pch_udc.c 82 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002
  1. /*
  2. * Copyright (C) 2010 OKI SEMICONDUCTOR CO., LTD.
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; version 2 of the License.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public License
  14. * along with this program; if not, write to the Free Software
  15. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  18. #include <linux/kernel.h>
  19. #include <linux/module.h>
  20. #include <linux/pci.h>
  21. #include <linux/delay.h>
  22. #include <linux/errno.h>
  23. #include <linux/list.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/usb/ch9.h>
  26. #include <linux/usb/gadget.h>
  27. /* Address offset of Registers */
  28. #define UDC_EP_REG_SHIFT 0x20 /* Offset to next EP */
  29. #define UDC_EPCTL_ADDR 0x00 /* Endpoint control */
  30. #define UDC_EPSTS_ADDR 0x04 /* Endpoint status */
  31. #define UDC_BUFIN_FRAMENUM_ADDR 0x08 /* buffer size in / frame number out */
  32. #define UDC_BUFOUT_MAXPKT_ADDR 0x0C /* buffer size out / maxpkt in */
  33. #define UDC_SUBPTR_ADDR 0x10 /* setup buffer pointer */
  34. #define UDC_DESPTR_ADDR 0x14 /* Data descriptor pointer */
  35. #define UDC_CONFIRM_ADDR 0x18 /* Write/Read confirmation */
  36. #define UDC_DEVCFG_ADDR 0x400 /* Device configuration */
  37. #define UDC_DEVCTL_ADDR 0x404 /* Device control */
  38. #define UDC_DEVSTS_ADDR 0x408 /* Device status */
  39. #define UDC_DEVIRQSTS_ADDR 0x40C /* Device irq status */
  40. #define UDC_DEVIRQMSK_ADDR 0x410 /* Device irq mask */
  41. #define UDC_EPIRQSTS_ADDR 0x414 /* Endpoint irq status */
  42. #define UDC_EPIRQMSK_ADDR 0x418 /* Endpoint irq mask */
  43. #define UDC_DEVLPM_ADDR 0x41C /* LPM control / status */
  44. #define UDC_CSR_BUSY_ADDR 0x4f0 /* UDC_CSR_BUSY Status register */
  45. #define UDC_SRST_ADDR 0x4fc /* SOFT RESET register */
  46. #define UDC_CSR_ADDR 0x500 /* USB_DEVICE endpoint register */
  47. /* Endpoint control register */
  48. /* Bit position */
  49. #define UDC_EPCTL_MRXFLUSH (1 << 12)
  50. #define UDC_EPCTL_RRDY (1 << 9)
  51. #define UDC_EPCTL_CNAK (1 << 8)
  52. #define UDC_EPCTL_SNAK (1 << 7)
  53. #define UDC_EPCTL_NAK (1 << 6)
  54. #define UDC_EPCTL_P (1 << 3)
  55. #define UDC_EPCTL_F (1 << 1)
  56. #define UDC_EPCTL_S (1 << 0)
  57. #define UDC_EPCTL_ET_SHIFT 4
  58. /* Mask patern */
  59. #define UDC_EPCTL_ET_MASK 0x00000030
  60. /* Value for ET field */
  61. #define UDC_EPCTL_ET_CONTROL 0
  62. #define UDC_EPCTL_ET_ISO 1
  63. #define UDC_EPCTL_ET_BULK 2
  64. #define UDC_EPCTL_ET_INTERRUPT 3
  65. /* Endpoint status register */
  66. /* Bit position */
  67. #define UDC_EPSTS_XFERDONE (1 << 27)
  68. #define UDC_EPSTS_RSS (1 << 26)
  69. #define UDC_EPSTS_RCS (1 << 25)
  70. #define UDC_EPSTS_TXEMPTY (1 << 24)
  71. #define UDC_EPSTS_TDC (1 << 10)
  72. #define UDC_EPSTS_HE (1 << 9)
  73. #define UDC_EPSTS_MRXFIFO_EMP (1 << 8)
  74. #define UDC_EPSTS_BNA (1 << 7)
  75. #define UDC_EPSTS_IN (1 << 6)
  76. #define UDC_EPSTS_OUT_SHIFT 4
  77. /* Mask patern */
  78. #define UDC_EPSTS_OUT_MASK 0x00000030
  79. #define UDC_EPSTS_ALL_CLR_MASK 0x1F0006F0
  80. /* Value for OUT field */
  81. #define UDC_EPSTS_OUT_SETUP 2
  82. #define UDC_EPSTS_OUT_DATA 1
  83. /* Device configuration register */
  84. /* Bit position */
  85. #define UDC_DEVCFG_CSR_PRG (1 << 17)
  86. #define UDC_DEVCFG_SP (1 << 3)
  87. /* SPD Valee */
  88. #define UDC_DEVCFG_SPD_HS 0x0
  89. #define UDC_DEVCFG_SPD_FS 0x1
  90. #define UDC_DEVCFG_SPD_LS 0x2
  91. /* Device control register */
  92. /* Bit position */
  93. #define UDC_DEVCTL_THLEN_SHIFT 24
  94. #define UDC_DEVCTL_BRLEN_SHIFT 16
  95. #define UDC_DEVCTL_CSR_DONE (1 << 13)
  96. #define UDC_DEVCTL_SD (1 << 10)
  97. #define UDC_DEVCTL_MODE (1 << 9)
  98. #define UDC_DEVCTL_BREN (1 << 8)
  99. #define UDC_DEVCTL_THE (1 << 7)
  100. #define UDC_DEVCTL_DU (1 << 4)
  101. #define UDC_DEVCTL_TDE (1 << 3)
  102. #define UDC_DEVCTL_RDE (1 << 2)
  103. #define UDC_DEVCTL_RES (1 << 0)
  104. /* Device status register */
  105. /* Bit position */
  106. #define UDC_DEVSTS_TS_SHIFT 18
  107. #define UDC_DEVSTS_ENUM_SPEED_SHIFT 13
  108. #define UDC_DEVSTS_ALT_SHIFT 8
  109. #define UDC_DEVSTS_INTF_SHIFT 4
  110. #define UDC_DEVSTS_CFG_SHIFT 0
  111. /* Mask patern */
  112. #define UDC_DEVSTS_TS_MASK 0xfffc0000
  113. #define UDC_DEVSTS_ENUM_SPEED_MASK 0x00006000
  114. #define UDC_DEVSTS_ALT_MASK 0x00000f00
  115. #define UDC_DEVSTS_INTF_MASK 0x000000f0
  116. #define UDC_DEVSTS_CFG_MASK 0x0000000f
  117. /* value for maximum speed for SPEED field */
  118. #define UDC_DEVSTS_ENUM_SPEED_FULL 1
  119. #define UDC_DEVSTS_ENUM_SPEED_HIGH 0
  120. #define UDC_DEVSTS_ENUM_SPEED_LOW 2
  121. #define UDC_DEVSTS_ENUM_SPEED_FULLX 3
  122. /* Device irq register */
  123. /* Bit position */
  124. #define UDC_DEVINT_RWKP (1 << 7)
  125. #define UDC_DEVINT_ENUM (1 << 6)
  126. #define UDC_DEVINT_SOF (1 << 5)
  127. #define UDC_DEVINT_US (1 << 4)
  128. #define UDC_DEVINT_UR (1 << 3)
  129. #define UDC_DEVINT_ES (1 << 2)
  130. #define UDC_DEVINT_SI (1 << 1)
  131. #define UDC_DEVINT_SC (1 << 0)
  132. /* Mask patern */
  133. #define UDC_DEVINT_MSK 0x7f
  134. /* Endpoint irq register */
  135. /* Bit position */
  136. #define UDC_EPINT_IN_SHIFT 0
  137. #define UDC_EPINT_OUT_SHIFT 16
  138. #define UDC_EPINT_IN_EP0 (1 << 0)
  139. #define UDC_EPINT_OUT_EP0 (1 << 16)
  140. /* Mask patern */
  141. #define UDC_EPINT_MSK_DISABLE_ALL 0xffffffff
  142. /* UDC_CSR_BUSY Status register */
  143. /* Bit position */
  144. #define UDC_CSR_BUSY (1 << 0)
  145. /* SOFT RESET register */
  146. /* Bit position */
  147. #define UDC_PSRST (1 << 1)
  148. #define UDC_SRST (1 << 0)
  149. /* USB_DEVICE endpoint register */
  150. /* Bit position */
  151. #define UDC_CSR_NE_NUM_SHIFT 0
  152. #define UDC_CSR_NE_DIR_SHIFT 4
  153. #define UDC_CSR_NE_TYPE_SHIFT 5
  154. #define UDC_CSR_NE_CFG_SHIFT 7
  155. #define UDC_CSR_NE_INTF_SHIFT 11
  156. #define UDC_CSR_NE_ALT_SHIFT 15
  157. #define UDC_CSR_NE_MAX_PKT_SHIFT 19
  158. /* Mask patern */
  159. #define UDC_CSR_NE_NUM_MASK 0x0000000f
  160. #define UDC_CSR_NE_DIR_MASK 0x00000010
  161. #define UDC_CSR_NE_TYPE_MASK 0x00000060
  162. #define UDC_CSR_NE_CFG_MASK 0x00000780
  163. #define UDC_CSR_NE_INTF_MASK 0x00007800
  164. #define UDC_CSR_NE_ALT_MASK 0x00078000
  165. #define UDC_CSR_NE_MAX_PKT_MASK 0x3ff80000
  166. #define PCH_UDC_CSR(ep) (UDC_CSR_ADDR + ep*4)
  167. #define PCH_UDC_EPINT(in, num)\
  168. (1 << (num + (in ? UDC_EPINT_IN_SHIFT : UDC_EPINT_OUT_SHIFT)))
  169. /* Index of endpoint */
  170. #define UDC_EP0IN_IDX 0
  171. #define UDC_EP0OUT_IDX 1
  172. #define UDC_EPIN_IDX(ep) (ep * 2)
  173. #define UDC_EPOUT_IDX(ep) (ep * 2 + 1)
  174. #define PCH_UDC_EP0 0
  175. #define PCH_UDC_EP1 1
  176. #define PCH_UDC_EP2 2
  177. #define PCH_UDC_EP3 3
  178. /* Number of endpoint */
  179. #define PCH_UDC_EP_NUM 32 /* Total number of EPs (16 IN,16 OUT) */
  180. #define PCH_UDC_USED_EP_NUM 4 /* EP number of EP's really used */
  181. /* Length Value */
  182. #define PCH_UDC_BRLEN 0x0F /* Burst length */
  183. #define PCH_UDC_THLEN 0x1F /* Threshold length */
  184. /* Value of EP Buffer Size */
  185. #define UDC_EP0IN_BUFF_SIZE 16
  186. #define UDC_EPIN_BUFF_SIZE 256
  187. #define UDC_EP0OUT_BUFF_SIZE 16
  188. #define UDC_EPOUT_BUFF_SIZE 256
  189. /* Value of EP maximum packet size */
  190. #define UDC_EP0IN_MAX_PKT_SIZE 64
  191. #define UDC_EP0OUT_MAX_PKT_SIZE 64
  192. #define UDC_BULK_MAX_PKT_SIZE 512
  193. /* DMA */
  194. #define DMA_DIR_RX 1 /* DMA for data receive */
  195. #define DMA_DIR_TX 2 /* DMA for data transmit */
  196. #define DMA_ADDR_INVALID (~(dma_addr_t)0)
  197. #define UDC_DMA_MAXPACKET 65536 /* maximum packet size for DMA */
  198. /**
  199. * struct pch_udc_data_dma_desc - Structure to hold DMA descriptor information
  200. * for data
  201. * @status: Status quadlet
  202. * @reserved: Reserved
  203. * @dataptr: Buffer descriptor
  204. * @next: Next descriptor
  205. */
  206. struct pch_udc_data_dma_desc {
  207. u32 status;
  208. u32 reserved;
  209. u32 dataptr;
  210. u32 next;
  211. };
  212. /**
  213. * struct pch_udc_stp_dma_desc - Structure to hold DMA descriptor information
  214. * for control data
  215. * @status: Status
  216. * @reserved: Reserved
  217. * @data12: First setup word
  218. * @data34: Second setup word
  219. */
  220. struct pch_udc_stp_dma_desc {
  221. u32 status;
  222. u32 reserved;
  223. struct usb_ctrlrequest request;
  224. } __attribute((packed));
  225. /* DMA status definitions */
  226. /* Buffer status */
  227. #define PCH_UDC_BUFF_STS 0xC0000000
  228. #define PCH_UDC_BS_HST_RDY 0x00000000
  229. #define PCH_UDC_BS_DMA_BSY 0x40000000
  230. #define PCH_UDC_BS_DMA_DONE 0x80000000
  231. #define PCH_UDC_BS_HST_BSY 0xC0000000
  232. /* Rx/Tx Status */
  233. #define PCH_UDC_RXTX_STS 0x30000000
  234. #define PCH_UDC_RTS_SUCC 0x00000000
  235. #define PCH_UDC_RTS_DESERR 0x10000000
  236. #define PCH_UDC_RTS_BUFERR 0x30000000
  237. /* Last Descriptor Indication */
  238. #define PCH_UDC_DMA_LAST 0x08000000
  239. /* Number of Rx/Tx Bytes Mask */
  240. #define PCH_UDC_RXTX_BYTES 0x0000ffff
  241. /**
  242. * struct pch_udc_cfg_data - Structure to hold current configuration
  243. * and interface information
  244. * @cur_cfg: current configuration in use
  245. * @cur_intf: current interface in use
  246. * @cur_alt: current alt interface in use
  247. */
  248. struct pch_udc_cfg_data {
  249. u16 cur_cfg;
  250. u16 cur_intf;
  251. u16 cur_alt;
  252. };
  253. /**
  254. * struct pch_udc_ep - Structure holding a PCH USB device Endpoint information
  255. * @ep: embedded ep request
  256. * @td_stp_phys: for setup request
  257. * @td_data_phys: for data request
  258. * @td_stp: for setup request
  259. * @td_data: for data request
  260. * @dev: reference to device struct
  261. * @offset_addr: offset address of ep register
  262. * @desc: for this ep
  263. * @queue: queue for requests
  264. * @num: endpoint number
  265. * @in: endpoint is IN
  266. * @halted: endpoint halted?
  267. * @epsts: Endpoint status
  268. */
  269. struct pch_udc_ep {
  270. struct usb_ep ep;
  271. dma_addr_t td_stp_phys;
  272. dma_addr_t td_data_phys;
  273. struct pch_udc_stp_dma_desc *td_stp;
  274. struct pch_udc_data_dma_desc *td_data;
  275. struct pch_udc_dev *dev;
  276. unsigned long offset_addr;
  277. const struct usb_endpoint_descriptor *desc;
  278. struct list_head queue;
  279. unsigned num:5,
  280. in:1,
  281. halted:1;
  282. unsigned long epsts;
  283. };
  284. /**
  285. * struct pch_udc_dev - Structure holding complete information
  286. * of the PCH USB device
  287. * @gadget: gadget driver data
  288. * @driver: reference to gadget driver bound
  289. * @pdev: reference to the PCI device
  290. * @ep: array of endpoints
  291. * @lock: protects all state
  292. * @active: enabled the PCI device
  293. * @stall: stall requested
  294. * @prot_stall: protcol stall requested
  295. * @irq_registered: irq registered with system
  296. * @mem_region: device memory mapped
  297. * @registered: driver regsitered with system
  298. * @suspended: driver in suspended state
  299. * @connected: gadget driver associated
  300. * @set_cfg_not_acked: pending acknowledgement 4 setup
  301. * @waiting_zlp_ack: pending acknowledgement 4 ZLP
  302. * @data_requests: DMA pool for data requests
  303. * @stp_requests: DMA pool for setup requests
  304. * @dma_addr: DMA pool for received
  305. * @ep0out_buf: Buffer for DMA
  306. * @setup_data: Received setup data
  307. * @phys_addr: of device memory
  308. * @base_addr: for mapped device memory
  309. * @irq: IRQ line for the device
  310. * @cfg_data: current cfg, intf, and alt in use
  311. */
  312. struct pch_udc_dev {
  313. struct usb_gadget gadget;
  314. struct usb_gadget_driver *driver;
  315. struct pci_dev *pdev;
  316. struct pch_udc_ep ep[PCH_UDC_EP_NUM];
  317. spinlock_t lock; /* protects all state */
  318. unsigned active:1,
  319. stall:1,
  320. prot_stall:1,
  321. irq_registered:1,
  322. mem_region:1,
  323. registered:1,
  324. suspended:1,
  325. connected:1,
  326. set_cfg_not_acked:1,
  327. waiting_zlp_ack:1;
  328. struct pci_pool *data_requests;
  329. struct pci_pool *stp_requests;
  330. dma_addr_t dma_addr;
  331. void *ep0out_buf;
  332. struct usb_ctrlrequest setup_data;
  333. unsigned long phys_addr;
  334. void __iomem *base_addr;
  335. unsigned irq;
  336. struct pch_udc_cfg_data cfg_data;
  337. };
  338. #define PCH_UDC_PCI_BAR 1
  339. #define PCI_DEVICE_ID_INTEL_EG20T_UDC 0x8808
  340. #define PCI_VENDOR_ID_ROHM 0x10DB
  341. #define PCI_DEVICE_ID_ML7213_IOH_UDC 0x801D
  342. static const char ep0_string[] = "ep0in";
  343. static DEFINE_SPINLOCK(udc_stall_spinlock); /* stall spin lock */
  344. struct pch_udc_dev *pch_udc; /* pointer to device object */
  345. static int speed_fs;
  346. module_param_named(speed_fs, speed_fs, bool, S_IRUGO);
  347. MODULE_PARM_DESC(speed_fs, "true for Full speed operation");
  348. /**
  349. * struct pch_udc_request - Structure holding a PCH USB device request packet
  350. * @req: embedded ep request
  351. * @td_data_phys: phys. address
  352. * @td_data: first dma desc. of chain
  353. * @td_data_last: last dma desc. of chain
  354. * @queue: associated queue
  355. * @dma_going: DMA in progress for request
  356. * @dma_mapped: DMA memory mapped for request
  357. * @dma_done: DMA completed for request
  358. * @chain_len: chain length
  359. * @buf: Buffer memory for align adjustment
  360. * @dma: DMA memory for align adjustment
  361. */
  362. struct pch_udc_request {
  363. struct usb_request req;
  364. dma_addr_t td_data_phys;
  365. struct pch_udc_data_dma_desc *td_data;
  366. struct pch_udc_data_dma_desc *td_data_last;
  367. struct list_head queue;
  368. unsigned dma_going:1,
  369. dma_mapped:1,
  370. dma_done:1;
  371. unsigned chain_len;
  372. void *buf;
  373. dma_addr_t dma;
  374. };
  375. static inline u32 pch_udc_readl(struct pch_udc_dev *dev, unsigned long reg)
  376. {
  377. return ioread32(dev->base_addr + reg);
  378. }
  379. static inline void pch_udc_writel(struct pch_udc_dev *dev,
  380. unsigned long val, unsigned long reg)
  381. {
  382. iowrite32(val, dev->base_addr + reg);
  383. }
  384. static inline void pch_udc_bit_set(struct pch_udc_dev *dev,
  385. unsigned long reg,
  386. unsigned long bitmask)
  387. {
  388. pch_udc_writel(dev, pch_udc_readl(dev, reg) | bitmask, reg);
  389. }
  390. static inline void pch_udc_bit_clr(struct pch_udc_dev *dev,
  391. unsigned long reg,
  392. unsigned long bitmask)
  393. {
  394. pch_udc_writel(dev, pch_udc_readl(dev, reg) & ~(bitmask), reg);
  395. }
  396. static inline u32 pch_udc_ep_readl(struct pch_udc_ep *ep, unsigned long reg)
  397. {
  398. return ioread32(ep->dev->base_addr + ep->offset_addr + reg);
  399. }
  400. static inline void pch_udc_ep_writel(struct pch_udc_ep *ep,
  401. unsigned long val, unsigned long reg)
  402. {
  403. iowrite32(val, ep->dev->base_addr + ep->offset_addr + reg);
  404. }
  405. static inline void pch_udc_ep_bit_set(struct pch_udc_ep *ep,
  406. unsigned long reg,
  407. unsigned long bitmask)
  408. {
  409. pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) | bitmask, reg);
  410. }
  411. static inline void pch_udc_ep_bit_clr(struct pch_udc_ep *ep,
  412. unsigned long reg,
  413. unsigned long bitmask)
  414. {
  415. pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) & ~(bitmask), reg);
  416. }
  417. /**
  418. * pch_udc_csr_busy() - Wait till idle.
  419. * @dev: Reference to pch_udc_dev structure
  420. */
  421. static void pch_udc_csr_busy(struct pch_udc_dev *dev)
  422. {
  423. unsigned int count = 200;
  424. /* Wait till idle */
  425. while ((pch_udc_readl(dev, UDC_CSR_BUSY_ADDR) & UDC_CSR_BUSY)
  426. && --count)
  427. cpu_relax();
  428. if (!count)
  429. dev_err(&dev->pdev->dev, "%s: wait error\n", __func__);
  430. }
  431. /**
  432. * pch_udc_write_csr() - Write the command and status registers.
  433. * @dev: Reference to pch_udc_dev structure
  434. * @val: value to be written to CSR register
  435. * @addr: address of CSR register
  436. */
  437. static void pch_udc_write_csr(struct pch_udc_dev *dev, unsigned long val,
  438. unsigned int ep)
  439. {
  440. unsigned long reg = PCH_UDC_CSR(ep);
  441. pch_udc_csr_busy(dev); /* Wait till idle */
  442. pch_udc_writel(dev, val, reg);
  443. pch_udc_csr_busy(dev); /* Wait till idle */
  444. }
  445. /**
  446. * pch_udc_read_csr() - Read the command and status registers.
  447. * @dev: Reference to pch_udc_dev structure
  448. * @addr: address of CSR register
  449. *
  450. * Return codes: content of CSR register
  451. */
  452. static u32 pch_udc_read_csr(struct pch_udc_dev *dev, unsigned int ep)
  453. {
  454. unsigned long reg = PCH_UDC_CSR(ep);
  455. pch_udc_csr_busy(dev); /* Wait till idle */
  456. pch_udc_readl(dev, reg); /* Dummy read */
  457. pch_udc_csr_busy(dev); /* Wait till idle */
  458. return pch_udc_readl(dev, reg);
  459. }
  460. /**
  461. * pch_udc_rmt_wakeup() - Initiate for remote wakeup
  462. * @dev: Reference to pch_udc_dev structure
  463. */
  464. static inline void pch_udc_rmt_wakeup(struct pch_udc_dev *dev)
  465. {
  466. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  467. mdelay(1);
  468. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  469. }
  470. /**
  471. * pch_udc_get_frame() - Get the current frame from device status register
  472. * @dev: Reference to pch_udc_dev structure
  473. * Retern current frame
  474. */
  475. static inline int pch_udc_get_frame(struct pch_udc_dev *dev)
  476. {
  477. u32 frame = pch_udc_readl(dev, UDC_DEVSTS_ADDR);
  478. return (frame & UDC_DEVSTS_TS_MASK) >> UDC_DEVSTS_TS_SHIFT;
  479. }
  480. /**
  481. * pch_udc_clear_selfpowered() - Clear the self power control
  482. * @dev: Reference to pch_udc_regs structure
  483. */
  484. static inline void pch_udc_clear_selfpowered(struct pch_udc_dev *dev)
  485. {
  486. pch_udc_bit_clr(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
  487. }
  488. /**
  489. * pch_udc_set_selfpowered() - Set the self power control
  490. * @dev: Reference to pch_udc_regs structure
  491. */
  492. static inline void pch_udc_set_selfpowered(struct pch_udc_dev *dev)
  493. {
  494. pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
  495. }
  496. /**
  497. * pch_udc_set_disconnect() - Set the disconnect status.
  498. * @dev: Reference to pch_udc_regs structure
  499. */
  500. static inline void pch_udc_set_disconnect(struct pch_udc_dev *dev)
  501. {
  502. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
  503. }
  504. /**
  505. * pch_udc_clear_disconnect() - Clear the disconnect status.
  506. * @dev: Reference to pch_udc_regs structure
  507. */
  508. static void pch_udc_clear_disconnect(struct pch_udc_dev *dev)
  509. {
  510. /* Clear the disconnect */
  511. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  512. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
  513. mdelay(1);
  514. /* Resume USB signalling */
  515. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  516. }
  517. /**
  518. * pch_udc_vbus_session() - set or clearr the disconnect status.
  519. * @dev: Reference to pch_udc_regs structure
  520. * @is_active: Parameter specifying the action
  521. * 0: indicating VBUS power is ending
  522. * !0: indicating VBUS power is starting
  523. */
  524. static inline void pch_udc_vbus_session(struct pch_udc_dev *dev,
  525. int is_active)
  526. {
  527. if (is_active)
  528. pch_udc_clear_disconnect(dev);
  529. else
  530. pch_udc_set_disconnect(dev);
  531. }
  532. /**
  533. * pch_udc_ep_set_stall() - Set the stall of endpoint
  534. * @ep: Reference to structure of type pch_udc_ep_regs
  535. */
  536. static void pch_udc_ep_set_stall(struct pch_udc_ep *ep)
  537. {
  538. if (ep->in) {
  539. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
  540. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
  541. } else {
  542. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
  543. }
  544. }
  545. /**
  546. * pch_udc_ep_clear_stall() - Clear the stall of endpoint
  547. * @ep: Reference to structure of type pch_udc_ep_regs
  548. */
  549. static inline void pch_udc_ep_clear_stall(struct pch_udc_ep *ep)
  550. {
  551. /* Clear the stall */
  552. pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
  553. /* Clear NAK by writing CNAK */
  554. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
  555. }
  556. /**
  557. * pch_udc_ep_set_trfr_type() - Set the transfer type of endpoint
  558. * @ep: Reference to structure of type pch_udc_ep_regs
  559. * @type: Type of endpoint
  560. */
  561. static inline void pch_udc_ep_set_trfr_type(struct pch_udc_ep *ep,
  562. u8 type)
  563. {
  564. pch_udc_ep_writel(ep, ((type << UDC_EPCTL_ET_SHIFT) &
  565. UDC_EPCTL_ET_MASK), UDC_EPCTL_ADDR);
  566. }
  567. /**
  568. * pch_udc_ep_set_bufsz() - Set the maximum packet size for the endpoint
  569. * @ep: Reference to structure of type pch_udc_ep_regs
  570. * @buf_size: The buffer word size
  571. */
  572. static void pch_udc_ep_set_bufsz(struct pch_udc_ep *ep,
  573. u32 buf_size, u32 ep_in)
  574. {
  575. u32 data;
  576. if (ep_in) {
  577. data = pch_udc_ep_readl(ep, UDC_BUFIN_FRAMENUM_ADDR);
  578. data = (data & 0xffff0000) | (buf_size & 0xffff);
  579. pch_udc_ep_writel(ep, data, UDC_BUFIN_FRAMENUM_ADDR);
  580. } else {
  581. data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
  582. data = (buf_size << 16) | (data & 0xffff);
  583. pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
  584. }
  585. }
  586. /**
  587. * pch_udc_ep_set_maxpkt() - Set the Max packet size for the endpoint
  588. * @ep: Reference to structure of type pch_udc_ep_regs
  589. * @pkt_size: The packet byte size
  590. */
  591. static void pch_udc_ep_set_maxpkt(struct pch_udc_ep *ep, u32 pkt_size)
  592. {
  593. u32 data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
  594. data = (data & 0xffff0000) | (pkt_size & 0xffff);
  595. pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
  596. }
  597. /**
  598. * pch_udc_ep_set_subptr() - Set the Setup buffer pointer for the endpoint
  599. * @ep: Reference to structure of type pch_udc_ep_regs
  600. * @addr: Address of the register
  601. */
  602. static inline void pch_udc_ep_set_subptr(struct pch_udc_ep *ep, u32 addr)
  603. {
  604. pch_udc_ep_writel(ep, addr, UDC_SUBPTR_ADDR);
  605. }
  606. /**
  607. * pch_udc_ep_set_ddptr() - Set the Data descriptor pointer for the endpoint
  608. * @ep: Reference to structure of type pch_udc_ep_regs
  609. * @addr: Address of the register
  610. */
  611. static inline void pch_udc_ep_set_ddptr(struct pch_udc_ep *ep, u32 addr)
  612. {
  613. pch_udc_ep_writel(ep, addr, UDC_DESPTR_ADDR);
  614. }
  615. /**
  616. * pch_udc_ep_set_pd() - Set the poll demand bit for the endpoint
  617. * @ep: Reference to structure of type pch_udc_ep_regs
  618. */
  619. static inline void pch_udc_ep_set_pd(struct pch_udc_ep *ep)
  620. {
  621. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_P);
  622. }
  623. /**
  624. * pch_udc_ep_set_rrdy() - Set the receive ready bit for the endpoint
  625. * @ep: Reference to structure of type pch_udc_ep_regs
  626. */
  627. static inline void pch_udc_ep_set_rrdy(struct pch_udc_ep *ep)
  628. {
  629. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
  630. }
  631. /**
  632. * pch_udc_ep_clear_rrdy() - Clear the receive ready bit for the endpoint
  633. * @ep: Reference to structure of type pch_udc_ep_regs
  634. */
  635. static inline void pch_udc_ep_clear_rrdy(struct pch_udc_ep *ep)
  636. {
  637. pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
  638. }
  639. /**
  640. * pch_udc_set_dma() - Set the 'TDE' or RDE bit of device control
  641. * register depending on the direction specified
  642. * @dev: Reference to structure of type pch_udc_regs
  643. * @dir: whether Tx or Rx
  644. * DMA_DIR_RX: Receive
  645. * DMA_DIR_TX: Transmit
  646. */
  647. static inline void pch_udc_set_dma(struct pch_udc_dev *dev, int dir)
  648. {
  649. if (dir == DMA_DIR_RX)
  650. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
  651. else if (dir == DMA_DIR_TX)
  652. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
  653. }
  654. /**
  655. * pch_udc_clear_dma() - Clear the 'TDE' or RDE bit of device control
  656. * register depending on the direction specified
  657. * @dev: Reference to structure of type pch_udc_regs
  658. * @dir: Whether Tx or Rx
  659. * DMA_DIR_RX: Receive
  660. * DMA_DIR_TX: Transmit
  661. */
  662. static inline void pch_udc_clear_dma(struct pch_udc_dev *dev, int dir)
  663. {
  664. if (dir == DMA_DIR_RX)
  665. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
  666. else if (dir == DMA_DIR_TX)
  667. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
  668. }
  669. /**
  670. * pch_udc_set_csr_done() - Set the device control register
  671. * CSR done field (bit 13)
  672. * @dev: reference to structure of type pch_udc_regs
  673. */
  674. static inline void pch_udc_set_csr_done(struct pch_udc_dev *dev)
  675. {
  676. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_CSR_DONE);
  677. }
  678. /**
  679. * pch_udc_disable_interrupts() - Disables the specified interrupts
  680. * @dev: Reference to structure of type pch_udc_regs
  681. * @mask: Mask to disable interrupts
  682. */
  683. static inline void pch_udc_disable_interrupts(struct pch_udc_dev *dev,
  684. u32 mask)
  685. {
  686. pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, mask);
  687. }
  688. /**
  689. * pch_udc_enable_interrupts() - Enable the specified interrupts
  690. * @dev: Reference to structure of type pch_udc_regs
  691. * @mask: Mask to enable interrupts
  692. */
  693. static inline void pch_udc_enable_interrupts(struct pch_udc_dev *dev,
  694. u32 mask)
  695. {
  696. pch_udc_bit_clr(dev, UDC_DEVIRQMSK_ADDR, mask);
  697. }
  698. /**
  699. * pch_udc_disable_ep_interrupts() - Disable endpoint interrupts
  700. * @dev: Reference to structure of type pch_udc_regs
  701. * @mask: Mask to disable interrupts
  702. */
  703. static inline void pch_udc_disable_ep_interrupts(struct pch_udc_dev *dev,
  704. u32 mask)
  705. {
  706. pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, mask);
  707. }
  708. /**
  709. * pch_udc_enable_ep_interrupts() - Enable endpoint interrupts
  710. * @dev: Reference to structure of type pch_udc_regs
  711. * @mask: Mask to enable interrupts
  712. */
  713. static inline void pch_udc_enable_ep_interrupts(struct pch_udc_dev *dev,
  714. u32 mask)
  715. {
  716. pch_udc_bit_clr(dev, UDC_EPIRQMSK_ADDR, mask);
  717. }
  718. /**
  719. * pch_udc_read_device_interrupts() - Read the device interrupts
  720. * @dev: Reference to structure of type pch_udc_regs
  721. * Retern The device interrupts
  722. */
  723. static inline u32 pch_udc_read_device_interrupts(struct pch_udc_dev *dev)
  724. {
  725. return pch_udc_readl(dev, UDC_DEVIRQSTS_ADDR);
  726. }
  727. /**
  728. * pch_udc_write_device_interrupts() - Write device interrupts
  729. * @dev: Reference to structure of type pch_udc_regs
  730. * @val: The value to be written to interrupt register
  731. */
  732. static inline void pch_udc_write_device_interrupts(struct pch_udc_dev *dev,
  733. u32 val)
  734. {
  735. pch_udc_writel(dev, val, UDC_DEVIRQSTS_ADDR);
  736. }
  737. /**
  738. * pch_udc_read_ep_interrupts() - Read the endpoint interrupts
  739. * @dev: Reference to structure of type pch_udc_regs
  740. * Retern The endpoint interrupt
  741. */
  742. static inline u32 pch_udc_read_ep_interrupts(struct pch_udc_dev *dev)
  743. {
  744. return pch_udc_readl(dev, UDC_EPIRQSTS_ADDR);
  745. }
  746. /**
  747. * pch_udc_write_ep_interrupts() - Clear endpoint interupts
  748. * @dev: Reference to structure of type pch_udc_regs
  749. * @val: The value to be written to interrupt register
  750. */
  751. static inline void pch_udc_write_ep_interrupts(struct pch_udc_dev *dev,
  752. u32 val)
  753. {
  754. pch_udc_writel(dev, val, UDC_EPIRQSTS_ADDR);
  755. }
  756. /**
  757. * pch_udc_read_device_status() - Read the device status
  758. * @dev: Reference to structure of type pch_udc_regs
  759. * Retern The device status
  760. */
  761. static inline u32 pch_udc_read_device_status(struct pch_udc_dev *dev)
  762. {
  763. return pch_udc_readl(dev, UDC_DEVSTS_ADDR);
  764. }
  765. /**
  766. * pch_udc_read_ep_control() - Read the endpoint control
  767. * @ep: Reference to structure of type pch_udc_ep_regs
  768. * Retern The endpoint control register value
  769. */
  770. static inline u32 pch_udc_read_ep_control(struct pch_udc_ep *ep)
  771. {
  772. return pch_udc_ep_readl(ep, UDC_EPCTL_ADDR);
  773. }
  774. /**
  775. * pch_udc_clear_ep_control() - Clear the endpoint control register
  776. * @ep: Reference to structure of type pch_udc_ep_regs
  777. * Retern The endpoint control register value
  778. */
  779. static inline void pch_udc_clear_ep_control(struct pch_udc_ep *ep)
  780. {
  781. return pch_udc_ep_writel(ep, 0, UDC_EPCTL_ADDR);
  782. }
  783. /**
  784. * pch_udc_read_ep_status() - Read the endpoint status
  785. * @ep: Reference to structure of type pch_udc_ep_regs
  786. * Retern The endpoint status
  787. */
  788. static inline u32 pch_udc_read_ep_status(struct pch_udc_ep *ep)
  789. {
  790. return pch_udc_ep_readl(ep, UDC_EPSTS_ADDR);
  791. }
  792. /**
  793. * pch_udc_clear_ep_status() - Clear the endpoint status
  794. * @ep: Reference to structure of type pch_udc_ep_regs
  795. * @stat: Endpoint status
  796. */
  797. static inline void pch_udc_clear_ep_status(struct pch_udc_ep *ep,
  798. u32 stat)
  799. {
  800. return pch_udc_ep_writel(ep, stat, UDC_EPSTS_ADDR);
  801. }
  802. /**
  803. * pch_udc_ep_set_nak() - Set the bit 7 (SNAK field)
  804. * of the endpoint control register
  805. * @ep: Reference to structure of type pch_udc_ep_regs
  806. */
  807. static inline void pch_udc_ep_set_nak(struct pch_udc_ep *ep)
  808. {
  809. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_SNAK);
  810. }
  811. /**
  812. * pch_udc_ep_clear_nak() - Set the bit 8 (CNAK field)
  813. * of the endpoint control register
  814. * @ep: reference to structure of type pch_udc_ep_regs
  815. */
  816. static void pch_udc_ep_clear_nak(struct pch_udc_ep *ep)
  817. {
  818. unsigned int loopcnt = 0;
  819. struct pch_udc_dev *dev = ep->dev;
  820. if (!(pch_udc_ep_readl(ep, UDC_EPCTL_ADDR) & UDC_EPCTL_NAK))
  821. return;
  822. if (!ep->in) {
  823. loopcnt = 10000;
  824. while (!(pch_udc_read_ep_status(ep) & UDC_EPSTS_MRXFIFO_EMP) &&
  825. --loopcnt)
  826. udelay(5);
  827. if (!loopcnt)
  828. dev_err(&dev->pdev->dev, "%s: RxFIFO not Empty\n",
  829. __func__);
  830. }
  831. loopcnt = 10000;
  832. while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_NAK) && --loopcnt) {
  833. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
  834. udelay(5);
  835. }
  836. if (!loopcnt)
  837. dev_err(&dev->pdev->dev, "%s: Clear NAK not set for ep%d%s\n",
  838. __func__, ep->num, (ep->in ? "in" : "out"));
  839. }
  840. /**
  841. * pch_udc_ep_fifo_flush() - Flush the endpoint fifo
  842. * @ep: reference to structure of type pch_udc_ep_regs
  843. * @dir: direction of endpoint
  844. * 0: endpoint is OUT
  845. * !0: endpoint is IN
  846. */
  847. static void pch_udc_ep_fifo_flush(struct pch_udc_ep *ep, int dir)
  848. {
  849. if (dir) { /* IN ep */
  850. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
  851. return;
  852. }
  853. }
  854. /**
  855. * pch_udc_ep_enable() - This api enables endpoint
  856. * @regs: Reference to structure pch_udc_ep_regs
  857. * @desc: endpoint descriptor
  858. */
  859. static void pch_udc_ep_enable(struct pch_udc_ep *ep,
  860. struct pch_udc_cfg_data *cfg,
  861. const struct usb_endpoint_descriptor *desc)
  862. {
  863. u32 val = 0;
  864. u32 buff_size = 0;
  865. pch_udc_ep_set_trfr_type(ep, desc->bmAttributes);
  866. if (ep->in)
  867. buff_size = UDC_EPIN_BUFF_SIZE;
  868. else
  869. buff_size = UDC_EPOUT_BUFF_SIZE;
  870. pch_udc_ep_set_bufsz(ep, buff_size, ep->in);
  871. pch_udc_ep_set_maxpkt(ep, le16_to_cpu(desc->wMaxPacketSize));
  872. pch_udc_ep_set_nak(ep);
  873. pch_udc_ep_fifo_flush(ep, ep->in);
  874. /* Configure the endpoint */
  875. val = ep->num << UDC_CSR_NE_NUM_SHIFT | ep->in << UDC_CSR_NE_DIR_SHIFT |
  876. ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) <<
  877. UDC_CSR_NE_TYPE_SHIFT) |
  878. (cfg->cur_cfg << UDC_CSR_NE_CFG_SHIFT) |
  879. (cfg->cur_intf << UDC_CSR_NE_INTF_SHIFT) |
  880. (cfg->cur_alt << UDC_CSR_NE_ALT_SHIFT) |
  881. le16_to_cpu(desc->wMaxPacketSize) << UDC_CSR_NE_MAX_PKT_SHIFT;
  882. if (ep->in)
  883. pch_udc_write_csr(ep->dev, val, UDC_EPIN_IDX(ep->num));
  884. else
  885. pch_udc_write_csr(ep->dev, val, UDC_EPOUT_IDX(ep->num));
  886. }
  887. /**
  888. * pch_udc_ep_disable() - This api disables endpoint
  889. * @regs: Reference to structure pch_udc_ep_regs
  890. */
  891. static void pch_udc_ep_disable(struct pch_udc_ep *ep)
  892. {
  893. if (ep->in) {
  894. /* flush the fifo */
  895. pch_udc_ep_writel(ep, UDC_EPCTL_F, UDC_EPCTL_ADDR);
  896. /* set NAK */
  897. pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
  898. pch_udc_ep_bit_set(ep, UDC_EPSTS_ADDR, UDC_EPSTS_IN);
  899. } else {
  900. /* set NAK */
  901. pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
  902. }
  903. /* reset desc pointer */
  904. pch_udc_ep_writel(ep, 0, UDC_DESPTR_ADDR);
  905. }
  906. /**
  907. * pch_udc_wait_ep_stall() - Wait EP stall.
  908. * @dev: Reference to pch_udc_dev structure
  909. */
  910. static void pch_udc_wait_ep_stall(struct pch_udc_ep *ep)
  911. {
  912. unsigned int count = 10000;
  913. /* Wait till idle */
  914. while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_S) && --count)
  915. udelay(5);
  916. if (!count)
  917. dev_err(&ep->dev->pdev->dev, "%s: wait error\n", __func__);
  918. }
  919. /**
  920. * pch_udc_init() - This API initializes usb device controller
  921. * @dev: Rreference to pch_udc_regs structure
  922. */
  923. static void pch_udc_init(struct pch_udc_dev *dev)
  924. {
  925. if (NULL == dev) {
  926. pr_err("%s: Invalid address\n", __func__);
  927. return;
  928. }
  929. /* Soft Reset and Reset PHY */
  930. pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
  931. pch_udc_writel(dev, UDC_SRST | UDC_PSRST, UDC_SRST_ADDR);
  932. mdelay(1);
  933. pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
  934. pch_udc_writel(dev, 0x00, UDC_SRST_ADDR);
  935. mdelay(1);
  936. /* mask and clear all device interrupts */
  937. pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
  938. pch_udc_bit_set(dev, UDC_DEVIRQSTS_ADDR, UDC_DEVINT_MSK);
  939. /* mask and clear all ep interrupts */
  940. pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
  941. pch_udc_bit_set(dev, UDC_EPIRQSTS_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
  942. /* enable dynamic CSR programmingi, self powered and device speed */
  943. if (speed_fs)
  944. pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
  945. UDC_DEVCFG_SP | UDC_DEVCFG_SPD_FS);
  946. else /* defaul high speed */
  947. pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
  948. UDC_DEVCFG_SP | UDC_DEVCFG_SPD_HS);
  949. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR,
  950. (PCH_UDC_THLEN << UDC_DEVCTL_THLEN_SHIFT) |
  951. (PCH_UDC_BRLEN << UDC_DEVCTL_BRLEN_SHIFT) |
  952. UDC_DEVCTL_MODE | UDC_DEVCTL_BREN |
  953. UDC_DEVCTL_THE);
  954. }
  955. /**
  956. * pch_udc_exit() - This API exit usb device controller
  957. * @dev: Reference to pch_udc_regs structure
  958. */
  959. static void pch_udc_exit(struct pch_udc_dev *dev)
  960. {
  961. /* mask all device interrupts */
  962. pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
  963. /* mask all ep interrupts */
  964. pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
  965. /* put device in disconnected state */
  966. pch_udc_set_disconnect(dev);
  967. }
  968. /**
  969. * pch_udc_pcd_get_frame() - This API is invoked to get the current frame number
  970. * @gadget: Reference to the gadget driver
  971. *
  972. * Return codes:
  973. * 0: Success
  974. * -EINVAL: If the gadget passed is NULL
  975. */
  976. static int pch_udc_pcd_get_frame(struct usb_gadget *gadget)
  977. {
  978. struct pch_udc_dev *dev;
  979. if (!gadget)
  980. return -EINVAL;
  981. dev = container_of(gadget, struct pch_udc_dev, gadget);
  982. return pch_udc_get_frame(dev);
  983. }
  984. /**
  985. * pch_udc_pcd_wakeup() - This API is invoked to initiate a remote wakeup
  986. * @gadget: Reference to the gadget driver
  987. *
  988. * Return codes:
  989. * 0: Success
  990. * -EINVAL: If the gadget passed is NULL
  991. */
  992. static int pch_udc_pcd_wakeup(struct usb_gadget *gadget)
  993. {
  994. struct pch_udc_dev *dev;
  995. unsigned long flags;
  996. if (!gadget)
  997. return -EINVAL;
  998. dev = container_of(gadget, struct pch_udc_dev, gadget);
  999. spin_lock_irqsave(&dev->lock, flags);
  1000. pch_udc_rmt_wakeup(dev);
  1001. spin_unlock_irqrestore(&dev->lock, flags);
  1002. return 0;
  1003. }
  1004. /**
  1005. * pch_udc_pcd_selfpowered() - This API is invoked to specify whether the device
  1006. * is self powered or not
  1007. * @gadget: Reference to the gadget driver
  1008. * @value: Specifies self powered or not
  1009. *
  1010. * Return codes:
  1011. * 0: Success
  1012. * -EINVAL: If the gadget passed is NULL
  1013. */
  1014. static int pch_udc_pcd_selfpowered(struct usb_gadget *gadget, int value)
  1015. {
  1016. struct pch_udc_dev *dev;
  1017. if (!gadget)
  1018. return -EINVAL;
  1019. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1020. if (value)
  1021. pch_udc_set_selfpowered(dev);
  1022. else
  1023. pch_udc_clear_selfpowered(dev);
  1024. return 0;
  1025. }
  1026. /**
  1027. * pch_udc_pcd_pullup() - This API is invoked to make the device
  1028. * visible/invisible to the host
  1029. * @gadget: Reference to the gadget driver
  1030. * @is_on: Specifies whether the pull up is made active or inactive
  1031. *
  1032. * Return codes:
  1033. * 0: Success
  1034. * -EINVAL: If the gadget passed is NULL
  1035. */
  1036. static int pch_udc_pcd_pullup(struct usb_gadget *gadget, int is_on)
  1037. {
  1038. struct pch_udc_dev *dev;
  1039. if (!gadget)
  1040. return -EINVAL;
  1041. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1042. pch_udc_vbus_session(dev, is_on);
  1043. return 0;
  1044. }
  1045. /**
  1046. * pch_udc_pcd_vbus_session() - This API is used by a driver for an external
  1047. * transceiver (or GPIO) that
  1048. * detects a VBUS power session starting/ending
  1049. * @gadget: Reference to the gadget driver
  1050. * @is_active: specifies whether the session is starting or ending
  1051. *
  1052. * Return codes:
  1053. * 0: Success
  1054. * -EINVAL: If the gadget passed is NULL
  1055. */
  1056. static int pch_udc_pcd_vbus_session(struct usb_gadget *gadget, int is_active)
  1057. {
  1058. struct pch_udc_dev *dev;
  1059. if (!gadget)
  1060. return -EINVAL;
  1061. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1062. pch_udc_vbus_session(dev, is_active);
  1063. return 0;
  1064. }
  1065. /**
  1066. * pch_udc_pcd_vbus_draw() - This API is used by gadget drivers during
  1067. * SET_CONFIGURATION calls to
  1068. * specify how much power the device can consume
  1069. * @gadget: Reference to the gadget driver
  1070. * @mA: specifies the current limit in 2mA unit
  1071. *
  1072. * Return codes:
  1073. * -EINVAL: If the gadget passed is NULL
  1074. * -EOPNOTSUPP:
  1075. */
  1076. static int pch_udc_pcd_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
  1077. {
  1078. return -EOPNOTSUPP;
  1079. }
  1080. static const struct usb_gadget_ops pch_udc_ops = {
  1081. .get_frame = pch_udc_pcd_get_frame,
  1082. .wakeup = pch_udc_pcd_wakeup,
  1083. .set_selfpowered = pch_udc_pcd_selfpowered,
  1084. .pullup = pch_udc_pcd_pullup,
  1085. .vbus_session = pch_udc_pcd_vbus_session,
  1086. .vbus_draw = pch_udc_pcd_vbus_draw,
  1087. };
  1088. /**
  1089. * complete_req() - This API is invoked from the driver when processing
  1090. * of a request is complete
  1091. * @ep: Reference to the endpoint structure
  1092. * @req: Reference to the request structure
  1093. * @status: Indicates the success/failure of completion
  1094. */
  1095. static void complete_req(struct pch_udc_ep *ep, struct pch_udc_request *req,
  1096. int status)
  1097. {
  1098. struct pch_udc_dev *dev;
  1099. unsigned halted = ep->halted;
  1100. list_del_init(&req->queue);
  1101. /* set new status if pending */
  1102. if (req->req.status == -EINPROGRESS)
  1103. req->req.status = status;
  1104. else
  1105. status = req->req.status;
  1106. dev = ep->dev;
  1107. if (req->dma_mapped) {
  1108. if (req->dma == DMA_ADDR_INVALID) {
  1109. if (ep->in)
  1110. dma_unmap_single(&dev->pdev->dev, req->req.dma,
  1111. req->req.length,
  1112. DMA_TO_DEVICE);
  1113. else
  1114. dma_unmap_single(&dev->pdev->dev, req->req.dma,
  1115. req->req.length,
  1116. DMA_FROM_DEVICE);
  1117. req->req.dma = DMA_ADDR_INVALID;
  1118. } else {
  1119. if (ep->in)
  1120. dma_unmap_single(&dev->pdev->dev, req->dma,
  1121. req->req.length,
  1122. DMA_TO_DEVICE);
  1123. else {
  1124. dma_unmap_single(&dev->pdev->dev, req->dma,
  1125. req->req.length,
  1126. DMA_FROM_DEVICE);
  1127. memcpy(req->req.buf, req->buf, req->req.length);
  1128. }
  1129. kfree(req->buf);
  1130. req->dma = DMA_ADDR_INVALID;
  1131. }
  1132. req->dma_mapped = 0;
  1133. }
  1134. ep->halted = 1;
  1135. spin_unlock(&dev->lock);
  1136. if (!ep->in)
  1137. pch_udc_ep_clear_rrdy(ep);
  1138. req->req.complete(&ep->ep, &req->req);
  1139. spin_lock(&dev->lock);
  1140. ep->halted = halted;
  1141. }
  1142. /**
  1143. * empty_req_queue() - This API empties the request queue of an endpoint
  1144. * @ep: Reference to the endpoint structure
  1145. */
  1146. static void empty_req_queue(struct pch_udc_ep *ep)
  1147. {
  1148. struct pch_udc_request *req;
  1149. ep->halted = 1;
  1150. while (!list_empty(&ep->queue)) {
  1151. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1152. complete_req(ep, req, -ESHUTDOWN); /* Remove from list */
  1153. }
  1154. }
  1155. /**
  1156. * pch_udc_free_dma_chain() - This function frees the DMA chain created
  1157. * for the request
  1158. * @dev Reference to the driver structure
  1159. * @req Reference to the request to be freed
  1160. *
  1161. * Return codes:
  1162. * 0: Success
  1163. */
  1164. static void pch_udc_free_dma_chain(struct pch_udc_dev *dev,
  1165. struct pch_udc_request *req)
  1166. {
  1167. struct pch_udc_data_dma_desc *td = req->td_data;
  1168. unsigned i = req->chain_len;
  1169. dma_addr_t addr2;
  1170. dma_addr_t addr = (dma_addr_t)td->next;
  1171. td->next = 0x00;
  1172. for (; i > 1; --i) {
  1173. /* do not free first desc., will be done by free for request */
  1174. td = phys_to_virt(addr);
  1175. addr2 = (dma_addr_t)td->next;
  1176. pci_pool_free(dev->data_requests, td, addr);
  1177. td->next = 0x00;
  1178. addr = addr2;
  1179. }
  1180. req->chain_len = 1;
  1181. }
  1182. /**
  1183. * pch_udc_create_dma_chain() - This function creates or reinitializes
  1184. * a DMA chain
  1185. * @ep: Reference to the endpoint structure
  1186. * @req: Reference to the request
  1187. * @buf_len: The buffer length
  1188. * @gfp_flags: Flags to be used while mapping the data buffer
  1189. *
  1190. * Return codes:
  1191. * 0: success,
  1192. * -ENOMEM: pci_pool_alloc invocation fails
  1193. */
  1194. static int pch_udc_create_dma_chain(struct pch_udc_ep *ep,
  1195. struct pch_udc_request *req,
  1196. unsigned long buf_len,
  1197. gfp_t gfp_flags)
  1198. {
  1199. struct pch_udc_data_dma_desc *td = req->td_data, *last;
  1200. unsigned long bytes = req->req.length, i = 0;
  1201. dma_addr_t dma_addr;
  1202. unsigned len = 1;
  1203. if (req->chain_len > 1)
  1204. pch_udc_free_dma_chain(ep->dev, req);
  1205. if (req->dma == DMA_ADDR_INVALID)
  1206. td->dataptr = req->req.dma;
  1207. else
  1208. td->dataptr = req->dma;
  1209. td->status = PCH_UDC_BS_HST_BSY;
  1210. for (; ; bytes -= buf_len, ++len) {
  1211. td->status = PCH_UDC_BS_HST_BSY | min(buf_len, bytes);
  1212. if (bytes <= buf_len)
  1213. break;
  1214. last = td;
  1215. td = pci_pool_alloc(ep->dev->data_requests, gfp_flags,
  1216. &dma_addr);
  1217. if (!td)
  1218. goto nomem;
  1219. i += buf_len;
  1220. td->dataptr = req->td_data->dataptr + i;
  1221. last->next = dma_addr;
  1222. }
  1223. req->td_data_last = td;
  1224. td->status |= PCH_UDC_DMA_LAST;
  1225. td->next = req->td_data_phys;
  1226. req->chain_len = len;
  1227. return 0;
  1228. nomem:
  1229. if (len > 1) {
  1230. req->chain_len = len;
  1231. pch_udc_free_dma_chain(ep->dev, req);
  1232. }
  1233. req->chain_len = 1;
  1234. return -ENOMEM;
  1235. }
  1236. /**
  1237. * prepare_dma() - This function creates and initializes the DMA chain
  1238. * for the request
  1239. * @ep: Reference to the endpoint structure
  1240. * @req: Reference to the request
  1241. * @gfp: Flag to be used while mapping the data buffer
  1242. *
  1243. * Return codes:
  1244. * 0: Success
  1245. * Other 0: linux error number on failure
  1246. */
  1247. static int prepare_dma(struct pch_udc_ep *ep, struct pch_udc_request *req,
  1248. gfp_t gfp)
  1249. {
  1250. int retval;
  1251. /* Allocate and create a DMA chain */
  1252. retval = pch_udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
  1253. if (retval) {
  1254. pr_err("%s: could not create DMA chain:%d\n", __func__, retval);
  1255. return retval;
  1256. }
  1257. if (ep->in)
  1258. req->td_data->status = (req->td_data->status &
  1259. ~PCH_UDC_BUFF_STS) | PCH_UDC_BS_HST_RDY;
  1260. return 0;
  1261. }
  1262. /**
  1263. * process_zlp() - This function process zero length packets
  1264. * from the gadget driver
  1265. * @ep: Reference to the endpoint structure
  1266. * @req: Reference to the request
  1267. */
  1268. static void process_zlp(struct pch_udc_ep *ep, struct pch_udc_request *req)
  1269. {
  1270. struct pch_udc_dev *dev = ep->dev;
  1271. /* IN zlp's are handled by hardware */
  1272. complete_req(ep, req, 0);
  1273. /* if set_config or set_intf is waiting for ack by zlp
  1274. * then set CSR_DONE
  1275. */
  1276. if (dev->set_cfg_not_acked) {
  1277. pch_udc_set_csr_done(dev);
  1278. dev->set_cfg_not_acked = 0;
  1279. }
  1280. /* setup command is ACK'ed now by zlp */
  1281. if (!dev->stall && dev->waiting_zlp_ack) {
  1282. pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
  1283. dev->waiting_zlp_ack = 0;
  1284. }
  1285. }
  1286. /**
  1287. * pch_udc_start_rxrequest() - This function starts the receive requirement.
  1288. * @ep: Reference to the endpoint structure
  1289. * @req: Reference to the request structure
  1290. */
  1291. static void pch_udc_start_rxrequest(struct pch_udc_ep *ep,
  1292. struct pch_udc_request *req)
  1293. {
  1294. struct pch_udc_data_dma_desc *td_data;
  1295. pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
  1296. td_data = req->td_data;
  1297. /* Set the status bits for all descriptors */
  1298. while (1) {
  1299. td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
  1300. PCH_UDC_BS_HST_RDY;
  1301. if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST)
  1302. break;
  1303. td_data = phys_to_virt(td_data->next);
  1304. }
  1305. /* Write the descriptor pointer */
  1306. pch_udc_ep_set_ddptr(ep, req->td_data_phys);
  1307. req->dma_going = 1;
  1308. pch_udc_enable_ep_interrupts(ep->dev, UDC_EPINT_OUT_EP0 << ep->num);
  1309. pch_udc_set_dma(ep->dev, DMA_DIR_RX);
  1310. pch_udc_ep_clear_nak(ep);
  1311. pch_udc_ep_set_rrdy(ep);
  1312. }
  1313. /**
  1314. * pch_udc_pcd_ep_enable() - This API enables the endpoint. It is called
  1315. * from gadget driver
  1316. * @usbep: Reference to the USB endpoint structure
  1317. * @desc: Reference to the USB endpoint descriptor structure
  1318. *
  1319. * Return codes:
  1320. * 0: Success
  1321. * -EINVAL:
  1322. * -ESHUTDOWN:
  1323. */
  1324. static int pch_udc_pcd_ep_enable(struct usb_ep *usbep,
  1325. const struct usb_endpoint_descriptor *desc)
  1326. {
  1327. struct pch_udc_ep *ep;
  1328. struct pch_udc_dev *dev;
  1329. unsigned long iflags;
  1330. if (!usbep || (usbep->name == ep0_string) || !desc ||
  1331. (desc->bDescriptorType != USB_DT_ENDPOINT) || !desc->wMaxPacketSize)
  1332. return -EINVAL;
  1333. ep = container_of(usbep, struct pch_udc_ep, ep);
  1334. dev = ep->dev;
  1335. if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
  1336. return -ESHUTDOWN;
  1337. spin_lock_irqsave(&dev->lock, iflags);
  1338. ep->desc = desc;
  1339. ep->halted = 0;
  1340. pch_udc_ep_enable(ep, &ep->dev->cfg_data, desc);
  1341. ep->ep.maxpacket = le16_to_cpu(desc->wMaxPacketSize);
  1342. pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
  1343. spin_unlock_irqrestore(&dev->lock, iflags);
  1344. return 0;
  1345. }
  1346. /**
  1347. * pch_udc_pcd_ep_disable() - This API disables endpoint and is called
  1348. * from gadget driver
  1349. * @usbep Reference to the USB endpoint structure
  1350. *
  1351. * Return codes:
  1352. * 0: Success
  1353. * -EINVAL:
  1354. */
  1355. static int pch_udc_pcd_ep_disable(struct usb_ep *usbep)
  1356. {
  1357. struct pch_udc_ep *ep;
  1358. struct pch_udc_dev *dev;
  1359. unsigned long iflags;
  1360. if (!usbep)
  1361. return -EINVAL;
  1362. ep = container_of(usbep, struct pch_udc_ep, ep);
  1363. dev = ep->dev;
  1364. if ((usbep->name == ep0_string) || !ep->desc)
  1365. return -EINVAL;
  1366. spin_lock_irqsave(&ep->dev->lock, iflags);
  1367. empty_req_queue(ep);
  1368. ep->halted = 1;
  1369. pch_udc_ep_disable(ep);
  1370. pch_udc_disable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
  1371. ep->desc = NULL;
  1372. INIT_LIST_HEAD(&ep->queue);
  1373. spin_unlock_irqrestore(&ep->dev->lock, iflags);
  1374. return 0;
  1375. }
  1376. /**
  1377. * pch_udc_alloc_request() - This function allocates request structure.
  1378. * It is called by gadget driver
  1379. * @usbep: Reference to the USB endpoint structure
  1380. * @gfp: Flag to be used while allocating memory
  1381. *
  1382. * Return codes:
  1383. * NULL: Failure
  1384. * Allocated address: Success
  1385. */
  1386. static struct usb_request *pch_udc_alloc_request(struct usb_ep *usbep,
  1387. gfp_t gfp)
  1388. {
  1389. struct pch_udc_request *req;
  1390. struct pch_udc_ep *ep;
  1391. struct pch_udc_data_dma_desc *dma_desc;
  1392. struct pch_udc_dev *dev;
  1393. if (!usbep)
  1394. return NULL;
  1395. ep = container_of(usbep, struct pch_udc_ep, ep);
  1396. dev = ep->dev;
  1397. req = kzalloc(sizeof *req, gfp);
  1398. if (!req)
  1399. return NULL;
  1400. req->req.dma = DMA_ADDR_INVALID;
  1401. req->dma = DMA_ADDR_INVALID;
  1402. INIT_LIST_HEAD(&req->queue);
  1403. if (!ep->dev->dma_addr)
  1404. return &req->req;
  1405. /* ep0 in requests are allocated from data pool here */
  1406. dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
  1407. &req->td_data_phys);
  1408. if (NULL == dma_desc) {
  1409. kfree(req);
  1410. return NULL;
  1411. }
  1412. /* prevent from using desc. - set HOST BUSY */
  1413. dma_desc->status |= PCH_UDC_BS_HST_BSY;
  1414. dma_desc->dataptr = __constant_cpu_to_le32(DMA_ADDR_INVALID);
  1415. req->td_data = dma_desc;
  1416. req->td_data_last = dma_desc;
  1417. req->chain_len = 1;
  1418. return &req->req;
  1419. }
  1420. /**
  1421. * pch_udc_free_request() - This function frees request structure.
  1422. * It is called by gadget driver
  1423. * @usbep: Reference to the USB endpoint structure
  1424. * @usbreq: Reference to the USB request
  1425. */
  1426. static void pch_udc_free_request(struct usb_ep *usbep,
  1427. struct usb_request *usbreq)
  1428. {
  1429. struct pch_udc_ep *ep;
  1430. struct pch_udc_request *req;
  1431. struct pch_udc_dev *dev;
  1432. if (!usbep || !usbreq)
  1433. return;
  1434. ep = container_of(usbep, struct pch_udc_ep, ep);
  1435. req = container_of(usbreq, struct pch_udc_request, req);
  1436. dev = ep->dev;
  1437. if (!list_empty(&req->queue))
  1438. dev_err(&dev->pdev->dev, "%s: %s req=0x%p queue not empty\n",
  1439. __func__, usbep->name, req);
  1440. if (req->td_data != NULL) {
  1441. if (req->chain_len > 1)
  1442. pch_udc_free_dma_chain(ep->dev, req);
  1443. pci_pool_free(ep->dev->data_requests, req->td_data,
  1444. req->td_data_phys);
  1445. }
  1446. kfree(req);
  1447. }
  1448. /**
  1449. * pch_udc_pcd_queue() - This function queues a request packet. It is called
  1450. * by gadget driver
  1451. * @usbep: Reference to the USB endpoint structure
  1452. * @usbreq: Reference to the USB request
  1453. * @gfp: Flag to be used while mapping the data buffer
  1454. *
  1455. * Return codes:
  1456. * 0: Success
  1457. * linux error number: Failure
  1458. */
  1459. static int pch_udc_pcd_queue(struct usb_ep *usbep, struct usb_request *usbreq,
  1460. gfp_t gfp)
  1461. {
  1462. int retval = 0;
  1463. struct pch_udc_ep *ep;
  1464. struct pch_udc_dev *dev;
  1465. struct pch_udc_request *req;
  1466. unsigned long iflags;
  1467. if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf)
  1468. return -EINVAL;
  1469. ep = container_of(usbep, struct pch_udc_ep, ep);
  1470. dev = ep->dev;
  1471. if (!ep->desc && ep->num)
  1472. return -EINVAL;
  1473. req = container_of(usbreq, struct pch_udc_request, req);
  1474. if (!list_empty(&req->queue))
  1475. return -EINVAL;
  1476. if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
  1477. return -ESHUTDOWN;
  1478. spin_lock_irqsave(&ep->dev->lock, iflags);
  1479. /* map the buffer for dma */
  1480. if (usbreq->length &&
  1481. ((usbreq->dma == DMA_ADDR_INVALID) || !usbreq->dma)) {
  1482. if (!((unsigned long)(usbreq->buf) & 0x03)) {
  1483. if (ep->in)
  1484. usbreq->dma = dma_map_single(&dev->pdev->dev,
  1485. usbreq->buf,
  1486. usbreq->length,
  1487. DMA_TO_DEVICE);
  1488. else
  1489. usbreq->dma = dma_map_single(&dev->pdev->dev,
  1490. usbreq->buf,
  1491. usbreq->length,
  1492. DMA_FROM_DEVICE);
  1493. } else {
  1494. req->buf = kzalloc(usbreq->length, GFP_ATOMIC);
  1495. if (!req->buf)
  1496. return -ENOMEM;
  1497. if (ep->in) {
  1498. memcpy(req->buf, usbreq->buf, usbreq->length);
  1499. req->dma = dma_map_single(&dev->pdev->dev,
  1500. req->buf,
  1501. usbreq->length,
  1502. DMA_TO_DEVICE);
  1503. } else
  1504. req->dma = dma_map_single(&dev->pdev->dev,
  1505. req->buf,
  1506. usbreq->length,
  1507. DMA_FROM_DEVICE);
  1508. }
  1509. req->dma_mapped = 1;
  1510. }
  1511. if (usbreq->length > 0) {
  1512. retval = prepare_dma(ep, req, GFP_ATOMIC);
  1513. if (retval)
  1514. goto probe_end;
  1515. }
  1516. usbreq->actual = 0;
  1517. usbreq->status = -EINPROGRESS;
  1518. req->dma_done = 0;
  1519. if (list_empty(&ep->queue) && !ep->halted) {
  1520. /* no pending transfer, so start this req */
  1521. if (!usbreq->length) {
  1522. process_zlp(ep, req);
  1523. retval = 0;
  1524. goto probe_end;
  1525. }
  1526. if (!ep->in) {
  1527. pch_udc_start_rxrequest(ep, req);
  1528. } else {
  1529. /*
  1530. * For IN trfr the descriptors will be programmed and
  1531. * P bit will be set when
  1532. * we get an IN token
  1533. */
  1534. pch_udc_wait_ep_stall(ep);
  1535. pch_udc_ep_clear_nak(ep);
  1536. pch_udc_enable_ep_interrupts(ep->dev, (1 << ep->num));
  1537. }
  1538. }
  1539. /* Now add this request to the ep's pending requests */
  1540. if (req != NULL)
  1541. list_add_tail(&req->queue, &ep->queue);
  1542. probe_end:
  1543. spin_unlock_irqrestore(&dev->lock, iflags);
  1544. return retval;
  1545. }
  1546. /**
  1547. * pch_udc_pcd_dequeue() - This function de-queues a request packet.
  1548. * It is called by gadget driver
  1549. * @usbep: Reference to the USB endpoint structure
  1550. * @usbreq: Reference to the USB request
  1551. *
  1552. * Return codes:
  1553. * 0: Success
  1554. * linux error number: Failure
  1555. */
  1556. static int pch_udc_pcd_dequeue(struct usb_ep *usbep,
  1557. struct usb_request *usbreq)
  1558. {
  1559. struct pch_udc_ep *ep;
  1560. struct pch_udc_request *req;
  1561. struct pch_udc_dev *dev;
  1562. unsigned long flags;
  1563. int ret = -EINVAL;
  1564. ep = container_of(usbep, struct pch_udc_ep, ep);
  1565. dev = ep->dev;
  1566. if (!usbep || !usbreq || (!ep->desc && ep->num))
  1567. return ret;
  1568. req = container_of(usbreq, struct pch_udc_request, req);
  1569. spin_lock_irqsave(&ep->dev->lock, flags);
  1570. /* make sure it's still queued on this endpoint */
  1571. list_for_each_entry(req, &ep->queue, queue) {
  1572. if (&req->req == usbreq) {
  1573. pch_udc_ep_set_nak(ep);
  1574. if (!list_empty(&req->queue))
  1575. complete_req(ep, req, -ECONNRESET);
  1576. ret = 0;
  1577. break;
  1578. }
  1579. }
  1580. spin_unlock_irqrestore(&ep->dev->lock, flags);
  1581. return ret;
  1582. }
  1583. /**
  1584. * pch_udc_pcd_set_halt() - This function Sets or clear the endpoint halt
  1585. * feature
  1586. * @usbep: Reference to the USB endpoint structure
  1587. * @halt: Specifies whether to set or clear the feature
  1588. *
  1589. * Return codes:
  1590. * 0: Success
  1591. * linux error number: Failure
  1592. */
  1593. static int pch_udc_pcd_set_halt(struct usb_ep *usbep, int halt)
  1594. {
  1595. struct pch_udc_ep *ep;
  1596. struct pch_udc_dev *dev;
  1597. unsigned long iflags;
  1598. int ret;
  1599. if (!usbep)
  1600. return -EINVAL;
  1601. ep = container_of(usbep, struct pch_udc_ep, ep);
  1602. dev = ep->dev;
  1603. if (!ep->desc && !ep->num)
  1604. return -EINVAL;
  1605. if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
  1606. return -ESHUTDOWN;
  1607. spin_lock_irqsave(&udc_stall_spinlock, iflags);
  1608. if (list_empty(&ep->queue)) {
  1609. if (halt) {
  1610. if (ep->num == PCH_UDC_EP0)
  1611. ep->dev->stall = 1;
  1612. pch_udc_ep_set_stall(ep);
  1613. pch_udc_enable_ep_interrupts(ep->dev,
  1614. PCH_UDC_EPINT(ep->in,
  1615. ep->num));
  1616. } else {
  1617. pch_udc_ep_clear_stall(ep);
  1618. }
  1619. ret = 0;
  1620. } else {
  1621. ret = -EAGAIN;
  1622. }
  1623. spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
  1624. return ret;
  1625. }
  1626. /**
  1627. * pch_udc_pcd_set_wedge() - This function Sets or clear the endpoint
  1628. * halt feature
  1629. * @usbep: Reference to the USB endpoint structure
  1630. * @halt: Specifies whether to set or clear the feature
  1631. *
  1632. * Return codes:
  1633. * 0: Success
  1634. * linux error number: Failure
  1635. */
  1636. static int pch_udc_pcd_set_wedge(struct usb_ep *usbep)
  1637. {
  1638. struct pch_udc_ep *ep;
  1639. struct pch_udc_dev *dev;
  1640. unsigned long iflags;
  1641. int ret;
  1642. if (!usbep)
  1643. return -EINVAL;
  1644. ep = container_of(usbep, struct pch_udc_ep, ep);
  1645. dev = ep->dev;
  1646. if (!ep->desc && !ep->num)
  1647. return -EINVAL;
  1648. if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
  1649. return -ESHUTDOWN;
  1650. spin_lock_irqsave(&udc_stall_spinlock, iflags);
  1651. if (!list_empty(&ep->queue)) {
  1652. ret = -EAGAIN;
  1653. } else {
  1654. if (ep->num == PCH_UDC_EP0)
  1655. ep->dev->stall = 1;
  1656. pch_udc_ep_set_stall(ep);
  1657. pch_udc_enable_ep_interrupts(ep->dev,
  1658. PCH_UDC_EPINT(ep->in, ep->num));
  1659. ep->dev->prot_stall = 1;
  1660. ret = 0;
  1661. }
  1662. spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
  1663. return ret;
  1664. }
  1665. /**
  1666. * pch_udc_pcd_fifo_flush() - This function Flush the FIFO of specified endpoint
  1667. * @usbep: Reference to the USB endpoint structure
  1668. */
  1669. static void pch_udc_pcd_fifo_flush(struct usb_ep *usbep)
  1670. {
  1671. struct pch_udc_ep *ep;
  1672. if (!usbep)
  1673. return;
  1674. ep = container_of(usbep, struct pch_udc_ep, ep);
  1675. if (ep->desc || !ep->num)
  1676. pch_udc_ep_fifo_flush(ep, ep->in);
  1677. }
  1678. static const struct usb_ep_ops pch_udc_ep_ops = {
  1679. .enable = pch_udc_pcd_ep_enable,
  1680. .disable = pch_udc_pcd_ep_disable,
  1681. .alloc_request = pch_udc_alloc_request,
  1682. .free_request = pch_udc_free_request,
  1683. .queue = pch_udc_pcd_queue,
  1684. .dequeue = pch_udc_pcd_dequeue,
  1685. .set_halt = pch_udc_pcd_set_halt,
  1686. .set_wedge = pch_udc_pcd_set_wedge,
  1687. .fifo_status = NULL,
  1688. .fifo_flush = pch_udc_pcd_fifo_flush,
  1689. };
  1690. /**
  1691. * pch_udc_init_setup_buff() - This function initializes the SETUP buffer
  1692. * @td_stp: Reference to the SETP buffer structure
  1693. */
  1694. static void pch_udc_init_setup_buff(struct pch_udc_stp_dma_desc *td_stp)
  1695. {
  1696. static u32 pky_marker;
  1697. if (!td_stp)
  1698. return;
  1699. td_stp->reserved = ++pky_marker;
  1700. memset(&td_stp->request, 0xFF, sizeof td_stp->request);
  1701. td_stp->status = PCH_UDC_BS_HST_RDY;
  1702. }
  1703. /**
  1704. * pch_udc_start_next_txrequest() - This function starts
  1705. * the next transmission requirement
  1706. * @ep: Reference to the endpoint structure
  1707. */
  1708. static void pch_udc_start_next_txrequest(struct pch_udc_ep *ep)
  1709. {
  1710. struct pch_udc_request *req;
  1711. struct pch_udc_data_dma_desc *td_data;
  1712. if (pch_udc_read_ep_control(ep) & UDC_EPCTL_P)
  1713. return;
  1714. if (list_empty(&ep->queue))
  1715. return;
  1716. /* next request */
  1717. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1718. if (req->dma_going)
  1719. return;
  1720. if (!req->td_data)
  1721. return;
  1722. pch_udc_wait_ep_stall(ep);
  1723. req->dma_going = 1;
  1724. pch_udc_ep_set_ddptr(ep, 0);
  1725. td_data = req->td_data;
  1726. while (1) {
  1727. td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
  1728. PCH_UDC_BS_HST_RDY;
  1729. if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST)
  1730. break;
  1731. td_data = phys_to_virt(td_data->next);
  1732. }
  1733. pch_udc_ep_set_ddptr(ep, req->td_data_phys);
  1734. pch_udc_set_dma(ep->dev, DMA_DIR_TX);
  1735. pch_udc_ep_set_pd(ep);
  1736. pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
  1737. pch_udc_ep_clear_nak(ep);
  1738. }
  1739. /**
  1740. * pch_udc_complete_transfer() - This function completes a transfer
  1741. * @ep: Reference to the endpoint structure
  1742. */
  1743. static void pch_udc_complete_transfer(struct pch_udc_ep *ep)
  1744. {
  1745. struct pch_udc_request *req;
  1746. struct pch_udc_dev *dev = ep->dev;
  1747. if (list_empty(&ep->queue))
  1748. return;
  1749. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1750. if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
  1751. PCH_UDC_BS_DMA_DONE)
  1752. return;
  1753. if ((req->td_data_last->status & PCH_UDC_RXTX_STS) !=
  1754. PCH_UDC_RTS_SUCC) {
  1755. dev_err(&dev->pdev->dev, "Invalid RXTX status (0x%08x) "
  1756. "epstatus=0x%08x\n",
  1757. (req->td_data_last->status & PCH_UDC_RXTX_STS),
  1758. (int)(ep->epsts));
  1759. return;
  1760. }
  1761. req->req.actual = req->req.length;
  1762. req->td_data_last->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
  1763. req->td_data->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
  1764. complete_req(ep, req, 0);
  1765. req->dma_going = 0;
  1766. if (!list_empty(&ep->queue)) {
  1767. pch_udc_wait_ep_stall(ep);
  1768. pch_udc_ep_clear_nak(ep);
  1769. pch_udc_enable_ep_interrupts(ep->dev,
  1770. PCH_UDC_EPINT(ep->in, ep->num));
  1771. } else {
  1772. pch_udc_disable_ep_interrupts(ep->dev,
  1773. PCH_UDC_EPINT(ep->in, ep->num));
  1774. }
  1775. }
  1776. /**
  1777. * pch_udc_complete_receiver() - This function completes a receiver
  1778. * @ep: Reference to the endpoint structure
  1779. */
  1780. static void pch_udc_complete_receiver(struct pch_udc_ep *ep)
  1781. {
  1782. struct pch_udc_request *req;
  1783. struct pch_udc_dev *dev = ep->dev;
  1784. unsigned int count;
  1785. struct pch_udc_data_dma_desc *td;
  1786. dma_addr_t addr;
  1787. if (list_empty(&ep->queue))
  1788. return;
  1789. /* next request */
  1790. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1791. pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
  1792. pch_udc_ep_set_ddptr(ep, 0);
  1793. if ((req->td_data_last->status & PCH_UDC_BUFF_STS) ==
  1794. PCH_UDC_BS_DMA_DONE)
  1795. td = req->td_data_last;
  1796. else
  1797. td = req->td_data;
  1798. while (1) {
  1799. if ((td->status & PCH_UDC_RXTX_STS) != PCH_UDC_RTS_SUCC) {
  1800. dev_err(&dev->pdev->dev, "Invalid RXTX status=0x%08x "
  1801. "epstatus=0x%08x\n",
  1802. (req->td_data->status & PCH_UDC_RXTX_STS),
  1803. (int)(ep->epsts));
  1804. return;
  1805. }
  1806. if ((td->status & PCH_UDC_BUFF_STS) == PCH_UDC_BS_DMA_DONE)
  1807. if (td->status | PCH_UDC_DMA_LAST) {
  1808. count = td->status & PCH_UDC_RXTX_BYTES;
  1809. break;
  1810. }
  1811. if (td == req->td_data_last) {
  1812. dev_err(&dev->pdev->dev, "Not complete RX descriptor");
  1813. return;
  1814. }
  1815. addr = (dma_addr_t)td->next;
  1816. td = phys_to_virt(addr);
  1817. }
  1818. /* on 64k packets the RXBYTES field is zero */
  1819. if (!count && (req->req.length == UDC_DMA_MAXPACKET))
  1820. count = UDC_DMA_MAXPACKET;
  1821. req->td_data->status |= PCH_UDC_DMA_LAST;
  1822. td->status |= PCH_UDC_BS_HST_BSY;
  1823. req->dma_going = 0;
  1824. req->req.actual = count;
  1825. complete_req(ep, req, 0);
  1826. /* If there is a new/failed requests try that now */
  1827. if (!list_empty(&ep->queue)) {
  1828. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1829. pch_udc_start_rxrequest(ep, req);
  1830. }
  1831. }
  1832. /**
  1833. * pch_udc_svc_data_in() - This function process endpoint interrupts
  1834. * for IN endpoints
  1835. * @dev: Reference to the device structure
  1836. * @ep_num: Endpoint that generated the interrupt
  1837. */
  1838. static void pch_udc_svc_data_in(struct pch_udc_dev *dev, int ep_num)
  1839. {
  1840. u32 epsts;
  1841. struct pch_udc_ep *ep;
  1842. ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
  1843. epsts = ep->epsts;
  1844. ep->epsts = 0;
  1845. if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE |
  1846. UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
  1847. UDC_EPSTS_RSS | UDC_EPSTS_XFERDONE)))
  1848. return;
  1849. if ((epsts & UDC_EPSTS_BNA))
  1850. return;
  1851. if (epsts & UDC_EPSTS_HE)
  1852. return;
  1853. if (epsts & UDC_EPSTS_RSS) {
  1854. pch_udc_ep_set_stall(ep);
  1855. pch_udc_enable_ep_interrupts(ep->dev,
  1856. PCH_UDC_EPINT(ep->in, ep->num));
  1857. }
  1858. if (epsts & UDC_EPSTS_RCS) {
  1859. if (!dev->prot_stall) {
  1860. pch_udc_ep_clear_stall(ep);
  1861. } else {
  1862. pch_udc_ep_set_stall(ep);
  1863. pch_udc_enable_ep_interrupts(ep->dev,
  1864. PCH_UDC_EPINT(ep->in, ep->num));
  1865. }
  1866. }
  1867. if (epsts & UDC_EPSTS_TDC)
  1868. pch_udc_complete_transfer(ep);
  1869. /* On IN interrupt, provide data if we have any */
  1870. if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_RSS) &&
  1871. !(epsts & UDC_EPSTS_TDC) && !(epsts & UDC_EPSTS_TXEMPTY))
  1872. pch_udc_start_next_txrequest(ep);
  1873. }
  1874. /**
  1875. * pch_udc_svc_data_out() - Handles interrupts from OUT endpoint
  1876. * @dev: Reference to the device structure
  1877. * @ep_num: Endpoint that generated the interrupt
  1878. */
  1879. static void pch_udc_svc_data_out(struct pch_udc_dev *dev, int ep_num)
  1880. {
  1881. u32 epsts;
  1882. struct pch_udc_ep *ep;
  1883. struct pch_udc_request *req = NULL;
  1884. ep = &dev->ep[UDC_EPOUT_IDX(ep_num)];
  1885. epsts = ep->epsts;
  1886. ep->epsts = 0;
  1887. if ((epsts & UDC_EPSTS_BNA) && (!list_empty(&ep->queue))) {
  1888. /* next request */
  1889. req = list_entry(ep->queue.next, struct pch_udc_request,
  1890. queue);
  1891. if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
  1892. PCH_UDC_BS_DMA_DONE) {
  1893. if (!req->dma_going)
  1894. pch_udc_start_rxrequest(ep, req);
  1895. return;
  1896. }
  1897. }
  1898. if (epsts & UDC_EPSTS_HE)
  1899. return;
  1900. if (epsts & UDC_EPSTS_RSS) {
  1901. pch_udc_ep_set_stall(ep);
  1902. pch_udc_enable_ep_interrupts(ep->dev,
  1903. PCH_UDC_EPINT(ep->in, ep->num));
  1904. }
  1905. if (epsts & UDC_EPSTS_RCS) {
  1906. if (!dev->prot_stall) {
  1907. pch_udc_ep_clear_stall(ep);
  1908. } else {
  1909. pch_udc_ep_set_stall(ep);
  1910. pch_udc_enable_ep_interrupts(ep->dev,
  1911. PCH_UDC_EPINT(ep->in, ep->num));
  1912. }
  1913. }
  1914. if (((epsts & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
  1915. UDC_EPSTS_OUT_DATA) {
  1916. if (ep->dev->prot_stall == 1) {
  1917. pch_udc_ep_set_stall(ep);
  1918. pch_udc_enable_ep_interrupts(ep->dev,
  1919. PCH_UDC_EPINT(ep->in, ep->num));
  1920. } else {
  1921. pch_udc_complete_receiver(ep);
  1922. }
  1923. }
  1924. if (list_empty(&ep->queue))
  1925. pch_udc_set_dma(dev, DMA_DIR_RX);
  1926. }
  1927. /**
  1928. * pch_udc_svc_control_in() - Handle Control IN endpoint interrupts
  1929. * @dev: Reference to the device structure
  1930. */
  1931. static void pch_udc_svc_control_in(struct pch_udc_dev *dev)
  1932. {
  1933. u32 epsts;
  1934. struct pch_udc_ep *ep;
  1935. struct pch_udc_ep *ep_out;
  1936. ep = &dev->ep[UDC_EP0IN_IDX];
  1937. ep_out = &dev->ep[UDC_EP0OUT_IDX];
  1938. epsts = ep->epsts;
  1939. ep->epsts = 0;
  1940. if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE |
  1941. UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
  1942. UDC_EPSTS_XFERDONE)))
  1943. return;
  1944. if ((epsts & UDC_EPSTS_BNA))
  1945. return;
  1946. if (epsts & UDC_EPSTS_HE)
  1947. return;
  1948. if ((epsts & UDC_EPSTS_TDC) && (!dev->stall)) {
  1949. pch_udc_complete_transfer(ep);
  1950. pch_udc_clear_dma(dev, DMA_DIR_RX);
  1951. ep_out->td_data->status = (ep_out->td_data->status &
  1952. ~PCH_UDC_BUFF_STS) |
  1953. PCH_UDC_BS_HST_RDY;
  1954. pch_udc_ep_clear_nak(ep_out);
  1955. pch_udc_set_dma(dev, DMA_DIR_RX);
  1956. pch_udc_ep_set_rrdy(ep_out);
  1957. }
  1958. /* On IN interrupt, provide data if we have any */
  1959. if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_TDC) &&
  1960. !(epsts & UDC_EPSTS_TXEMPTY))
  1961. pch_udc_start_next_txrequest(ep);
  1962. }
  1963. /**
  1964. * pch_udc_svc_control_out() - Routine that handle Control
  1965. * OUT endpoint interrupts
  1966. * @dev: Reference to the device structure
  1967. */
  1968. static void pch_udc_svc_control_out(struct pch_udc_dev *dev)
  1969. {
  1970. u32 stat;
  1971. int setup_supported;
  1972. struct pch_udc_ep *ep;
  1973. ep = &dev->ep[UDC_EP0OUT_IDX];
  1974. stat = ep->epsts;
  1975. ep->epsts = 0;
  1976. /* If setup data */
  1977. if (((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
  1978. UDC_EPSTS_OUT_SETUP) {
  1979. dev->stall = 0;
  1980. dev->ep[UDC_EP0IN_IDX].halted = 0;
  1981. dev->ep[UDC_EP0OUT_IDX].halted = 0;
  1982. dev->setup_data = ep->td_stp->request;
  1983. pch_udc_init_setup_buff(ep->td_stp);
  1984. pch_udc_clear_dma(dev, DMA_DIR_RX);
  1985. pch_udc_ep_fifo_flush(&(dev->ep[UDC_EP0IN_IDX]),
  1986. dev->ep[UDC_EP0IN_IDX].in);
  1987. if ((dev->setup_data.bRequestType & USB_DIR_IN))
  1988. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
  1989. else /* OUT */
  1990. dev->gadget.ep0 = &ep->ep;
  1991. spin_unlock(&dev->lock);
  1992. /* If Mass storage Reset */
  1993. if ((dev->setup_data.bRequestType == 0x21) &&
  1994. (dev->setup_data.bRequest == 0xFF))
  1995. dev->prot_stall = 0;
  1996. /* call gadget with setup data received */
  1997. setup_supported = dev->driver->setup(&dev->gadget,
  1998. &dev->setup_data);
  1999. spin_lock(&dev->lock);
  2000. if (dev->setup_data.bRequestType & USB_DIR_IN) {
  2001. ep->td_data->status = (ep->td_data->status &
  2002. ~PCH_UDC_BUFF_STS) |
  2003. PCH_UDC_BS_HST_RDY;
  2004. pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
  2005. }
  2006. /* ep0 in returns data on IN phase */
  2007. if (setup_supported >= 0 && setup_supported <
  2008. UDC_EP0IN_MAX_PKT_SIZE) {
  2009. pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
  2010. /* Gadget would have queued a request when
  2011. * we called the setup */
  2012. if (!(dev->setup_data.bRequestType & USB_DIR_IN)) {
  2013. pch_udc_set_dma(dev, DMA_DIR_RX);
  2014. pch_udc_ep_clear_nak(ep);
  2015. }
  2016. } else if (setup_supported < 0) {
  2017. /* if unsupported request, then stall */
  2018. pch_udc_ep_set_stall(&(dev->ep[UDC_EP0IN_IDX]));
  2019. pch_udc_enable_ep_interrupts(ep->dev,
  2020. PCH_UDC_EPINT(ep->in, ep->num));
  2021. dev->stall = 0;
  2022. pch_udc_set_dma(dev, DMA_DIR_RX);
  2023. } else {
  2024. dev->waiting_zlp_ack = 1;
  2025. }
  2026. } else if ((((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
  2027. UDC_EPSTS_OUT_DATA) && !dev->stall) {
  2028. pch_udc_clear_dma(dev, DMA_DIR_RX);
  2029. pch_udc_ep_set_ddptr(ep, 0);
  2030. if (!list_empty(&ep->queue)) {
  2031. ep->epsts = stat;
  2032. pch_udc_svc_data_out(dev, PCH_UDC_EP0);
  2033. }
  2034. pch_udc_set_dma(dev, DMA_DIR_RX);
  2035. }
  2036. pch_udc_ep_set_rrdy(ep);
  2037. }
  2038. /**
  2039. * pch_udc_postsvc_epinters() - This function enables end point interrupts
  2040. * and clears NAK status
  2041. * @dev: Reference to the device structure
  2042. * @ep_num: End point number
  2043. */
  2044. static void pch_udc_postsvc_epinters(struct pch_udc_dev *dev, int ep_num)
  2045. {
  2046. struct pch_udc_ep *ep;
  2047. struct pch_udc_request *req;
  2048. ep = &dev->ep[UDC_EPIN_IDX(ep_num)];
  2049. if (!list_empty(&ep->queue)) {
  2050. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  2051. pch_udc_enable_ep_interrupts(ep->dev,
  2052. PCH_UDC_EPINT(ep->in, ep->num));
  2053. pch_udc_ep_clear_nak(ep);
  2054. }
  2055. }
  2056. /**
  2057. * pch_udc_read_all_epstatus() - This function read all endpoint status
  2058. * @dev: Reference to the device structure
  2059. * @ep_intr: Status of endpoint interrupt
  2060. */
  2061. static void pch_udc_read_all_epstatus(struct pch_udc_dev *dev, u32 ep_intr)
  2062. {
  2063. int i;
  2064. struct pch_udc_ep *ep;
  2065. for (i = 0; i < PCH_UDC_USED_EP_NUM; i++) {
  2066. /* IN */
  2067. if (ep_intr & (0x1 << i)) {
  2068. ep = &dev->ep[UDC_EPIN_IDX(i)];
  2069. ep->epsts = pch_udc_read_ep_status(ep);
  2070. pch_udc_clear_ep_status(ep, ep->epsts);
  2071. }
  2072. /* OUT */
  2073. if (ep_intr & (0x10000 << i)) {
  2074. ep = &dev->ep[UDC_EPOUT_IDX(i)];
  2075. ep->epsts = pch_udc_read_ep_status(ep);
  2076. pch_udc_clear_ep_status(ep, ep->epsts);
  2077. }
  2078. }
  2079. }
  2080. /**
  2081. * pch_udc_activate_control_ep() - This function enables the control endpoints
  2082. * for traffic after a reset
  2083. * @dev: Reference to the device structure
  2084. */
  2085. static void pch_udc_activate_control_ep(struct pch_udc_dev *dev)
  2086. {
  2087. struct pch_udc_ep *ep;
  2088. u32 val;
  2089. /* Setup the IN endpoint */
  2090. ep = &dev->ep[UDC_EP0IN_IDX];
  2091. pch_udc_clear_ep_control(ep);
  2092. pch_udc_ep_fifo_flush(ep, ep->in);
  2093. pch_udc_ep_set_bufsz(ep, UDC_EP0IN_BUFF_SIZE, ep->in);
  2094. pch_udc_ep_set_maxpkt(ep, UDC_EP0IN_MAX_PKT_SIZE);
  2095. /* Initialize the IN EP Descriptor */
  2096. ep->td_data = NULL;
  2097. ep->td_stp = NULL;
  2098. ep->td_data_phys = 0;
  2099. ep->td_stp_phys = 0;
  2100. /* Setup the OUT endpoint */
  2101. ep = &dev->ep[UDC_EP0OUT_IDX];
  2102. pch_udc_clear_ep_control(ep);
  2103. pch_udc_ep_fifo_flush(ep, ep->in);
  2104. pch_udc_ep_set_bufsz(ep, UDC_EP0OUT_BUFF_SIZE, ep->in);
  2105. pch_udc_ep_set_maxpkt(ep, UDC_EP0OUT_MAX_PKT_SIZE);
  2106. val = UDC_EP0OUT_MAX_PKT_SIZE << UDC_CSR_NE_MAX_PKT_SHIFT;
  2107. pch_udc_write_csr(ep->dev, val, UDC_EP0OUT_IDX);
  2108. /* Initialize the SETUP buffer */
  2109. pch_udc_init_setup_buff(ep->td_stp);
  2110. /* Write the pointer address of dma descriptor */
  2111. pch_udc_ep_set_subptr(ep, ep->td_stp_phys);
  2112. /* Write the pointer address of Setup descriptor */
  2113. pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
  2114. /* Initialize the dma descriptor */
  2115. ep->td_data->status = PCH_UDC_DMA_LAST;
  2116. ep->td_data->dataptr = dev->dma_addr;
  2117. ep->td_data->next = ep->td_data_phys;
  2118. pch_udc_ep_clear_nak(ep);
  2119. }
  2120. /**
  2121. * pch_udc_svc_ur_interrupt() - This function handles a USB reset interrupt
  2122. * @dev: Reference to driver structure
  2123. */
  2124. static void pch_udc_svc_ur_interrupt(struct pch_udc_dev *dev)
  2125. {
  2126. struct pch_udc_ep *ep;
  2127. int i;
  2128. pch_udc_clear_dma(dev, DMA_DIR_TX);
  2129. pch_udc_clear_dma(dev, DMA_DIR_RX);
  2130. /* Mask all endpoint interrupts */
  2131. pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2132. /* clear all endpoint interrupts */
  2133. pch_udc_write_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2134. for (i = 0; i < PCH_UDC_EP_NUM; i++) {
  2135. ep = &dev->ep[i];
  2136. pch_udc_clear_ep_status(ep, UDC_EPSTS_ALL_CLR_MASK);
  2137. pch_udc_clear_ep_control(ep);
  2138. pch_udc_ep_set_ddptr(ep, 0);
  2139. pch_udc_write_csr(ep->dev, 0x00, i);
  2140. }
  2141. dev->stall = 0;
  2142. dev->prot_stall = 0;
  2143. dev->waiting_zlp_ack = 0;
  2144. dev->set_cfg_not_acked = 0;
  2145. /* disable ep to empty req queue. Skip the control EP's */
  2146. for (i = 0; i < (PCH_UDC_USED_EP_NUM*2); i++) {
  2147. ep = &dev->ep[i];
  2148. pch_udc_ep_set_nak(ep);
  2149. pch_udc_ep_fifo_flush(ep, ep->in);
  2150. /* Complete request queue */
  2151. empty_req_queue(ep);
  2152. }
  2153. if (dev->driver && dev->driver->disconnect)
  2154. dev->driver->disconnect(&dev->gadget);
  2155. }
  2156. /**
  2157. * pch_udc_svc_enum_interrupt() - This function handles a USB speed enumeration
  2158. * done interrupt
  2159. * @dev: Reference to driver structure
  2160. */
  2161. static void pch_udc_svc_enum_interrupt(struct pch_udc_dev *dev)
  2162. {
  2163. u32 dev_stat, dev_speed;
  2164. u32 speed = USB_SPEED_FULL;
  2165. dev_stat = pch_udc_read_device_status(dev);
  2166. dev_speed = (dev_stat & UDC_DEVSTS_ENUM_SPEED_MASK) >>
  2167. UDC_DEVSTS_ENUM_SPEED_SHIFT;
  2168. switch (dev_speed) {
  2169. case UDC_DEVSTS_ENUM_SPEED_HIGH:
  2170. speed = USB_SPEED_HIGH;
  2171. break;
  2172. case UDC_DEVSTS_ENUM_SPEED_FULL:
  2173. speed = USB_SPEED_FULL;
  2174. break;
  2175. case UDC_DEVSTS_ENUM_SPEED_LOW:
  2176. speed = USB_SPEED_LOW;
  2177. break;
  2178. default:
  2179. BUG();
  2180. }
  2181. dev->gadget.speed = speed;
  2182. pch_udc_activate_control_ep(dev);
  2183. pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 | UDC_EPINT_OUT_EP0);
  2184. pch_udc_set_dma(dev, DMA_DIR_TX);
  2185. pch_udc_set_dma(dev, DMA_DIR_RX);
  2186. pch_udc_ep_set_rrdy(&(dev->ep[UDC_EP0OUT_IDX]));
  2187. }
  2188. /**
  2189. * pch_udc_svc_intf_interrupt() - This function handles a set interface
  2190. * interrupt
  2191. * @dev: Reference to driver structure
  2192. */
  2193. static void pch_udc_svc_intf_interrupt(struct pch_udc_dev *dev)
  2194. {
  2195. u32 reg, dev_stat = 0;
  2196. int i, ret;
  2197. dev_stat = pch_udc_read_device_status(dev);
  2198. dev->cfg_data.cur_intf = (dev_stat & UDC_DEVSTS_INTF_MASK) >>
  2199. UDC_DEVSTS_INTF_SHIFT;
  2200. dev->cfg_data.cur_alt = (dev_stat & UDC_DEVSTS_ALT_MASK) >>
  2201. UDC_DEVSTS_ALT_SHIFT;
  2202. dev->set_cfg_not_acked = 1;
  2203. /* Construct the usb request for gadget driver and inform it */
  2204. memset(&dev->setup_data, 0 , sizeof dev->setup_data);
  2205. dev->setup_data.bRequest = USB_REQ_SET_INTERFACE;
  2206. dev->setup_data.bRequestType = USB_RECIP_INTERFACE;
  2207. dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_alt);
  2208. dev->setup_data.wIndex = cpu_to_le16(dev->cfg_data.cur_intf);
  2209. /* programm the Endpoint Cfg registers */
  2210. /* Only one end point cfg register */
  2211. reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
  2212. reg = (reg & ~UDC_CSR_NE_INTF_MASK) |
  2213. (dev->cfg_data.cur_intf << UDC_CSR_NE_INTF_SHIFT);
  2214. reg = (reg & ~UDC_CSR_NE_ALT_MASK) |
  2215. (dev->cfg_data.cur_alt << UDC_CSR_NE_ALT_SHIFT);
  2216. pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
  2217. for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
  2218. /* clear stall bits */
  2219. pch_udc_ep_clear_stall(&(dev->ep[i]));
  2220. dev->ep[i].halted = 0;
  2221. }
  2222. dev->stall = 0;
  2223. spin_unlock(&dev->lock);
  2224. ret = dev->driver->setup(&dev->gadget, &dev->setup_data);
  2225. spin_lock(&dev->lock);
  2226. }
  2227. /**
  2228. * pch_udc_svc_cfg_interrupt() - This function handles a set configuration
  2229. * interrupt
  2230. * @dev: Reference to driver structure
  2231. */
  2232. static void pch_udc_svc_cfg_interrupt(struct pch_udc_dev *dev)
  2233. {
  2234. int i, ret;
  2235. u32 reg, dev_stat = 0;
  2236. dev_stat = pch_udc_read_device_status(dev);
  2237. dev->set_cfg_not_acked = 1;
  2238. dev->cfg_data.cur_cfg = (dev_stat & UDC_DEVSTS_CFG_MASK) >>
  2239. UDC_DEVSTS_CFG_SHIFT;
  2240. /* make usb request for gadget driver */
  2241. memset(&dev->setup_data, 0 , sizeof dev->setup_data);
  2242. dev->setup_data.bRequest = USB_REQ_SET_CONFIGURATION;
  2243. dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_cfg);
  2244. /* program the NE registers */
  2245. /* Only one end point cfg register */
  2246. reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
  2247. reg = (reg & ~UDC_CSR_NE_CFG_MASK) |
  2248. (dev->cfg_data.cur_cfg << UDC_CSR_NE_CFG_SHIFT);
  2249. pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
  2250. for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
  2251. /* clear stall bits */
  2252. pch_udc_ep_clear_stall(&(dev->ep[i]));
  2253. dev->ep[i].halted = 0;
  2254. }
  2255. dev->stall = 0;
  2256. /* call gadget zero with setup data received */
  2257. spin_unlock(&dev->lock);
  2258. ret = dev->driver->setup(&dev->gadget, &dev->setup_data);
  2259. spin_lock(&dev->lock);
  2260. }
  2261. /**
  2262. * pch_udc_dev_isr() - This function services device interrupts
  2263. * by invoking appropriate routines.
  2264. * @dev: Reference to the device structure
  2265. * @dev_intr: The Device interrupt status.
  2266. */
  2267. static void pch_udc_dev_isr(struct pch_udc_dev *dev, u32 dev_intr)
  2268. {
  2269. /* USB Reset Interrupt */
  2270. if (dev_intr & UDC_DEVINT_UR)
  2271. pch_udc_svc_ur_interrupt(dev);
  2272. /* Enumeration Done Interrupt */
  2273. if (dev_intr & UDC_DEVINT_ENUM)
  2274. pch_udc_svc_enum_interrupt(dev);
  2275. /* Set Interface Interrupt */
  2276. if (dev_intr & UDC_DEVINT_SI)
  2277. pch_udc_svc_intf_interrupt(dev);
  2278. /* Set Config Interrupt */
  2279. if (dev_intr & UDC_DEVINT_SC)
  2280. pch_udc_svc_cfg_interrupt(dev);
  2281. /* USB Suspend interrupt */
  2282. if (dev_intr & UDC_DEVINT_US)
  2283. dev_dbg(&dev->pdev->dev, "USB_SUSPEND\n");
  2284. /* Clear the SOF interrupt, if enabled */
  2285. if (dev_intr & UDC_DEVINT_SOF)
  2286. dev_dbg(&dev->pdev->dev, "SOF\n");
  2287. /* ES interrupt, IDLE > 3ms on the USB */
  2288. if (dev_intr & UDC_DEVINT_ES)
  2289. dev_dbg(&dev->pdev->dev, "ES\n");
  2290. /* RWKP interrupt */
  2291. if (dev_intr & UDC_DEVINT_RWKP)
  2292. dev_dbg(&dev->pdev->dev, "RWKP\n");
  2293. }
  2294. /**
  2295. * pch_udc_isr() - This function handles interrupts from the PCH USB Device
  2296. * @irq: Interrupt request number
  2297. * @dev: Reference to the device structure
  2298. */
  2299. static irqreturn_t pch_udc_isr(int irq, void *pdev)
  2300. {
  2301. struct pch_udc_dev *dev = (struct pch_udc_dev *) pdev;
  2302. u32 dev_intr, ep_intr;
  2303. int i;
  2304. dev_intr = pch_udc_read_device_interrupts(dev);
  2305. ep_intr = pch_udc_read_ep_interrupts(dev);
  2306. if (dev_intr)
  2307. /* Clear device interrupts */
  2308. pch_udc_write_device_interrupts(dev, dev_intr);
  2309. if (ep_intr)
  2310. /* Clear ep interrupts */
  2311. pch_udc_write_ep_interrupts(dev, ep_intr);
  2312. if (!dev_intr && !ep_intr)
  2313. return IRQ_NONE;
  2314. spin_lock(&dev->lock);
  2315. if (dev_intr)
  2316. pch_udc_dev_isr(dev, dev_intr);
  2317. if (ep_intr) {
  2318. pch_udc_read_all_epstatus(dev, ep_intr);
  2319. /* Process Control In interrupts, if present */
  2320. if (ep_intr & UDC_EPINT_IN_EP0) {
  2321. pch_udc_svc_control_in(dev);
  2322. pch_udc_postsvc_epinters(dev, 0);
  2323. }
  2324. /* Process Control Out interrupts, if present */
  2325. if (ep_intr & UDC_EPINT_OUT_EP0)
  2326. pch_udc_svc_control_out(dev);
  2327. /* Process data in end point interrupts */
  2328. for (i = 1; i < PCH_UDC_USED_EP_NUM; i++) {
  2329. if (ep_intr & (1 << i)) {
  2330. pch_udc_svc_data_in(dev, i);
  2331. pch_udc_postsvc_epinters(dev, i);
  2332. }
  2333. }
  2334. /* Process data out end point interrupts */
  2335. for (i = UDC_EPINT_OUT_SHIFT + 1; i < (UDC_EPINT_OUT_SHIFT +
  2336. PCH_UDC_USED_EP_NUM); i++)
  2337. if (ep_intr & (1 << i))
  2338. pch_udc_svc_data_out(dev, i -
  2339. UDC_EPINT_OUT_SHIFT);
  2340. }
  2341. spin_unlock(&dev->lock);
  2342. return IRQ_HANDLED;
  2343. }
  2344. /**
  2345. * pch_udc_setup_ep0() - This function enables control endpoint for traffic
  2346. * @dev: Reference to the device structure
  2347. */
  2348. static void pch_udc_setup_ep0(struct pch_udc_dev *dev)
  2349. {
  2350. /* enable ep0 interrupts */
  2351. pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 |
  2352. UDC_EPINT_OUT_EP0);
  2353. /* enable device interrupts */
  2354. pch_udc_enable_interrupts(dev, UDC_DEVINT_UR | UDC_DEVINT_US |
  2355. UDC_DEVINT_ES | UDC_DEVINT_ENUM |
  2356. UDC_DEVINT_SI | UDC_DEVINT_SC);
  2357. }
  2358. /**
  2359. * gadget_release() - Free the gadget driver private data
  2360. * @pdev reference to struct pci_dev
  2361. */
  2362. static void gadget_release(struct device *pdev)
  2363. {
  2364. struct pch_udc_dev *dev = dev_get_drvdata(pdev);
  2365. kfree(dev);
  2366. }
  2367. /**
  2368. * pch_udc_pcd_reinit() - This API initializes the endpoint structures
  2369. * @dev: Reference to the driver structure
  2370. */
  2371. static void pch_udc_pcd_reinit(struct pch_udc_dev *dev)
  2372. {
  2373. const char *const ep_string[] = {
  2374. ep0_string, "ep0out", "ep1in", "ep1out", "ep2in", "ep2out",
  2375. "ep3in", "ep3out", "ep4in", "ep4out", "ep5in", "ep5out",
  2376. "ep6in", "ep6out", "ep7in", "ep7out", "ep8in", "ep8out",
  2377. "ep9in", "ep9out", "ep10in", "ep10out", "ep11in", "ep11out",
  2378. "ep12in", "ep12out", "ep13in", "ep13out", "ep14in", "ep14out",
  2379. "ep15in", "ep15out",
  2380. };
  2381. int i;
  2382. dev->gadget.speed = USB_SPEED_UNKNOWN;
  2383. INIT_LIST_HEAD(&dev->gadget.ep_list);
  2384. /* Initialize the endpoints structures */
  2385. memset(dev->ep, 0, sizeof dev->ep);
  2386. for (i = 0; i < PCH_UDC_EP_NUM; i++) {
  2387. struct pch_udc_ep *ep = &dev->ep[i];
  2388. ep->dev = dev;
  2389. ep->halted = 1;
  2390. ep->num = i / 2;
  2391. ep->in = ~i & 1;
  2392. ep->ep.name = ep_string[i];
  2393. ep->ep.ops = &pch_udc_ep_ops;
  2394. if (ep->in)
  2395. ep->offset_addr = ep->num * UDC_EP_REG_SHIFT;
  2396. else
  2397. ep->offset_addr = (UDC_EPINT_OUT_SHIFT + ep->num) *
  2398. UDC_EP_REG_SHIFT;
  2399. /* need to set ep->ep.maxpacket and set Default Configuration?*/
  2400. ep->ep.maxpacket = UDC_BULK_MAX_PKT_SIZE;
  2401. list_add_tail(&ep->ep.ep_list, &dev->gadget.ep_list);
  2402. INIT_LIST_HEAD(&ep->queue);
  2403. }
  2404. dev->ep[UDC_EP0IN_IDX].ep.maxpacket = UDC_EP0IN_MAX_PKT_SIZE;
  2405. dev->ep[UDC_EP0OUT_IDX].ep.maxpacket = UDC_EP0OUT_MAX_PKT_SIZE;
  2406. /* remove ep0 in and out from the list. They have own pointer */
  2407. list_del_init(&dev->ep[UDC_EP0IN_IDX].ep.ep_list);
  2408. list_del_init(&dev->ep[UDC_EP0OUT_IDX].ep.ep_list);
  2409. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
  2410. INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
  2411. }
  2412. /**
  2413. * pch_udc_pcd_init() - This API initializes the driver structure
  2414. * @dev: Reference to the driver structure
  2415. *
  2416. * Return codes:
  2417. * 0: Success
  2418. */
  2419. static int pch_udc_pcd_init(struct pch_udc_dev *dev)
  2420. {
  2421. pch_udc_init(dev);
  2422. pch_udc_pcd_reinit(dev);
  2423. return 0;
  2424. }
  2425. /**
  2426. * init_dma_pools() - create dma pools during initialization
  2427. * @pdev: reference to struct pci_dev
  2428. */
  2429. static int init_dma_pools(struct pch_udc_dev *dev)
  2430. {
  2431. struct pch_udc_stp_dma_desc *td_stp;
  2432. struct pch_udc_data_dma_desc *td_data;
  2433. /* DMA setup */
  2434. dev->data_requests = pci_pool_create("data_requests", dev->pdev,
  2435. sizeof(struct pch_udc_data_dma_desc), 0, 0);
  2436. if (!dev->data_requests) {
  2437. dev_err(&dev->pdev->dev, "%s: can't get request data pool\n",
  2438. __func__);
  2439. return -ENOMEM;
  2440. }
  2441. /* dma desc for setup data */
  2442. dev->stp_requests = pci_pool_create("setup requests", dev->pdev,
  2443. sizeof(struct pch_udc_stp_dma_desc), 0, 0);
  2444. if (!dev->stp_requests) {
  2445. dev_err(&dev->pdev->dev, "%s: can't get setup request pool\n",
  2446. __func__);
  2447. return -ENOMEM;
  2448. }
  2449. /* setup */
  2450. td_stp = pci_pool_alloc(dev->stp_requests, GFP_KERNEL,
  2451. &dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
  2452. if (!td_stp) {
  2453. dev_err(&dev->pdev->dev,
  2454. "%s: can't allocate setup dma descriptor\n", __func__);
  2455. return -ENOMEM;
  2456. }
  2457. dev->ep[UDC_EP0OUT_IDX].td_stp = td_stp;
  2458. /* data: 0 packets !? */
  2459. td_data = pci_pool_alloc(dev->data_requests, GFP_KERNEL,
  2460. &dev->ep[UDC_EP0OUT_IDX].td_data_phys);
  2461. if (!td_data) {
  2462. dev_err(&dev->pdev->dev,
  2463. "%s: can't allocate data dma descriptor\n", __func__);
  2464. return -ENOMEM;
  2465. }
  2466. dev->ep[UDC_EP0OUT_IDX].td_data = td_data;
  2467. dev->ep[UDC_EP0IN_IDX].td_stp = NULL;
  2468. dev->ep[UDC_EP0IN_IDX].td_stp_phys = 0;
  2469. dev->ep[UDC_EP0IN_IDX].td_data = NULL;
  2470. dev->ep[UDC_EP0IN_IDX].td_data_phys = 0;
  2471. dev->ep0out_buf = kzalloc(UDC_EP0OUT_BUFF_SIZE * 4, GFP_KERNEL);
  2472. if (!dev->ep0out_buf)
  2473. return -ENOMEM;
  2474. dev->dma_addr = dma_map_single(&dev->pdev->dev, dev->ep0out_buf,
  2475. UDC_EP0OUT_BUFF_SIZE * 4,
  2476. DMA_FROM_DEVICE);
  2477. return 0;
  2478. }
  2479. int usb_gadget_probe_driver(struct usb_gadget_driver *driver,
  2480. int (*bind)(struct usb_gadget *))
  2481. {
  2482. struct pch_udc_dev *dev = pch_udc;
  2483. int retval;
  2484. if (!driver || (driver->speed == USB_SPEED_UNKNOWN) || !bind ||
  2485. !driver->setup || !driver->unbind || !driver->disconnect) {
  2486. dev_err(&dev->pdev->dev,
  2487. "%s: invalid driver parameter\n", __func__);
  2488. return -EINVAL;
  2489. }
  2490. if (!dev)
  2491. return -ENODEV;
  2492. if (dev->driver) {
  2493. dev_err(&dev->pdev->dev, "%s: already bound\n", __func__);
  2494. return -EBUSY;
  2495. }
  2496. driver->driver.bus = NULL;
  2497. dev->driver = driver;
  2498. dev->gadget.dev.driver = &driver->driver;
  2499. /* Invoke the bind routine of the gadget driver */
  2500. retval = bind(&dev->gadget);
  2501. if (retval) {
  2502. dev_err(&dev->pdev->dev, "%s: binding to %s returning %d\n",
  2503. __func__, driver->driver.name, retval);
  2504. dev->driver = NULL;
  2505. dev->gadget.dev.driver = NULL;
  2506. return retval;
  2507. }
  2508. /* get ready for ep0 traffic */
  2509. pch_udc_setup_ep0(dev);
  2510. /* clear SD */
  2511. pch_udc_clear_disconnect(dev);
  2512. dev->connected = 1;
  2513. return 0;
  2514. }
  2515. EXPORT_SYMBOL(usb_gadget_probe_driver);
  2516. int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
  2517. {
  2518. struct pch_udc_dev *dev = pch_udc;
  2519. if (!dev)
  2520. return -ENODEV;
  2521. if (!driver || (driver != dev->driver)) {
  2522. dev_err(&dev->pdev->dev,
  2523. "%s: invalid driver parameter\n", __func__);
  2524. return -EINVAL;
  2525. }
  2526. pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
  2527. /* Assures that there are no pending requests with this driver */
  2528. driver->disconnect(&dev->gadget);
  2529. driver->unbind(&dev->gadget);
  2530. dev->gadget.dev.driver = NULL;
  2531. dev->driver = NULL;
  2532. dev->connected = 0;
  2533. /* set SD */
  2534. pch_udc_set_disconnect(dev);
  2535. return 0;
  2536. }
  2537. EXPORT_SYMBOL(usb_gadget_unregister_driver);
  2538. static void pch_udc_shutdown(struct pci_dev *pdev)
  2539. {
  2540. struct pch_udc_dev *dev = pci_get_drvdata(pdev);
  2541. pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
  2542. pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2543. /* disable the pullup so the host will think we're gone */
  2544. pch_udc_set_disconnect(dev);
  2545. }
  2546. static void pch_udc_remove(struct pci_dev *pdev)
  2547. {
  2548. struct pch_udc_dev *dev = pci_get_drvdata(pdev);
  2549. /* gadget driver must not be registered */
  2550. if (dev->driver)
  2551. dev_err(&pdev->dev,
  2552. "%s: gadget driver still bound!!!\n", __func__);
  2553. /* dma pool cleanup */
  2554. if (dev->data_requests)
  2555. pci_pool_destroy(dev->data_requests);
  2556. if (dev->stp_requests) {
  2557. /* cleanup DMA desc's for ep0in */
  2558. if (dev->ep[UDC_EP0OUT_IDX].td_stp) {
  2559. pci_pool_free(dev->stp_requests,
  2560. dev->ep[UDC_EP0OUT_IDX].td_stp,
  2561. dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
  2562. }
  2563. if (dev->ep[UDC_EP0OUT_IDX].td_data) {
  2564. pci_pool_free(dev->stp_requests,
  2565. dev->ep[UDC_EP0OUT_IDX].td_data,
  2566. dev->ep[UDC_EP0OUT_IDX].td_data_phys);
  2567. }
  2568. pci_pool_destroy(dev->stp_requests);
  2569. }
  2570. if (dev->dma_addr)
  2571. dma_unmap_single(&dev->pdev->dev, dev->dma_addr,
  2572. UDC_EP0OUT_BUFF_SIZE * 4, DMA_FROM_DEVICE);
  2573. kfree(dev->ep0out_buf);
  2574. pch_udc_exit(dev);
  2575. if (dev->irq_registered)
  2576. free_irq(pdev->irq, dev);
  2577. if (dev->base_addr)
  2578. iounmap(dev->base_addr);
  2579. if (dev->mem_region)
  2580. release_mem_region(dev->phys_addr,
  2581. pci_resource_len(pdev, PCH_UDC_PCI_BAR));
  2582. if (dev->active)
  2583. pci_disable_device(pdev);
  2584. if (dev->registered)
  2585. device_unregister(&dev->gadget.dev);
  2586. kfree(dev);
  2587. pci_set_drvdata(pdev, NULL);
  2588. }
  2589. #ifdef CONFIG_PM
  2590. static int pch_udc_suspend(struct pci_dev *pdev, pm_message_t state)
  2591. {
  2592. struct pch_udc_dev *dev = pci_get_drvdata(pdev);
  2593. pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
  2594. pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2595. pci_disable_device(pdev);
  2596. pci_enable_wake(pdev, PCI_D3hot, 0);
  2597. if (pci_save_state(pdev)) {
  2598. dev_err(&pdev->dev,
  2599. "%s: could not save PCI config state\n", __func__);
  2600. return -ENOMEM;
  2601. }
  2602. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  2603. return 0;
  2604. }
  2605. static int pch_udc_resume(struct pci_dev *pdev)
  2606. {
  2607. int ret;
  2608. pci_set_power_state(pdev, PCI_D0);
  2609. pci_restore_state(pdev);
  2610. ret = pci_enable_device(pdev);
  2611. if (ret) {
  2612. dev_err(&pdev->dev, "%s: pci_enable_device failed\n", __func__);
  2613. return ret;
  2614. }
  2615. pci_enable_wake(pdev, PCI_D3hot, 0);
  2616. return 0;
  2617. }
  2618. #else
  2619. #define pch_udc_suspend NULL
  2620. #define pch_udc_resume NULL
  2621. #endif /* CONFIG_PM */
  2622. static int pch_udc_probe(struct pci_dev *pdev,
  2623. const struct pci_device_id *id)
  2624. {
  2625. unsigned long resource;
  2626. unsigned long len;
  2627. int retval;
  2628. struct pch_udc_dev *dev;
  2629. /* one udc only */
  2630. if (pch_udc) {
  2631. pr_err("%s: already probed\n", __func__);
  2632. return -EBUSY;
  2633. }
  2634. /* init */
  2635. dev = kzalloc(sizeof *dev, GFP_KERNEL);
  2636. if (!dev) {
  2637. pr_err("%s: no memory for device structure\n", __func__);
  2638. return -ENOMEM;
  2639. }
  2640. /* pci setup */
  2641. if (pci_enable_device(pdev) < 0) {
  2642. kfree(dev);
  2643. pr_err("%s: pci_enable_device failed\n", __func__);
  2644. return -ENODEV;
  2645. }
  2646. dev->active = 1;
  2647. pci_set_drvdata(pdev, dev);
  2648. /* PCI resource allocation */
  2649. resource = pci_resource_start(pdev, 1);
  2650. len = pci_resource_len(pdev, 1);
  2651. if (!request_mem_region(resource, len, KBUILD_MODNAME)) {
  2652. dev_err(&pdev->dev, "%s: pci device used already\n", __func__);
  2653. retval = -EBUSY;
  2654. goto finished;
  2655. }
  2656. dev->phys_addr = resource;
  2657. dev->mem_region = 1;
  2658. dev->base_addr = ioremap_nocache(resource, len);
  2659. if (!dev->base_addr) {
  2660. pr_err("%s: device memory cannot be mapped\n", __func__);
  2661. retval = -ENOMEM;
  2662. goto finished;
  2663. }
  2664. if (!pdev->irq) {
  2665. dev_err(&pdev->dev, "%s: irq not set\n", __func__);
  2666. retval = -ENODEV;
  2667. goto finished;
  2668. }
  2669. pch_udc = dev;
  2670. /* initialize the hardware */
  2671. if (pch_udc_pcd_init(dev))
  2672. goto finished;
  2673. if (request_irq(pdev->irq, pch_udc_isr, IRQF_SHARED, KBUILD_MODNAME,
  2674. dev)) {
  2675. dev_err(&pdev->dev, "%s: request_irq(%d) fail\n", __func__,
  2676. pdev->irq);
  2677. retval = -ENODEV;
  2678. goto finished;
  2679. }
  2680. dev->irq = pdev->irq;
  2681. dev->irq_registered = 1;
  2682. pci_set_master(pdev);
  2683. pci_try_set_mwi(pdev);
  2684. /* device struct setup */
  2685. spin_lock_init(&dev->lock);
  2686. dev->pdev = pdev;
  2687. dev->gadget.ops = &pch_udc_ops;
  2688. retval = init_dma_pools(dev);
  2689. if (retval)
  2690. goto finished;
  2691. dev_set_name(&dev->gadget.dev, "gadget");
  2692. dev->gadget.dev.parent = &pdev->dev;
  2693. dev->gadget.dev.dma_mask = pdev->dev.dma_mask;
  2694. dev->gadget.dev.release = gadget_release;
  2695. dev->gadget.name = KBUILD_MODNAME;
  2696. dev->gadget.is_dualspeed = 1;
  2697. retval = device_register(&dev->gadget.dev);
  2698. if (retval)
  2699. goto finished;
  2700. dev->registered = 1;
  2701. /* Put the device in disconnected state till a driver is bound */
  2702. pch_udc_set_disconnect(dev);
  2703. return 0;
  2704. finished:
  2705. pch_udc_remove(pdev);
  2706. return retval;
  2707. }
  2708. static DEFINE_PCI_DEVICE_TABLE(pch_udc_pcidev_id) = {
  2709. {
  2710. PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_EG20T_UDC),
  2711. .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
  2712. .class_mask = 0xffffffff,
  2713. },
  2714. {
  2715. PCI_DEVICE(PCI_VENDOR_ID_ROHM, PCI_DEVICE_ID_ML7213_IOH_UDC),
  2716. .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
  2717. .class_mask = 0xffffffff,
  2718. },
  2719. { 0 },
  2720. };
  2721. MODULE_DEVICE_TABLE(pci, pch_udc_pcidev_id);
  2722. static struct pci_driver pch_udc_driver = {
  2723. .name = KBUILD_MODNAME,
  2724. .id_table = pch_udc_pcidev_id,
  2725. .probe = pch_udc_probe,
  2726. .remove = pch_udc_remove,
  2727. .suspend = pch_udc_suspend,
  2728. .resume = pch_udc_resume,
  2729. .shutdown = pch_udc_shutdown,
  2730. };
  2731. static int __init pch_udc_pci_init(void)
  2732. {
  2733. return pci_register_driver(&pch_udc_driver);
  2734. }
  2735. module_init(pch_udc_pci_init);
  2736. static void __exit pch_udc_pci_exit(void)
  2737. {
  2738. pci_unregister_driver(&pch_udc_driver);
  2739. }
  2740. module_exit(pch_udc_pci_exit);
  2741. MODULE_DESCRIPTION("Intel EG20T USB Device Controller");
  2742. MODULE_AUTHOR("OKI SEMICONDUCTOR, <toshiharu-linux@dsn.okisemi.com>");
  2743. MODULE_LICENSE("GPL");