free-space-cache.c 57 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272
  1. /*
  2. * Copyright (C) 2008 Red Hat. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/pagemap.h>
  19. #include <linux/sched.h>
  20. #include <linux/slab.h>
  21. #include <linux/math64.h>
  22. #include "ctree.h"
  23. #include "free-space-cache.h"
  24. #include "transaction.h"
  25. #include "disk-io.h"
  26. #define BITS_PER_BITMAP (PAGE_CACHE_SIZE * 8)
  27. #define MAX_CACHE_BYTES_PER_GIG (32 * 1024)
  28. static void recalculate_thresholds(struct btrfs_block_group_cache
  29. *block_group);
  30. static int link_free_space(struct btrfs_block_group_cache *block_group,
  31. struct btrfs_free_space *info);
  32. struct inode *lookup_free_space_inode(struct btrfs_root *root,
  33. struct btrfs_block_group_cache
  34. *block_group, struct btrfs_path *path)
  35. {
  36. struct btrfs_key key;
  37. struct btrfs_key location;
  38. struct btrfs_disk_key disk_key;
  39. struct btrfs_free_space_header *header;
  40. struct extent_buffer *leaf;
  41. struct inode *inode = NULL;
  42. int ret;
  43. spin_lock(&block_group->lock);
  44. if (block_group->inode)
  45. inode = igrab(block_group->inode);
  46. spin_unlock(&block_group->lock);
  47. if (inode)
  48. return inode;
  49. key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  50. key.offset = block_group->key.objectid;
  51. key.type = 0;
  52. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  53. if (ret < 0)
  54. return ERR_PTR(ret);
  55. if (ret > 0) {
  56. btrfs_release_path(root, path);
  57. return ERR_PTR(-ENOENT);
  58. }
  59. leaf = path->nodes[0];
  60. header = btrfs_item_ptr(leaf, path->slots[0],
  61. struct btrfs_free_space_header);
  62. btrfs_free_space_key(leaf, header, &disk_key);
  63. btrfs_disk_key_to_cpu(&location, &disk_key);
  64. btrfs_release_path(root, path);
  65. inode = btrfs_iget(root->fs_info->sb, &location, root, NULL);
  66. if (!inode)
  67. return ERR_PTR(-ENOENT);
  68. if (IS_ERR(inode))
  69. return inode;
  70. if (is_bad_inode(inode)) {
  71. iput(inode);
  72. return ERR_PTR(-ENOENT);
  73. }
  74. spin_lock(&block_group->lock);
  75. if (!root->fs_info->closing) {
  76. block_group->inode = igrab(inode);
  77. block_group->iref = 1;
  78. }
  79. spin_unlock(&block_group->lock);
  80. return inode;
  81. }
  82. int create_free_space_inode(struct btrfs_root *root,
  83. struct btrfs_trans_handle *trans,
  84. struct btrfs_block_group_cache *block_group,
  85. struct btrfs_path *path)
  86. {
  87. struct btrfs_key key;
  88. struct btrfs_disk_key disk_key;
  89. struct btrfs_free_space_header *header;
  90. struct btrfs_inode_item *inode_item;
  91. struct extent_buffer *leaf;
  92. u64 objectid;
  93. int ret;
  94. ret = btrfs_find_free_objectid(trans, root, 0, &objectid);
  95. if (ret < 0)
  96. return ret;
  97. ret = btrfs_insert_empty_inode(trans, root, path, objectid);
  98. if (ret)
  99. return ret;
  100. leaf = path->nodes[0];
  101. inode_item = btrfs_item_ptr(leaf, path->slots[0],
  102. struct btrfs_inode_item);
  103. btrfs_item_key(leaf, &disk_key, path->slots[0]);
  104. memset_extent_buffer(leaf, 0, (unsigned long)inode_item,
  105. sizeof(*inode_item));
  106. btrfs_set_inode_generation(leaf, inode_item, trans->transid);
  107. btrfs_set_inode_size(leaf, inode_item, 0);
  108. btrfs_set_inode_nbytes(leaf, inode_item, 0);
  109. btrfs_set_inode_uid(leaf, inode_item, 0);
  110. btrfs_set_inode_gid(leaf, inode_item, 0);
  111. btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
  112. btrfs_set_inode_flags(leaf, inode_item, BTRFS_INODE_NOCOMPRESS |
  113. BTRFS_INODE_PREALLOC | BTRFS_INODE_NODATASUM);
  114. btrfs_set_inode_nlink(leaf, inode_item, 1);
  115. btrfs_set_inode_transid(leaf, inode_item, trans->transid);
  116. btrfs_set_inode_block_group(leaf, inode_item,
  117. block_group->key.objectid);
  118. btrfs_mark_buffer_dirty(leaf);
  119. btrfs_release_path(root, path);
  120. key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  121. key.offset = block_group->key.objectid;
  122. key.type = 0;
  123. ret = btrfs_insert_empty_item(trans, root, path, &key,
  124. sizeof(struct btrfs_free_space_header));
  125. if (ret < 0) {
  126. btrfs_release_path(root, path);
  127. return ret;
  128. }
  129. leaf = path->nodes[0];
  130. header = btrfs_item_ptr(leaf, path->slots[0],
  131. struct btrfs_free_space_header);
  132. memset_extent_buffer(leaf, 0, (unsigned long)header, sizeof(*header));
  133. btrfs_set_free_space_key(leaf, header, &disk_key);
  134. btrfs_mark_buffer_dirty(leaf);
  135. btrfs_release_path(root, path);
  136. return 0;
  137. }
  138. int btrfs_truncate_free_space_cache(struct btrfs_root *root,
  139. struct btrfs_trans_handle *trans,
  140. struct btrfs_path *path,
  141. struct inode *inode)
  142. {
  143. loff_t oldsize;
  144. int ret = 0;
  145. trans->block_rsv = root->orphan_block_rsv;
  146. ret = btrfs_block_rsv_check(trans, root,
  147. root->orphan_block_rsv,
  148. 0, 5);
  149. if (ret)
  150. return ret;
  151. oldsize = i_size_read(inode);
  152. btrfs_i_size_write(inode, 0);
  153. truncate_pagecache(inode, oldsize, 0);
  154. /*
  155. * We don't need an orphan item because truncating the free space cache
  156. * will never be split across transactions.
  157. */
  158. ret = btrfs_truncate_inode_items(trans, root, inode,
  159. 0, BTRFS_EXTENT_DATA_KEY);
  160. if (ret) {
  161. WARN_ON(1);
  162. return ret;
  163. }
  164. return btrfs_update_inode(trans, root, inode);
  165. }
  166. static int readahead_cache(struct inode *inode)
  167. {
  168. struct file_ra_state *ra;
  169. unsigned long last_index;
  170. ra = kzalloc(sizeof(*ra), GFP_NOFS);
  171. if (!ra)
  172. return -ENOMEM;
  173. file_ra_state_init(ra, inode->i_mapping);
  174. last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
  175. page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
  176. kfree(ra);
  177. return 0;
  178. }
  179. int load_free_space_cache(struct btrfs_fs_info *fs_info,
  180. struct btrfs_block_group_cache *block_group)
  181. {
  182. struct btrfs_root *root = fs_info->tree_root;
  183. struct inode *inode;
  184. struct btrfs_free_space_header *header;
  185. struct extent_buffer *leaf;
  186. struct page *page;
  187. struct btrfs_path *path;
  188. u32 *checksums = NULL, *crc;
  189. char *disk_crcs = NULL;
  190. struct btrfs_key key;
  191. struct list_head bitmaps;
  192. u64 num_entries;
  193. u64 num_bitmaps;
  194. u64 generation;
  195. u32 cur_crc = ~(u32)0;
  196. pgoff_t index = 0;
  197. unsigned long first_page_offset;
  198. int num_checksums;
  199. int ret = 0;
  200. /*
  201. * If we're unmounting then just return, since this does a search on the
  202. * normal root and not the commit root and we could deadlock.
  203. */
  204. smp_mb();
  205. if (fs_info->closing)
  206. return 0;
  207. /*
  208. * If this block group has been marked to be cleared for one reason or
  209. * another then we can't trust the on disk cache, so just return.
  210. */
  211. spin_lock(&block_group->lock);
  212. if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
  213. spin_unlock(&block_group->lock);
  214. return 0;
  215. }
  216. spin_unlock(&block_group->lock);
  217. INIT_LIST_HEAD(&bitmaps);
  218. path = btrfs_alloc_path();
  219. if (!path)
  220. return 0;
  221. inode = lookup_free_space_inode(root, block_group, path);
  222. if (IS_ERR(inode)) {
  223. btrfs_free_path(path);
  224. return 0;
  225. }
  226. /* Nothing in the space cache, goodbye */
  227. if (!i_size_read(inode)) {
  228. btrfs_free_path(path);
  229. goto out;
  230. }
  231. key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  232. key.offset = block_group->key.objectid;
  233. key.type = 0;
  234. ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
  235. if (ret) {
  236. btrfs_free_path(path);
  237. goto out;
  238. }
  239. leaf = path->nodes[0];
  240. header = btrfs_item_ptr(leaf, path->slots[0],
  241. struct btrfs_free_space_header);
  242. num_entries = btrfs_free_space_entries(leaf, header);
  243. num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
  244. generation = btrfs_free_space_generation(leaf, header);
  245. btrfs_free_path(path);
  246. if (BTRFS_I(inode)->generation != generation) {
  247. printk(KERN_ERR "btrfs: free space inode generation (%llu) did"
  248. " not match free space cache generation (%llu) for "
  249. "block group %llu\n",
  250. (unsigned long long)BTRFS_I(inode)->generation,
  251. (unsigned long long)generation,
  252. (unsigned long long)block_group->key.objectid);
  253. goto free_cache;
  254. }
  255. if (!num_entries)
  256. goto out;
  257. /* Setup everything for doing checksumming */
  258. num_checksums = i_size_read(inode) / PAGE_CACHE_SIZE;
  259. checksums = crc = kzalloc(sizeof(u32) * num_checksums, GFP_NOFS);
  260. if (!checksums)
  261. goto out;
  262. first_page_offset = (sizeof(u32) * num_checksums) + sizeof(u64);
  263. disk_crcs = kzalloc(first_page_offset, GFP_NOFS);
  264. if (!disk_crcs)
  265. goto out;
  266. ret = readahead_cache(inode);
  267. if (ret) {
  268. ret = 0;
  269. goto out;
  270. }
  271. while (1) {
  272. struct btrfs_free_space_entry *entry;
  273. struct btrfs_free_space *e;
  274. void *addr;
  275. unsigned long offset = 0;
  276. unsigned long start_offset = 0;
  277. int need_loop = 0;
  278. if (!num_entries && !num_bitmaps)
  279. break;
  280. if (index == 0) {
  281. start_offset = first_page_offset;
  282. offset = start_offset;
  283. }
  284. page = grab_cache_page(inode->i_mapping, index);
  285. if (!page) {
  286. ret = 0;
  287. goto free_cache;
  288. }
  289. if (!PageUptodate(page)) {
  290. btrfs_readpage(NULL, page);
  291. lock_page(page);
  292. if (!PageUptodate(page)) {
  293. unlock_page(page);
  294. page_cache_release(page);
  295. printk(KERN_ERR "btrfs: error reading free "
  296. "space cache: %llu\n",
  297. (unsigned long long)
  298. block_group->key.objectid);
  299. goto free_cache;
  300. }
  301. }
  302. addr = kmap(page);
  303. if (index == 0) {
  304. u64 *gen;
  305. memcpy(disk_crcs, addr, first_page_offset);
  306. gen = addr + (sizeof(u32) * num_checksums);
  307. if (*gen != BTRFS_I(inode)->generation) {
  308. printk(KERN_ERR "btrfs: space cache generation"
  309. " (%llu) does not match inode (%llu) "
  310. "for block group %llu\n",
  311. (unsigned long long)*gen,
  312. (unsigned long long)
  313. BTRFS_I(inode)->generation,
  314. (unsigned long long)
  315. block_group->key.objectid);
  316. kunmap(page);
  317. unlock_page(page);
  318. page_cache_release(page);
  319. goto free_cache;
  320. }
  321. crc = (u32 *)disk_crcs;
  322. }
  323. entry = addr + start_offset;
  324. /* First lets check our crc before we do anything fun */
  325. cur_crc = ~(u32)0;
  326. cur_crc = btrfs_csum_data(root, addr + start_offset, cur_crc,
  327. PAGE_CACHE_SIZE - start_offset);
  328. btrfs_csum_final(cur_crc, (char *)&cur_crc);
  329. if (cur_crc != *crc) {
  330. printk(KERN_ERR "btrfs: crc mismatch for page %lu in "
  331. "block group %llu\n", index,
  332. (unsigned long long)block_group->key.objectid);
  333. kunmap(page);
  334. unlock_page(page);
  335. page_cache_release(page);
  336. goto free_cache;
  337. }
  338. crc++;
  339. while (1) {
  340. if (!num_entries)
  341. break;
  342. need_loop = 1;
  343. e = kmem_cache_zalloc(btrfs_free_space_cachep,
  344. GFP_NOFS);
  345. if (!e) {
  346. kunmap(page);
  347. unlock_page(page);
  348. page_cache_release(page);
  349. goto free_cache;
  350. }
  351. e->offset = le64_to_cpu(entry->offset);
  352. e->bytes = le64_to_cpu(entry->bytes);
  353. if (!e->bytes) {
  354. kunmap(page);
  355. kmem_cache_free(btrfs_free_space_cachep, e);
  356. unlock_page(page);
  357. page_cache_release(page);
  358. goto free_cache;
  359. }
  360. if (entry->type == BTRFS_FREE_SPACE_EXTENT) {
  361. spin_lock(&block_group->tree_lock);
  362. ret = link_free_space(block_group, e);
  363. spin_unlock(&block_group->tree_lock);
  364. BUG_ON(ret);
  365. } else {
  366. e->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
  367. if (!e->bitmap) {
  368. kunmap(page);
  369. kmem_cache_free(
  370. btrfs_free_space_cachep, e);
  371. unlock_page(page);
  372. page_cache_release(page);
  373. goto free_cache;
  374. }
  375. spin_lock(&block_group->tree_lock);
  376. ret = link_free_space(block_group, e);
  377. block_group->total_bitmaps++;
  378. recalculate_thresholds(block_group);
  379. spin_unlock(&block_group->tree_lock);
  380. list_add_tail(&e->list, &bitmaps);
  381. }
  382. num_entries--;
  383. offset += sizeof(struct btrfs_free_space_entry);
  384. if (offset + sizeof(struct btrfs_free_space_entry) >=
  385. PAGE_CACHE_SIZE)
  386. break;
  387. entry++;
  388. }
  389. /*
  390. * We read an entry out of this page, we need to move on to the
  391. * next page.
  392. */
  393. if (need_loop) {
  394. kunmap(page);
  395. goto next;
  396. }
  397. /*
  398. * We add the bitmaps at the end of the entries in order that
  399. * the bitmap entries are added to the cache.
  400. */
  401. e = list_entry(bitmaps.next, struct btrfs_free_space, list);
  402. list_del_init(&e->list);
  403. memcpy(e->bitmap, addr, PAGE_CACHE_SIZE);
  404. kunmap(page);
  405. num_bitmaps--;
  406. next:
  407. unlock_page(page);
  408. page_cache_release(page);
  409. index++;
  410. }
  411. ret = 1;
  412. out:
  413. kfree(checksums);
  414. kfree(disk_crcs);
  415. iput(inode);
  416. return ret;
  417. free_cache:
  418. /* This cache is bogus, make sure it gets cleared */
  419. spin_lock(&block_group->lock);
  420. block_group->disk_cache_state = BTRFS_DC_CLEAR;
  421. spin_unlock(&block_group->lock);
  422. btrfs_remove_free_space_cache(block_group);
  423. goto out;
  424. }
  425. int btrfs_write_out_cache(struct btrfs_root *root,
  426. struct btrfs_trans_handle *trans,
  427. struct btrfs_block_group_cache *block_group,
  428. struct btrfs_path *path)
  429. {
  430. struct btrfs_free_space_header *header;
  431. struct extent_buffer *leaf;
  432. struct inode *inode;
  433. struct rb_node *node;
  434. struct list_head *pos, *n;
  435. struct page *page;
  436. struct extent_state *cached_state = NULL;
  437. struct list_head bitmap_list;
  438. struct btrfs_key key;
  439. u64 bytes = 0;
  440. u32 *crc, *checksums;
  441. pgoff_t index = 0, last_index = 0;
  442. unsigned long first_page_offset;
  443. int num_checksums;
  444. int entries = 0;
  445. int bitmaps = 0;
  446. int ret = 0;
  447. root = root->fs_info->tree_root;
  448. INIT_LIST_HEAD(&bitmap_list);
  449. spin_lock(&block_group->lock);
  450. if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
  451. spin_unlock(&block_group->lock);
  452. return 0;
  453. }
  454. spin_unlock(&block_group->lock);
  455. inode = lookup_free_space_inode(root, block_group, path);
  456. if (IS_ERR(inode))
  457. return 0;
  458. if (!i_size_read(inode)) {
  459. iput(inode);
  460. return 0;
  461. }
  462. node = rb_first(&block_group->free_space_offset);
  463. if (!node) {
  464. iput(inode);
  465. return 0;
  466. }
  467. last_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
  468. filemap_write_and_wait(inode->i_mapping);
  469. btrfs_wait_ordered_range(inode, inode->i_size &
  470. ~(root->sectorsize - 1), (u64)-1);
  471. /* We need a checksum per page. */
  472. num_checksums = i_size_read(inode) / PAGE_CACHE_SIZE;
  473. crc = checksums = kzalloc(sizeof(u32) * num_checksums, GFP_NOFS);
  474. if (!crc) {
  475. iput(inode);
  476. return 0;
  477. }
  478. /* Since the first page has all of our checksums and our generation we
  479. * need to calculate the offset into the page that we can start writing
  480. * our entries.
  481. */
  482. first_page_offset = (sizeof(u32) * num_checksums) + sizeof(u64);
  483. /*
  484. * Lock all pages first so we can lock the extent safely.
  485. *
  486. * NOTE: Because we hold the ref the entire time we're going to write to
  487. * the page find_get_page should never fail, so we don't do a check
  488. * after find_get_page at this point. Just putting this here so people
  489. * know and don't freak out.
  490. */
  491. while (index <= last_index) {
  492. page = grab_cache_page(inode->i_mapping, index);
  493. if (!page) {
  494. pgoff_t i = 0;
  495. while (i < index) {
  496. page = find_get_page(inode->i_mapping, i);
  497. unlock_page(page);
  498. page_cache_release(page);
  499. page_cache_release(page);
  500. i++;
  501. }
  502. goto out_free;
  503. }
  504. index++;
  505. }
  506. index = 0;
  507. lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
  508. 0, &cached_state, GFP_NOFS);
  509. /* Write out the extent entries */
  510. do {
  511. struct btrfs_free_space_entry *entry;
  512. void *addr;
  513. unsigned long offset = 0;
  514. unsigned long start_offset = 0;
  515. if (index == 0) {
  516. start_offset = first_page_offset;
  517. offset = start_offset;
  518. }
  519. page = find_get_page(inode->i_mapping, index);
  520. addr = kmap(page);
  521. entry = addr + start_offset;
  522. memset(addr, 0, PAGE_CACHE_SIZE);
  523. while (1) {
  524. struct btrfs_free_space *e;
  525. e = rb_entry(node, struct btrfs_free_space, offset_index);
  526. entries++;
  527. entry->offset = cpu_to_le64(e->offset);
  528. entry->bytes = cpu_to_le64(e->bytes);
  529. if (e->bitmap) {
  530. entry->type = BTRFS_FREE_SPACE_BITMAP;
  531. list_add_tail(&e->list, &bitmap_list);
  532. bitmaps++;
  533. } else {
  534. entry->type = BTRFS_FREE_SPACE_EXTENT;
  535. }
  536. node = rb_next(node);
  537. if (!node)
  538. break;
  539. offset += sizeof(struct btrfs_free_space_entry);
  540. if (offset + sizeof(struct btrfs_free_space_entry) >=
  541. PAGE_CACHE_SIZE)
  542. break;
  543. entry++;
  544. }
  545. *crc = ~(u32)0;
  546. *crc = btrfs_csum_data(root, addr + start_offset, *crc,
  547. PAGE_CACHE_SIZE - start_offset);
  548. kunmap(page);
  549. btrfs_csum_final(*crc, (char *)crc);
  550. crc++;
  551. bytes += PAGE_CACHE_SIZE;
  552. ClearPageChecked(page);
  553. set_page_extent_mapped(page);
  554. SetPageUptodate(page);
  555. set_page_dirty(page);
  556. /*
  557. * We need to release our reference we got for grab_cache_page,
  558. * except for the first page which will hold our checksums, we
  559. * do that below.
  560. */
  561. if (index != 0) {
  562. unlock_page(page);
  563. page_cache_release(page);
  564. }
  565. page_cache_release(page);
  566. index++;
  567. } while (node);
  568. /* Write out the bitmaps */
  569. list_for_each_safe(pos, n, &bitmap_list) {
  570. void *addr;
  571. struct btrfs_free_space *entry =
  572. list_entry(pos, struct btrfs_free_space, list);
  573. page = find_get_page(inode->i_mapping, index);
  574. addr = kmap(page);
  575. memcpy(addr, entry->bitmap, PAGE_CACHE_SIZE);
  576. *crc = ~(u32)0;
  577. *crc = btrfs_csum_data(root, addr, *crc, PAGE_CACHE_SIZE);
  578. kunmap(page);
  579. btrfs_csum_final(*crc, (char *)crc);
  580. crc++;
  581. bytes += PAGE_CACHE_SIZE;
  582. ClearPageChecked(page);
  583. set_page_extent_mapped(page);
  584. SetPageUptodate(page);
  585. set_page_dirty(page);
  586. unlock_page(page);
  587. page_cache_release(page);
  588. page_cache_release(page);
  589. list_del_init(&entry->list);
  590. index++;
  591. }
  592. /* Zero out the rest of the pages just to make sure */
  593. while (index <= last_index) {
  594. void *addr;
  595. page = find_get_page(inode->i_mapping, index);
  596. addr = kmap(page);
  597. memset(addr, 0, PAGE_CACHE_SIZE);
  598. kunmap(page);
  599. ClearPageChecked(page);
  600. set_page_extent_mapped(page);
  601. SetPageUptodate(page);
  602. set_page_dirty(page);
  603. unlock_page(page);
  604. page_cache_release(page);
  605. page_cache_release(page);
  606. bytes += PAGE_CACHE_SIZE;
  607. index++;
  608. }
  609. btrfs_set_extent_delalloc(inode, 0, bytes - 1, &cached_state);
  610. /* Write the checksums and trans id to the first page */
  611. {
  612. void *addr;
  613. u64 *gen;
  614. page = find_get_page(inode->i_mapping, 0);
  615. addr = kmap(page);
  616. memcpy(addr, checksums, sizeof(u32) * num_checksums);
  617. gen = addr + (sizeof(u32) * num_checksums);
  618. *gen = trans->transid;
  619. kunmap(page);
  620. ClearPageChecked(page);
  621. set_page_extent_mapped(page);
  622. SetPageUptodate(page);
  623. set_page_dirty(page);
  624. unlock_page(page);
  625. page_cache_release(page);
  626. page_cache_release(page);
  627. }
  628. BTRFS_I(inode)->generation = trans->transid;
  629. unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
  630. i_size_read(inode) - 1, &cached_state, GFP_NOFS);
  631. filemap_write_and_wait(inode->i_mapping);
  632. key.objectid = BTRFS_FREE_SPACE_OBJECTID;
  633. key.offset = block_group->key.objectid;
  634. key.type = 0;
  635. ret = btrfs_search_slot(trans, root, &key, path, 1, 1);
  636. if (ret < 0) {
  637. ret = 0;
  638. clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, bytes - 1,
  639. EXTENT_DIRTY | EXTENT_DELALLOC |
  640. EXTENT_DO_ACCOUNTING, 0, 0, NULL, GFP_NOFS);
  641. goto out_free;
  642. }
  643. leaf = path->nodes[0];
  644. if (ret > 0) {
  645. struct btrfs_key found_key;
  646. BUG_ON(!path->slots[0]);
  647. path->slots[0]--;
  648. btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
  649. if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
  650. found_key.offset != block_group->key.objectid) {
  651. ret = 0;
  652. clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, bytes - 1,
  653. EXTENT_DIRTY | EXTENT_DELALLOC |
  654. EXTENT_DO_ACCOUNTING, 0, 0, NULL,
  655. GFP_NOFS);
  656. btrfs_release_path(root, path);
  657. goto out_free;
  658. }
  659. }
  660. header = btrfs_item_ptr(leaf, path->slots[0],
  661. struct btrfs_free_space_header);
  662. btrfs_set_free_space_entries(leaf, header, entries);
  663. btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
  664. btrfs_set_free_space_generation(leaf, header, trans->transid);
  665. btrfs_mark_buffer_dirty(leaf);
  666. btrfs_release_path(root, path);
  667. ret = 1;
  668. out_free:
  669. if (ret == 0) {
  670. invalidate_inode_pages2_range(inode->i_mapping, 0, index);
  671. spin_lock(&block_group->lock);
  672. block_group->disk_cache_state = BTRFS_DC_ERROR;
  673. spin_unlock(&block_group->lock);
  674. BTRFS_I(inode)->generation = 0;
  675. }
  676. kfree(checksums);
  677. btrfs_update_inode(trans, root, inode);
  678. iput(inode);
  679. return ret;
  680. }
  681. static inline unsigned long offset_to_bit(u64 bitmap_start, u64 sectorsize,
  682. u64 offset)
  683. {
  684. BUG_ON(offset < bitmap_start);
  685. offset -= bitmap_start;
  686. return (unsigned long)(div64_u64(offset, sectorsize));
  687. }
  688. static inline unsigned long bytes_to_bits(u64 bytes, u64 sectorsize)
  689. {
  690. return (unsigned long)(div64_u64(bytes, sectorsize));
  691. }
  692. static inline u64 offset_to_bitmap(struct btrfs_block_group_cache *block_group,
  693. u64 offset)
  694. {
  695. u64 bitmap_start;
  696. u64 bytes_per_bitmap;
  697. bytes_per_bitmap = BITS_PER_BITMAP * block_group->sectorsize;
  698. bitmap_start = offset - block_group->key.objectid;
  699. bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
  700. bitmap_start *= bytes_per_bitmap;
  701. bitmap_start += block_group->key.objectid;
  702. return bitmap_start;
  703. }
  704. static int tree_insert_offset(struct rb_root *root, u64 offset,
  705. struct rb_node *node, int bitmap)
  706. {
  707. struct rb_node **p = &root->rb_node;
  708. struct rb_node *parent = NULL;
  709. struct btrfs_free_space *info;
  710. while (*p) {
  711. parent = *p;
  712. info = rb_entry(parent, struct btrfs_free_space, offset_index);
  713. if (offset < info->offset) {
  714. p = &(*p)->rb_left;
  715. } else if (offset > info->offset) {
  716. p = &(*p)->rb_right;
  717. } else {
  718. /*
  719. * we could have a bitmap entry and an extent entry
  720. * share the same offset. If this is the case, we want
  721. * the extent entry to always be found first if we do a
  722. * linear search through the tree, since we want to have
  723. * the quickest allocation time, and allocating from an
  724. * extent is faster than allocating from a bitmap. So
  725. * if we're inserting a bitmap and we find an entry at
  726. * this offset, we want to go right, or after this entry
  727. * logically. If we are inserting an extent and we've
  728. * found a bitmap, we want to go left, or before
  729. * logically.
  730. */
  731. if (bitmap) {
  732. WARN_ON(info->bitmap);
  733. p = &(*p)->rb_right;
  734. } else {
  735. WARN_ON(!info->bitmap);
  736. p = &(*p)->rb_left;
  737. }
  738. }
  739. }
  740. rb_link_node(node, parent, p);
  741. rb_insert_color(node, root);
  742. return 0;
  743. }
  744. /*
  745. * searches the tree for the given offset.
  746. *
  747. * fuzzy - If this is set, then we are trying to make an allocation, and we just
  748. * want a section that has at least bytes size and comes at or after the given
  749. * offset.
  750. */
  751. static struct btrfs_free_space *
  752. tree_search_offset(struct btrfs_block_group_cache *block_group,
  753. u64 offset, int bitmap_only, int fuzzy)
  754. {
  755. struct rb_node *n = block_group->free_space_offset.rb_node;
  756. struct btrfs_free_space *entry, *prev = NULL;
  757. /* find entry that is closest to the 'offset' */
  758. while (1) {
  759. if (!n) {
  760. entry = NULL;
  761. break;
  762. }
  763. entry = rb_entry(n, struct btrfs_free_space, offset_index);
  764. prev = entry;
  765. if (offset < entry->offset)
  766. n = n->rb_left;
  767. else if (offset > entry->offset)
  768. n = n->rb_right;
  769. else
  770. break;
  771. }
  772. if (bitmap_only) {
  773. if (!entry)
  774. return NULL;
  775. if (entry->bitmap)
  776. return entry;
  777. /*
  778. * bitmap entry and extent entry may share same offset,
  779. * in that case, bitmap entry comes after extent entry.
  780. */
  781. n = rb_next(n);
  782. if (!n)
  783. return NULL;
  784. entry = rb_entry(n, struct btrfs_free_space, offset_index);
  785. if (entry->offset != offset)
  786. return NULL;
  787. WARN_ON(!entry->bitmap);
  788. return entry;
  789. } else if (entry) {
  790. if (entry->bitmap) {
  791. /*
  792. * if previous extent entry covers the offset,
  793. * we should return it instead of the bitmap entry
  794. */
  795. n = &entry->offset_index;
  796. while (1) {
  797. n = rb_prev(n);
  798. if (!n)
  799. break;
  800. prev = rb_entry(n, struct btrfs_free_space,
  801. offset_index);
  802. if (!prev->bitmap) {
  803. if (prev->offset + prev->bytes > offset)
  804. entry = prev;
  805. break;
  806. }
  807. }
  808. }
  809. return entry;
  810. }
  811. if (!prev)
  812. return NULL;
  813. /* find last entry before the 'offset' */
  814. entry = prev;
  815. if (entry->offset > offset) {
  816. n = rb_prev(&entry->offset_index);
  817. if (n) {
  818. entry = rb_entry(n, struct btrfs_free_space,
  819. offset_index);
  820. BUG_ON(entry->offset > offset);
  821. } else {
  822. if (fuzzy)
  823. return entry;
  824. else
  825. return NULL;
  826. }
  827. }
  828. if (entry->bitmap) {
  829. n = &entry->offset_index;
  830. while (1) {
  831. n = rb_prev(n);
  832. if (!n)
  833. break;
  834. prev = rb_entry(n, struct btrfs_free_space,
  835. offset_index);
  836. if (!prev->bitmap) {
  837. if (prev->offset + prev->bytes > offset)
  838. return prev;
  839. break;
  840. }
  841. }
  842. if (entry->offset + BITS_PER_BITMAP *
  843. block_group->sectorsize > offset)
  844. return entry;
  845. } else if (entry->offset + entry->bytes > offset)
  846. return entry;
  847. if (!fuzzy)
  848. return NULL;
  849. while (1) {
  850. if (entry->bitmap) {
  851. if (entry->offset + BITS_PER_BITMAP *
  852. block_group->sectorsize > offset)
  853. break;
  854. } else {
  855. if (entry->offset + entry->bytes > offset)
  856. break;
  857. }
  858. n = rb_next(&entry->offset_index);
  859. if (!n)
  860. return NULL;
  861. entry = rb_entry(n, struct btrfs_free_space, offset_index);
  862. }
  863. return entry;
  864. }
  865. static inline void
  866. __unlink_free_space(struct btrfs_block_group_cache *block_group,
  867. struct btrfs_free_space *info)
  868. {
  869. rb_erase(&info->offset_index, &block_group->free_space_offset);
  870. block_group->free_extents--;
  871. }
  872. static void unlink_free_space(struct btrfs_block_group_cache *block_group,
  873. struct btrfs_free_space *info)
  874. {
  875. __unlink_free_space(block_group, info);
  876. block_group->free_space -= info->bytes;
  877. }
  878. static int link_free_space(struct btrfs_block_group_cache *block_group,
  879. struct btrfs_free_space *info)
  880. {
  881. int ret = 0;
  882. BUG_ON(!info->bitmap && !info->bytes);
  883. ret = tree_insert_offset(&block_group->free_space_offset, info->offset,
  884. &info->offset_index, (info->bitmap != NULL));
  885. if (ret)
  886. return ret;
  887. block_group->free_space += info->bytes;
  888. block_group->free_extents++;
  889. return ret;
  890. }
  891. static void recalculate_thresholds(struct btrfs_block_group_cache *block_group)
  892. {
  893. u64 max_bytes;
  894. u64 bitmap_bytes;
  895. u64 extent_bytes;
  896. u64 size = block_group->key.offset;
  897. /*
  898. * The goal is to keep the total amount of memory used per 1gb of space
  899. * at or below 32k, so we need to adjust how much memory we allow to be
  900. * used by extent based free space tracking
  901. */
  902. if (size < 1024 * 1024 * 1024)
  903. max_bytes = MAX_CACHE_BYTES_PER_GIG;
  904. else
  905. max_bytes = MAX_CACHE_BYTES_PER_GIG *
  906. div64_u64(size, 1024 * 1024 * 1024);
  907. /*
  908. * we want to account for 1 more bitmap than what we have so we can make
  909. * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
  910. * we add more bitmaps.
  911. */
  912. bitmap_bytes = (block_group->total_bitmaps + 1) * PAGE_CACHE_SIZE;
  913. if (bitmap_bytes >= max_bytes) {
  914. block_group->extents_thresh = 0;
  915. return;
  916. }
  917. /*
  918. * we want the extent entry threshold to always be at most 1/2 the maxw
  919. * bytes we can have, or whatever is less than that.
  920. */
  921. extent_bytes = max_bytes - bitmap_bytes;
  922. extent_bytes = min_t(u64, extent_bytes, div64_u64(max_bytes, 2));
  923. block_group->extents_thresh =
  924. div64_u64(extent_bytes, (sizeof(struct btrfs_free_space)));
  925. }
  926. static void bitmap_clear_bits(struct btrfs_block_group_cache *block_group,
  927. struct btrfs_free_space *info, u64 offset,
  928. u64 bytes)
  929. {
  930. unsigned long start, end;
  931. unsigned long i;
  932. start = offset_to_bit(info->offset, block_group->sectorsize, offset);
  933. end = start + bytes_to_bits(bytes, block_group->sectorsize);
  934. BUG_ON(end > BITS_PER_BITMAP);
  935. for (i = start; i < end; i++)
  936. clear_bit(i, info->bitmap);
  937. info->bytes -= bytes;
  938. block_group->free_space -= bytes;
  939. }
  940. static void bitmap_set_bits(struct btrfs_block_group_cache *block_group,
  941. struct btrfs_free_space *info, u64 offset,
  942. u64 bytes)
  943. {
  944. unsigned long start, end;
  945. unsigned long i;
  946. start = offset_to_bit(info->offset, block_group->sectorsize, offset);
  947. end = start + bytes_to_bits(bytes, block_group->sectorsize);
  948. BUG_ON(end > BITS_PER_BITMAP);
  949. for (i = start; i < end; i++)
  950. set_bit(i, info->bitmap);
  951. info->bytes += bytes;
  952. block_group->free_space += bytes;
  953. }
  954. static int search_bitmap(struct btrfs_block_group_cache *block_group,
  955. struct btrfs_free_space *bitmap_info, u64 *offset,
  956. u64 *bytes)
  957. {
  958. unsigned long found_bits = 0;
  959. unsigned long bits, i;
  960. unsigned long next_zero;
  961. i = offset_to_bit(bitmap_info->offset, block_group->sectorsize,
  962. max_t(u64, *offset, bitmap_info->offset));
  963. bits = bytes_to_bits(*bytes, block_group->sectorsize);
  964. for (i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i);
  965. i < BITS_PER_BITMAP;
  966. i = find_next_bit(bitmap_info->bitmap, BITS_PER_BITMAP, i + 1)) {
  967. next_zero = find_next_zero_bit(bitmap_info->bitmap,
  968. BITS_PER_BITMAP, i);
  969. if ((next_zero - i) >= bits) {
  970. found_bits = next_zero - i;
  971. break;
  972. }
  973. i = next_zero;
  974. }
  975. if (found_bits) {
  976. *offset = (u64)(i * block_group->sectorsize) +
  977. bitmap_info->offset;
  978. *bytes = (u64)(found_bits) * block_group->sectorsize;
  979. return 0;
  980. }
  981. return -1;
  982. }
  983. static struct btrfs_free_space *find_free_space(struct btrfs_block_group_cache
  984. *block_group, u64 *offset,
  985. u64 *bytes, int debug)
  986. {
  987. struct btrfs_free_space *entry;
  988. struct rb_node *node;
  989. int ret;
  990. if (!block_group->free_space_offset.rb_node)
  991. return NULL;
  992. entry = tree_search_offset(block_group,
  993. offset_to_bitmap(block_group, *offset),
  994. 0, 1);
  995. if (!entry)
  996. return NULL;
  997. for (node = &entry->offset_index; node; node = rb_next(node)) {
  998. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  999. if (entry->bytes < *bytes)
  1000. continue;
  1001. if (entry->bitmap) {
  1002. ret = search_bitmap(block_group, entry, offset, bytes);
  1003. if (!ret)
  1004. return entry;
  1005. continue;
  1006. }
  1007. *offset = entry->offset;
  1008. *bytes = entry->bytes;
  1009. return entry;
  1010. }
  1011. return NULL;
  1012. }
  1013. static void add_new_bitmap(struct btrfs_block_group_cache *block_group,
  1014. struct btrfs_free_space *info, u64 offset)
  1015. {
  1016. u64 bytes_per_bg = BITS_PER_BITMAP * block_group->sectorsize;
  1017. int max_bitmaps = (int)div64_u64(block_group->key.offset +
  1018. bytes_per_bg - 1, bytes_per_bg);
  1019. BUG_ON(block_group->total_bitmaps >= max_bitmaps);
  1020. info->offset = offset_to_bitmap(block_group, offset);
  1021. info->bytes = 0;
  1022. link_free_space(block_group, info);
  1023. block_group->total_bitmaps++;
  1024. recalculate_thresholds(block_group);
  1025. }
  1026. static void free_bitmap(struct btrfs_block_group_cache *block_group,
  1027. struct btrfs_free_space *bitmap_info)
  1028. {
  1029. unlink_free_space(block_group, bitmap_info);
  1030. kfree(bitmap_info->bitmap);
  1031. kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
  1032. block_group->total_bitmaps--;
  1033. recalculate_thresholds(block_group);
  1034. }
  1035. static noinline int remove_from_bitmap(struct btrfs_block_group_cache *block_group,
  1036. struct btrfs_free_space *bitmap_info,
  1037. u64 *offset, u64 *bytes)
  1038. {
  1039. u64 end;
  1040. u64 search_start, search_bytes;
  1041. int ret;
  1042. again:
  1043. end = bitmap_info->offset +
  1044. (u64)(BITS_PER_BITMAP * block_group->sectorsize) - 1;
  1045. /*
  1046. * XXX - this can go away after a few releases.
  1047. *
  1048. * since the only user of btrfs_remove_free_space is the tree logging
  1049. * stuff, and the only way to test that is under crash conditions, we
  1050. * want to have this debug stuff here just in case somethings not
  1051. * working. Search the bitmap for the space we are trying to use to
  1052. * make sure its actually there. If its not there then we need to stop
  1053. * because something has gone wrong.
  1054. */
  1055. search_start = *offset;
  1056. search_bytes = *bytes;
  1057. search_bytes = min(search_bytes, end - search_start + 1);
  1058. ret = search_bitmap(block_group, bitmap_info, &search_start,
  1059. &search_bytes);
  1060. BUG_ON(ret < 0 || search_start != *offset);
  1061. if (*offset > bitmap_info->offset && *offset + *bytes > end) {
  1062. bitmap_clear_bits(block_group, bitmap_info, *offset,
  1063. end - *offset + 1);
  1064. *bytes -= end - *offset + 1;
  1065. *offset = end + 1;
  1066. } else if (*offset >= bitmap_info->offset && *offset + *bytes <= end) {
  1067. bitmap_clear_bits(block_group, bitmap_info, *offset, *bytes);
  1068. *bytes = 0;
  1069. }
  1070. if (*bytes) {
  1071. struct rb_node *next = rb_next(&bitmap_info->offset_index);
  1072. if (!bitmap_info->bytes)
  1073. free_bitmap(block_group, bitmap_info);
  1074. /*
  1075. * no entry after this bitmap, but we still have bytes to
  1076. * remove, so something has gone wrong.
  1077. */
  1078. if (!next)
  1079. return -EINVAL;
  1080. bitmap_info = rb_entry(next, struct btrfs_free_space,
  1081. offset_index);
  1082. /*
  1083. * if the next entry isn't a bitmap we need to return to let the
  1084. * extent stuff do its work.
  1085. */
  1086. if (!bitmap_info->bitmap)
  1087. return -EAGAIN;
  1088. /*
  1089. * Ok the next item is a bitmap, but it may not actually hold
  1090. * the information for the rest of this free space stuff, so
  1091. * look for it, and if we don't find it return so we can try
  1092. * everything over again.
  1093. */
  1094. search_start = *offset;
  1095. search_bytes = *bytes;
  1096. ret = search_bitmap(block_group, bitmap_info, &search_start,
  1097. &search_bytes);
  1098. if (ret < 0 || search_start != *offset)
  1099. return -EAGAIN;
  1100. goto again;
  1101. } else if (!bitmap_info->bytes)
  1102. free_bitmap(block_group, bitmap_info);
  1103. return 0;
  1104. }
  1105. static int insert_into_bitmap(struct btrfs_block_group_cache *block_group,
  1106. struct btrfs_free_space *info)
  1107. {
  1108. struct btrfs_free_space *bitmap_info;
  1109. int added = 0;
  1110. u64 bytes, offset, end;
  1111. int ret;
  1112. /*
  1113. * If we are below the extents threshold then we can add this as an
  1114. * extent, and don't have to deal with the bitmap
  1115. */
  1116. if (block_group->free_extents < block_group->extents_thresh) {
  1117. /*
  1118. * If this block group has some small extents we don't want to
  1119. * use up all of our free slots in the cache with them, we want
  1120. * to reserve them to larger extents, however if we have plent
  1121. * of cache left then go ahead an dadd them, no sense in adding
  1122. * the overhead of a bitmap if we don't have to.
  1123. */
  1124. if (info->bytes <= block_group->sectorsize * 4) {
  1125. if (block_group->free_extents * 2 <=
  1126. block_group->extents_thresh)
  1127. return 0;
  1128. } else {
  1129. return 0;
  1130. }
  1131. }
  1132. /*
  1133. * some block groups are so tiny they can't be enveloped by a bitmap, so
  1134. * don't even bother to create a bitmap for this
  1135. */
  1136. if (BITS_PER_BITMAP * block_group->sectorsize >
  1137. block_group->key.offset)
  1138. return 0;
  1139. bytes = info->bytes;
  1140. offset = info->offset;
  1141. again:
  1142. bitmap_info = tree_search_offset(block_group,
  1143. offset_to_bitmap(block_group, offset),
  1144. 1, 0);
  1145. if (!bitmap_info) {
  1146. BUG_ON(added);
  1147. goto new_bitmap;
  1148. }
  1149. end = bitmap_info->offset +
  1150. (u64)(BITS_PER_BITMAP * block_group->sectorsize);
  1151. if (offset >= bitmap_info->offset && offset + bytes > end) {
  1152. bitmap_set_bits(block_group, bitmap_info, offset,
  1153. end - offset);
  1154. bytes -= end - offset;
  1155. offset = end;
  1156. added = 0;
  1157. } else if (offset >= bitmap_info->offset && offset + bytes <= end) {
  1158. bitmap_set_bits(block_group, bitmap_info, offset, bytes);
  1159. bytes = 0;
  1160. } else {
  1161. BUG();
  1162. }
  1163. if (!bytes) {
  1164. ret = 1;
  1165. goto out;
  1166. } else
  1167. goto again;
  1168. new_bitmap:
  1169. if (info && info->bitmap) {
  1170. add_new_bitmap(block_group, info, offset);
  1171. added = 1;
  1172. info = NULL;
  1173. goto again;
  1174. } else {
  1175. spin_unlock(&block_group->tree_lock);
  1176. /* no pre-allocated info, allocate a new one */
  1177. if (!info) {
  1178. info = kmem_cache_zalloc(btrfs_free_space_cachep,
  1179. GFP_NOFS);
  1180. if (!info) {
  1181. spin_lock(&block_group->tree_lock);
  1182. ret = -ENOMEM;
  1183. goto out;
  1184. }
  1185. }
  1186. /* allocate the bitmap */
  1187. info->bitmap = kzalloc(PAGE_CACHE_SIZE, GFP_NOFS);
  1188. spin_lock(&block_group->tree_lock);
  1189. if (!info->bitmap) {
  1190. ret = -ENOMEM;
  1191. goto out;
  1192. }
  1193. goto again;
  1194. }
  1195. out:
  1196. if (info) {
  1197. if (info->bitmap)
  1198. kfree(info->bitmap);
  1199. kmem_cache_free(btrfs_free_space_cachep, info);
  1200. }
  1201. return ret;
  1202. }
  1203. bool try_merge_free_space(struct btrfs_block_group_cache *block_group,
  1204. struct btrfs_free_space *info, bool update_stat)
  1205. {
  1206. struct btrfs_free_space *left_info;
  1207. struct btrfs_free_space *right_info;
  1208. bool merged = false;
  1209. u64 offset = info->offset;
  1210. u64 bytes = info->bytes;
  1211. /*
  1212. * first we want to see if there is free space adjacent to the range we
  1213. * are adding, if there is remove that struct and add a new one to
  1214. * cover the entire range
  1215. */
  1216. right_info = tree_search_offset(block_group, offset + bytes, 0, 0);
  1217. if (right_info && rb_prev(&right_info->offset_index))
  1218. left_info = rb_entry(rb_prev(&right_info->offset_index),
  1219. struct btrfs_free_space, offset_index);
  1220. else
  1221. left_info = tree_search_offset(block_group, offset - 1, 0, 0);
  1222. if (right_info && !right_info->bitmap) {
  1223. if (update_stat)
  1224. unlink_free_space(block_group, right_info);
  1225. else
  1226. __unlink_free_space(block_group, right_info);
  1227. info->bytes += right_info->bytes;
  1228. kmem_cache_free(btrfs_free_space_cachep, right_info);
  1229. merged = true;
  1230. }
  1231. if (left_info && !left_info->bitmap &&
  1232. left_info->offset + left_info->bytes == offset) {
  1233. if (update_stat)
  1234. unlink_free_space(block_group, left_info);
  1235. else
  1236. __unlink_free_space(block_group, left_info);
  1237. info->offset = left_info->offset;
  1238. info->bytes += left_info->bytes;
  1239. kmem_cache_free(btrfs_free_space_cachep, left_info);
  1240. merged = true;
  1241. }
  1242. return merged;
  1243. }
  1244. int btrfs_add_free_space(struct btrfs_block_group_cache *block_group,
  1245. u64 offset, u64 bytes)
  1246. {
  1247. struct btrfs_free_space *info;
  1248. int ret = 0;
  1249. info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
  1250. if (!info)
  1251. return -ENOMEM;
  1252. info->offset = offset;
  1253. info->bytes = bytes;
  1254. spin_lock(&block_group->tree_lock);
  1255. if (try_merge_free_space(block_group, info, true))
  1256. goto link;
  1257. /*
  1258. * There was no extent directly to the left or right of this new
  1259. * extent then we know we're going to have to allocate a new extent, so
  1260. * before we do that see if we need to drop this into a bitmap
  1261. */
  1262. ret = insert_into_bitmap(block_group, info);
  1263. if (ret < 0) {
  1264. goto out;
  1265. } else if (ret) {
  1266. ret = 0;
  1267. goto out;
  1268. }
  1269. link:
  1270. ret = link_free_space(block_group, info);
  1271. if (ret)
  1272. kmem_cache_free(btrfs_free_space_cachep, info);
  1273. out:
  1274. spin_unlock(&block_group->tree_lock);
  1275. if (ret) {
  1276. printk(KERN_CRIT "btrfs: unable to add free space :%d\n", ret);
  1277. BUG_ON(ret == -EEXIST);
  1278. }
  1279. return ret;
  1280. }
  1281. int btrfs_remove_free_space(struct btrfs_block_group_cache *block_group,
  1282. u64 offset, u64 bytes)
  1283. {
  1284. struct btrfs_free_space *info;
  1285. struct btrfs_free_space *next_info = NULL;
  1286. int ret = 0;
  1287. spin_lock(&block_group->tree_lock);
  1288. again:
  1289. info = tree_search_offset(block_group, offset, 0, 0);
  1290. if (!info) {
  1291. /*
  1292. * oops didn't find an extent that matched the space we wanted
  1293. * to remove, look for a bitmap instead
  1294. */
  1295. info = tree_search_offset(block_group,
  1296. offset_to_bitmap(block_group, offset),
  1297. 1, 0);
  1298. if (!info) {
  1299. WARN_ON(1);
  1300. goto out_lock;
  1301. }
  1302. }
  1303. if (info->bytes < bytes && rb_next(&info->offset_index)) {
  1304. u64 end;
  1305. next_info = rb_entry(rb_next(&info->offset_index),
  1306. struct btrfs_free_space,
  1307. offset_index);
  1308. if (next_info->bitmap)
  1309. end = next_info->offset + BITS_PER_BITMAP *
  1310. block_group->sectorsize - 1;
  1311. else
  1312. end = next_info->offset + next_info->bytes;
  1313. if (next_info->bytes < bytes ||
  1314. next_info->offset > offset || offset > end) {
  1315. printk(KERN_CRIT "Found free space at %llu, size %llu,"
  1316. " trying to use %llu\n",
  1317. (unsigned long long)info->offset,
  1318. (unsigned long long)info->bytes,
  1319. (unsigned long long)bytes);
  1320. WARN_ON(1);
  1321. ret = -EINVAL;
  1322. goto out_lock;
  1323. }
  1324. info = next_info;
  1325. }
  1326. if (info->bytes == bytes) {
  1327. unlink_free_space(block_group, info);
  1328. if (info->bitmap) {
  1329. kfree(info->bitmap);
  1330. block_group->total_bitmaps--;
  1331. }
  1332. kmem_cache_free(btrfs_free_space_cachep, info);
  1333. goto out_lock;
  1334. }
  1335. if (!info->bitmap && info->offset == offset) {
  1336. unlink_free_space(block_group, info);
  1337. info->offset += bytes;
  1338. info->bytes -= bytes;
  1339. link_free_space(block_group, info);
  1340. goto out_lock;
  1341. }
  1342. if (!info->bitmap && info->offset <= offset &&
  1343. info->offset + info->bytes >= offset + bytes) {
  1344. u64 old_start = info->offset;
  1345. /*
  1346. * we're freeing space in the middle of the info,
  1347. * this can happen during tree log replay
  1348. *
  1349. * first unlink the old info and then
  1350. * insert it again after the hole we're creating
  1351. */
  1352. unlink_free_space(block_group, info);
  1353. if (offset + bytes < info->offset + info->bytes) {
  1354. u64 old_end = info->offset + info->bytes;
  1355. info->offset = offset + bytes;
  1356. info->bytes = old_end - info->offset;
  1357. ret = link_free_space(block_group, info);
  1358. WARN_ON(ret);
  1359. if (ret)
  1360. goto out_lock;
  1361. } else {
  1362. /* the hole we're creating ends at the end
  1363. * of the info struct, just free the info
  1364. */
  1365. kmem_cache_free(btrfs_free_space_cachep, info);
  1366. }
  1367. spin_unlock(&block_group->tree_lock);
  1368. /* step two, insert a new info struct to cover
  1369. * anything before the hole
  1370. */
  1371. ret = btrfs_add_free_space(block_group, old_start,
  1372. offset - old_start);
  1373. WARN_ON(ret);
  1374. goto out;
  1375. }
  1376. ret = remove_from_bitmap(block_group, info, &offset, &bytes);
  1377. if (ret == -EAGAIN)
  1378. goto again;
  1379. BUG_ON(ret);
  1380. out_lock:
  1381. spin_unlock(&block_group->tree_lock);
  1382. out:
  1383. return ret;
  1384. }
  1385. void btrfs_dump_free_space(struct btrfs_block_group_cache *block_group,
  1386. u64 bytes)
  1387. {
  1388. struct btrfs_free_space *info;
  1389. struct rb_node *n;
  1390. int count = 0;
  1391. for (n = rb_first(&block_group->free_space_offset); n; n = rb_next(n)) {
  1392. info = rb_entry(n, struct btrfs_free_space, offset_index);
  1393. if (info->bytes >= bytes)
  1394. count++;
  1395. printk(KERN_CRIT "entry offset %llu, bytes %llu, bitmap %s\n",
  1396. (unsigned long long)info->offset,
  1397. (unsigned long long)info->bytes,
  1398. (info->bitmap) ? "yes" : "no");
  1399. }
  1400. printk(KERN_INFO "block group has cluster?: %s\n",
  1401. list_empty(&block_group->cluster_list) ? "no" : "yes");
  1402. printk(KERN_INFO "%d blocks of free space at or bigger than bytes is"
  1403. "\n", count);
  1404. }
  1405. u64 btrfs_block_group_free_space(struct btrfs_block_group_cache *block_group)
  1406. {
  1407. struct btrfs_free_space *info;
  1408. struct rb_node *n;
  1409. u64 ret = 0;
  1410. for (n = rb_first(&block_group->free_space_offset); n;
  1411. n = rb_next(n)) {
  1412. info = rb_entry(n, struct btrfs_free_space, offset_index);
  1413. ret += info->bytes;
  1414. }
  1415. return ret;
  1416. }
  1417. /*
  1418. * for a given cluster, put all of its extents back into the free
  1419. * space cache. If the block group passed doesn't match the block group
  1420. * pointed to by the cluster, someone else raced in and freed the
  1421. * cluster already. In that case, we just return without changing anything
  1422. */
  1423. static int
  1424. __btrfs_return_cluster_to_free_space(
  1425. struct btrfs_block_group_cache *block_group,
  1426. struct btrfs_free_cluster *cluster)
  1427. {
  1428. struct btrfs_free_space *entry;
  1429. struct rb_node *node;
  1430. spin_lock(&cluster->lock);
  1431. if (cluster->block_group != block_group)
  1432. goto out;
  1433. cluster->block_group = NULL;
  1434. cluster->window_start = 0;
  1435. list_del_init(&cluster->block_group_list);
  1436. node = rb_first(&cluster->root);
  1437. while (node) {
  1438. bool bitmap;
  1439. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  1440. node = rb_next(&entry->offset_index);
  1441. rb_erase(&entry->offset_index, &cluster->root);
  1442. bitmap = (entry->bitmap != NULL);
  1443. if (!bitmap)
  1444. try_merge_free_space(block_group, entry, false);
  1445. tree_insert_offset(&block_group->free_space_offset,
  1446. entry->offset, &entry->offset_index, bitmap);
  1447. }
  1448. cluster->root = RB_ROOT;
  1449. out:
  1450. spin_unlock(&cluster->lock);
  1451. btrfs_put_block_group(block_group);
  1452. return 0;
  1453. }
  1454. void btrfs_remove_free_space_cache(struct btrfs_block_group_cache *block_group)
  1455. {
  1456. struct btrfs_free_space *info;
  1457. struct rb_node *node;
  1458. struct btrfs_free_cluster *cluster;
  1459. struct list_head *head;
  1460. spin_lock(&block_group->tree_lock);
  1461. while ((head = block_group->cluster_list.next) !=
  1462. &block_group->cluster_list) {
  1463. cluster = list_entry(head, struct btrfs_free_cluster,
  1464. block_group_list);
  1465. WARN_ON(cluster->block_group != block_group);
  1466. __btrfs_return_cluster_to_free_space(block_group, cluster);
  1467. if (need_resched()) {
  1468. spin_unlock(&block_group->tree_lock);
  1469. cond_resched();
  1470. spin_lock(&block_group->tree_lock);
  1471. }
  1472. }
  1473. while ((node = rb_last(&block_group->free_space_offset)) != NULL) {
  1474. info = rb_entry(node, struct btrfs_free_space, offset_index);
  1475. unlink_free_space(block_group, info);
  1476. if (info->bitmap)
  1477. kfree(info->bitmap);
  1478. kmem_cache_free(btrfs_free_space_cachep, info);
  1479. if (need_resched()) {
  1480. spin_unlock(&block_group->tree_lock);
  1481. cond_resched();
  1482. spin_lock(&block_group->tree_lock);
  1483. }
  1484. }
  1485. spin_unlock(&block_group->tree_lock);
  1486. }
  1487. u64 btrfs_find_space_for_alloc(struct btrfs_block_group_cache *block_group,
  1488. u64 offset, u64 bytes, u64 empty_size)
  1489. {
  1490. struct btrfs_free_space *entry = NULL;
  1491. u64 bytes_search = bytes + empty_size;
  1492. u64 ret = 0;
  1493. spin_lock(&block_group->tree_lock);
  1494. entry = find_free_space(block_group, &offset, &bytes_search, 0);
  1495. if (!entry)
  1496. goto out;
  1497. ret = offset;
  1498. if (entry->bitmap) {
  1499. bitmap_clear_bits(block_group, entry, offset, bytes);
  1500. if (!entry->bytes)
  1501. free_bitmap(block_group, entry);
  1502. } else {
  1503. unlink_free_space(block_group, entry);
  1504. entry->offset += bytes;
  1505. entry->bytes -= bytes;
  1506. if (!entry->bytes)
  1507. kmem_cache_free(btrfs_free_space_cachep, entry);
  1508. else
  1509. link_free_space(block_group, entry);
  1510. }
  1511. out:
  1512. spin_unlock(&block_group->tree_lock);
  1513. return ret;
  1514. }
  1515. /*
  1516. * given a cluster, put all of its extents back into the free space
  1517. * cache. If a block group is passed, this function will only free
  1518. * a cluster that belongs to the passed block group.
  1519. *
  1520. * Otherwise, it'll get a reference on the block group pointed to by the
  1521. * cluster and remove the cluster from it.
  1522. */
  1523. int btrfs_return_cluster_to_free_space(
  1524. struct btrfs_block_group_cache *block_group,
  1525. struct btrfs_free_cluster *cluster)
  1526. {
  1527. int ret;
  1528. /* first, get a safe pointer to the block group */
  1529. spin_lock(&cluster->lock);
  1530. if (!block_group) {
  1531. block_group = cluster->block_group;
  1532. if (!block_group) {
  1533. spin_unlock(&cluster->lock);
  1534. return 0;
  1535. }
  1536. } else if (cluster->block_group != block_group) {
  1537. /* someone else has already freed it don't redo their work */
  1538. spin_unlock(&cluster->lock);
  1539. return 0;
  1540. }
  1541. atomic_inc(&block_group->count);
  1542. spin_unlock(&cluster->lock);
  1543. /* now return any extents the cluster had on it */
  1544. spin_lock(&block_group->tree_lock);
  1545. ret = __btrfs_return_cluster_to_free_space(block_group, cluster);
  1546. spin_unlock(&block_group->tree_lock);
  1547. /* finally drop our ref */
  1548. btrfs_put_block_group(block_group);
  1549. return ret;
  1550. }
  1551. static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group_cache *block_group,
  1552. struct btrfs_free_cluster *cluster,
  1553. struct btrfs_free_space *entry,
  1554. u64 bytes, u64 min_start)
  1555. {
  1556. int err;
  1557. u64 search_start = cluster->window_start;
  1558. u64 search_bytes = bytes;
  1559. u64 ret = 0;
  1560. search_start = min_start;
  1561. search_bytes = bytes;
  1562. err = search_bitmap(block_group, entry, &search_start,
  1563. &search_bytes);
  1564. if (err)
  1565. return 0;
  1566. ret = search_start;
  1567. bitmap_clear_bits(block_group, entry, ret, bytes);
  1568. return ret;
  1569. }
  1570. /*
  1571. * given a cluster, try to allocate 'bytes' from it, returns 0
  1572. * if it couldn't find anything suitably large, or a logical disk offset
  1573. * if things worked out
  1574. */
  1575. u64 btrfs_alloc_from_cluster(struct btrfs_block_group_cache *block_group,
  1576. struct btrfs_free_cluster *cluster, u64 bytes,
  1577. u64 min_start)
  1578. {
  1579. struct btrfs_free_space *entry = NULL;
  1580. struct rb_node *node;
  1581. u64 ret = 0;
  1582. spin_lock(&cluster->lock);
  1583. if (bytes > cluster->max_size)
  1584. goto out;
  1585. if (cluster->block_group != block_group)
  1586. goto out;
  1587. node = rb_first(&cluster->root);
  1588. if (!node)
  1589. goto out;
  1590. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  1591. while(1) {
  1592. if (entry->bytes < bytes ||
  1593. (!entry->bitmap && entry->offset < min_start)) {
  1594. struct rb_node *node;
  1595. node = rb_next(&entry->offset_index);
  1596. if (!node)
  1597. break;
  1598. entry = rb_entry(node, struct btrfs_free_space,
  1599. offset_index);
  1600. continue;
  1601. }
  1602. if (entry->bitmap) {
  1603. ret = btrfs_alloc_from_bitmap(block_group,
  1604. cluster, entry, bytes,
  1605. min_start);
  1606. if (ret == 0) {
  1607. struct rb_node *node;
  1608. node = rb_next(&entry->offset_index);
  1609. if (!node)
  1610. break;
  1611. entry = rb_entry(node, struct btrfs_free_space,
  1612. offset_index);
  1613. continue;
  1614. }
  1615. } else {
  1616. ret = entry->offset;
  1617. entry->offset += bytes;
  1618. entry->bytes -= bytes;
  1619. }
  1620. if (entry->bytes == 0)
  1621. rb_erase(&entry->offset_index, &cluster->root);
  1622. break;
  1623. }
  1624. out:
  1625. spin_unlock(&cluster->lock);
  1626. if (!ret)
  1627. return 0;
  1628. spin_lock(&block_group->tree_lock);
  1629. block_group->free_space -= bytes;
  1630. if (entry->bytes == 0) {
  1631. block_group->free_extents--;
  1632. if (entry->bitmap) {
  1633. kfree(entry->bitmap);
  1634. block_group->total_bitmaps--;
  1635. recalculate_thresholds(block_group);
  1636. }
  1637. kmem_cache_free(btrfs_free_space_cachep, entry);
  1638. }
  1639. spin_unlock(&block_group->tree_lock);
  1640. return ret;
  1641. }
  1642. static int btrfs_bitmap_cluster(struct btrfs_block_group_cache *block_group,
  1643. struct btrfs_free_space *entry,
  1644. struct btrfs_free_cluster *cluster,
  1645. u64 offset, u64 bytes, u64 min_bytes)
  1646. {
  1647. unsigned long next_zero;
  1648. unsigned long i;
  1649. unsigned long search_bits;
  1650. unsigned long total_bits;
  1651. unsigned long found_bits;
  1652. unsigned long start = 0;
  1653. unsigned long total_found = 0;
  1654. int ret;
  1655. bool found = false;
  1656. i = offset_to_bit(entry->offset, block_group->sectorsize,
  1657. max_t(u64, offset, entry->offset));
  1658. search_bits = bytes_to_bits(bytes, block_group->sectorsize);
  1659. total_bits = bytes_to_bits(min_bytes, block_group->sectorsize);
  1660. again:
  1661. found_bits = 0;
  1662. for (i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i);
  1663. i < BITS_PER_BITMAP;
  1664. i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, i + 1)) {
  1665. next_zero = find_next_zero_bit(entry->bitmap,
  1666. BITS_PER_BITMAP, i);
  1667. if (next_zero - i >= search_bits) {
  1668. found_bits = next_zero - i;
  1669. break;
  1670. }
  1671. i = next_zero;
  1672. }
  1673. if (!found_bits)
  1674. return -ENOSPC;
  1675. if (!found) {
  1676. start = i;
  1677. found = true;
  1678. }
  1679. total_found += found_bits;
  1680. if (cluster->max_size < found_bits * block_group->sectorsize)
  1681. cluster->max_size = found_bits * block_group->sectorsize;
  1682. if (total_found < total_bits) {
  1683. i = find_next_bit(entry->bitmap, BITS_PER_BITMAP, next_zero);
  1684. if (i - start > total_bits * 2) {
  1685. total_found = 0;
  1686. cluster->max_size = 0;
  1687. found = false;
  1688. }
  1689. goto again;
  1690. }
  1691. cluster->window_start = start * block_group->sectorsize +
  1692. entry->offset;
  1693. rb_erase(&entry->offset_index, &block_group->free_space_offset);
  1694. ret = tree_insert_offset(&cluster->root, entry->offset,
  1695. &entry->offset_index, 1);
  1696. BUG_ON(ret);
  1697. return 0;
  1698. }
  1699. /*
  1700. * This searches the block group for just extents to fill the cluster with.
  1701. */
  1702. static int setup_cluster_no_bitmap(struct btrfs_block_group_cache *block_group,
  1703. struct btrfs_free_cluster *cluster,
  1704. u64 offset, u64 bytes, u64 min_bytes)
  1705. {
  1706. struct btrfs_free_space *first = NULL;
  1707. struct btrfs_free_space *entry = NULL;
  1708. struct btrfs_free_space *prev = NULL;
  1709. struct btrfs_free_space *last;
  1710. struct rb_node *node;
  1711. u64 window_start;
  1712. u64 window_free;
  1713. u64 max_extent;
  1714. u64 max_gap = 128 * 1024;
  1715. entry = tree_search_offset(block_group, offset, 0, 1);
  1716. if (!entry)
  1717. return -ENOSPC;
  1718. /*
  1719. * We don't want bitmaps, so just move along until we find a normal
  1720. * extent entry.
  1721. */
  1722. while (entry->bitmap) {
  1723. node = rb_next(&entry->offset_index);
  1724. if (!node)
  1725. return -ENOSPC;
  1726. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  1727. }
  1728. window_start = entry->offset;
  1729. window_free = entry->bytes;
  1730. max_extent = entry->bytes;
  1731. first = entry;
  1732. last = entry;
  1733. prev = entry;
  1734. while (window_free <= min_bytes) {
  1735. node = rb_next(&entry->offset_index);
  1736. if (!node)
  1737. return -ENOSPC;
  1738. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  1739. if (entry->bitmap)
  1740. continue;
  1741. /*
  1742. * we haven't filled the empty size and the window is
  1743. * very large. reset and try again
  1744. */
  1745. if (entry->offset - (prev->offset + prev->bytes) > max_gap ||
  1746. entry->offset - window_start > (min_bytes * 2)) {
  1747. first = entry;
  1748. window_start = entry->offset;
  1749. window_free = entry->bytes;
  1750. last = entry;
  1751. max_extent = entry->bytes;
  1752. } else {
  1753. last = entry;
  1754. window_free += entry->bytes;
  1755. if (entry->bytes > max_extent)
  1756. max_extent = entry->bytes;
  1757. }
  1758. prev = entry;
  1759. }
  1760. cluster->window_start = first->offset;
  1761. node = &first->offset_index;
  1762. /*
  1763. * now we've found our entries, pull them out of the free space
  1764. * cache and put them into the cluster rbtree
  1765. */
  1766. do {
  1767. int ret;
  1768. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  1769. node = rb_next(&entry->offset_index);
  1770. if (entry->bitmap)
  1771. continue;
  1772. rb_erase(&entry->offset_index, &block_group->free_space_offset);
  1773. ret = tree_insert_offset(&cluster->root, entry->offset,
  1774. &entry->offset_index, 0);
  1775. BUG_ON(ret);
  1776. } while (node && entry != last);
  1777. cluster->max_size = max_extent;
  1778. return 0;
  1779. }
  1780. /*
  1781. * This specifically looks for bitmaps that may work in the cluster, we assume
  1782. * that we have already failed to find extents that will work.
  1783. */
  1784. static int setup_cluster_bitmap(struct btrfs_block_group_cache *block_group,
  1785. struct btrfs_free_cluster *cluster,
  1786. u64 offset, u64 bytes, u64 min_bytes)
  1787. {
  1788. struct btrfs_free_space *entry;
  1789. struct rb_node *node;
  1790. int ret = -ENOSPC;
  1791. if (block_group->total_bitmaps == 0)
  1792. return -ENOSPC;
  1793. entry = tree_search_offset(block_group,
  1794. offset_to_bitmap(block_group, offset),
  1795. 0, 1);
  1796. if (!entry)
  1797. return -ENOSPC;
  1798. node = &entry->offset_index;
  1799. do {
  1800. entry = rb_entry(node, struct btrfs_free_space, offset_index);
  1801. node = rb_next(&entry->offset_index);
  1802. if (!entry->bitmap)
  1803. continue;
  1804. if (entry->bytes < min_bytes)
  1805. continue;
  1806. ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
  1807. bytes, min_bytes);
  1808. } while (ret && node);
  1809. return ret;
  1810. }
  1811. /*
  1812. * here we try to find a cluster of blocks in a block group. The goal
  1813. * is to find at least bytes free and up to empty_size + bytes free.
  1814. * We might not find them all in one contiguous area.
  1815. *
  1816. * returns zero and sets up cluster if things worked out, otherwise
  1817. * it returns -enospc
  1818. */
  1819. int btrfs_find_space_cluster(struct btrfs_trans_handle *trans,
  1820. struct btrfs_root *root,
  1821. struct btrfs_block_group_cache *block_group,
  1822. struct btrfs_free_cluster *cluster,
  1823. u64 offset, u64 bytes, u64 empty_size)
  1824. {
  1825. u64 min_bytes;
  1826. int ret;
  1827. /* for metadata, allow allocates with more holes */
  1828. if (btrfs_test_opt(root, SSD_SPREAD)) {
  1829. min_bytes = bytes + empty_size;
  1830. } else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
  1831. /*
  1832. * we want to do larger allocations when we are
  1833. * flushing out the delayed refs, it helps prevent
  1834. * making more work as we go along.
  1835. */
  1836. if (trans->transaction->delayed_refs.flushing)
  1837. min_bytes = max(bytes, (bytes + empty_size) >> 1);
  1838. else
  1839. min_bytes = max(bytes, (bytes + empty_size) >> 4);
  1840. } else
  1841. min_bytes = max(bytes, (bytes + empty_size) >> 2);
  1842. spin_lock(&block_group->tree_lock);
  1843. /*
  1844. * If we know we don't have enough space to make a cluster don't even
  1845. * bother doing all the work to try and find one.
  1846. */
  1847. if (block_group->free_space < min_bytes) {
  1848. spin_unlock(&block_group->tree_lock);
  1849. return -ENOSPC;
  1850. }
  1851. spin_lock(&cluster->lock);
  1852. /* someone already found a cluster, hooray */
  1853. if (cluster->block_group) {
  1854. ret = 0;
  1855. goto out;
  1856. }
  1857. ret = setup_cluster_no_bitmap(block_group, cluster, offset, bytes,
  1858. min_bytes);
  1859. if (ret)
  1860. ret = setup_cluster_bitmap(block_group, cluster, offset,
  1861. bytes, min_bytes);
  1862. if (!ret) {
  1863. atomic_inc(&block_group->count);
  1864. list_add_tail(&cluster->block_group_list,
  1865. &block_group->cluster_list);
  1866. cluster->block_group = block_group;
  1867. }
  1868. out:
  1869. spin_unlock(&cluster->lock);
  1870. spin_unlock(&block_group->tree_lock);
  1871. return ret;
  1872. }
  1873. /*
  1874. * simple code to zero out a cluster
  1875. */
  1876. void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
  1877. {
  1878. spin_lock_init(&cluster->lock);
  1879. spin_lock_init(&cluster->refill_lock);
  1880. cluster->root = RB_ROOT;
  1881. cluster->max_size = 0;
  1882. INIT_LIST_HEAD(&cluster->block_group_list);
  1883. cluster->block_group = NULL;
  1884. }
  1885. int btrfs_trim_block_group(struct btrfs_block_group_cache *block_group,
  1886. u64 *trimmed, u64 start, u64 end, u64 minlen)
  1887. {
  1888. struct btrfs_free_space *entry = NULL;
  1889. struct btrfs_fs_info *fs_info = block_group->fs_info;
  1890. u64 bytes = 0;
  1891. u64 actually_trimmed;
  1892. int ret = 0;
  1893. *trimmed = 0;
  1894. while (start < end) {
  1895. spin_lock(&block_group->tree_lock);
  1896. if (block_group->free_space < minlen) {
  1897. spin_unlock(&block_group->tree_lock);
  1898. break;
  1899. }
  1900. entry = tree_search_offset(block_group, start, 0, 1);
  1901. if (!entry)
  1902. entry = tree_search_offset(block_group,
  1903. offset_to_bitmap(block_group,
  1904. start),
  1905. 1, 1);
  1906. if (!entry || entry->offset >= end) {
  1907. spin_unlock(&block_group->tree_lock);
  1908. break;
  1909. }
  1910. if (entry->bitmap) {
  1911. ret = search_bitmap(block_group, entry, &start, &bytes);
  1912. if (!ret) {
  1913. if (start >= end) {
  1914. spin_unlock(&block_group->tree_lock);
  1915. break;
  1916. }
  1917. bytes = min(bytes, end - start);
  1918. bitmap_clear_bits(block_group, entry,
  1919. start, bytes);
  1920. if (entry->bytes == 0)
  1921. free_bitmap(block_group, entry);
  1922. } else {
  1923. start = entry->offset + BITS_PER_BITMAP *
  1924. block_group->sectorsize;
  1925. spin_unlock(&block_group->tree_lock);
  1926. ret = 0;
  1927. continue;
  1928. }
  1929. } else {
  1930. start = entry->offset;
  1931. bytes = min(entry->bytes, end - start);
  1932. unlink_free_space(block_group, entry);
  1933. kfree(entry);
  1934. }
  1935. spin_unlock(&block_group->tree_lock);
  1936. if (bytes >= minlen) {
  1937. int update_ret;
  1938. update_ret = btrfs_update_reserved_bytes(block_group,
  1939. bytes, 1, 1);
  1940. ret = btrfs_error_discard_extent(fs_info->extent_root,
  1941. start,
  1942. bytes,
  1943. &actually_trimmed);
  1944. btrfs_add_free_space(block_group,
  1945. start, bytes);
  1946. if (!update_ret)
  1947. btrfs_update_reserved_bytes(block_group,
  1948. bytes, 0, 1);
  1949. if (ret)
  1950. break;
  1951. *trimmed += actually_trimmed;
  1952. }
  1953. start += bytes;
  1954. bytes = 0;
  1955. if (fatal_signal_pending(current)) {
  1956. ret = -ERESTARTSYS;
  1957. break;
  1958. }
  1959. cond_resched();
  1960. }
  1961. return ret;
  1962. }