brec.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516
  1. /*
  2. * linux/fs/hfsplus/brec.c
  3. *
  4. * Copyright (C) 2001
  5. * Brad Boyer (flar@allandria.com)
  6. * (C) 2003 Ardis Technologies <roman@ardistech.com>
  7. *
  8. * Handle individual btree records
  9. */
  10. #include "hfsplus_fs.h"
  11. #include "hfsplus_raw.h"
  12. static struct hfs_bnode *hfs_bnode_split(struct hfs_find_data *fd);
  13. static int hfs_brec_update_parent(struct hfs_find_data *fd);
  14. static int hfs_btree_inc_height(struct hfs_btree *);
  15. /* Get the length and offset of the given record in the given node */
  16. u16 hfs_brec_lenoff(struct hfs_bnode *node, u16 rec, u16 *off)
  17. {
  18. __be16 retval[2];
  19. u16 dataoff;
  20. dataoff = node->tree->node_size - (rec + 2) * 2;
  21. hfs_bnode_read(node, retval, dataoff, 4);
  22. *off = be16_to_cpu(retval[1]);
  23. return be16_to_cpu(retval[0]) - *off;
  24. }
  25. /* Get the length of the key from a keyed record */
  26. u16 hfs_brec_keylen(struct hfs_bnode *node, u16 rec)
  27. {
  28. u16 retval, recoff;
  29. if (node->type != HFS_NODE_INDEX && node->type != HFS_NODE_LEAF)
  30. return 0;
  31. if ((node->type == HFS_NODE_INDEX) &&
  32. !(node->tree->attributes & HFS_TREE_VARIDXKEYS)) {
  33. retval = node->tree->max_key_len + 2;
  34. } else {
  35. recoff = hfs_bnode_read_u16(node,
  36. node->tree->node_size - (rec + 1) * 2);
  37. if (!recoff)
  38. return 0;
  39. retval = hfs_bnode_read_u16(node, recoff) + 2;
  40. if (retval > node->tree->max_key_len + 2) {
  41. printk(KERN_ERR "hfs: keylen %d too large\n",
  42. retval);
  43. retval = 0;
  44. }
  45. }
  46. return retval;
  47. }
  48. int hfs_brec_insert(struct hfs_find_data *fd, void *entry, int entry_len)
  49. {
  50. struct hfs_btree *tree;
  51. struct hfs_bnode *node, *new_node;
  52. int size, key_len, rec;
  53. int data_off, end_off;
  54. int idx_rec_off, data_rec_off, end_rec_off;
  55. __be32 cnid;
  56. tree = fd->tree;
  57. if (!fd->bnode) {
  58. if (!tree->root)
  59. hfs_btree_inc_height(tree);
  60. fd->bnode = hfs_bnode_find(tree, tree->leaf_head);
  61. if (IS_ERR(fd->bnode))
  62. return PTR_ERR(fd->bnode);
  63. fd->record = -1;
  64. }
  65. new_node = NULL;
  66. key_len = be16_to_cpu(fd->search_key->key_len) + 2;
  67. again:
  68. /* new record idx and complete record size */
  69. rec = fd->record + 1;
  70. size = key_len + entry_len;
  71. node = fd->bnode;
  72. hfs_bnode_dump(node);
  73. /* get last offset */
  74. end_rec_off = tree->node_size - (node->num_recs + 1) * 2;
  75. end_off = hfs_bnode_read_u16(node, end_rec_off);
  76. end_rec_off -= 2;
  77. dprint(DBG_BNODE_MOD, "insert_rec: %d, %d, %d, %d\n",
  78. rec, size, end_off, end_rec_off);
  79. if (size > end_rec_off - end_off) {
  80. if (new_node)
  81. panic("not enough room!\n");
  82. new_node = hfs_bnode_split(fd);
  83. if (IS_ERR(new_node))
  84. return PTR_ERR(new_node);
  85. goto again;
  86. }
  87. if (node->type == HFS_NODE_LEAF) {
  88. tree->leaf_count++;
  89. mark_inode_dirty(tree->inode);
  90. }
  91. node->num_recs++;
  92. /* write new last offset */
  93. hfs_bnode_write_u16(node,
  94. offsetof(struct hfs_bnode_desc, num_recs),
  95. node->num_recs);
  96. hfs_bnode_write_u16(node, end_rec_off, end_off + size);
  97. data_off = end_off;
  98. data_rec_off = end_rec_off + 2;
  99. idx_rec_off = tree->node_size - (rec + 1) * 2;
  100. if (idx_rec_off == data_rec_off)
  101. goto skip;
  102. /* move all following entries */
  103. do {
  104. data_off = hfs_bnode_read_u16(node, data_rec_off + 2);
  105. hfs_bnode_write_u16(node, data_rec_off, data_off + size);
  106. data_rec_off += 2;
  107. } while (data_rec_off < idx_rec_off);
  108. /* move data away */
  109. hfs_bnode_move(node, data_off + size, data_off,
  110. end_off - data_off);
  111. skip:
  112. hfs_bnode_write(node, fd->search_key, data_off, key_len);
  113. hfs_bnode_write(node, entry, data_off + key_len, entry_len);
  114. hfs_bnode_dump(node);
  115. if (new_node) {
  116. /* update parent key if we inserted a key
  117. * at the start of the first node
  118. */
  119. if (!rec && new_node != node)
  120. hfs_brec_update_parent(fd);
  121. hfs_bnode_put(fd->bnode);
  122. if (!new_node->parent) {
  123. hfs_btree_inc_height(tree);
  124. new_node->parent = tree->root;
  125. }
  126. fd->bnode = hfs_bnode_find(tree, new_node->parent);
  127. /* create index data entry */
  128. cnid = cpu_to_be32(new_node->this);
  129. entry = &cnid;
  130. entry_len = sizeof(cnid);
  131. /* get index key */
  132. hfs_bnode_read_key(new_node, fd->search_key, 14);
  133. __hfs_brec_find(fd->bnode, fd);
  134. hfs_bnode_put(new_node);
  135. new_node = NULL;
  136. if (tree->attributes & HFS_TREE_VARIDXKEYS)
  137. key_len = be16_to_cpu(fd->search_key->key_len) + 2;
  138. else {
  139. fd->search_key->key_len =
  140. cpu_to_be16(tree->max_key_len);
  141. key_len = tree->max_key_len + 2;
  142. }
  143. goto again;
  144. }
  145. if (!rec)
  146. hfs_brec_update_parent(fd);
  147. return 0;
  148. }
  149. int hfs_brec_remove(struct hfs_find_data *fd)
  150. {
  151. struct hfs_btree *tree;
  152. struct hfs_bnode *node, *parent;
  153. int end_off, rec_off, data_off, size;
  154. tree = fd->tree;
  155. node = fd->bnode;
  156. again:
  157. rec_off = tree->node_size - (fd->record + 2) * 2;
  158. end_off = tree->node_size - (node->num_recs + 1) * 2;
  159. if (node->type == HFS_NODE_LEAF) {
  160. tree->leaf_count--;
  161. mark_inode_dirty(tree->inode);
  162. }
  163. hfs_bnode_dump(node);
  164. dprint(DBG_BNODE_MOD, "remove_rec: %d, %d\n",
  165. fd->record, fd->keylength + fd->entrylength);
  166. if (!--node->num_recs) {
  167. hfs_bnode_unlink(node);
  168. if (!node->parent)
  169. return 0;
  170. parent = hfs_bnode_find(tree, node->parent);
  171. if (IS_ERR(parent))
  172. return PTR_ERR(parent);
  173. hfs_bnode_put(node);
  174. node = fd->bnode = parent;
  175. __hfs_brec_find(node, fd);
  176. goto again;
  177. }
  178. hfs_bnode_write_u16(node,
  179. offsetof(struct hfs_bnode_desc, num_recs),
  180. node->num_recs);
  181. if (rec_off == end_off)
  182. goto skip;
  183. size = fd->keylength + fd->entrylength;
  184. do {
  185. data_off = hfs_bnode_read_u16(node, rec_off);
  186. hfs_bnode_write_u16(node, rec_off + 2, data_off - size);
  187. rec_off -= 2;
  188. } while (rec_off >= end_off);
  189. /* fill hole */
  190. hfs_bnode_move(node, fd->keyoffset, fd->keyoffset + size,
  191. data_off - fd->keyoffset - size);
  192. skip:
  193. hfs_bnode_dump(node);
  194. if (!fd->record)
  195. hfs_brec_update_parent(fd);
  196. return 0;
  197. }
  198. static struct hfs_bnode *hfs_bnode_split(struct hfs_find_data *fd)
  199. {
  200. struct hfs_btree *tree;
  201. struct hfs_bnode *node, *new_node, *next_node;
  202. struct hfs_bnode_desc node_desc;
  203. int num_recs, new_rec_off, new_off, old_rec_off;
  204. int data_start, data_end, size;
  205. tree = fd->tree;
  206. node = fd->bnode;
  207. new_node = hfs_bmap_alloc(tree);
  208. if (IS_ERR(new_node))
  209. return new_node;
  210. hfs_bnode_get(node);
  211. dprint(DBG_BNODE_MOD, "split_nodes: %d - %d - %d\n",
  212. node->this, new_node->this, node->next);
  213. new_node->next = node->next;
  214. new_node->prev = node->this;
  215. new_node->parent = node->parent;
  216. new_node->type = node->type;
  217. new_node->height = node->height;
  218. if (node->next)
  219. next_node = hfs_bnode_find(tree, node->next);
  220. else
  221. next_node = NULL;
  222. if (IS_ERR(next_node)) {
  223. hfs_bnode_put(node);
  224. hfs_bnode_put(new_node);
  225. return next_node;
  226. }
  227. size = tree->node_size / 2 - node->num_recs * 2 - 14;
  228. old_rec_off = tree->node_size - 4;
  229. num_recs = 1;
  230. for (;;) {
  231. data_start = hfs_bnode_read_u16(node, old_rec_off);
  232. if (data_start > size)
  233. break;
  234. old_rec_off -= 2;
  235. if (++num_recs < node->num_recs)
  236. continue;
  237. /* panic? */
  238. hfs_bnode_put(node);
  239. hfs_bnode_put(new_node);
  240. if (next_node)
  241. hfs_bnode_put(next_node);
  242. return ERR_PTR(-ENOSPC);
  243. }
  244. if (fd->record + 1 < num_recs) {
  245. /* new record is in the lower half,
  246. * so leave some more space there
  247. */
  248. old_rec_off += 2;
  249. num_recs--;
  250. data_start = hfs_bnode_read_u16(node, old_rec_off);
  251. } else {
  252. hfs_bnode_put(node);
  253. hfs_bnode_get(new_node);
  254. fd->bnode = new_node;
  255. fd->record -= num_recs;
  256. fd->keyoffset -= data_start - 14;
  257. fd->entryoffset -= data_start - 14;
  258. }
  259. new_node->num_recs = node->num_recs - num_recs;
  260. node->num_recs = num_recs;
  261. new_rec_off = tree->node_size - 2;
  262. new_off = 14;
  263. size = data_start - new_off;
  264. num_recs = new_node->num_recs;
  265. data_end = data_start;
  266. while (num_recs) {
  267. hfs_bnode_write_u16(new_node, new_rec_off, new_off);
  268. old_rec_off -= 2;
  269. new_rec_off -= 2;
  270. data_end = hfs_bnode_read_u16(node, old_rec_off);
  271. new_off = data_end - size;
  272. num_recs--;
  273. }
  274. hfs_bnode_write_u16(new_node, new_rec_off, new_off);
  275. hfs_bnode_copy(new_node, 14, node, data_start, data_end - data_start);
  276. /* update new bnode header */
  277. node_desc.next = cpu_to_be32(new_node->next);
  278. node_desc.prev = cpu_to_be32(new_node->prev);
  279. node_desc.type = new_node->type;
  280. node_desc.height = new_node->height;
  281. node_desc.num_recs = cpu_to_be16(new_node->num_recs);
  282. node_desc.reserved = 0;
  283. hfs_bnode_write(new_node, &node_desc, 0, sizeof(node_desc));
  284. /* update previous bnode header */
  285. node->next = new_node->this;
  286. hfs_bnode_read(node, &node_desc, 0, sizeof(node_desc));
  287. node_desc.next = cpu_to_be32(node->next);
  288. node_desc.num_recs = cpu_to_be16(node->num_recs);
  289. hfs_bnode_write(node, &node_desc, 0, sizeof(node_desc));
  290. /* update next bnode header */
  291. if (next_node) {
  292. next_node->prev = new_node->this;
  293. hfs_bnode_read(next_node, &node_desc, 0, sizeof(node_desc));
  294. node_desc.prev = cpu_to_be32(next_node->prev);
  295. hfs_bnode_write(next_node, &node_desc, 0, sizeof(node_desc));
  296. hfs_bnode_put(next_node);
  297. } else if (node->this == tree->leaf_tail) {
  298. /* if there is no next node, this might be the new tail */
  299. tree->leaf_tail = new_node->this;
  300. mark_inode_dirty(tree->inode);
  301. }
  302. hfs_bnode_dump(node);
  303. hfs_bnode_dump(new_node);
  304. hfs_bnode_put(node);
  305. return new_node;
  306. }
  307. static int hfs_brec_update_parent(struct hfs_find_data *fd)
  308. {
  309. struct hfs_btree *tree;
  310. struct hfs_bnode *node, *new_node, *parent;
  311. int newkeylen, diff;
  312. int rec, rec_off, end_rec_off;
  313. int start_off, end_off;
  314. tree = fd->tree;
  315. node = fd->bnode;
  316. new_node = NULL;
  317. if (!node->parent)
  318. return 0;
  319. again:
  320. parent = hfs_bnode_find(tree, node->parent);
  321. if (IS_ERR(parent))
  322. return PTR_ERR(parent);
  323. __hfs_brec_find(parent, fd);
  324. hfs_bnode_dump(parent);
  325. rec = fd->record;
  326. /* size difference between old and new key */
  327. if (tree->attributes & HFS_TREE_VARIDXKEYS)
  328. newkeylen = hfs_bnode_read_u16(node, 14) + 2;
  329. else
  330. fd->keylength = newkeylen = tree->max_key_len + 2;
  331. dprint(DBG_BNODE_MOD, "update_rec: %d, %d, %d\n",
  332. rec, fd->keylength, newkeylen);
  333. rec_off = tree->node_size - (rec + 2) * 2;
  334. end_rec_off = tree->node_size - (parent->num_recs + 1) * 2;
  335. diff = newkeylen - fd->keylength;
  336. if (!diff)
  337. goto skip;
  338. if (diff > 0) {
  339. end_off = hfs_bnode_read_u16(parent, end_rec_off);
  340. if (end_rec_off - end_off < diff) {
  341. dprint(DBG_BNODE_MOD, "hfs: splitting index node.\n");
  342. fd->bnode = parent;
  343. new_node = hfs_bnode_split(fd);
  344. if (IS_ERR(new_node))
  345. return PTR_ERR(new_node);
  346. parent = fd->bnode;
  347. rec = fd->record;
  348. rec_off = tree->node_size - (rec + 2) * 2;
  349. end_rec_off = tree->node_size -
  350. (parent->num_recs + 1) * 2;
  351. }
  352. }
  353. end_off = start_off = hfs_bnode_read_u16(parent, rec_off);
  354. hfs_bnode_write_u16(parent, rec_off, start_off + diff);
  355. start_off -= 4; /* move previous cnid too */
  356. while (rec_off > end_rec_off) {
  357. rec_off -= 2;
  358. end_off = hfs_bnode_read_u16(parent, rec_off);
  359. hfs_bnode_write_u16(parent, rec_off, end_off + diff);
  360. }
  361. hfs_bnode_move(parent, start_off + diff, start_off,
  362. end_off - start_off);
  363. skip:
  364. hfs_bnode_copy(parent, fd->keyoffset, node, 14, newkeylen);
  365. hfs_bnode_dump(parent);
  366. hfs_bnode_put(node);
  367. node = parent;
  368. if (new_node) {
  369. __be32 cnid;
  370. fd->bnode = hfs_bnode_find(tree, new_node->parent);
  371. /* create index key and entry */
  372. hfs_bnode_read_key(new_node, fd->search_key, 14);
  373. cnid = cpu_to_be32(new_node->this);
  374. __hfs_brec_find(fd->bnode, fd);
  375. hfs_brec_insert(fd, &cnid, sizeof(cnid));
  376. hfs_bnode_put(fd->bnode);
  377. hfs_bnode_put(new_node);
  378. if (!rec) {
  379. if (new_node == node)
  380. goto out;
  381. /* restore search_key */
  382. hfs_bnode_read_key(node, fd->search_key, 14);
  383. }
  384. }
  385. if (!rec && node->parent)
  386. goto again;
  387. out:
  388. fd->bnode = node;
  389. return 0;
  390. }
  391. static int hfs_btree_inc_height(struct hfs_btree *tree)
  392. {
  393. struct hfs_bnode *node, *new_node;
  394. struct hfs_bnode_desc node_desc;
  395. int key_size, rec;
  396. __be32 cnid;
  397. node = NULL;
  398. if (tree->root) {
  399. node = hfs_bnode_find(tree, tree->root);
  400. if (IS_ERR(node))
  401. return PTR_ERR(node);
  402. }
  403. new_node = hfs_bmap_alloc(tree);
  404. if (IS_ERR(new_node)) {
  405. hfs_bnode_put(node);
  406. return PTR_ERR(new_node);
  407. }
  408. tree->root = new_node->this;
  409. if (!tree->depth) {
  410. tree->leaf_head = tree->leaf_tail = new_node->this;
  411. new_node->type = HFS_NODE_LEAF;
  412. new_node->num_recs = 0;
  413. } else {
  414. new_node->type = HFS_NODE_INDEX;
  415. new_node->num_recs = 1;
  416. }
  417. new_node->parent = 0;
  418. new_node->next = 0;
  419. new_node->prev = 0;
  420. new_node->height = ++tree->depth;
  421. node_desc.next = cpu_to_be32(new_node->next);
  422. node_desc.prev = cpu_to_be32(new_node->prev);
  423. node_desc.type = new_node->type;
  424. node_desc.height = new_node->height;
  425. node_desc.num_recs = cpu_to_be16(new_node->num_recs);
  426. node_desc.reserved = 0;
  427. hfs_bnode_write(new_node, &node_desc, 0, sizeof(node_desc));
  428. rec = tree->node_size - 2;
  429. hfs_bnode_write_u16(new_node, rec, 14);
  430. if (node) {
  431. /* insert old root idx into new root */
  432. node->parent = tree->root;
  433. if (node->type == HFS_NODE_LEAF ||
  434. tree->attributes & HFS_TREE_VARIDXKEYS)
  435. key_size = hfs_bnode_read_u16(node, 14) + 2;
  436. else
  437. key_size = tree->max_key_len + 2;
  438. hfs_bnode_copy(new_node, 14, node, 14, key_size);
  439. if (!(tree->attributes & HFS_TREE_VARIDXKEYS)) {
  440. key_size = tree->max_key_len + 2;
  441. hfs_bnode_write_u16(new_node, 14, tree->max_key_len);
  442. }
  443. cnid = cpu_to_be32(node->this);
  444. hfs_bnode_write(new_node, &cnid, 14 + key_size, 4);
  445. rec -= 2;
  446. hfs_bnode_write_u16(new_node, rec, 14 + key_size + 4);
  447. hfs_bnode_put(node);
  448. }
  449. hfs_bnode_put(new_node);
  450. mark_inode_dirty(tree->inode);
  451. return 0;
  452. }