: %5u write (%s/%lld %d@%lld)",
  994. data->task.tk_pid,
  995. req->wb_context->path.dentry->d_inode->i_sb->s_id,
  996. (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
  997. req->wb_bytes,
  998. (long long)req_offset(req));
  999. if (status < 0) {
  1000. nfs_set_pageerror(page);
  1001. nfs_context_set_write_error(req->wb_context, status);
  1002. dprintk(", error = %d\n", status);
  1003. goto remove_request;
  1004. }
  1005. if (nfs_write_need_commit(data)) {
  1006. memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
  1007. nfs_mark_request_commit(req, data->lseg);
  1008. dprintk(" marked for commit\n");
  1009. goto next;
  1010. }
  1011. dprintk(" OK\n");
  1012. remove_request:
  1013. nfs_inode_remove_request(req);
  1014. next:
  1015. nfs_clear_page_tag_locked(req);
  1016. nfs_end_page_writeback(page);
  1017. }
  1018. nfs_writedata_release(calldata);
  1019. }
  1020. static const struct rpc_call_ops nfs_write_full_ops = {
  1021. #if defined(CONFIG_NFS_V4_1)
  1022. .rpc_call_prepare = nfs_write_prepare,
  1023. #endif /* CONFIG_NFS_V4_1 */
  1024. .rpc_call_done = nfs_writeback_done_full,
  1025. .rpc_release = nfs_writeback_release_full,
  1026. };
  1027. /*
  1028. * This function is called when the WRITE call is complete.
  1029. */
  1030. void nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
  1031. {
  1032. struct nfs_writeargs *argp = &data->args;
  1033. struct nfs_writeres *resp = &data->res;
  1034. struct nfs_server *server = NFS_SERVER(data->inode);
  1035. int status;
  1036. dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
  1037. task->tk_pid, task->tk_status);
  1038. /*
  1039. * ->write_done will attempt to use post-op attributes to detect
  1040. * conflicting writes by other clients. A strict interpretation
  1041. * of close-to-open would allow us to continue caching even if
  1042. * another writer had changed the file, but some applications
  1043. * depend on tighter cache coherency when writing.
  1044. */
  1045. status = NFS_PROTO(data->inode)->write_done(task, data);
  1046. if (status != 0)
  1047. return;
  1048. nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
  1049. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  1050. if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
  1051. /* We tried a write call, but the server did not
  1052. * commit data to stable storage even though we
  1053. * requested it.
  1054. * Note: There is a known bug in Tru64 < 5.0 in which
  1055. * the server reports NFS_DATA_SYNC, but performs
  1056. * NFS_FILE_SYNC. We therefore implement this checking
  1057. * as a dprintk() in order to avoid filling syslog.
  1058. */
  1059. static unsigned long complain;
  1060. /* Note this will print the MDS for a DS write */
  1061. if (time_before(complain, jiffies)) {
  1062. dprintk("NFS: faulty NFS server %s:"
  1063. " (committed = %d) != (stable = %d)\n",
  1064. server->nfs_client->cl_hostname,
  1065. resp->verf->committed, argp->stable);
  1066. complain = jiffies + 300 * HZ;
  1067. }
  1068. }
  1069. #endif
  1070. /* Is this a short write? */
  1071. if (task->tk_status >= 0 && resp->count < argp->count) {
  1072. static unsigned long complain;
  1073. nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
  1074. /* Has the server at least made some progress? */
  1075. if (resp->count != 0) {
  1076. /* Was this an NFSv2 write or an NFSv3 stable write? */
  1077. if (resp->verf->committed != NFS_UNSTABLE) {
  1078. /* Resend from where the server left off */
  1079. data->mds_offset += resp->count;
  1080. argp->offset += resp->count;
  1081. argp->pgbase += resp->count;
  1082. argp->count -= resp->count;
  1083. } else {
  1084. /* Resend as a stable write in order to avoid
  1085. * headaches in the case of a server crash.
  1086. */
  1087. argp->stable = NFS_FILE_SYNC;
  1088. }
  1089. nfs_restart_rpc(task, server->nfs_client);
  1090. return;
  1091. }
  1092. if (time_before(complain, jiffies)) {
  1093. printk(KERN_WARNING
  1094. "NFS: Server wrote zero bytes, expected %u.\n",
  1095. argp->count);
  1096. complain = jiffies + 300 * HZ;
  1097. }
  1098. /* Can't do anything about it except throw an error. */
  1099. task->tk_status = -EIO;
  1100. }
  1101. return;
  1102. }
  1103. #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
  1104. static int nfs_commit_set_lock(struct nfs_inode *nfsi, int may_wait)
  1105. {
  1106. int ret;
  1107. if (!test_and_set_bit(NFS_INO_COMMIT, &nfsi->flags))
  1108. return 1;
  1109. if (!may_wait)
  1110. return 0;
  1111. ret = out_of_line_wait_on_bit_lock(&nfsi->flags,
  1112. NFS_INO_COMMIT,
  1113. nfs_wait_bit_killable,
  1114. TASK_KILLABLE);
  1115. return (ret < 0) ? ret : 1;
  1116. }
  1117. void nfs_commit_clear_lock(struct nfs_inode *nfsi)
  1118. {
  1119. clear_bit(NFS_INO_COMMIT, &nfsi->flags);
  1120. smp_mb__after_clear_bit();
  1121. wake_up_bit(&nfsi->flags, NFS_INO_COMMIT);
  1122. }
  1123. EXPORT_SYMBOL_GPL(nfs_commit_clear_lock);
  1124. void nfs_commitdata_release(void *data)
  1125. {
  1126. struct nfs_write_data *wdata = data;
  1127. put_lseg(wdata->lseg);
  1128. put_nfs_open_context(wdata->args.context);
  1129. nfs_commit_free(wdata);
  1130. }
  1131. EXPORT_SYMBOL_GPL(nfs_commitdata_release);
  1132. int nfs_initiate_commit(struct nfs_write_data *data, struct rpc_clnt *clnt,
  1133. const struct rpc_call_ops *call_ops,
  1134. int how)
  1135. {
  1136. struct rpc_task *task;
  1137. int priority = flush_task_priority(how);
  1138. struct rpc_message msg = {
  1139. .rpc_argp = &data->args,
  1140. .rpc_resp = &data->res,
  1141. .rpc_cred = data->cred,
  1142. };
  1143. struct rpc_task_setup task_setup_data = {
  1144. .task = &data->task,
  1145. .rpc_client = clnt,
  1146. .rpc_message = &msg,
  1147. .callback_ops = call_ops,
  1148. .callback_data = data,
  1149. .workqueue = nfsiod_workqueue,
  1150. .flags = RPC_TASK_ASYNC,
  1151. .priority = priority,
  1152. };
  1153. /* Set up the initial task struct. */
  1154. NFS_PROTO(data->inode)->commit_setup(data, &msg);
  1155. dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
  1156. task = rpc_run_task(&task_setup_data);
  1157. if (IS_ERR(task))
  1158. return PTR_ERR(task);
  1159. if (how & FLUSH_SYNC)
  1160. rpc_wait_for_completion_task(task);
  1161. rpc_put_task(task);
  1162. return 0;
  1163. }
  1164. EXPORT_SYMBOL_GPL(nfs_initiate_commit);
  1165. /*
  1166. * Set up the argument/result storage required for the RPC call.
  1167. */
  1168. void nfs_init_commit(struct nfs_write_data *data,
  1169. struct list_head *head,
  1170. struct pnfs_layout_segment *lseg)
  1171. {
  1172. struct nfs_page *first = nfs_list_entry(head->next);
  1173. struct inode *inode = first->wb_context->path.dentry->d_inode;
  1174. /* Set up the RPC argument and reply structs
  1175. * NB: take care not to mess about with data->commit et al. */
  1176. list_splice_init(head, &data->pages);
  1177. data->inode = inode;
  1178. data->cred = first->wb_context->cred;
  1179. data->lseg = lseg; /* reference transferred */
  1180. data->mds_ops = &nfs_commit_ops;
  1181. data->args.fh = NFS_FH(data->inode);
  1182. /* Note: we always request a commit of the entire inode */
  1183. data->args.offset = 0;
  1184. data->args.count = 0;
  1185. data->args.context = get_nfs_open_context(first->wb_context);
  1186. data->res.count = 0;
  1187. data->res.fattr = &data->fattr;
  1188. data->res.verf = &data->verf;
  1189. nfs_fattr_init(&data->fattr);
  1190. }
  1191. EXPORT_SYMBOL_GPL(nfs_init_commit);
  1192. void nfs_retry_commit(struct list_head *page_list,
  1193. struct pnfs_layout_segment *lseg)
  1194. {
  1195. struct nfs_page *req;
  1196. while (!list_empty(page_list)) {
  1197. req = nfs_list_entry(page_list->next);
  1198. nfs_list_remove_request(req);
  1199. nfs_mark_request_commit(req, lseg);
  1200. dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
  1201. dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
  1202. BDI_RECLAIMABLE);
  1203. nfs_clear_page_tag_locked(req);
  1204. }
  1205. }
  1206. EXPORT_SYMBOL_GPL(nfs_retry_commit);
  1207. /*
  1208. * Commit dirty pages
  1209. */
  1210. static int
  1211. nfs_commit_list(struct inode *inode, struct list_head *head, int how)
  1212. {
  1213. struct nfs_write_data *data;
  1214. data = nfs_commitdata_alloc();
  1215. if (!data)
  1216. goto out_bad;
  1217. /* Set up the argument struct */
  1218. nfs_init_commit(data, head, NULL);
  1219. return nfs_initiate_commit(data, NFS_CLIENT(inode), data->mds_ops, how);
  1220. out_bad:
  1221. nfs_retry_commit(head, NULL);
  1222. nfs_commit_clear_lock(NFS_I(inode));
  1223. return -ENOMEM;
  1224. }
  1225. /*
  1226. * COMMIT call returned
  1227. */
  1228. static void nfs_commit_done(struct rpc_task *task, void *calldata)
  1229. {
  1230. struct nfs_write_data *data = calldata;
  1231. dprintk("NFS: %5u nfs_commit_done (status %d)\n",
  1232. task->tk_pid, task->tk_status);
  1233. /* Call the NFS version-specific code */
  1234. if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
  1235. return;
  1236. }
  1237. void nfs_commit_release_pages(struct nfs_write_data *data)
  1238. {
  1239. struct nfs_page *req;
  1240. int status = data->task.tk_status;
  1241. while (!list_empty(&data->pages)) {
  1242. req = nfs_list_entry(data->pages.next);
  1243. nfs_list_remove_request(req);
  1244. nfs_clear_request_commit(req);
  1245. dprintk("NFS: commit (%s/%lld %d@%lld)",
  1246. req->wb_context->path.dentry->d_inode->i_sb->s_id,
  1247. (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
  1248. req->wb_bytes,
  1249. (long long)req_offset(req));
  1250. if (status < 0) {
  1251. nfs_context_set_write_error(req->wb_context, status);
  1252. nfs_inode_remove_request(req);
  1253. dprintk(", error = %d\n", status);
  1254. goto next;
  1255. }
  1256. /* Okay, COMMIT succeeded, apparently. Check the verifier
  1257. * returned by the server against all stored verfs. */
  1258. if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
  1259. /* We have a match */
  1260. nfs_inode_remove_request(req);
  1261. dprintk(" OK\n");
  1262. goto next;
  1263. }
  1264. /* We have a mismatch. Write the page again */
  1265. dprintk(" mismatch\n");
  1266. nfs_mark_request_dirty(req);
  1267. next:
  1268. nfs_clear_page_tag_locked(req);
  1269. }
  1270. }
  1271. EXPORT_SYMBOL_GPL(nfs_commit_release_pages);
  1272. static void nfs_commit_release(void *calldata)
  1273. {
  1274. struct nfs_write_data *data = calldata;
  1275. nfs_commit_release_pages(data);
  1276. nfs_commit_clear_lock(NFS_I(data->inode));
  1277. nfs_commitdata_release(calldata);
  1278. }
  1279. static const struct rpc_call_ops nfs_commit_ops = {
  1280. #if defined(CONFIG_NFS_V4_1)
  1281. .rpc_call_prepare = nfs_write_prepare,
  1282. #endif /* CONFIG_NFS_V4_1 */
  1283. .rpc_call_done = nfs_commit_done,
  1284. .rpc_release = nfs_commit_release,
  1285. };
  1286. int nfs_commit_inode(struct inode *inode, int how)
  1287. {
  1288. LIST_HEAD(head);
  1289. int may_wait = how & FLUSH_SYNC;
  1290. int res;
  1291. res = nfs_commit_set_lock(NFS_I(inode), may_wait);
  1292. if (res <= 0)
  1293. goto out_mark_dirty;
  1294. spin_lock(&inode->i_lock);
  1295. res = nfs_scan_commit(inode, &head, 0, 0);
  1296. spin_unlock(&inode->i_lock);
  1297. if (res) {
  1298. int error;
  1299. error = pnfs_commit_list(inode, &head, how);
  1300. if (error == PNFS_NOT_ATTEMPTED)
  1301. error = nfs_commit_list(inode, &head, how);
  1302. if (error < 0)
  1303. return error;
  1304. if (!may_wait)
  1305. goto out_mark_dirty;
  1306. error = wait_on_bit(&NFS_I(inode)->flags,
  1307. NFS_INO_COMMIT,
  1308. nfs_wait_bit_killable,
  1309. TASK_KILLABLE);
  1310. if (error < 0)
  1311. return error;
  1312. } else
  1313. nfs_commit_clear_lock(NFS_I(inode));
  1314. return res;
  1315. /* Note: If we exit without ensuring that the commit is complete,
  1316. * we must mark the inode as dirty. Otherwise, future calls to
  1317. * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure
  1318. * that the data is on the disk.
  1319. */
  1320. out_mark_dirty:
  1321. __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
  1322. return res;
  1323. }
  1324. static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
  1325. {
  1326. struct nfs_inode *nfsi = NFS_I(inode);
  1327. int flags = FLUSH_SYNC;
  1328. int ret = 0;
  1329. if (wbc->sync_mode == WB_SYNC_NONE) {
  1330. /* Don't commit yet if this is a non-blocking flush and there
  1331. * are a lot of outstanding writes for this mapping.
  1332. */
  1333. if (nfsi->ncommit <= (nfsi->npages >> 1))
  1334. goto out_mark_dirty;
  1335. /* don't wait for the COMMIT response */
  1336. flags = 0;
  1337. }
  1338. ret = nfs_commit_inode(inode, flags);
  1339. if (ret >= 0) {
  1340. if (wbc->sync_mode == WB_SYNC_NONE) {
  1341. if (ret < wbc->nr_to_write)
  1342. wbc->nr_to_write -= ret;
  1343. else
  1344. wbc->nr_to_write = 0;
  1345. }
  1346. return 0;
  1347. }
  1348. out_mark_dirty:
  1349. __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
  1350. return ret;
  1351. }
  1352. #else
  1353. static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
  1354. {
  1355. return 0;
  1356. }
  1357. #endif
  1358. int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
  1359. {
  1360. int ret;
  1361. ret = nfs_commit_unstable_pages(inode, wbc);
  1362. if (ret >= 0 && test_bit(NFS_INO_LAYOUTCOMMIT, &NFS_I(inode)->flags)) {
  1363. int status;
  1364. bool sync = true;
  1365. if (wbc->sync_mode == WB_SYNC_NONE || wbc->nonblocking ||
  1366. wbc->for_background)
  1367. sync = false;
  1368. status = pnfs_layoutcommit_inode(inode, sync);
  1369. if (status < 0)
  1370. return status;
  1371. }
  1372. return ret;
  1373. }
  1374. /*
  1375. * flush the inode to disk.
  1376. */
  1377. int nfs_wb_all(struct inode *inode)
  1378. {
  1379. struct writeback_control wbc = {
  1380. .sync_mode = WB_SYNC_ALL,
  1381. .nr_to_write = LONG_MAX,
  1382. .range_start = 0,
  1383. .range_end = LLONG_MAX,
  1384. };
  1385. return sync_inode(inode, &wbc);
  1386. }
  1387. int nfs_wb_page_cancel(struct inode *inode, struct page *page)
  1388. {
  1389. struct nfs_page *req;
  1390. int ret = 0;
  1391. BUG_ON(!PageLocked(page));
  1392. for (;;) {
  1393. wait_on_page_writeback(page);
  1394. req = nfs_page_find_request(page);
  1395. if (req == NULL)
  1396. break;
  1397. if (nfs_lock_request_dontget(req)) {
  1398. nfs_inode_remove_request(req);
  1399. /*
  1400. * In case nfs_inode_remove_request has marked the
  1401. * page as being dirty
  1402. */
  1403. cancel_dirty_page(page, PAGE_CACHE_SIZE);
  1404. nfs_unlock_request(req);
  1405. break;
  1406. }
  1407. ret = nfs_wait_on_request(req);
  1408. nfs_release_request(req);
  1409. if (ret < 0)
  1410. break;
  1411. }
  1412. return ret;
  1413. }
  1414. /*
  1415. * Write back all requests on one page - we do this before reading it.
  1416. */
  1417. int nfs_wb_page(struct inode *inode, struct page *page)
  1418. {
  1419. loff_t range_start = page_offset(page);
  1420. loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
  1421. struct writeback_control wbc = {
  1422. .sync_mode = WB_SYNC_ALL,
  1423. .nr_to_write = 0,
  1424. .range_start = range_start,
  1425. .range_end = range_end,
  1426. };
  1427. int ret;
  1428. for (;;) {
  1429. wait_on_page_writeback(page);
  1430. if (clear_page_dirty_for_io(page)) {
  1431. ret = nfs_writepage_locked(page, &wbc);
  1432. if (ret < 0)
  1433. goto out_error;
  1434. continue;
  1435. }
  1436. if (!PagePrivate(page))
  1437. break;
  1438. ret = nfs_commit_inode(inode, FLUSH_SYNC);
  1439. if (ret < 0)
  1440. goto out_error;
  1441. }
  1442. return 0;
  1443. out_error:
  1444. return ret;
  1445. }
  1446. #ifdef CONFIG_MIGRATION
  1447. int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
  1448. struct page *page)
  1449. {
  1450. struct nfs_page *req;
  1451. int ret;
  1452. nfs_fscache_release_page(page, GFP_KERNEL);
  1453. req = nfs_find_and_lock_request(page, false);
  1454. ret = PTR_ERR(req);
  1455. if (IS_ERR(req))
  1456. goto out;
  1457. ret = migrate_page(mapping, newpage, page);
  1458. if (!req)
  1459. goto out;
  1460. if (ret)
  1461. goto out_unlock;
  1462. page_cache_get(newpage);
  1463. spin_lock(&mapping->host->i_lock);
  1464. req->wb_page = newpage;
  1465. SetPagePrivate(newpage);
  1466. set_page_private(newpage, (unsigned long)req);
  1467. ClearPagePrivate(page);
  1468. set_page_private(page, 0);
  1469. spin_unlock(&mapping->host->i_lock);
  1470. page_cache_release(page);
  1471. out_unlock:
  1472. nfs_clear_page_tag_locked(req);
  1473. out:
  1474. return ret;
  1475. }
  1476. #endif
  1477. int __init nfs_init_writepagecache(void)
  1478. {
  1479. nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
  1480. sizeof(struct nfs_write_data),
  1481. 0, SLAB_HWCACHE_ALIGN,
  1482. NULL);
  1483. if (nfs_wdata_cachep == NULL)
  1484. return -ENOMEM;
  1485. nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
  1486. nfs_wdata_cachep);
  1487. if (nfs_wdata_mempool == NULL)
  1488. return -ENOMEM;
  1489. nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
  1490. nfs_wdata_cachep);
  1491. if (nfs_commit_mempool == NULL)
  1492. return -ENOMEM;
  1493. /*
  1494. * NFS congestion size, scale with available memory.
  1495. *
  1496. * 64MB: 8192k
  1497. * 128MB: 11585k
  1498. * 256MB: 16384k
  1499. * 512MB: 23170k
  1500. * 1GB: 32768k
  1501. * 2GB: 46340k
  1502. * 4GB: 65536k
  1503. * 8GB: 92681k
  1504. * 16GB: 131072k
  1505. *
  1506. * This allows larger machines to have larger/more transfers.
  1507. * Limit the default to 256M
  1508. */
  1509. nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
  1510. if (nfs_congestion_kb > 256*1024)
  1511. nfs_congestion_kb = 256*1024;
  1512. return 0;
  1513. }
  1514. void nfs_destroy_writepagecache(void)
  1515. {
  1516. mempool_destroy(nfs_commit_mempool);
  1517. mempool_destroy(nfs_wdata_mempool);
  1518. kmem_cache_destroy(nfs_wdata_cachep);
  1519. }