write.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757
  1. /* handling of writes to regular files and writing back to the server
  2. *
  3. * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
  4. * Written by David Howells (dhowells@redhat.com)
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License
  8. * as published by the Free Software Foundation; either version
  9. * 2 of the License, or (at your option) any later version.
  10. */
  11. #include <linux/backing-dev.h>
  12. #include <linux/slab.h>
  13. #include <linux/fs.h>
  14. #include <linux/pagemap.h>
  15. #include <linux/writeback.h>
  16. #include <linux/pagevec.h>
  17. #include "internal.h"
  18. static int afs_write_back_from_locked_page(struct afs_writeback *wb,
  19. struct page *page);
  20. /*
  21. * mark a page as having been made dirty and thus needing writeback
  22. */
  23. int afs_set_page_dirty(struct page *page)
  24. {
  25. _enter("");
  26. return __set_page_dirty_nobuffers(page);
  27. }
  28. /*
  29. * unlink a writeback record because its usage has reached zero
  30. * - must be called with the wb->vnode->writeback_lock held
  31. */
  32. static void afs_unlink_writeback(struct afs_writeback *wb)
  33. {
  34. struct afs_writeback *front;
  35. struct afs_vnode *vnode = wb->vnode;
  36. list_del_init(&wb->link);
  37. if (!list_empty(&vnode->writebacks)) {
  38. /* if an fsync rises to the front of the queue then wake it
  39. * up */
  40. front = list_entry(vnode->writebacks.next,
  41. struct afs_writeback, link);
  42. if (front->state == AFS_WBACK_SYNCING) {
  43. _debug("wake up sync");
  44. front->state = AFS_WBACK_COMPLETE;
  45. wake_up(&front->waitq);
  46. }
  47. }
  48. }
  49. /*
  50. * free a writeback record
  51. */
  52. static void afs_free_writeback(struct afs_writeback *wb)
  53. {
  54. _enter("");
  55. key_put(wb->key);
  56. kfree(wb);
  57. }
  58. /*
  59. * dispose of a reference to a writeback record
  60. */
  61. void afs_put_writeback(struct afs_writeback *wb)
  62. {
  63. struct afs_vnode *vnode = wb->vnode;
  64. _enter("{%d}", wb->usage);
  65. spin_lock(&vnode->writeback_lock);
  66. if (--wb->usage == 0)
  67. afs_unlink_writeback(wb);
  68. else
  69. wb = NULL;
  70. spin_unlock(&vnode->writeback_lock);
  71. if (wb)
  72. afs_free_writeback(wb);
  73. }
  74. /*
  75. * partly or wholly fill a page that's under preparation for writing
  76. */
  77. static int afs_fill_page(struct afs_vnode *vnode, struct key *key,
  78. loff_t pos, unsigned len, struct page *page)
  79. {
  80. loff_t i_size;
  81. unsigned eof;
  82. int ret;
  83. _enter(",,%llu,%u", (unsigned long long)pos, len);
  84. ASSERTCMP(len, <=, PAGE_CACHE_SIZE);
  85. i_size = i_size_read(&vnode->vfs_inode);
  86. if (pos + len > i_size)
  87. eof = i_size;
  88. else
  89. eof = PAGE_CACHE_SIZE;
  90. ret = afs_vnode_fetch_data(vnode, key, 0, eof, page);
  91. if (ret < 0) {
  92. if (ret == -ENOENT) {
  93. _debug("got NOENT from server"
  94. " - marking file deleted and stale");
  95. set_bit(AFS_VNODE_DELETED, &vnode->flags);
  96. ret = -ESTALE;
  97. }
  98. }
  99. _leave(" = %d", ret);
  100. return ret;
  101. }
  102. /*
  103. * prepare to perform part of a write to a page
  104. */
  105. int afs_write_begin(struct file *file, struct address_space *mapping,
  106. loff_t pos, unsigned len, unsigned flags,
  107. struct page **pagep, void **fsdata)
  108. {
  109. struct afs_writeback *candidate, *wb;
  110. struct afs_vnode *vnode = AFS_FS_I(file->f_dentry->d_inode);
  111. struct page *page;
  112. struct key *key = file->private_data;
  113. unsigned from = pos & (PAGE_CACHE_SIZE - 1);
  114. unsigned to = from + len;
  115. pgoff_t index = pos >> PAGE_CACHE_SHIFT;
  116. int ret;
  117. _enter("{%x:%u},{%lx},%u,%u",
  118. vnode->fid.vid, vnode->fid.vnode, index, from, to);
  119. candidate = kzalloc(sizeof(*candidate), GFP_KERNEL);
  120. if (!candidate)
  121. return -ENOMEM;
  122. candidate->vnode = vnode;
  123. candidate->first = candidate->last = index;
  124. candidate->offset_first = from;
  125. candidate->to_last = to;
  126. INIT_LIST_HEAD(&candidate->link);
  127. candidate->usage = 1;
  128. candidate->state = AFS_WBACK_PENDING;
  129. init_waitqueue_head(&candidate->waitq);
  130. page = grab_cache_page_write_begin(mapping, index, flags);
  131. if (!page) {
  132. kfree(candidate);
  133. return -ENOMEM;
  134. }
  135. *pagep = page;
  136. /* page won't leak in error case: it eventually gets cleaned off LRU */
  137. if (!PageUptodate(page)) {
  138. _debug("not up to date");
  139. ret = afs_fill_page(vnode, key, pos, len, page);
  140. if (ret < 0) {
  141. kfree(candidate);
  142. _leave(" = %d [prep]", ret);
  143. return ret;
  144. }
  145. SetPageUptodate(page);
  146. }
  147. try_again:
  148. spin_lock(&vnode->writeback_lock);
  149. /* see if this page is already pending a writeback under a suitable key
  150. * - if so we can just join onto that one */
  151. wb = (struct afs_writeback *) page_private(page);
  152. if (wb) {
  153. if (wb->key == key && wb->state == AFS_WBACK_PENDING)
  154. goto subsume_in_current_wb;
  155. goto flush_conflicting_wb;
  156. }
  157. if (index > 0) {
  158. /* see if we can find an already pending writeback that we can
  159. * append this page to */
  160. list_for_each_entry(wb, &vnode->writebacks, link) {
  161. if (wb->last == index - 1 && wb->key == key &&
  162. wb->state == AFS_WBACK_PENDING)
  163. goto append_to_previous_wb;
  164. }
  165. }
  166. list_add_tail(&candidate->link, &vnode->writebacks);
  167. candidate->key = key_get(key);
  168. spin_unlock(&vnode->writeback_lock);
  169. SetPagePrivate(page);
  170. set_page_private(page, (unsigned long) candidate);
  171. _leave(" = 0 [new]");
  172. return 0;
  173. subsume_in_current_wb:
  174. _debug("subsume");
  175. ASSERTRANGE(wb->first, <=, index, <=, wb->last);
  176. if (index == wb->first && from < wb->offset_first)
  177. wb->offset_first = from;
  178. if (index == wb->last && to > wb->to_last)
  179. wb->to_last = to;
  180. spin_unlock(&vnode->writeback_lock);
  181. kfree(candidate);
  182. _leave(" = 0 [sub]");
  183. return 0;
  184. append_to_previous_wb:
  185. _debug("append into %lx-%lx", wb->first, wb->last);
  186. wb->usage++;
  187. wb->last++;
  188. wb->to_last = to;
  189. spin_unlock(&vnode->writeback_lock);
  190. SetPagePrivate(page);
  191. set_page_private(page, (unsigned long) wb);
  192. kfree(candidate);
  193. _leave(" = 0 [app]");
  194. return 0;
  195. /* the page is currently bound to another context, so if it's dirty we
  196. * need to flush it before we can use the new context */
  197. flush_conflicting_wb:
  198. _debug("flush conflict");
  199. if (wb->state == AFS_WBACK_PENDING)
  200. wb->state = AFS_WBACK_CONFLICTING;
  201. spin_unlock(&vnode->writeback_lock);
  202. if (PageDirty(page)) {
  203. ret = afs_write_back_from_locked_page(wb, page);
  204. if (ret < 0) {
  205. afs_put_writeback(candidate);
  206. _leave(" = %d", ret);
  207. return ret;
  208. }
  209. }
  210. /* the page holds a ref on the writeback record */
  211. afs_put_writeback(wb);
  212. set_page_private(page, 0);
  213. ClearPagePrivate(page);
  214. goto try_again;
  215. }
  216. /*
  217. * finalise part of a write to a page
  218. */
  219. int afs_write_end(struct file *file, struct address_space *mapping,
  220. loff_t pos, unsigned len, unsigned copied,
  221. struct page *page, void *fsdata)
  222. {
  223. struct afs_vnode *vnode = AFS_FS_I(file->f_dentry->d_inode);
  224. loff_t i_size, maybe_i_size;
  225. _enter("{%x:%u},{%lx}",
  226. vnode->fid.vid, vnode->fid.vnode, page->index);
  227. maybe_i_size = pos + copied;
  228. i_size = i_size_read(&vnode->vfs_inode);
  229. if (maybe_i_size > i_size) {
  230. spin_lock(&vnode->writeback_lock);
  231. i_size = i_size_read(&vnode->vfs_inode);
  232. if (maybe_i_size > i_size)
  233. i_size_write(&vnode->vfs_inode, maybe_i_size);
  234. spin_unlock(&vnode->writeback_lock);
  235. }
  236. set_page_dirty(page);
  237. if (PageDirty(page))
  238. _debug("dirtied");
  239. unlock_page(page);
  240. page_cache_release(page);
  241. return copied;
  242. }
  243. /*
  244. * kill all the pages in the given range
  245. */
  246. static void afs_kill_pages(struct afs_vnode *vnode, bool error,
  247. pgoff_t first, pgoff_t last)
  248. {
  249. struct pagevec pv;
  250. unsigned count, loop;
  251. _enter("{%x:%u},%lx-%lx",
  252. vnode->fid.vid, vnode->fid.vnode, first, last);
  253. pagevec_init(&pv, 0);
  254. do {
  255. _debug("kill %lx-%lx", first, last);
  256. count = last - first + 1;
  257. if (count > PAGEVEC_SIZE)
  258. count = PAGEVEC_SIZE;
  259. pv.nr = find_get_pages_contig(vnode->vfs_inode.i_mapping,
  260. first, count, pv.pages);
  261. ASSERTCMP(pv.nr, ==, count);
  262. for (loop = 0; loop < count; loop++) {
  263. ClearPageUptodate(pv.pages[loop]);
  264. if (error)
  265. SetPageError(pv.pages[loop]);
  266. end_page_writeback(pv.pages[loop]);
  267. }
  268. __pagevec_release(&pv);
  269. } while (first < last);
  270. _leave("");
  271. }
  272. /*
  273. * synchronously write back the locked page and any subsequent non-locked dirty
  274. * pages also covered by the same writeback record
  275. */
  276. static int afs_write_back_from_locked_page(struct afs_writeback *wb,
  277. struct page *primary_page)
  278. {
  279. struct page *pages[8], *page;
  280. unsigned long count;
  281. unsigned n, offset, to;
  282. pgoff_t start, first, last;
  283. int loop, ret;
  284. _enter(",%lx", primary_page->index);
  285. count = 1;
  286. if (!clear_page_dirty_for_io(primary_page))
  287. BUG();
  288. if (test_set_page_writeback(primary_page))
  289. BUG();
  290. /* find all consecutive lockable dirty pages, stopping when we find a
  291. * page that is not immediately lockable, is not dirty or is missing,
  292. * or we reach the end of the range */
  293. start = primary_page->index;
  294. if (start >= wb->last)
  295. goto no_more;
  296. start++;
  297. do {
  298. _debug("more %lx [%lx]", start, count);
  299. n = wb->last - start + 1;
  300. if (n > ARRAY_SIZE(pages))
  301. n = ARRAY_SIZE(pages);
  302. n = find_get_pages_contig(wb->vnode->vfs_inode.i_mapping,
  303. start, n, pages);
  304. _debug("fgpc %u", n);
  305. if (n == 0)
  306. goto no_more;
  307. if (pages[0]->index != start) {
  308. do {
  309. put_page(pages[--n]);
  310. } while (n > 0);
  311. goto no_more;
  312. }
  313. for (loop = 0; loop < n; loop++) {
  314. page = pages[loop];
  315. if (page->index > wb->last)
  316. break;
  317. if (!trylock_page(page))
  318. break;
  319. if (!PageDirty(page) ||
  320. page_private(page) != (unsigned long) wb) {
  321. unlock_page(page);
  322. break;
  323. }
  324. if (!clear_page_dirty_for_io(page))
  325. BUG();
  326. if (test_set_page_writeback(page))
  327. BUG();
  328. unlock_page(page);
  329. put_page(page);
  330. }
  331. count += loop;
  332. if (loop < n) {
  333. for (; loop < n; loop++)
  334. put_page(pages[loop]);
  335. goto no_more;
  336. }
  337. start += loop;
  338. } while (start <= wb->last && count < 65536);
  339. no_more:
  340. /* we now have a contiguous set of dirty pages, each with writeback set
  341. * and the dirty mark cleared; the first page is locked and must remain
  342. * so, all the rest are unlocked */
  343. first = primary_page->index;
  344. last = first + count - 1;
  345. offset = (first == wb->first) ? wb->offset_first : 0;
  346. to = (last == wb->last) ? wb->to_last : PAGE_SIZE;
  347. _debug("write back %lx[%u..] to %lx[..%u]", first, offset, last, to);
  348. ret = afs_vnode_store_data(wb, first, last, offset, to);
  349. if (ret < 0) {
  350. switch (ret) {
  351. case -EDQUOT:
  352. case -ENOSPC:
  353. set_bit(AS_ENOSPC,
  354. &wb->vnode->vfs_inode.i_mapping->flags);
  355. break;
  356. case -EROFS:
  357. case -EIO:
  358. case -EREMOTEIO:
  359. case -EFBIG:
  360. case -ENOENT:
  361. case -ENOMEDIUM:
  362. case -ENXIO:
  363. afs_kill_pages(wb->vnode, true, first, last);
  364. set_bit(AS_EIO, &wb->vnode->vfs_inode.i_mapping->flags);
  365. break;
  366. case -EACCES:
  367. case -EPERM:
  368. case -ENOKEY:
  369. case -EKEYEXPIRED:
  370. case -EKEYREJECTED:
  371. case -EKEYREVOKED:
  372. afs_kill_pages(wb->vnode, false, first, last);
  373. break;
  374. default:
  375. break;
  376. }
  377. } else {
  378. ret = count;
  379. }
  380. _leave(" = %d", ret);
  381. return ret;
  382. }
  383. /*
  384. * write a page back to the server
  385. * - the caller locked the page for us
  386. */
  387. int afs_writepage(struct page *page, struct writeback_control *wbc)
  388. {
  389. struct afs_writeback *wb;
  390. int ret;
  391. _enter("{%lx},", page->index);
  392. wb = (struct afs_writeback *) page_private(page);
  393. ASSERT(wb != NULL);
  394. ret = afs_write_back_from_locked_page(wb, page);
  395. unlock_page(page);
  396. if (ret < 0) {
  397. _leave(" = %d", ret);
  398. return 0;
  399. }
  400. wbc->nr_to_write -= ret;
  401. _leave(" = 0");
  402. return 0;
  403. }
  404. /*
  405. * write a region of pages back to the server
  406. */
  407. static int afs_writepages_region(struct address_space *mapping,
  408. struct writeback_control *wbc,
  409. pgoff_t index, pgoff_t end, pgoff_t *_next)
  410. {
  411. struct afs_writeback *wb;
  412. struct page *page;
  413. int ret, n;
  414. _enter(",,%lx,%lx,", index, end);
  415. do {
  416. n = find_get_pages_tag(mapping, &index, PAGECACHE_TAG_DIRTY,
  417. 1, &page);
  418. if (!n)
  419. break;
  420. _debug("wback %lx", page->index);
  421. if (page->index > end) {
  422. *_next = index;
  423. page_cache_release(page);
  424. _leave(" = 0 [%lx]", *_next);
  425. return 0;
  426. }
  427. /* at this point we hold neither mapping->tree_lock nor lock on
  428. * the page itself: the page may be truncated or invalidated
  429. * (changing page->mapping to NULL), or even swizzled back from
  430. * swapper_space to tmpfs file mapping
  431. */
  432. lock_page(page);
  433. if (page->mapping != mapping) {
  434. unlock_page(page);
  435. page_cache_release(page);
  436. continue;
  437. }
  438. if (wbc->sync_mode != WB_SYNC_NONE)
  439. wait_on_page_writeback(page);
  440. if (PageWriteback(page) || !PageDirty(page)) {
  441. unlock_page(page);
  442. continue;
  443. }
  444. wb = (struct afs_writeback *) page_private(page);
  445. ASSERT(wb != NULL);
  446. spin_lock(&wb->vnode->writeback_lock);
  447. wb->state = AFS_WBACK_WRITING;
  448. spin_unlock(&wb->vnode->writeback_lock);
  449. ret = afs_write_back_from_locked_page(wb, page);
  450. unlock_page(page);
  451. page_cache_release(page);
  452. if (ret < 0) {
  453. _leave(" = %d", ret);
  454. return ret;
  455. }
  456. wbc->nr_to_write -= ret;
  457. cond_resched();
  458. } while (index < end && wbc->nr_to_write > 0);
  459. *_next = index;
  460. _leave(" = 0 [%lx]", *_next);
  461. return 0;
  462. }
  463. /*
  464. * write some of the pending data back to the server
  465. */
  466. int afs_writepages(struct address_space *mapping,
  467. struct writeback_control *wbc)
  468. {
  469. pgoff_t start, end, next;
  470. int ret;
  471. _enter("");
  472. if (wbc->range_cyclic) {
  473. start = mapping->writeback_index;
  474. end = -1;
  475. ret = afs_writepages_region(mapping, wbc, start, end, &next);
  476. if (start > 0 && wbc->nr_to_write > 0 && ret == 0)
  477. ret = afs_writepages_region(mapping, wbc, 0, start,
  478. &next);
  479. mapping->writeback_index = next;
  480. } else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
  481. end = (pgoff_t)(LLONG_MAX >> PAGE_CACHE_SHIFT);
  482. ret = afs_writepages_region(mapping, wbc, 0, end, &next);
  483. if (wbc->nr_to_write > 0)
  484. mapping->writeback_index = next;
  485. } else {
  486. start = wbc->range_start >> PAGE_CACHE_SHIFT;
  487. end = wbc->range_end >> PAGE_CACHE_SHIFT;
  488. ret = afs_writepages_region(mapping, wbc, start, end, &next);
  489. }
  490. _leave(" = %d", ret);
  491. return ret;
  492. }
  493. /*
  494. * completion of write to server
  495. */
  496. void afs_pages_written_back(struct afs_vnode *vnode, struct afs_call *call)
  497. {
  498. struct afs_writeback *wb = call->wb;
  499. struct pagevec pv;
  500. unsigned count, loop;
  501. pgoff_t first = call->first, last = call->last;
  502. bool free_wb;
  503. _enter("{%x:%u},{%lx-%lx}",
  504. vnode->fid.vid, vnode->fid.vnode, first, last);
  505. ASSERT(wb != NULL);
  506. pagevec_init(&pv, 0);
  507. do {
  508. _debug("done %lx-%lx", first, last);
  509. count = last - first + 1;
  510. if (count > PAGEVEC_SIZE)
  511. count = PAGEVEC_SIZE;
  512. pv.nr = find_get_pages_contig(call->mapping, first, count,
  513. pv.pages);
  514. ASSERTCMP(pv.nr, ==, count);
  515. spin_lock(&vnode->writeback_lock);
  516. for (loop = 0; loop < count; loop++) {
  517. struct page *page = pv.pages[loop];
  518. end_page_writeback(page);
  519. if (page_private(page) == (unsigned long) wb) {
  520. set_page_private(page, 0);
  521. ClearPagePrivate(page);
  522. wb->usage--;
  523. }
  524. }
  525. free_wb = false;
  526. if (wb->usage == 0) {
  527. afs_unlink_writeback(wb);
  528. free_wb = true;
  529. }
  530. spin_unlock(&vnode->writeback_lock);
  531. first += count;
  532. if (free_wb) {
  533. afs_free_writeback(wb);
  534. wb = NULL;
  535. }
  536. __pagevec_release(&pv);
  537. } while (first <= last);
  538. _leave("");
  539. }
  540. /*
  541. * write to an AFS file
  542. */
  543. ssize_t afs_file_write(struct kiocb *iocb, const struct iovec *iov,
  544. unsigned long nr_segs, loff_t pos)
  545. {
  546. struct dentry *dentry = iocb->ki_filp->f_path.dentry;
  547. struct afs_vnode *vnode = AFS_FS_I(dentry->d_inode);
  548. ssize_t result;
  549. size_t count = iov_length(iov, nr_segs);
  550. _enter("{%x.%u},{%zu},%lu,",
  551. vnode->fid.vid, vnode->fid.vnode, count, nr_segs);
  552. if (IS_SWAPFILE(&vnode->vfs_inode)) {
  553. printk(KERN_INFO
  554. "AFS: Attempt to write to active swap file!\n");
  555. return -EBUSY;
  556. }
  557. if (!count)
  558. return 0;
  559. result = generic_file_aio_write(iocb, iov, nr_segs, pos);
  560. if (IS_ERR_VALUE(result)) {
  561. _leave(" = %zd", result);
  562. return result;
  563. }
  564. _leave(" = %zd", result);
  565. return result;
  566. }
  567. /*
  568. * flush the vnode to the fileserver
  569. */
  570. int afs_writeback_all(struct afs_vnode *vnode)
  571. {
  572. struct address_space *mapping = vnode->vfs_inode.i_mapping;
  573. struct writeback_control wbc = {
  574. .sync_mode = WB_SYNC_ALL,
  575. .nr_to_write = LONG_MAX,
  576. .range_cyclic = 1,
  577. };
  578. int ret;
  579. _enter("");
  580. ret = mapping->a_ops->writepages(mapping, &wbc);
  581. __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
  582. _leave(" = %d", ret);
  583. return ret;
  584. }
  585. /*
  586. * flush any dirty pages for this process, and check for write errors.
  587. * - the return status from this call provides a reliable indication of
  588. * whether any write errors occurred for this process.
  589. */
  590. int afs_fsync(struct file *file, int datasync)
  591. {
  592. struct dentry *dentry = file->f_path.dentry;
  593. struct afs_writeback *wb, *xwb;
  594. struct afs_vnode *vnode = AFS_FS_I(dentry->d_inode);
  595. int ret;
  596. _enter("{%x:%u},{n=%s},%d",
  597. vnode->fid.vid, vnode->fid.vnode, dentry->d_name.name,
  598. datasync);
  599. /* use a writeback record as a marker in the queue - when this reaches
  600. * the front of the queue, all the outstanding writes are either
  601. * completed or rejected */
  602. wb = kzalloc(sizeof(*wb), GFP_KERNEL);
  603. if (!wb)
  604. return -ENOMEM;
  605. wb->vnode = vnode;
  606. wb->first = 0;
  607. wb->last = -1;
  608. wb->offset_first = 0;
  609. wb->to_last = PAGE_SIZE;
  610. wb->usage = 1;
  611. wb->state = AFS_WBACK_SYNCING;
  612. init_waitqueue_head(&wb->waitq);
  613. spin_lock(&vnode->writeback_lock);
  614. list_for_each_entry(xwb, &vnode->writebacks, link) {
  615. if (xwb->state == AFS_WBACK_PENDING)
  616. xwb->state = AFS_WBACK_CONFLICTING;
  617. }
  618. list_add_tail(&wb->link, &vnode->writebacks);
  619. spin_unlock(&vnode->writeback_lock);
  620. /* push all the outstanding writebacks to the server */
  621. ret = afs_writeback_all(vnode);
  622. if (ret < 0) {
  623. afs_put_writeback(wb);
  624. _leave(" = %d [wb]", ret);
  625. return ret;
  626. }
  627. /* wait for the preceding writes to actually complete */
  628. ret = wait_event_interruptible(wb->waitq,
  629. wb->state == AFS_WBACK_COMPLETE ||
  630. vnode->writebacks.next == &wb->link);
  631. afs_put_writeback(wb);
  632. _leave(" = %d", ret);
  633. return ret;
  634. }
  635. /*
  636. * notification that a previously read-only page is about to become writable
  637. * - if it returns an error, the caller will deliver a bus error signal
  638. */
  639. int afs_page_mkwrite(struct vm_area_struct *vma, struct page *page)
  640. {
  641. struct afs_vnode *vnode = AFS_FS_I(vma->vm_file->f_mapping->host);
  642. _enter("{{%x:%u}},{%lx}",
  643. vnode->fid.vid, vnode->fid.vnode, page->index);
  644. /* wait for the page to be written to the cache before we allow it to
  645. * be modified */
  646. #ifdef CONFIG_AFS_FSCACHE
  647. fscache_wait_on_page_write(vnode->cache, page);
  648. #endif
  649. _leave(" = 0");
  650. return 0;
  651. }