spi_bfin5xx.c 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530
  1. /*
  2. * Blackfin On-Chip SPI Driver
  3. *
  4. * Copyright 2004-2010 Analog Devices Inc.
  5. *
  6. * Enter bugs at http://blackfin.uclinux.org/
  7. *
  8. * Licensed under the GPL-2 or later.
  9. */
  10. #include <linux/init.h>
  11. #include <linux/module.h>
  12. #include <linux/delay.h>
  13. #include <linux/device.h>
  14. #include <linux/slab.h>
  15. #include <linux/io.h>
  16. #include <linux/ioport.h>
  17. #include <linux/irq.h>
  18. #include <linux/errno.h>
  19. #include <linux/interrupt.h>
  20. #include <linux/platform_device.h>
  21. #include <linux/dma-mapping.h>
  22. #include <linux/spi/spi.h>
  23. #include <linux/workqueue.h>
  24. #include <asm/dma.h>
  25. #include <asm/portmux.h>
  26. #include <asm/bfin5xx_spi.h>
  27. #include <asm/cacheflush.h>
  28. #define DRV_NAME "bfin-spi"
  29. #define DRV_AUTHOR "Bryan Wu, Luke Yang"
  30. #define DRV_DESC "Blackfin on-chip SPI Controller Driver"
  31. #define DRV_VERSION "1.0"
  32. MODULE_AUTHOR(DRV_AUTHOR);
  33. MODULE_DESCRIPTION(DRV_DESC);
  34. MODULE_LICENSE("GPL");
  35. #define START_STATE ((void *)0)
  36. #define RUNNING_STATE ((void *)1)
  37. #define DONE_STATE ((void *)2)
  38. #define ERROR_STATE ((void *)-1)
  39. struct bfin_spi_master_data;
  40. struct bfin_spi_transfer_ops {
  41. void (*write) (struct bfin_spi_master_data *);
  42. void (*read) (struct bfin_spi_master_data *);
  43. void (*duplex) (struct bfin_spi_master_data *);
  44. };
  45. struct bfin_spi_master_data {
  46. /* Driver model hookup */
  47. struct platform_device *pdev;
  48. /* SPI framework hookup */
  49. struct spi_master *master;
  50. /* Regs base of SPI controller */
  51. void __iomem *regs_base;
  52. /* Pin request list */
  53. u16 *pin_req;
  54. /* BFIN hookup */
  55. struct bfin5xx_spi_master *master_info;
  56. /* Driver message queue */
  57. struct workqueue_struct *workqueue;
  58. struct work_struct pump_messages;
  59. spinlock_t lock;
  60. struct list_head queue;
  61. int busy;
  62. bool running;
  63. /* Message Transfer pump */
  64. struct tasklet_struct pump_transfers;
  65. /* Current message transfer state info */
  66. struct spi_message *cur_msg;
  67. struct spi_transfer *cur_transfer;
  68. struct bfin_spi_slave_data *cur_chip;
  69. size_t len_in_bytes;
  70. size_t len;
  71. void *tx;
  72. void *tx_end;
  73. void *rx;
  74. void *rx_end;
  75. /* DMA stuffs */
  76. int dma_channel;
  77. int dma_mapped;
  78. int dma_requested;
  79. dma_addr_t rx_dma;
  80. dma_addr_t tx_dma;
  81. int irq_requested;
  82. int spi_irq;
  83. size_t rx_map_len;
  84. size_t tx_map_len;
  85. u8 n_bytes;
  86. u16 ctrl_reg;
  87. u16 flag_reg;
  88. int cs_change;
  89. const struct bfin_spi_transfer_ops *ops;
  90. };
  91. struct bfin_spi_slave_data {
  92. u16 ctl_reg;
  93. u16 baud;
  94. u16 flag;
  95. u8 chip_select_num;
  96. u8 enable_dma;
  97. u16 cs_chg_udelay; /* Some devices require > 255usec delay */
  98. u32 cs_gpio;
  99. u16 idle_tx_val;
  100. u8 pio_interrupt; /* use spi data irq */
  101. const struct bfin_spi_transfer_ops *ops;
  102. };
  103. #define DEFINE_SPI_REG(reg, off) \
  104. static inline u16 read_##reg(struct bfin_spi_master_data *drv_data) \
  105. { return bfin_read16(drv_data->regs_base + off); } \
  106. static inline void write_##reg(struct bfin_spi_master_data *drv_data, u16 v) \
  107. { bfin_write16(drv_data->regs_base + off, v); }
  108. DEFINE_SPI_REG(CTRL, 0x00)
  109. DEFINE_SPI_REG(FLAG, 0x04)
  110. DEFINE_SPI_REG(STAT, 0x08)
  111. DEFINE_SPI_REG(TDBR, 0x0C)
  112. DEFINE_SPI_REG(RDBR, 0x10)
  113. DEFINE_SPI_REG(BAUD, 0x14)
  114. DEFINE_SPI_REG(SHAW, 0x18)
  115. static void bfin_spi_enable(struct bfin_spi_master_data *drv_data)
  116. {
  117. u16 cr;
  118. cr = read_CTRL(drv_data);
  119. write_CTRL(drv_data, (cr | BIT_CTL_ENABLE));
  120. }
  121. static void bfin_spi_disable(struct bfin_spi_master_data *drv_data)
  122. {
  123. u16 cr;
  124. cr = read_CTRL(drv_data);
  125. write_CTRL(drv_data, (cr & (~BIT_CTL_ENABLE)));
  126. }
  127. /* Caculate the SPI_BAUD register value based on input HZ */
  128. static u16 hz_to_spi_baud(u32 speed_hz)
  129. {
  130. u_long sclk = get_sclk();
  131. u16 spi_baud = (sclk / (2 * speed_hz));
  132. if ((sclk % (2 * speed_hz)) > 0)
  133. spi_baud++;
  134. if (spi_baud < MIN_SPI_BAUD_VAL)
  135. spi_baud = MIN_SPI_BAUD_VAL;
  136. return spi_baud;
  137. }
  138. static int bfin_spi_flush(struct bfin_spi_master_data *drv_data)
  139. {
  140. unsigned long limit = loops_per_jiffy << 1;
  141. /* wait for stop and clear stat */
  142. while (!(read_STAT(drv_data) & BIT_STAT_SPIF) && --limit)
  143. cpu_relax();
  144. write_STAT(drv_data, BIT_STAT_CLR);
  145. return limit;
  146. }
  147. /* Chip select operation functions for cs_change flag */
  148. static void bfin_spi_cs_active(struct bfin_spi_master_data *drv_data, struct bfin_spi_slave_data *chip)
  149. {
  150. if (likely(chip->chip_select_num < MAX_CTRL_CS)) {
  151. u16 flag = read_FLAG(drv_data);
  152. flag &= ~chip->flag;
  153. write_FLAG(drv_data, flag);
  154. } else {
  155. gpio_set_value(chip->cs_gpio, 0);
  156. }
  157. }
  158. static void bfin_spi_cs_deactive(struct bfin_spi_master_data *drv_data,
  159. struct bfin_spi_slave_data *chip)
  160. {
  161. if (likely(chip->chip_select_num < MAX_CTRL_CS)) {
  162. u16 flag = read_FLAG(drv_data);
  163. flag |= chip->flag;
  164. write_FLAG(drv_data, flag);
  165. } else {
  166. gpio_set_value(chip->cs_gpio, 1);
  167. }
  168. /* Move delay here for consistency */
  169. if (chip->cs_chg_udelay)
  170. udelay(chip->cs_chg_udelay);
  171. }
  172. /* enable or disable the pin muxed by GPIO and SPI CS to work as SPI CS */
  173. static inline void bfin_spi_cs_enable(struct bfin_spi_master_data *drv_data,
  174. struct bfin_spi_slave_data *chip)
  175. {
  176. if (chip->chip_select_num < MAX_CTRL_CS) {
  177. u16 flag = read_FLAG(drv_data);
  178. flag |= (chip->flag >> 8);
  179. write_FLAG(drv_data, flag);
  180. }
  181. }
  182. static inline void bfin_spi_cs_disable(struct bfin_spi_master_data *drv_data,
  183. struct bfin_spi_slave_data *chip)
  184. {
  185. if (chip->chip_select_num < MAX_CTRL_CS) {
  186. u16 flag = read_FLAG(drv_data);
  187. flag &= ~(chip->flag >> 8);
  188. write_FLAG(drv_data, flag);
  189. }
  190. }
  191. /* stop controller and re-config current chip*/
  192. static void bfin_spi_restore_state(struct bfin_spi_master_data *drv_data)
  193. {
  194. struct bfin_spi_slave_data *chip = drv_data->cur_chip;
  195. /* Clear status and disable clock */
  196. write_STAT(drv_data, BIT_STAT_CLR);
  197. bfin_spi_disable(drv_data);
  198. dev_dbg(&drv_data->pdev->dev, "restoring spi ctl state\n");
  199. SSYNC();
  200. /* Load the registers */
  201. write_CTRL(drv_data, chip->ctl_reg);
  202. write_BAUD(drv_data, chip->baud);
  203. bfin_spi_enable(drv_data);
  204. bfin_spi_cs_active(drv_data, chip);
  205. }
  206. /* used to kick off transfer in rx mode and read unwanted RX data */
  207. static inline void bfin_spi_dummy_read(struct bfin_spi_master_data *drv_data)
  208. {
  209. (void) read_RDBR(drv_data);
  210. }
  211. static void bfin_spi_u8_writer(struct bfin_spi_master_data *drv_data)
  212. {
  213. /* clear RXS (we check for RXS inside the loop) */
  214. bfin_spi_dummy_read(drv_data);
  215. while (drv_data->tx < drv_data->tx_end) {
  216. write_TDBR(drv_data, (*(u8 *) (drv_data->tx++)));
  217. /* wait until transfer finished.
  218. checking SPIF or TXS may not guarantee transfer completion */
  219. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  220. cpu_relax();
  221. /* discard RX data and clear RXS */
  222. bfin_spi_dummy_read(drv_data);
  223. }
  224. }
  225. static void bfin_spi_u8_reader(struct bfin_spi_master_data *drv_data)
  226. {
  227. u16 tx_val = drv_data->cur_chip->idle_tx_val;
  228. /* discard old RX data and clear RXS */
  229. bfin_spi_dummy_read(drv_data);
  230. while (drv_data->rx < drv_data->rx_end) {
  231. write_TDBR(drv_data, tx_val);
  232. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  233. cpu_relax();
  234. *(u8 *) (drv_data->rx++) = read_RDBR(drv_data);
  235. }
  236. }
  237. static void bfin_spi_u8_duplex(struct bfin_spi_master_data *drv_data)
  238. {
  239. /* discard old RX data and clear RXS */
  240. bfin_spi_dummy_read(drv_data);
  241. while (drv_data->rx < drv_data->rx_end) {
  242. write_TDBR(drv_data, (*(u8 *) (drv_data->tx++)));
  243. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  244. cpu_relax();
  245. *(u8 *) (drv_data->rx++) = read_RDBR(drv_data);
  246. }
  247. }
  248. static const struct bfin_spi_transfer_ops bfin_bfin_spi_transfer_ops_u8 = {
  249. .write = bfin_spi_u8_writer,
  250. .read = bfin_spi_u8_reader,
  251. .duplex = bfin_spi_u8_duplex,
  252. };
  253. static void bfin_spi_u16_writer(struct bfin_spi_master_data *drv_data)
  254. {
  255. /* clear RXS (we check for RXS inside the loop) */
  256. bfin_spi_dummy_read(drv_data);
  257. while (drv_data->tx < drv_data->tx_end) {
  258. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  259. drv_data->tx += 2;
  260. /* wait until transfer finished.
  261. checking SPIF or TXS may not guarantee transfer completion */
  262. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  263. cpu_relax();
  264. /* discard RX data and clear RXS */
  265. bfin_spi_dummy_read(drv_data);
  266. }
  267. }
  268. static void bfin_spi_u16_reader(struct bfin_spi_master_data *drv_data)
  269. {
  270. u16 tx_val = drv_data->cur_chip->idle_tx_val;
  271. /* discard old RX data and clear RXS */
  272. bfin_spi_dummy_read(drv_data);
  273. while (drv_data->rx < drv_data->rx_end) {
  274. write_TDBR(drv_data, tx_val);
  275. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  276. cpu_relax();
  277. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  278. drv_data->rx += 2;
  279. }
  280. }
  281. static void bfin_spi_u16_duplex(struct bfin_spi_master_data *drv_data)
  282. {
  283. /* discard old RX data and clear RXS */
  284. bfin_spi_dummy_read(drv_data);
  285. while (drv_data->rx < drv_data->rx_end) {
  286. write_TDBR(drv_data, (*(u16 *) (drv_data->tx)));
  287. drv_data->tx += 2;
  288. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  289. cpu_relax();
  290. *(u16 *) (drv_data->rx) = read_RDBR(drv_data);
  291. drv_data->rx += 2;
  292. }
  293. }
  294. static const struct bfin_spi_transfer_ops bfin_bfin_spi_transfer_ops_u16 = {
  295. .write = bfin_spi_u16_writer,
  296. .read = bfin_spi_u16_reader,
  297. .duplex = bfin_spi_u16_duplex,
  298. };
  299. /* test if there is more transfer to be done */
  300. static void *bfin_spi_next_transfer(struct bfin_spi_master_data *drv_data)
  301. {
  302. struct spi_message *msg = drv_data->cur_msg;
  303. struct spi_transfer *trans = drv_data->cur_transfer;
  304. /* Move to next transfer */
  305. if (trans->transfer_list.next != &msg->transfers) {
  306. drv_data->cur_transfer =
  307. list_entry(trans->transfer_list.next,
  308. struct spi_transfer, transfer_list);
  309. return RUNNING_STATE;
  310. } else
  311. return DONE_STATE;
  312. }
  313. /*
  314. * caller already set message->status;
  315. * dma and pio irqs are blocked give finished message back
  316. */
  317. static void bfin_spi_giveback(struct bfin_spi_master_data *drv_data)
  318. {
  319. struct bfin_spi_slave_data *chip = drv_data->cur_chip;
  320. struct spi_transfer *last_transfer;
  321. unsigned long flags;
  322. struct spi_message *msg;
  323. spin_lock_irqsave(&drv_data->lock, flags);
  324. msg = drv_data->cur_msg;
  325. drv_data->cur_msg = NULL;
  326. drv_data->cur_transfer = NULL;
  327. drv_data->cur_chip = NULL;
  328. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  329. spin_unlock_irqrestore(&drv_data->lock, flags);
  330. last_transfer = list_entry(msg->transfers.prev,
  331. struct spi_transfer, transfer_list);
  332. msg->state = NULL;
  333. if (!drv_data->cs_change)
  334. bfin_spi_cs_deactive(drv_data, chip);
  335. /* Not stop spi in autobuffer mode */
  336. if (drv_data->tx_dma != 0xFFFF)
  337. bfin_spi_disable(drv_data);
  338. if (msg->complete)
  339. msg->complete(msg->context);
  340. }
  341. /* spi data irq handler */
  342. static irqreturn_t bfin_spi_pio_irq_handler(int irq, void *dev_id)
  343. {
  344. struct bfin_spi_master_data *drv_data = dev_id;
  345. struct bfin_spi_slave_data *chip = drv_data->cur_chip;
  346. struct spi_message *msg = drv_data->cur_msg;
  347. int n_bytes = drv_data->n_bytes;
  348. int loop = 0;
  349. /* wait until transfer finished. */
  350. while (!(read_STAT(drv_data) & BIT_STAT_RXS))
  351. cpu_relax();
  352. if ((drv_data->tx && drv_data->tx >= drv_data->tx_end) ||
  353. (drv_data->rx && drv_data->rx >= (drv_data->rx_end - n_bytes))) {
  354. /* last read */
  355. if (drv_data->rx) {
  356. dev_dbg(&drv_data->pdev->dev, "last read\n");
  357. if (n_bytes % 2) {
  358. u16 *buf = (u16 *)drv_data->rx;
  359. for (loop = 0; loop < n_bytes / 2; loop++)
  360. *buf++ = read_RDBR(drv_data);
  361. } else {
  362. u8 *buf = (u8 *)drv_data->rx;
  363. for (loop = 0; loop < n_bytes; loop++)
  364. *buf++ = read_RDBR(drv_data);
  365. }
  366. drv_data->rx += n_bytes;
  367. }
  368. msg->actual_length += drv_data->len_in_bytes;
  369. if (drv_data->cs_change)
  370. bfin_spi_cs_deactive(drv_data, chip);
  371. /* Move to next transfer */
  372. msg->state = bfin_spi_next_transfer(drv_data);
  373. disable_irq_nosync(drv_data->spi_irq);
  374. /* Schedule transfer tasklet */
  375. tasklet_schedule(&drv_data->pump_transfers);
  376. return IRQ_HANDLED;
  377. }
  378. if (drv_data->rx && drv_data->tx) {
  379. /* duplex */
  380. dev_dbg(&drv_data->pdev->dev, "duplex: write_TDBR\n");
  381. if (n_bytes % 2) {
  382. u16 *buf = (u16 *)drv_data->rx;
  383. u16 *buf2 = (u16 *)drv_data->tx;
  384. for (loop = 0; loop < n_bytes / 2; loop++) {
  385. *buf++ = read_RDBR(drv_data);
  386. write_TDBR(drv_data, *buf2++);
  387. }
  388. } else {
  389. u8 *buf = (u8 *)drv_data->rx;
  390. u8 *buf2 = (u8 *)drv_data->tx;
  391. for (loop = 0; loop < n_bytes; loop++) {
  392. *buf++ = read_RDBR(drv_data);
  393. write_TDBR(drv_data, *buf2++);
  394. }
  395. }
  396. } else if (drv_data->rx) {
  397. /* read */
  398. dev_dbg(&drv_data->pdev->dev, "read: write_TDBR\n");
  399. if (n_bytes % 2) {
  400. u16 *buf = (u16 *)drv_data->rx;
  401. for (loop = 0; loop < n_bytes / 2; loop++) {
  402. *buf++ = read_RDBR(drv_data);
  403. write_TDBR(drv_data, chip->idle_tx_val);
  404. }
  405. } else {
  406. u8 *buf = (u8 *)drv_data->rx;
  407. for (loop = 0; loop < n_bytes; loop++) {
  408. *buf++ = read_RDBR(drv_data);
  409. write_TDBR(drv_data, chip->idle_tx_val);
  410. }
  411. }
  412. } else if (drv_data->tx) {
  413. /* write */
  414. dev_dbg(&drv_data->pdev->dev, "write: write_TDBR\n");
  415. if (n_bytes % 2) {
  416. u16 *buf = (u16 *)drv_data->tx;
  417. for (loop = 0; loop < n_bytes / 2; loop++) {
  418. read_RDBR(drv_data);
  419. write_TDBR(drv_data, *buf++);
  420. }
  421. } else {
  422. u8 *buf = (u8 *)drv_data->tx;
  423. for (loop = 0; loop < n_bytes; loop++) {
  424. read_RDBR(drv_data);
  425. write_TDBR(drv_data, *buf++);
  426. }
  427. }
  428. }
  429. if (drv_data->tx)
  430. drv_data->tx += n_bytes;
  431. if (drv_data->rx)
  432. drv_data->rx += n_bytes;
  433. return IRQ_HANDLED;
  434. }
  435. static irqreturn_t bfin_spi_dma_irq_handler(int irq, void *dev_id)
  436. {
  437. struct bfin_spi_master_data *drv_data = dev_id;
  438. struct bfin_spi_slave_data *chip = drv_data->cur_chip;
  439. struct spi_message *msg = drv_data->cur_msg;
  440. unsigned long timeout;
  441. unsigned short dmastat = get_dma_curr_irqstat(drv_data->dma_channel);
  442. u16 spistat = read_STAT(drv_data);
  443. dev_dbg(&drv_data->pdev->dev,
  444. "in dma_irq_handler dmastat:0x%x spistat:0x%x\n",
  445. dmastat, spistat);
  446. if (drv_data->rx != NULL) {
  447. u16 cr = read_CTRL(drv_data);
  448. /* discard old RX data and clear RXS */
  449. bfin_spi_dummy_read(drv_data);
  450. write_CTRL(drv_data, cr & ~BIT_CTL_ENABLE); /* Disable SPI */
  451. write_CTRL(drv_data, cr & ~BIT_CTL_TIMOD); /* Restore State */
  452. write_STAT(drv_data, BIT_STAT_CLR); /* Clear Status */
  453. }
  454. clear_dma_irqstat(drv_data->dma_channel);
  455. /*
  456. * wait for the last transaction shifted out. HRM states:
  457. * at this point there may still be data in the SPI DMA FIFO waiting
  458. * to be transmitted ... software needs to poll TXS in the SPI_STAT
  459. * register until it goes low for 2 successive reads
  460. */
  461. if (drv_data->tx != NULL) {
  462. while ((read_STAT(drv_data) & BIT_STAT_TXS) ||
  463. (read_STAT(drv_data) & BIT_STAT_TXS))
  464. cpu_relax();
  465. }
  466. dev_dbg(&drv_data->pdev->dev,
  467. "in dma_irq_handler dmastat:0x%x spistat:0x%x\n",
  468. dmastat, read_STAT(drv_data));
  469. timeout = jiffies + HZ;
  470. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  471. if (!time_before(jiffies, timeout)) {
  472. dev_warn(&drv_data->pdev->dev, "timeout waiting for SPIF");
  473. break;
  474. } else
  475. cpu_relax();
  476. if ((dmastat & DMA_ERR) && (spistat & BIT_STAT_RBSY)) {
  477. msg->state = ERROR_STATE;
  478. dev_err(&drv_data->pdev->dev, "dma receive: fifo/buffer overflow\n");
  479. } else {
  480. msg->actual_length += drv_data->len_in_bytes;
  481. if (drv_data->cs_change)
  482. bfin_spi_cs_deactive(drv_data, chip);
  483. /* Move to next transfer */
  484. msg->state = bfin_spi_next_transfer(drv_data);
  485. }
  486. /* Schedule transfer tasklet */
  487. tasklet_schedule(&drv_data->pump_transfers);
  488. /* free the irq handler before next transfer */
  489. dev_dbg(&drv_data->pdev->dev,
  490. "disable dma channel irq%d\n",
  491. drv_data->dma_channel);
  492. dma_disable_irq_nosync(drv_data->dma_channel);
  493. return IRQ_HANDLED;
  494. }
  495. static void bfin_spi_pump_transfers(unsigned long data)
  496. {
  497. struct bfin_spi_master_data *drv_data = (struct bfin_spi_master_data *)data;
  498. struct spi_message *message = NULL;
  499. struct spi_transfer *transfer = NULL;
  500. struct spi_transfer *previous = NULL;
  501. struct bfin_spi_slave_data *chip = NULL;
  502. unsigned int bits_per_word;
  503. u16 cr, cr_width, dma_width, dma_config;
  504. u32 tranf_success = 1;
  505. u8 full_duplex = 0;
  506. /* Get current state information */
  507. message = drv_data->cur_msg;
  508. transfer = drv_data->cur_transfer;
  509. chip = drv_data->cur_chip;
  510. /*
  511. * if msg is error or done, report it back using complete() callback
  512. */
  513. /* Handle for abort */
  514. if (message->state == ERROR_STATE) {
  515. dev_dbg(&drv_data->pdev->dev, "transfer: we've hit an error\n");
  516. message->status = -EIO;
  517. bfin_spi_giveback(drv_data);
  518. return;
  519. }
  520. /* Handle end of message */
  521. if (message->state == DONE_STATE) {
  522. dev_dbg(&drv_data->pdev->dev, "transfer: all done!\n");
  523. message->status = 0;
  524. bfin_spi_giveback(drv_data);
  525. return;
  526. }
  527. /* Delay if requested at end of transfer */
  528. if (message->state == RUNNING_STATE) {
  529. dev_dbg(&drv_data->pdev->dev, "transfer: still running ...\n");
  530. previous = list_entry(transfer->transfer_list.prev,
  531. struct spi_transfer, transfer_list);
  532. if (previous->delay_usecs)
  533. udelay(previous->delay_usecs);
  534. }
  535. /* Flush any existing transfers that may be sitting in the hardware */
  536. if (bfin_spi_flush(drv_data) == 0) {
  537. dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
  538. message->status = -EIO;
  539. bfin_spi_giveback(drv_data);
  540. return;
  541. }
  542. if (transfer->len == 0) {
  543. /* Move to next transfer of this msg */
  544. message->state = bfin_spi_next_transfer(drv_data);
  545. /* Schedule next transfer tasklet */
  546. tasklet_schedule(&drv_data->pump_transfers);
  547. return;
  548. }
  549. if (transfer->tx_buf != NULL) {
  550. drv_data->tx = (void *)transfer->tx_buf;
  551. drv_data->tx_end = drv_data->tx + transfer->len;
  552. dev_dbg(&drv_data->pdev->dev, "tx_buf is %p, tx_end is %p\n",
  553. transfer->tx_buf, drv_data->tx_end);
  554. } else {
  555. drv_data->tx = NULL;
  556. }
  557. if (transfer->rx_buf != NULL) {
  558. full_duplex = transfer->tx_buf != NULL;
  559. drv_data->rx = transfer->rx_buf;
  560. drv_data->rx_end = drv_data->rx + transfer->len;
  561. dev_dbg(&drv_data->pdev->dev, "rx_buf is %p, rx_end is %p\n",
  562. transfer->rx_buf, drv_data->rx_end);
  563. } else {
  564. drv_data->rx = NULL;
  565. }
  566. drv_data->rx_dma = transfer->rx_dma;
  567. drv_data->tx_dma = transfer->tx_dma;
  568. drv_data->len_in_bytes = transfer->len;
  569. drv_data->cs_change = transfer->cs_change;
  570. /* Bits per word setup */
  571. bits_per_word = transfer->bits_per_word ? : message->spi->bits_per_word;
  572. if ((bits_per_word > 0) && (bits_per_word % 16 == 0)) {
  573. drv_data->n_bytes = bits_per_word/8;
  574. drv_data->len = (transfer->len) >> 1;
  575. cr_width = BIT_CTL_WORDSIZE;
  576. drv_data->ops = &bfin_bfin_spi_transfer_ops_u16;
  577. } else if ((bits_per_word > 0) && (bits_per_word % 8 == 0)) {
  578. drv_data->n_bytes = bits_per_word/8;
  579. drv_data->len = transfer->len;
  580. cr_width = 0;
  581. drv_data->ops = &bfin_bfin_spi_transfer_ops_u8;
  582. } else {
  583. dev_err(&drv_data->pdev->dev, "transfer: unsupported bits_per_word\n");
  584. message->status = -EINVAL;
  585. bfin_spi_giveback(drv_data);
  586. return;
  587. }
  588. cr = read_CTRL(drv_data) & ~(BIT_CTL_TIMOD | BIT_CTL_WORDSIZE);
  589. cr |= cr_width;
  590. write_CTRL(drv_data, cr);
  591. dev_dbg(&drv_data->pdev->dev,
  592. "transfer: drv_data->ops is %p, chip->ops is %p, u8_ops is %p\n",
  593. drv_data->ops, chip->ops, &bfin_bfin_spi_transfer_ops_u8);
  594. message->state = RUNNING_STATE;
  595. dma_config = 0;
  596. /* Speed setup (surely valid because already checked) */
  597. if (transfer->speed_hz)
  598. write_BAUD(drv_data, hz_to_spi_baud(transfer->speed_hz));
  599. else
  600. write_BAUD(drv_data, chip->baud);
  601. write_STAT(drv_data, BIT_STAT_CLR);
  602. bfin_spi_cs_active(drv_data, chip);
  603. dev_dbg(&drv_data->pdev->dev,
  604. "now pumping a transfer: width is %d, len is %d\n",
  605. cr_width, transfer->len);
  606. /*
  607. * Try to map dma buffer and do a dma transfer. If successful use,
  608. * different way to r/w according to the enable_dma settings and if
  609. * we are not doing a full duplex transfer (since the hardware does
  610. * not support full duplex DMA transfers).
  611. */
  612. if (!full_duplex && drv_data->cur_chip->enable_dma
  613. && drv_data->len > 6) {
  614. unsigned long dma_start_addr, flags;
  615. disable_dma(drv_data->dma_channel);
  616. clear_dma_irqstat(drv_data->dma_channel);
  617. /* config dma channel */
  618. dev_dbg(&drv_data->pdev->dev, "doing dma transfer\n");
  619. set_dma_x_count(drv_data->dma_channel, drv_data->len);
  620. if (cr_width == BIT_CTL_WORDSIZE) {
  621. set_dma_x_modify(drv_data->dma_channel, 2);
  622. dma_width = WDSIZE_16;
  623. } else {
  624. set_dma_x_modify(drv_data->dma_channel, 1);
  625. dma_width = WDSIZE_8;
  626. }
  627. /* poll for SPI completion before start */
  628. while (!(read_STAT(drv_data) & BIT_STAT_SPIF))
  629. cpu_relax();
  630. /* dirty hack for autobuffer DMA mode */
  631. if (drv_data->tx_dma == 0xFFFF) {
  632. dev_dbg(&drv_data->pdev->dev,
  633. "doing autobuffer DMA out.\n");
  634. /* no irq in autobuffer mode */
  635. dma_config =
  636. (DMAFLOW_AUTO | RESTART | dma_width | DI_EN);
  637. set_dma_config(drv_data->dma_channel, dma_config);
  638. set_dma_start_addr(drv_data->dma_channel,
  639. (unsigned long)drv_data->tx);
  640. enable_dma(drv_data->dma_channel);
  641. /* start SPI transfer */
  642. write_CTRL(drv_data, cr | BIT_CTL_TIMOD_DMA_TX);
  643. /* just return here, there can only be one transfer
  644. * in this mode
  645. */
  646. message->status = 0;
  647. bfin_spi_giveback(drv_data);
  648. return;
  649. }
  650. /* In dma mode, rx or tx must be NULL in one transfer */
  651. dma_config = (RESTART | dma_width | DI_EN);
  652. if (drv_data->rx != NULL) {
  653. /* set transfer mode, and enable SPI */
  654. dev_dbg(&drv_data->pdev->dev, "doing DMA in to %p (size %zx)\n",
  655. drv_data->rx, drv_data->len_in_bytes);
  656. /* invalidate caches, if needed */
  657. if (bfin_addr_dcacheable((unsigned long) drv_data->rx))
  658. invalidate_dcache_range((unsigned long) drv_data->rx,
  659. (unsigned long) (drv_data->rx +
  660. drv_data->len_in_bytes));
  661. dma_config |= WNR;
  662. dma_start_addr = (unsigned long)drv_data->rx;
  663. cr |= BIT_CTL_TIMOD_DMA_RX | BIT_CTL_SENDOPT;
  664. } else if (drv_data->tx != NULL) {
  665. dev_dbg(&drv_data->pdev->dev, "doing DMA out.\n");
  666. /* flush caches, if needed */
  667. if (bfin_addr_dcacheable((unsigned long) drv_data->tx))
  668. flush_dcache_range((unsigned long) drv_data->tx,
  669. (unsigned long) (drv_data->tx +
  670. drv_data->len_in_bytes));
  671. dma_start_addr = (unsigned long)drv_data->tx;
  672. cr |= BIT_CTL_TIMOD_DMA_TX;
  673. } else
  674. BUG();
  675. /* oh man, here there be monsters ... and i dont mean the
  676. * fluffy cute ones from pixar, i mean the kind that'll eat
  677. * your data, kick your dog, and love it all. do *not* try
  678. * and change these lines unless you (1) heavily test DMA
  679. * with SPI flashes on a loaded system (e.g. ping floods),
  680. * (2) know just how broken the DMA engine interaction with
  681. * the SPI peripheral is, and (3) have someone else to blame
  682. * when you screw it all up anyways.
  683. */
  684. set_dma_start_addr(drv_data->dma_channel, dma_start_addr);
  685. set_dma_config(drv_data->dma_channel, dma_config);
  686. local_irq_save(flags);
  687. SSYNC();
  688. write_CTRL(drv_data, cr);
  689. enable_dma(drv_data->dma_channel);
  690. dma_enable_irq(drv_data->dma_channel);
  691. local_irq_restore(flags);
  692. return;
  693. }
  694. /*
  695. * We always use SPI_WRITE mode (transfer starts with TDBR write).
  696. * SPI_READ mode (transfer starts with RDBR read) seems to have
  697. * problems with setting up the output value in TDBR prior to the
  698. * start of the transfer.
  699. */
  700. write_CTRL(drv_data, cr | BIT_CTL_TXMOD);
  701. if (chip->pio_interrupt) {
  702. /* SPI irq should have been disabled by now */
  703. /* discard old RX data and clear RXS */
  704. bfin_spi_dummy_read(drv_data);
  705. /* start transfer */
  706. if (drv_data->tx == NULL)
  707. write_TDBR(drv_data, chip->idle_tx_val);
  708. else {
  709. int loop;
  710. if (bits_per_word % 16 == 0) {
  711. u16 *buf = (u16 *)drv_data->tx;
  712. for (loop = 0; loop < bits_per_word / 16;
  713. loop++) {
  714. write_TDBR(drv_data, *buf++);
  715. }
  716. } else if (bits_per_word % 8 == 0) {
  717. u8 *buf = (u8 *)drv_data->tx;
  718. for (loop = 0; loop < bits_per_word / 8; loop++)
  719. write_TDBR(drv_data, *buf++);
  720. }
  721. drv_data->tx += drv_data->n_bytes;
  722. }
  723. /* once TDBR is empty, interrupt is triggered */
  724. enable_irq(drv_data->spi_irq);
  725. return;
  726. }
  727. /* IO mode */
  728. dev_dbg(&drv_data->pdev->dev, "doing IO transfer\n");
  729. if (full_duplex) {
  730. /* full duplex mode */
  731. BUG_ON((drv_data->tx_end - drv_data->tx) !=
  732. (drv_data->rx_end - drv_data->rx));
  733. dev_dbg(&drv_data->pdev->dev,
  734. "IO duplex: cr is 0x%x\n", cr);
  735. drv_data->ops->duplex(drv_data);
  736. if (drv_data->tx != drv_data->tx_end)
  737. tranf_success = 0;
  738. } else if (drv_data->tx != NULL) {
  739. /* write only half duplex */
  740. dev_dbg(&drv_data->pdev->dev,
  741. "IO write: cr is 0x%x\n", cr);
  742. drv_data->ops->write(drv_data);
  743. if (drv_data->tx != drv_data->tx_end)
  744. tranf_success = 0;
  745. } else if (drv_data->rx != NULL) {
  746. /* read only half duplex */
  747. dev_dbg(&drv_data->pdev->dev,
  748. "IO read: cr is 0x%x\n", cr);
  749. drv_data->ops->read(drv_data);
  750. if (drv_data->rx != drv_data->rx_end)
  751. tranf_success = 0;
  752. }
  753. if (!tranf_success) {
  754. dev_dbg(&drv_data->pdev->dev,
  755. "IO write error!\n");
  756. message->state = ERROR_STATE;
  757. } else {
  758. /* Update total byte transfered */
  759. message->actual_length += drv_data->len_in_bytes;
  760. /* Move to next transfer of this msg */
  761. message->state = bfin_spi_next_transfer(drv_data);
  762. if (drv_data->cs_change)
  763. bfin_spi_cs_deactive(drv_data, chip);
  764. }
  765. /* Schedule next transfer tasklet */
  766. tasklet_schedule(&drv_data->pump_transfers);
  767. }
  768. /* pop a msg from queue and kick off real transfer */
  769. static void bfin_spi_pump_messages(struct work_struct *work)
  770. {
  771. struct bfin_spi_master_data *drv_data;
  772. unsigned long flags;
  773. drv_data = container_of(work, struct bfin_spi_master_data, pump_messages);
  774. /* Lock queue and check for queue work */
  775. spin_lock_irqsave(&drv_data->lock, flags);
  776. if (list_empty(&drv_data->queue) || !drv_data->running) {
  777. /* pumper kicked off but no work to do */
  778. drv_data->busy = 0;
  779. spin_unlock_irqrestore(&drv_data->lock, flags);
  780. return;
  781. }
  782. /* Make sure we are not already running a message */
  783. if (drv_data->cur_msg) {
  784. spin_unlock_irqrestore(&drv_data->lock, flags);
  785. return;
  786. }
  787. /* Extract head of queue */
  788. drv_data->cur_msg = list_entry(drv_data->queue.next,
  789. struct spi_message, queue);
  790. /* Setup the SSP using the per chip configuration */
  791. drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
  792. bfin_spi_restore_state(drv_data);
  793. list_del_init(&drv_data->cur_msg->queue);
  794. /* Initial message state */
  795. drv_data->cur_msg->state = START_STATE;
  796. drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
  797. struct spi_transfer, transfer_list);
  798. dev_dbg(&drv_data->pdev->dev, "got a message to pump, "
  799. "state is set to: baud %d, flag 0x%x, ctl 0x%x\n",
  800. drv_data->cur_chip->baud, drv_data->cur_chip->flag,
  801. drv_data->cur_chip->ctl_reg);
  802. dev_dbg(&drv_data->pdev->dev,
  803. "the first transfer len is %d\n",
  804. drv_data->cur_transfer->len);
  805. /* Mark as busy and launch transfers */
  806. tasklet_schedule(&drv_data->pump_transfers);
  807. drv_data->busy = 1;
  808. spin_unlock_irqrestore(&drv_data->lock, flags);
  809. }
  810. /*
  811. * got a msg to transfer, queue it in drv_data->queue.
  812. * And kick off message pumper
  813. */
  814. static int bfin_spi_transfer(struct spi_device *spi, struct spi_message *msg)
  815. {
  816. struct bfin_spi_master_data *drv_data = spi_master_get_devdata(spi->master);
  817. unsigned long flags;
  818. spin_lock_irqsave(&drv_data->lock, flags);
  819. if (!drv_data->running) {
  820. spin_unlock_irqrestore(&drv_data->lock, flags);
  821. return -ESHUTDOWN;
  822. }
  823. msg->actual_length = 0;
  824. msg->status = -EINPROGRESS;
  825. msg->state = START_STATE;
  826. dev_dbg(&spi->dev, "adding an msg in transfer() \n");
  827. list_add_tail(&msg->queue, &drv_data->queue);
  828. if (drv_data->running && !drv_data->busy)
  829. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  830. spin_unlock_irqrestore(&drv_data->lock, flags);
  831. return 0;
  832. }
  833. #define MAX_SPI_SSEL 7
  834. static u16 ssel[][MAX_SPI_SSEL] = {
  835. {P_SPI0_SSEL1, P_SPI0_SSEL2, P_SPI0_SSEL3,
  836. P_SPI0_SSEL4, P_SPI0_SSEL5,
  837. P_SPI0_SSEL6, P_SPI0_SSEL7},
  838. {P_SPI1_SSEL1, P_SPI1_SSEL2, P_SPI1_SSEL3,
  839. P_SPI1_SSEL4, P_SPI1_SSEL5,
  840. P_SPI1_SSEL6, P_SPI1_SSEL7},
  841. {P_SPI2_SSEL1, P_SPI2_SSEL2, P_SPI2_SSEL3,
  842. P_SPI2_SSEL4, P_SPI2_SSEL5,
  843. P_SPI2_SSEL6, P_SPI2_SSEL7},
  844. };
  845. /* setup for devices (may be called multiple times -- not just first setup) */
  846. static int bfin_spi_setup(struct spi_device *spi)
  847. {
  848. struct bfin5xx_spi_chip *chip_info;
  849. struct bfin_spi_slave_data *chip = NULL;
  850. struct bfin_spi_master_data *drv_data = spi_master_get_devdata(spi->master);
  851. u16 bfin_ctl_reg;
  852. int ret = -EINVAL;
  853. /* Only alloc (or use chip_info) on first setup */
  854. chip_info = NULL;
  855. chip = spi_get_ctldata(spi);
  856. if (chip == NULL) {
  857. chip = kzalloc(sizeof(*chip), GFP_KERNEL);
  858. if (!chip) {
  859. dev_err(&spi->dev, "cannot allocate chip data\n");
  860. ret = -ENOMEM;
  861. goto error;
  862. }
  863. chip->enable_dma = 0;
  864. chip_info = spi->controller_data;
  865. }
  866. /* Let people set non-standard bits directly */
  867. bfin_ctl_reg = BIT_CTL_OPENDRAIN | BIT_CTL_EMISO |
  868. BIT_CTL_PSSE | BIT_CTL_GM | BIT_CTL_SZ;
  869. /* chip_info isn't always needed */
  870. if (chip_info) {
  871. /* Make sure people stop trying to set fields via ctl_reg
  872. * when they should actually be using common SPI framework.
  873. * Currently we let through: WOM EMISO PSSE GM SZ.
  874. * Not sure if a user actually needs/uses any of these,
  875. * but let's assume (for now) they do.
  876. */
  877. if (chip_info->ctl_reg & ~bfin_ctl_reg) {
  878. dev_err(&spi->dev, "do not set bits in ctl_reg "
  879. "that the SPI framework manages\n");
  880. goto error;
  881. }
  882. chip->enable_dma = chip_info->enable_dma != 0
  883. && drv_data->master_info->enable_dma;
  884. chip->ctl_reg = chip_info->ctl_reg;
  885. chip->cs_chg_udelay = chip_info->cs_chg_udelay;
  886. chip->idle_tx_val = chip_info->idle_tx_val;
  887. chip->pio_interrupt = chip_info->pio_interrupt;
  888. spi->bits_per_word = chip_info->bits_per_word;
  889. } else {
  890. /* force a default base state */
  891. chip->ctl_reg &= bfin_ctl_reg;
  892. }
  893. if (spi->bits_per_word % 8) {
  894. dev_err(&spi->dev, "%d bits_per_word is not supported\n",
  895. spi->bits_per_word);
  896. goto error;
  897. }
  898. /* translate common spi framework into our register */
  899. if (spi->mode & ~(SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST)) {
  900. dev_err(&spi->dev, "unsupported spi modes detected\n");
  901. goto error;
  902. }
  903. if (spi->mode & SPI_CPOL)
  904. chip->ctl_reg |= BIT_CTL_CPOL;
  905. if (spi->mode & SPI_CPHA)
  906. chip->ctl_reg |= BIT_CTL_CPHA;
  907. if (spi->mode & SPI_LSB_FIRST)
  908. chip->ctl_reg |= BIT_CTL_LSBF;
  909. /* we dont support running in slave mode (yet?) */
  910. chip->ctl_reg |= BIT_CTL_MASTER;
  911. /*
  912. * Notice: for blackfin, the speed_hz is the value of register
  913. * SPI_BAUD, not the real baudrate
  914. */
  915. chip->baud = hz_to_spi_baud(spi->max_speed_hz);
  916. chip->chip_select_num = spi->chip_select;
  917. if (chip->chip_select_num < MAX_CTRL_CS) {
  918. if (!(spi->mode & SPI_CPHA))
  919. dev_warn(&spi->dev, "Warning: SPI CPHA not set:"
  920. " Slave Select not under software control!\n"
  921. " See Documentation/blackfin/bfin-spi-notes.txt");
  922. chip->flag = (1 << spi->chip_select) << 8;
  923. } else
  924. chip->cs_gpio = chip->chip_select_num - MAX_CTRL_CS;
  925. if (chip->enable_dma && chip->pio_interrupt) {
  926. dev_err(&spi->dev, "enable_dma is set, "
  927. "do not set pio_interrupt\n");
  928. goto error;
  929. }
  930. /*
  931. * if any one SPI chip is registered and wants DMA, request the
  932. * DMA channel for it
  933. */
  934. if (chip->enable_dma && !drv_data->dma_requested) {
  935. /* register dma irq handler */
  936. ret = request_dma(drv_data->dma_channel, "BFIN_SPI_DMA");
  937. if (ret) {
  938. dev_err(&spi->dev,
  939. "Unable to request BlackFin SPI DMA channel\n");
  940. goto error;
  941. }
  942. drv_data->dma_requested = 1;
  943. ret = set_dma_callback(drv_data->dma_channel,
  944. bfin_spi_dma_irq_handler, drv_data);
  945. if (ret) {
  946. dev_err(&spi->dev, "Unable to set dma callback\n");
  947. goto error;
  948. }
  949. dma_disable_irq(drv_data->dma_channel);
  950. }
  951. if (chip->pio_interrupt && !drv_data->irq_requested) {
  952. ret = request_irq(drv_data->spi_irq, bfin_spi_pio_irq_handler,
  953. IRQF_DISABLED, "BFIN_SPI", drv_data);
  954. if (ret) {
  955. dev_err(&spi->dev, "Unable to register spi IRQ\n");
  956. goto error;
  957. }
  958. drv_data->irq_requested = 1;
  959. /* we use write mode, spi irq has to be disabled here */
  960. disable_irq(drv_data->spi_irq);
  961. }
  962. if (chip->chip_select_num >= MAX_CTRL_CS) {
  963. /* Only request on first setup */
  964. if (spi_get_ctldata(spi) == NULL) {
  965. ret = gpio_request(chip->cs_gpio, spi->modalias);
  966. if (ret) {
  967. dev_err(&spi->dev, "gpio_request() error\n");
  968. goto pin_error;
  969. }
  970. gpio_direction_output(chip->cs_gpio, 1);
  971. }
  972. }
  973. dev_dbg(&spi->dev, "setup spi chip %s, width is %d, dma is %d\n",
  974. spi->modalias, spi->bits_per_word, chip->enable_dma);
  975. dev_dbg(&spi->dev, "ctl_reg is 0x%x, flag_reg is 0x%x\n",
  976. chip->ctl_reg, chip->flag);
  977. spi_set_ctldata(spi, chip);
  978. dev_dbg(&spi->dev, "chip select number is %d\n", chip->chip_select_num);
  979. if (chip->chip_select_num < MAX_CTRL_CS) {
  980. ret = peripheral_request(ssel[spi->master->bus_num]
  981. [chip->chip_select_num-1], spi->modalias);
  982. if (ret) {
  983. dev_err(&spi->dev, "peripheral_request() error\n");
  984. goto pin_error;
  985. }
  986. }
  987. bfin_spi_cs_enable(drv_data, chip);
  988. bfin_spi_cs_deactive(drv_data, chip);
  989. return 0;
  990. pin_error:
  991. if (chip->chip_select_num >= MAX_CTRL_CS)
  992. gpio_free(chip->cs_gpio);
  993. else
  994. peripheral_free(ssel[spi->master->bus_num]
  995. [chip->chip_select_num - 1]);
  996. error:
  997. if (chip) {
  998. if (drv_data->dma_requested)
  999. free_dma(drv_data->dma_channel);
  1000. drv_data->dma_requested = 0;
  1001. kfree(chip);
  1002. /* prevent free 'chip' twice */
  1003. spi_set_ctldata(spi, NULL);
  1004. }
  1005. return ret;
  1006. }
  1007. /*
  1008. * callback for spi framework.
  1009. * clean driver specific data
  1010. */
  1011. static void bfin_spi_cleanup(struct spi_device *spi)
  1012. {
  1013. struct bfin_spi_slave_data *chip = spi_get_ctldata(spi);
  1014. struct bfin_spi_master_data *drv_data = spi_master_get_devdata(spi->master);
  1015. if (!chip)
  1016. return;
  1017. if (chip->chip_select_num < MAX_CTRL_CS) {
  1018. peripheral_free(ssel[spi->master->bus_num]
  1019. [chip->chip_select_num-1]);
  1020. bfin_spi_cs_disable(drv_data, chip);
  1021. } else
  1022. gpio_free(chip->cs_gpio);
  1023. kfree(chip);
  1024. /* prevent free 'chip' twice */
  1025. spi_set_ctldata(spi, NULL);
  1026. }
  1027. static inline int bfin_spi_init_queue(struct bfin_spi_master_data *drv_data)
  1028. {
  1029. INIT_LIST_HEAD(&drv_data->queue);
  1030. spin_lock_init(&drv_data->lock);
  1031. drv_data->running = false;
  1032. drv_data->busy = 0;
  1033. /* init transfer tasklet */
  1034. tasklet_init(&drv_data->pump_transfers,
  1035. bfin_spi_pump_transfers, (unsigned long)drv_data);
  1036. /* init messages workqueue */
  1037. INIT_WORK(&drv_data->pump_messages, bfin_spi_pump_messages);
  1038. drv_data->workqueue = create_singlethread_workqueue(
  1039. dev_name(drv_data->master->dev.parent));
  1040. if (drv_data->workqueue == NULL)
  1041. return -EBUSY;
  1042. return 0;
  1043. }
  1044. static inline int bfin_spi_start_queue(struct bfin_spi_master_data *drv_data)
  1045. {
  1046. unsigned long flags;
  1047. spin_lock_irqsave(&drv_data->lock, flags);
  1048. if (drv_data->running || drv_data->busy) {
  1049. spin_unlock_irqrestore(&drv_data->lock, flags);
  1050. return -EBUSY;
  1051. }
  1052. drv_data->running = true;
  1053. drv_data->cur_msg = NULL;
  1054. drv_data->cur_transfer = NULL;
  1055. drv_data->cur_chip = NULL;
  1056. spin_unlock_irqrestore(&drv_data->lock, flags);
  1057. queue_work(drv_data->workqueue, &drv_data->pump_messages);
  1058. return 0;
  1059. }
  1060. static inline int bfin_spi_stop_queue(struct bfin_spi_master_data *drv_data)
  1061. {
  1062. unsigned long flags;
  1063. unsigned limit = 500;
  1064. int status = 0;
  1065. spin_lock_irqsave(&drv_data->lock, flags);
  1066. /*
  1067. * This is a bit lame, but is optimized for the common execution path.
  1068. * A wait_queue on the drv_data->busy could be used, but then the common
  1069. * execution path (pump_messages) would be required to call wake_up or
  1070. * friends on every SPI message. Do this instead
  1071. */
  1072. drv_data->running = false;
  1073. while (!list_empty(&drv_data->queue) && drv_data->busy && limit--) {
  1074. spin_unlock_irqrestore(&drv_data->lock, flags);
  1075. msleep(10);
  1076. spin_lock_irqsave(&drv_data->lock, flags);
  1077. }
  1078. if (!list_empty(&drv_data->queue) || drv_data->busy)
  1079. status = -EBUSY;
  1080. spin_unlock_irqrestore(&drv_data->lock, flags);
  1081. return status;
  1082. }
  1083. static inline int bfin_spi_destroy_queue(struct bfin_spi_master_data *drv_data)
  1084. {
  1085. int status;
  1086. status = bfin_spi_stop_queue(drv_data);
  1087. if (status != 0)
  1088. return status;
  1089. destroy_workqueue(drv_data->workqueue);
  1090. return 0;
  1091. }
  1092. static int __init bfin_spi_probe(struct platform_device *pdev)
  1093. {
  1094. struct device *dev = &pdev->dev;
  1095. struct bfin5xx_spi_master *platform_info;
  1096. struct spi_master *master;
  1097. struct bfin_spi_master_data *drv_data;
  1098. struct resource *res;
  1099. int status = 0;
  1100. platform_info = dev->platform_data;
  1101. /* Allocate master with space for drv_data */
  1102. master = spi_alloc_master(dev, sizeof(*drv_data));
  1103. if (!master) {
  1104. dev_err(&pdev->dev, "can not alloc spi_master\n");
  1105. return -ENOMEM;
  1106. }
  1107. drv_data = spi_master_get_devdata(master);
  1108. drv_data->master = master;
  1109. drv_data->master_info = platform_info;
  1110. drv_data->pdev = pdev;
  1111. drv_data->pin_req = platform_info->pin_req;
  1112. /* the spi->mode bits supported by this driver: */
  1113. master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
  1114. master->bus_num = pdev->id;
  1115. master->num_chipselect = platform_info->num_chipselect;
  1116. master->cleanup = bfin_spi_cleanup;
  1117. master->setup = bfin_spi_setup;
  1118. master->transfer = bfin_spi_transfer;
  1119. /* Find and map our resources */
  1120. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  1121. if (res == NULL) {
  1122. dev_err(dev, "Cannot get IORESOURCE_MEM\n");
  1123. status = -ENOENT;
  1124. goto out_error_get_res;
  1125. }
  1126. drv_data->regs_base = ioremap(res->start, resource_size(res));
  1127. if (drv_data->regs_base == NULL) {
  1128. dev_err(dev, "Cannot map IO\n");
  1129. status = -ENXIO;
  1130. goto out_error_ioremap;
  1131. }
  1132. res = platform_get_resource(pdev, IORESOURCE_DMA, 0);
  1133. if (res == NULL) {
  1134. dev_err(dev, "No DMA channel specified\n");
  1135. status = -ENOENT;
  1136. goto out_error_free_io;
  1137. }
  1138. drv_data->dma_channel = res->start;
  1139. drv_data->spi_irq = platform_get_irq(pdev, 0);
  1140. if (drv_data->spi_irq < 0) {
  1141. dev_err(dev, "No spi pio irq specified\n");
  1142. status = -ENOENT;
  1143. goto out_error_free_io;
  1144. }
  1145. /* Initial and start queue */
  1146. status = bfin_spi_init_queue(drv_data);
  1147. if (status != 0) {
  1148. dev_err(dev, "problem initializing queue\n");
  1149. goto out_error_queue_alloc;
  1150. }
  1151. status = bfin_spi_start_queue(drv_data);
  1152. if (status != 0) {
  1153. dev_err(dev, "problem starting queue\n");
  1154. goto out_error_queue_alloc;
  1155. }
  1156. status = peripheral_request_list(drv_data->pin_req, DRV_NAME);
  1157. if (status != 0) {
  1158. dev_err(&pdev->dev, ": Requesting Peripherals failed\n");
  1159. goto out_error_queue_alloc;
  1160. }
  1161. /* Reset SPI registers. If these registers were used by the boot loader,
  1162. * the sky may fall on your head if you enable the dma controller.
  1163. */
  1164. write_CTRL(drv_data, BIT_CTL_CPHA | BIT_CTL_MASTER);
  1165. write_FLAG(drv_data, 0xFF00);
  1166. /* Register with the SPI framework */
  1167. platform_set_drvdata(pdev, drv_data);
  1168. status = spi_register_master(master);
  1169. if (status != 0) {
  1170. dev_err(dev, "problem registering spi master\n");
  1171. goto out_error_queue_alloc;
  1172. }
  1173. dev_info(dev, "%s, Version %s, regs_base@%p, dma channel@%d\n",
  1174. DRV_DESC, DRV_VERSION, drv_data->regs_base,
  1175. drv_data->dma_channel);
  1176. return status;
  1177. out_error_queue_alloc:
  1178. bfin_spi_destroy_queue(drv_data);
  1179. out_error_free_io:
  1180. iounmap((void *) drv_data->regs_base);
  1181. out_error_ioremap:
  1182. out_error_get_res:
  1183. spi_master_put(master);
  1184. return status;
  1185. }
  1186. /* stop hardware and remove the driver */
  1187. static int __devexit bfin_spi_remove(struct platform_device *pdev)
  1188. {
  1189. struct bfin_spi_master_data *drv_data = platform_get_drvdata(pdev);
  1190. int status = 0;
  1191. if (!drv_data)
  1192. return 0;
  1193. /* Remove the queue */
  1194. status = bfin_spi_destroy_queue(drv_data);
  1195. if (status != 0)
  1196. return status;
  1197. /* Disable the SSP at the peripheral and SOC level */
  1198. bfin_spi_disable(drv_data);
  1199. /* Release DMA */
  1200. if (drv_data->master_info->enable_dma) {
  1201. if (dma_channel_active(drv_data->dma_channel))
  1202. free_dma(drv_data->dma_channel);
  1203. }
  1204. if (drv_data->irq_requested) {
  1205. free_irq(drv_data->spi_irq, drv_data);
  1206. drv_data->irq_requested = 0;
  1207. }
  1208. /* Disconnect from the SPI framework */
  1209. spi_unregister_master(drv_data->master);
  1210. peripheral_free_list(drv_data->pin_req);
  1211. /* Prevent double remove */
  1212. platform_set_drvdata(pdev, NULL);
  1213. return 0;
  1214. }
  1215. #ifdef CONFIG_PM
  1216. static int bfin_spi_suspend(struct platform_device *pdev, pm_message_t state)
  1217. {
  1218. struct bfin_spi_master_data *drv_data = platform_get_drvdata(pdev);
  1219. int status = 0;
  1220. status = bfin_spi_stop_queue(drv_data);
  1221. if (status != 0)
  1222. return status;
  1223. drv_data->ctrl_reg = read_CTRL(drv_data);
  1224. drv_data->flag_reg = read_FLAG(drv_data);
  1225. /*
  1226. * reset SPI_CTL and SPI_FLG registers
  1227. */
  1228. write_CTRL(drv_data, BIT_CTL_CPHA | BIT_CTL_MASTER);
  1229. write_FLAG(drv_data, 0xFF00);
  1230. return 0;
  1231. }
  1232. static int bfin_spi_resume(struct platform_device *pdev)
  1233. {
  1234. struct bfin_spi_master_data *drv_data = platform_get_drvdata(pdev);
  1235. int status = 0;
  1236. write_CTRL(drv_data, drv_data->ctrl_reg);
  1237. write_FLAG(drv_data, drv_data->flag_reg);
  1238. /* Start the queue running */
  1239. status = bfin_spi_start_queue(drv_data);
  1240. if (status != 0) {
  1241. dev_err(&pdev->dev, "problem starting queue (%d)\n", status);
  1242. return status;
  1243. }
  1244. return 0;
  1245. }
  1246. #else
  1247. #define bfin_spi_suspend NULL
  1248. #define bfin_spi_resume NULL
  1249. #endif /* CONFIG_PM */
  1250. MODULE_ALIAS("platform:bfin-spi");
  1251. static struct platform_driver bfin_spi_driver = {
  1252. .driver = {
  1253. .name = DRV_NAME,
  1254. .owner = THIS_MODULE,
  1255. },
  1256. .suspend = bfin_spi_suspend,
  1257. .resume = bfin_spi_resume,
  1258. .remove = __devexit_p(bfin_spi_remove),
  1259. };
  1260. static int __init bfin_spi_init(void)
  1261. {
  1262. return platform_driver_probe(&bfin_spi_driver, bfin_spi_probe);
  1263. }
  1264. subsys_initcall(bfin_spi_init);
  1265. static void __exit bfin_spi_exit(void)
  1266. {
  1267. platform_driver_unregister(&bfin_spi_driver);
  1268. }
  1269. module_exit(bfin_spi_exit);