hw.c 75 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507
  1. /******************************************************************************
  2. *
  3. * Copyright(c) 2009-2010 Realtek Corporation. All rights reserved.
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of version 2 of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * This program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * this program; if not, write to the Free Software Foundation, Inc.,
  16. * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
  17. *
  18. * The full GNU General Public License is included in this distribution in the
  19. * file called LICENSE.
  20. *
  21. * Contact Information:
  22. * wlanfae <wlanfae@realtek.com>
  23. * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
  24. * Hsinchu 300, Taiwan.
  25. *
  26. * Larry Finger <Larry.Finger@lwfinger.net>
  27. *
  28. *****************************************************************************/
  29. #include "../wifi.h"
  30. #include "../efuse.h"
  31. #include "../base.h"
  32. #include "../cam.h"
  33. #include "../ps.h"
  34. #include "../usb.h"
  35. #include "reg.h"
  36. #include "def.h"
  37. #include "phy.h"
  38. #include "mac.h"
  39. #include "dm.h"
  40. #include "hw.h"
  41. #include "../rtl8192ce/hw.h"
  42. #include "trx.h"
  43. #include "led.h"
  44. #include "table.h"
  45. static void _rtl92cu_phy_param_tab_init(struct ieee80211_hw *hw)
  46. {
  47. struct rtl_priv *rtlpriv = rtl_priv(hw);
  48. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  49. struct rtl_efuse *rtlefuse = rtl_efuse(rtlpriv);
  50. rtlphy->hwparam_tables[MAC_REG].length = RTL8192CUMAC_2T_ARRAYLENGTH;
  51. rtlphy->hwparam_tables[MAC_REG].pdata = RTL8192CUMAC_2T_ARRAY;
  52. if (IS_HIGHT_PA(rtlefuse->board_type)) {
  53. rtlphy->hwparam_tables[PHY_REG_PG].length =
  54. RTL8192CUPHY_REG_Array_PG_HPLength;
  55. rtlphy->hwparam_tables[PHY_REG_PG].pdata =
  56. RTL8192CUPHY_REG_Array_PG_HP;
  57. } else {
  58. rtlphy->hwparam_tables[PHY_REG_PG].length =
  59. RTL8192CUPHY_REG_ARRAY_PGLENGTH;
  60. rtlphy->hwparam_tables[PHY_REG_PG].pdata =
  61. RTL8192CUPHY_REG_ARRAY_PG;
  62. }
  63. /* 2T */
  64. rtlphy->hwparam_tables[PHY_REG_2T].length =
  65. RTL8192CUPHY_REG_2TARRAY_LENGTH;
  66. rtlphy->hwparam_tables[PHY_REG_2T].pdata =
  67. RTL8192CUPHY_REG_2TARRAY;
  68. rtlphy->hwparam_tables[RADIOA_2T].length =
  69. RTL8192CURADIOA_2TARRAYLENGTH;
  70. rtlphy->hwparam_tables[RADIOA_2T].pdata =
  71. RTL8192CURADIOA_2TARRAY;
  72. rtlphy->hwparam_tables[RADIOB_2T].length =
  73. RTL8192CURADIOB_2TARRAYLENGTH;
  74. rtlphy->hwparam_tables[RADIOB_2T].pdata =
  75. RTL8192CU_RADIOB_2TARRAY;
  76. rtlphy->hwparam_tables[AGCTAB_2T].length =
  77. RTL8192CUAGCTAB_2TARRAYLENGTH;
  78. rtlphy->hwparam_tables[AGCTAB_2T].pdata =
  79. RTL8192CUAGCTAB_2TARRAY;
  80. /* 1T */
  81. if (IS_HIGHT_PA(rtlefuse->board_type)) {
  82. rtlphy->hwparam_tables[PHY_REG_1T].length =
  83. RTL8192CUPHY_REG_1T_HPArrayLength;
  84. rtlphy->hwparam_tables[PHY_REG_1T].pdata =
  85. RTL8192CUPHY_REG_1T_HPArray;
  86. rtlphy->hwparam_tables[RADIOA_1T].length =
  87. RTL8192CURadioA_1T_HPArrayLength;
  88. rtlphy->hwparam_tables[RADIOA_1T].pdata =
  89. RTL8192CURadioA_1T_HPArray;
  90. rtlphy->hwparam_tables[RADIOB_1T].length =
  91. RTL8192CURADIOB_1TARRAYLENGTH;
  92. rtlphy->hwparam_tables[RADIOB_1T].pdata =
  93. RTL8192CU_RADIOB_1TARRAY;
  94. rtlphy->hwparam_tables[AGCTAB_1T].length =
  95. RTL8192CUAGCTAB_1T_HPArrayLength;
  96. rtlphy->hwparam_tables[AGCTAB_1T].pdata =
  97. Rtl8192CUAGCTAB_1T_HPArray;
  98. } else {
  99. rtlphy->hwparam_tables[PHY_REG_1T].length =
  100. RTL8192CUPHY_REG_1TARRAY_LENGTH;
  101. rtlphy->hwparam_tables[PHY_REG_1T].pdata =
  102. RTL8192CUPHY_REG_1TARRAY;
  103. rtlphy->hwparam_tables[RADIOA_1T].length =
  104. RTL8192CURADIOA_1TARRAYLENGTH;
  105. rtlphy->hwparam_tables[RADIOA_1T].pdata =
  106. RTL8192CU_RADIOA_1TARRAY;
  107. rtlphy->hwparam_tables[RADIOB_1T].length =
  108. RTL8192CURADIOB_1TARRAYLENGTH;
  109. rtlphy->hwparam_tables[RADIOB_1T].pdata =
  110. RTL8192CU_RADIOB_1TARRAY;
  111. rtlphy->hwparam_tables[AGCTAB_1T].length =
  112. RTL8192CUAGCTAB_1TARRAYLENGTH;
  113. rtlphy->hwparam_tables[AGCTAB_1T].pdata =
  114. RTL8192CUAGCTAB_1TARRAY;
  115. }
  116. }
  117. static void _rtl92cu_read_txpower_info_from_hwpg(struct ieee80211_hw *hw,
  118. bool autoload_fail,
  119. u8 *hwinfo)
  120. {
  121. struct rtl_priv *rtlpriv = rtl_priv(hw);
  122. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  123. u8 rf_path, index, tempval;
  124. u16 i;
  125. for (rf_path = 0; rf_path < 2; rf_path++) {
  126. for (i = 0; i < 3; i++) {
  127. if (!autoload_fail) {
  128. rtlefuse->
  129. eeprom_chnlarea_txpwr_cck[rf_path][i] =
  130. hwinfo[EEPROM_TXPOWERCCK + rf_path * 3 + i];
  131. rtlefuse->
  132. eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] =
  133. hwinfo[EEPROM_TXPOWERHT40_1S + rf_path * 3 +
  134. i];
  135. } else {
  136. rtlefuse->
  137. eeprom_chnlarea_txpwr_cck[rf_path][i] =
  138. EEPROM_DEFAULT_TXPOWERLEVEL;
  139. rtlefuse->
  140. eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] =
  141. EEPROM_DEFAULT_TXPOWERLEVEL;
  142. }
  143. }
  144. }
  145. for (i = 0; i < 3; i++) {
  146. if (!autoload_fail)
  147. tempval = hwinfo[EEPROM_TXPOWERHT40_2SDIFF + i];
  148. else
  149. tempval = EEPROM_DEFAULT_HT40_2SDIFF;
  150. rtlefuse->eeprom_chnlarea_txpwr_ht40_2sdiif[RF90_PATH_A][i] =
  151. (tempval & 0xf);
  152. rtlefuse->eeprom_chnlarea_txpwr_ht40_2sdiif[RF90_PATH_B][i] =
  153. ((tempval & 0xf0) >> 4);
  154. }
  155. for (rf_path = 0; rf_path < 2; rf_path++)
  156. for (i = 0; i < 3; i++)
  157. RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
  158. ("RF(%d) EEPROM CCK Area(%d) = 0x%x\n", rf_path,
  159. i, rtlefuse->
  160. eeprom_chnlarea_txpwr_cck[rf_path][i]));
  161. for (rf_path = 0; rf_path < 2; rf_path++)
  162. for (i = 0; i < 3; i++)
  163. RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
  164. ("RF(%d) EEPROM HT40 1S Area(%d) = 0x%x\n",
  165. rf_path, i,
  166. rtlefuse->
  167. eeprom_chnlarea_txpwr_ht40_1s[rf_path][i]));
  168. for (rf_path = 0; rf_path < 2; rf_path++)
  169. for (i = 0; i < 3; i++)
  170. RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
  171. ("RF(%d) EEPROM HT40 2S Diff Area(%d) = 0x%x\n",
  172. rf_path, i,
  173. rtlefuse->
  174. eeprom_chnlarea_txpwr_ht40_2sdiif[rf_path]
  175. [i]));
  176. for (rf_path = 0; rf_path < 2; rf_path++) {
  177. for (i = 0; i < 14; i++) {
  178. index = _rtl92c_get_chnl_group((u8) i);
  179. rtlefuse->txpwrlevel_cck[rf_path][i] =
  180. rtlefuse->eeprom_chnlarea_txpwr_cck[rf_path][index];
  181. rtlefuse->txpwrlevel_ht40_1s[rf_path][i] =
  182. rtlefuse->
  183. eeprom_chnlarea_txpwr_ht40_1s[rf_path][index];
  184. if ((rtlefuse->
  185. eeprom_chnlarea_txpwr_ht40_1s[rf_path][index] -
  186. rtlefuse->
  187. eeprom_chnlarea_txpwr_ht40_2sdiif[rf_path][index])
  188. > 0) {
  189. rtlefuse->txpwrlevel_ht40_2s[rf_path][i] =
  190. rtlefuse->
  191. eeprom_chnlarea_txpwr_ht40_1s[rf_path]
  192. [index] - rtlefuse->
  193. eeprom_chnlarea_txpwr_ht40_2sdiif[rf_path]
  194. [index];
  195. } else {
  196. rtlefuse->txpwrlevel_ht40_2s[rf_path][i] = 0;
  197. }
  198. }
  199. for (i = 0; i < 14; i++) {
  200. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  201. ("RF(%d)-Ch(%d) [CCK / HT40_1S / HT40_2S] = "
  202. "[0x%x / 0x%x / 0x%x]\n", rf_path, i,
  203. rtlefuse->txpwrlevel_cck[rf_path][i],
  204. rtlefuse->txpwrlevel_ht40_1s[rf_path][i],
  205. rtlefuse->txpwrlevel_ht40_2s[rf_path][i]));
  206. }
  207. }
  208. for (i = 0; i < 3; i++) {
  209. if (!autoload_fail) {
  210. rtlefuse->eeprom_pwrlimit_ht40[i] =
  211. hwinfo[EEPROM_TXPWR_GROUP + i];
  212. rtlefuse->eeprom_pwrlimit_ht20[i] =
  213. hwinfo[EEPROM_TXPWR_GROUP + 3 + i];
  214. } else {
  215. rtlefuse->eeprom_pwrlimit_ht40[i] = 0;
  216. rtlefuse->eeprom_pwrlimit_ht20[i] = 0;
  217. }
  218. }
  219. for (rf_path = 0; rf_path < 2; rf_path++) {
  220. for (i = 0; i < 14; i++) {
  221. index = _rtl92c_get_chnl_group((u8) i);
  222. if (rf_path == RF90_PATH_A) {
  223. rtlefuse->pwrgroup_ht20[rf_path][i] =
  224. (rtlefuse->eeprom_pwrlimit_ht20[index]
  225. & 0xf);
  226. rtlefuse->pwrgroup_ht40[rf_path][i] =
  227. (rtlefuse->eeprom_pwrlimit_ht40[index]
  228. & 0xf);
  229. } else if (rf_path == RF90_PATH_B) {
  230. rtlefuse->pwrgroup_ht20[rf_path][i] =
  231. ((rtlefuse->eeprom_pwrlimit_ht20[index]
  232. & 0xf0) >> 4);
  233. rtlefuse->pwrgroup_ht40[rf_path][i] =
  234. ((rtlefuse->eeprom_pwrlimit_ht40[index]
  235. & 0xf0) >> 4);
  236. }
  237. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  238. ("RF-%d pwrgroup_ht20[%d] = 0x%x\n",
  239. rf_path, i,
  240. rtlefuse->pwrgroup_ht20[rf_path][i]));
  241. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  242. ("RF-%d pwrgroup_ht40[%d] = 0x%x\n",
  243. rf_path, i,
  244. rtlefuse->pwrgroup_ht40[rf_path][i]));
  245. }
  246. }
  247. for (i = 0; i < 14; i++) {
  248. index = _rtl92c_get_chnl_group((u8) i);
  249. if (!autoload_fail)
  250. tempval = hwinfo[EEPROM_TXPOWERHT20DIFF + index];
  251. else
  252. tempval = EEPROM_DEFAULT_HT20_DIFF;
  253. rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] = (tempval & 0xF);
  254. rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] =
  255. ((tempval >> 4) & 0xF);
  256. if (rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] & BIT(3))
  257. rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] |= 0xF0;
  258. if (rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] & BIT(3))
  259. rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] |= 0xF0;
  260. index = _rtl92c_get_chnl_group((u8) i);
  261. if (!autoload_fail)
  262. tempval = hwinfo[EEPROM_TXPOWER_OFDMDIFF + index];
  263. else
  264. tempval = EEPROM_DEFAULT_LEGACYHTTXPOWERDIFF;
  265. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i] = (tempval & 0xF);
  266. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i] =
  267. ((tempval >> 4) & 0xF);
  268. }
  269. rtlefuse->legacy_ht_txpowerdiff =
  270. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][7];
  271. for (i = 0; i < 14; i++)
  272. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  273. ("RF-A Ht20 to HT40 Diff[%d] = 0x%x\n", i,
  274. rtlefuse->txpwr_ht20diff[RF90_PATH_A][i]));
  275. for (i = 0; i < 14; i++)
  276. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  277. ("RF-A Legacy to Ht40 Diff[%d] = 0x%x\n", i,
  278. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i]));
  279. for (i = 0; i < 14; i++)
  280. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  281. ("RF-B Ht20 to HT40 Diff[%d] = 0x%x\n", i,
  282. rtlefuse->txpwr_ht20diff[RF90_PATH_B][i]));
  283. for (i = 0; i < 14; i++)
  284. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  285. ("RF-B Legacy to HT40 Diff[%d] = 0x%x\n", i,
  286. rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i]));
  287. if (!autoload_fail)
  288. rtlefuse->eeprom_regulatory = (hwinfo[RF_OPTION1] & 0x7);
  289. else
  290. rtlefuse->eeprom_regulatory = 0;
  291. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  292. ("eeprom_regulatory = 0x%x\n", rtlefuse->eeprom_regulatory));
  293. if (!autoload_fail) {
  294. rtlefuse->eeprom_tssi[RF90_PATH_A] = hwinfo[EEPROM_TSSI_A];
  295. rtlefuse->eeprom_tssi[RF90_PATH_B] = hwinfo[EEPROM_TSSI_B];
  296. } else {
  297. rtlefuse->eeprom_tssi[RF90_PATH_A] = EEPROM_DEFAULT_TSSI;
  298. rtlefuse->eeprom_tssi[RF90_PATH_B] = EEPROM_DEFAULT_TSSI;
  299. }
  300. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  301. ("TSSI_A = 0x%x, TSSI_B = 0x%x\n",
  302. rtlefuse->eeprom_tssi[RF90_PATH_A],
  303. rtlefuse->eeprom_tssi[RF90_PATH_B]));
  304. if (!autoload_fail)
  305. tempval = hwinfo[EEPROM_THERMAL_METER];
  306. else
  307. tempval = EEPROM_DEFAULT_THERMALMETER;
  308. rtlefuse->eeprom_thermalmeter = (tempval & 0x1f);
  309. if (rtlefuse->eeprom_thermalmeter < 0x06 ||
  310. rtlefuse->eeprom_thermalmeter > 0x1c)
  311. rtlefuse->eeprom_thermalmeter = 0x12;
  312. if (rtlefuse->eeprom_thermalmeter == 0x1f || autoload_fail)
  313. rtlefuse->apk_thermalmeterignore = true;
  314. rtlefuse->thermalmeter[0] = rtlefuse->eeprom_thermalmeter;
  315. RTPRINT(rtlpriv, FINIT, INIT_TxPower,
  316. ("thermalmeter = 0x%x\n", rtlefuse->eeprom_thermalmeter));
  317. }
  318. static void _rtl92cu_read_board_type(struct ieee80211_hw *hw, u8 *contents)
  319. {
  320. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  321. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  322. u8 boardType;
  323. if (IS_NORMAL_CHIP(rtlhal->version)) {
  324. boardType = ((contents[EEPROM_RF_OPT1]) &
  325. BOARD_TYPE_NORMAL_MASK) >> 5; /*bit[7:5]*/
  326. } else {
  327. boardType = contents[EEPROM_RF_OPT4];
  328. boardType &= BOARD_TYPE_TEST_MASK;
  329. }
  330. rtlefuse->board_type = boardType;
  331. if (IS_HIGHT_PA(rtlefuse->board_type))
  332. rtlefuse->external_pa = 1;
  333. printk(KERN_INFO "rtl8192cu: Board Type %x\n", rtlefuse->board_type);
  334. #ifdef CONFIG_ANTENNA_DIVERSITY
  335. /* Antenna Diversity setting. */
  336. if (registry_par->antdiv_cfg == 2) /* 2: From Efuse */
  337. rtl_efuse->antenna_cfg = (contents[EEPROM_RF_OPT1]&0x18)>>3;
  338. else
  339. rtl_efuse->antenna_cfg = registry_par->antdiv_cfg; /* 0:OFF, */
  340. printk(KERN_INFO "rtl8192cu: Antenna Config %x\n",
  341. rtl_efuse->antenna_cfg);
  342. #endif
  343. }
  344. #ifdef CONFIG_BT_COEXIST
  345. static void _update_bt_param(_adapter *padapter)
  346. {
  347. struct btcoexist_priv *pbtpriv = &(padapter->halpriv.bt_coexist);
  348. struct registry_priv *registry_par = &padapter->registrypriv;
  349. if (2 != registry_par->bt_iso) {
  350. /* 0:Low, 1:High, 2:From Efuse */
  351. pbtpriv->BT_Ant_isolation = registry_par->bt_iso;
  352. }
  353. if (registry_par->bt_sco == 1) {
  354. /* 0:Idle, 1:None-SCO, 2:SCO, 3:From Counter, 4.Busy,
  355. * 5.OtherBusy */
  356. pbtpriv->BT_Service = BT_OtherAction;
  357. } else if (registry_par->bt_sco == 2) {
  358. pbtpriv->BT_Service = BT_SCO;
  359. } else if (registry_par->bt_sco == 4) {
  360. pbtpriv->BT_Service = BT_Busy;
  361. } else if (registry_par->bt_sco == 5) {
  362. pbtpriv->BT_Service = BT_OtherBusy;
  363. } else {
  364. pbtpriv->BT_Service = BT_Idle;
  365. }
  366. pbtpriv->BT_Ampdu = registry_par->bt_ampdu;
  367. pbtpriv->bCOBT = _TRUE;
  368. pbtpriv->BtEdcaUL = 0;
  369. pbtpriv->BtEdcaDL = 0;
  370. pbtpriv->BtRssiState = 0xff;
  371. pbtpriv->bInitSet = _FALSE;
  372. pbtpriv->bBTBusyTraffic = _FALSE;
  373. pbtpriv->bBTTrafficModeSet = _FALSE;
  374. pbtpriv->bBTNonTrafficModeSet = _FALSE;
  375. pbtpriv->CurrentState = 0;
  376. pbtpriv->PreviousState = 0;
  377. printk(KERN_INFO "rtl8192cu: BT Coexistance = %s\n",
  378. (pbtpriv->BT_Coexist == _TRUE) ? "enable" : "disable");
  379. if (pbtpriv->BT_Coexist) {
  380. if (pbtpriv->BT_Ant_Num == Ant_x2)
  381. printk(KERN_INFO "rtl8192cu: BlueTooth BT_"
  382. "Ant_Num = Antx2\n");
  383. else if (pbtpriv->BT_Ant_Num == Ant_x1)
  384. printk(KERN_INFO "rtl8192cu: BlueTooth BT_"
  385. "Ant_Num = Antx1\n");
  386. switch (pbtpriv->BT_CoexistType) {
  387. case BT_2Wire:
  388. printk(KERN_INFO "rtl8192cu: BlueTooth BT_"
  389. "CoexistType = BT_2Wire\n");
  390. break;
  391. case BT_ISSC_3Wire:
  392. printk(KERN_INFO "rtl8192cu: BlueTooth BT_"
  393. "CoexistType = BT_ISSC_3Wire\n");
  394. break;
  395. case BT_Accel:
  396. printk(KERN_INFO "rtl8192cu: BlueTooth BT_"
  397. "CoexistType = BT_Accel\n");
  398. break;
  399. case BT_CSR_BC4:
  400. printk(KERN_INFO "rtl8192cu: BlueTooth BT_"
  401. "CoexistType = BT_CSR_BC4\n");
  402. break;
  403. case BT_CSR_BC8:
  404. printk(KERN_INFO "rtl8192cu: BlueTooth BT_"
  405. "CoexistType = BT_CSR_BC8\n");
  406. break;
  407. case BT_RTL8756:
  408. printk(KERN_INFO "rtl8192cu: BlueTooth BT_"
  409. "CoexistType = BT_RTL8756\n");
  410. break;
  411. default:
  412. printk(KERN_INFO "rtl8192cu: BlueTooth BT_"
  413. "CoexistType = Unknown\n");
  414. break;
  415. }
  416. printk(KERN_INFO "rtl8192cu: BlueTooth BT_Ant_isolation = %d\n",
  417. pbtpriv->BT_Ant_isolation);
  418. switch (pbtpriv->BT_Service) {
  419. case BT_OtherAction:
  420. printk(KERN_INFO "rtl8192cu: BlueTooth BT_Service = "
  421. "BT_OtherAction\n");
  422. break;
  423. case BT_SCO:
  424. printk(KERN_INFO "rtl8192cu: BlueTooth BT_Service = "
  425. "BT_SCO\n");
  426. break;
  427. case BT_Busy:
  428. printk(KERN_INFO "rtl8192cu: BlueTooth BT_Service = "
  429. "BT_Busy\n");
  430. break;
  431. case BT_OtherBusy:
  432. printk(KERN_INFO "rtl8192cu: BlueTooth BT_Service = "
  433. "BT_OtherBusy\n");
  434. break;
  435. default:
  436. printk(KERN_INFO "rtl8192cu: BlueTooth BT_Service = "
  437. "BT_Idle\n");
  438. break;
  439. }
  440. printk(KERN_INFO "rtl8192cu: BT_RadioSharedType = 0x%x\n",
  441. pbtpriv->BT_RadioSharedType);
  442. }
  443. }
  444. #define GET_BT_COEXIST(priv) (&priv->bt_coexist)
  445. static void _rtl92cu_read_bluetooth_coexistInfo(struct ieee80211_hw *hw,
  446. u8 *contents,
  447. bool bautoloadfailed);
  448. {
  449. HAL_DATA_TYPE *pHalData = GET_HAL_DATA(Adapter);
  450. bool isNormal = IS_NORMAL_CHIP(pHalData->VersionID);
  451. struct btcoexist_priv *pbtpriv = &pHalData->bt_coexist;
  452. u8 rf_opt4;
  453. _rtw_memset(pbtpriv, 0, sizeof(struct btcoexist_priv));
  454. if (AutoloadFail) {
  455. pbtpriv->BT_Coexist = _FALSE;
  456. pbtpriv->BT_CoexistType = BT_2Wire;
  457. pbtpriv->BT_Ant_Num = Ant_x2;
  458. pbtpriv->BT_Ant_isolation = 0;
  459. pbtpriv->BT_RadioSharedType = BT_Radio_Shared;
  460. return;
  461. }
  462. if (isNormal) {
  463. if (pHalData->BoardType == BOARD_USB_COMBO)
  464. pbtpriv->BT_Coexist = _TRUE;
  465. else
  466. pbtpriv->BT_Coexist = ((PROMContent[EEPROM_RF_OPT3] &
  467. 0x20) >> 5); /* bit[5] */
  468. rf_opt4 = PROMContent[EEPROM_RF_OPT4];
  469. pbtpriv->BT_CoexistType = ((rf_opt4&0xe)>>1); /* bit [3:1] */
  470. pbtpriv->BT_Ant_Num = (rf_opt4&0x1); /* bit [0] */
  471. pbtpriv->BT_Ant_isolation = ((rf_opt4&0x10)>>4); /* bit [4] */
  472. pbtpriv->BT_RadioSharedType = ((rf_opt4&0x20)>>5); /* bit [5] */
  473. } else {
  474. pbtpriv->BT_Coexist = (PROMContent[EEPROM_RF_OPT4] >> 4) ?
  475. _TRUE : _FALSE;
  476. }
  477. _update_bt_param(Adapter);
  478. }
  479. #endif
  480. static void _rtl92cu_read_adapter_info(struct ieee80211_hw *hw)
  481. {
  482. struct rtl_priv *rtlpriv = rtl_priv(hw);
  483. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  484. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  485. u16 i, usvalue;
  486. u8 hwinfo[HWSET_MAX_SIZE] = {0};
  487. u16 eeprom_id;
  488. if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
  489. rtl_efuse_shadow_map_update(hw);
  490. memcpy((void *)hwinfo,
  491. (void *)&rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
  492. HWSET_MAX_SIZE);
  493. } else if (rtlefuse->epromtype == EEPROM_93C46) {
  494. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  495. ("RTL819X Not boot from eeprom, check it !!"));
  496. }
  497. RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_LOUD, ("MAP\n"),
  498. hwinfo, HWSET_MAX_SIZE);
  499. eeprom_id = *((u16 *)&hwinfo[0]);
  500. if (eeprom_id != RTL8190_EEPROM_ID) {
  501. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  502. ("EEPROM ID(%#x) is invalid!!\n", eeprom_id));
  503. rtlefuse->autoload_failflag = true;
  504. } else {
  505. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, ("Autoload OK\n"));
  506. rtlefuse->autoload_failflag = false;
  507. }
  508. if (rtlefuse->autoload_failflag == true)
  509. return;
  510. for (i = 0; i < 6; i += 2) {
  511. usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR + i];
  512. *((u16 *) (&rtlefuse->dev_addr[i])) = usvalue;
  513. }
  514. printk(KERN_INFO "rtl8192cu: MAC address: %pM\n", rtlefuse->dev_addr);
  515. _rtl92cu_read_txpower_info_from_hwpg(hw,
  516. rtlefuse->autoload_failflag, hwinfo);
  517. rtlefuse->eeprom_vid = *(u16 *)&hwinfo[EEPROM_VID];
  518. rtlefuse->eeprom_did = *(u16 *)&hwinfo[EEPROM_DID];
  519. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
  520. (" VID = 0x%02x PID = 0x%02x\n",
  521. rtlefuse->eeprom_vid, rtlefuse->eeprom_did));
  522. rtlefuse->eeprom_channelplan = *(u8 *)&hwinfo[EEPROM_CHANNELPLAN];
  523. rtlefuse->eeprom_version = *(u16 *)&hwinfo[EEPROM_VERSION];
  524. rtlefuse->txpwr_fromeprom = true;
  525. rtlefuse->eeprom_oemid = *(u8 *)&hwinfo[EEPROM_CUSTOMER_ID];
  526. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  527. ("EEPROM Customer ID: 0x%2x\n", rtlefuse->eeprom_oemid));
  528. if (rtlhal->oem_id == RT_CID_DEFAULT) {
  529. switch (rtlefuse->eeprom_oemid) {
  530. case EEPROM_CID_DEFAULT:
  531. if (rtlefuse->eeprom_did == 0x8176) {
  532. if ((rtlefuse->eeprom_svid == 0x103C &&
  533. rtlefuse->eeprom_smid == 0x1629))
  534. rtlhal->oem_id = RT_CID_819x_HP;
  535. else
  536. rtlhal->oem_id = RT_CID_DEFAULT;
  537. } else {
  538. rtlhal->oem_id = RT_CID_DEFAULT;
  539. }
  540. break;
  541. case EEPROM_CID_TOSHIBA:
  542. rtlhal->oem_id = RT_CID_TOSHIBA;
  543. break;
  544. case EEPROM_CID_QMI:
  545. rtlhal->oem_id = RT_CID_819x_QMI;
  546. break;
  547. case EEPROM_CID_WHQL:
  548. default:
  549. rtlhal->oem_id = RT_CID_DEFAULT;
  550. break;
  551. }
  552. }
  553. _rtl92cu_read_board_type(hw, hwinfo);
  554. #ifdef CONFIG_BT_COEXIST
  555. _rtl92cu_read_bluetooth_coexistInfo(hw, hwinfo,
  556. rtlefuse->autoload_failflag);
  557. #endif
  558. }
  559. static void _rtl92cu_hal_customized_behavior(struct ieee80211_hw *hw)
  560. {
  561. struct rtl_priv *rtlpriv = rtl_priv(hw);
  562. struct rtl_usb_priv *usb_priv = rtl_usbpriv(hw);
  563. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  564. switch (rtlhal->oem_id) {
  565. case RT_CID_819x_HP:
  566. usb_priv->ledctl.led_opendrain = true;
  567. break;
  568. case RT_CID_819x_Lenovo:
  569. case RT_CID_DEFAULT:
  570. case RT_CID_TOSHIBA:
  571. case RT_CID_CCX:
  572. case RT_CID_819x_Acer:
  573. case RT_CID_WHQL:
  574. default:
  575. break;
  576. }
  577. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
  578. ("RT Customized ID: 0x%02X\n", rtlhal->oem_id));
  579. }
  580. void rtl92cu_read_eeprom_info(struct ieee80211_hw *hw)
  581. {
  582. struct rtl_priv *rtlpriv = rtl_priv(hw);
  583. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  584. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  585. u8 tmp_u1b;
  586. if (!IS_NORMAL_CHIP(rtlhal->version))
  587. return;
  588. tmp_u1b = rtl_read_byte(rtlpriv, REG_9346CR);
  589. rtlefuse->epromtype = (tmp_u1b & BOOT_FROM_EEPROM) ?
  590. EEPROM_93C46 : EEPROM_BOOT_EFUSE;
  591. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, ("Boot from %s\n",
  592. (tmp_u1b & BOOT_FROM_EEPROM) ? "EERROM" : "EFUSE"));
  593. rtlefuse->autoload_failflag = (tmp_u1b & EEPROM_EN) ? false : true;
  594. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, ("Autoload %s\n",
  595. (tmp_u1b & EEPROM_EN) ? "OK!!" : "ERR!!"));
  596. _rtl92cu_read_adapter_info(hw);
  597. _rtl92cu_hal_customized_behavior(hw);
  598. return;
  599. }
  600. static int _rtl92cu_init_power_on(struct ieee80211_hw *hw)
  601. {
  602. struct rtl_priv *rtlpriv = rtl_priv(hw);
  603. int status = 0;
  604. u16 value16;
  605. u8 value8;
  606. /* polling autoload done. */
  607. u32 pollingCount = 0;
  608. do {
  609. if (rtl_read_byte(rtlpriv, REG_APS_FSMCO) & PFM_ALDN) {
  610. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
  611. ("Autoload Done!\n"));
  612. break;
  613. }
  614. if (pollingCount++ > 100) {
  615. RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG,
  616. ("Failed to polling REG_APS_FSMCO[PFM_ALDN]"
  617. " done!\n"));
  618. return -ENODEV;
  619. }
  620. } while (true);
  621. /* 0. RSV_CTRL 0x1C[7:0] = 0 unlock ISO/CLK/Power control register */
  622. rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0);
  623. /* Power on when re-enter from IPS/Radio off/card disable */
  624. /* enable SPS into PWM mode */
  625. rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x2b);
  626. udelay(100);
  627. value8 = rtl_read_byte(rtlpriv, REG_LDOV12D_CTRL);
  628. if (0 == (value8 & LDV12_EN)) {
  629. value8 |= LDV12_EN;
  630. rtl_write_byte(rtlpriv, REG_LDOV12D_CTRL, value8);
  631. RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG,
  632. (" power-on :REG_LDOV12D_CTRL Reg0x21:0x%02x.\n",
  633. value8));
  634. udelay(100);
  635. value8 = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL);
  636. value8 &= ~ISO_MD2PP;
  637. rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, value8);
  638. }
  639. /* auto enable WLAN */
  640. pollingCount = 0;
  641. value16 = rtl_read_word(rtlpriv, REG_APS_FSMCO);
  642. value16 |= APFM_ONMAC;
  643. rtl_write_word(rtlpriv, REG_APS_FSMCO, value16);
  644. do {
  645. if (!(rtl_read_word(rtlpriv, REG_APS_FSMCO) & APFM_ONMAC)) {
  646. printk(KERN_INFO "rtl8192cu: MAC auto ON okay!\n");
  647. break;
  648. }
  649. if (pollingCount++ > 100) {
  650. RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG,
  651. ("Failed to polling REG_APS_FSMCO[APFM_ONMAC]"
  652. " done!\n"));
  653. return -ENODEV;
  654. }
  655. } while (true);
  656. /* Enable Radio ,GPIO ,and LED function */
  657. rtl_write_word(rtlpriv, REG_APS_FSMCO, 0x0812);
  658. /* release RF digital isolation */
  659. value16 = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL);
  660. value16 &= ~ISO_DIOR;
  661. rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, value16);
  662. /* Reconsider when to do this operation after asking HWSD. */
  663. pollingCount = 0;
  664. rtl_write_byte(rtlpriv, REG_APSD_CTRL, (rtl_read_byte(rtlpriv,
  665. REG_APSD_CTRL) & ~BIT(6)));
  666. do {
  667. pollingCount++;
  668. } while ((pollingCount < 200) &&
  669. (rtl_read_byte(rtlpriv, REG_APSD_CTRL) & BIT(7)));
  670. /* Enable MAC DMA/WMAC/SCHEDULE/SEC block */
  671. value16 = rtl_read_word(rtlpriv, REG_CR);
  672. value16 |= (HCI_TXDMA_EN | HCI_RXDMA_EN | TXDMA_EN | RXDMA_EN |
  673. PROTOCOL_EN | SCHEDULE_EN | MACTXEN | MACRXEN | ENSEC);
  674. rtl_write_word(rtlpriv, REG_CR, value16);
  675. return status;
  676. }
  677. static void _rtl92cu_init_queue_reserved_page(struct ieee80211_hw *hw,
  678. bool wmm_enable,
  679. u8 out_ep_num,
  680. u8 queue_sel)
  681. {
  682. struct rtl_priv *rtlpriv = rtl_priv(hw);
  683. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  684. bool isChipN = IS_NORMAL_CHIP(rtlhal->version);
  685. u32 outEPNum = (u32)out_ep_num;
  686. u32 numHQ = 0;
  687. u32 numLQ = 0;
  688. u32 numNQ = 0;
  689. u32 numPubQ;
  690. u32 value32;
  691. u8 value8;
  692. u32 txQPageNum, txQPageUnit, txQRemainPage;
  693. if (!wmm_enable) {
  694. numPubQ = (isChipN) ? CHIP_B_PAGE_NUM_PUBQ :
  695. CHIP_A_PAGE_NUM_PUBQ;
  696. txQPageNum = TX_TOTAL_PAGE_NUMBER - numPubQ;
  697. txQPageUnit = txQPageNum/outEPNum;
  698. txQRemainPage = txQPageNum % outEPNum;
  699. if (queue_sel & TX_SELE_HQ)
  700. numHQ = txQPageUnit;
  701. if (queue_sel & TX_SELE_LQ)
  702. numLQ = txQPageUnit;
  703. /* HIGH priority queue always present in the configuration of
  704. * 2 out-ep. Remainder pages have assigned to High queue */
  705. if ((outEPNum > 1) && (txQRemainPage))
  706. numHQ += txQRemainPage;
  707. /* NOTE: This step done before writting REG_RQPN. */
  708. if (isChipN) {
  709. if (queue_sel & TX_SELE_NQ)
  710. numNQ = txQPageUnit;
  711. value8 = (u8)_NPQ(numNQ);
  712. rtl_write_byte(rtlpriv, REG_RQPN_NPQ, value8);
  713. }
  714. } else {
  715. /* for WMM ,number of out-ep must more than or equal to 2! */
  716. numPubQ = isChipN ? WMM_CHIP_B_PAGE_NUM_PUBQ :
  717. WMM_CHIP_A_PAGE_NUM_PUBQ;
  718. if (queue_sel & TX_SELE_HQ) {
  719. numHQ = isChipN ? WMM_CHIP_B_PAGE_NUM_HPQ :
  720. WMM_CHIP_A_PAGE_NUM_HPQ;
  721. }
  722. if (queue_sel & TX_SELE_LQ) {
  723. numLQ = isChipN ? WMM_CHIP_B_PAGE_NUM_LPQ :
  724. WMM_CHIP_A_PAGE_NUM_LPQ;
  725. }
  726. /* NOTE: This step done before writting REG_RQPN. */
  727. if (isChipN) {
  728. if (queue_sel & TX_SELE_NQ)
  729. numNQ = WMM_CHIP_B_PAGE_NUM_NPQ;
  730. value8 = (u8)_NPQ(numNQ);
  731. rtl_write_byte(rtlpriv, REG_RQPN_NPQ, value8);
  732. }
  733. }
  734. /* TX DMA */
  735. value32 = _HPQ(numHQ) | _LPQ(numLQ) | _PUBQ(numPubQ) | LD_RQPN;
  736. rtl_write_dword(rtlpriv, REG_RQPN, value32);
  737. }
  738. static void _rtl92c_init_trx_buffer(struct ieee80211_hw *hw, bool wmm_enable)
  739. {
  740. struct rtl_priv *rtlpriv = rtl_priv(hw);
  741. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  742. u8 txpktbuf_bndy;
  743. u8 value8;
  744. if (!wmm_enable)
  745. txpktbuf_bndy = TX_PAGE_BOUNDARY;
  746. else /* for WMM */
  747. txpktbuf_bndy = (IS_NORMAL_CHIP(rtlhal->version))
  748. ? WMM_CHIP_B_TX_PAGE_BOUNDARY
  749. : WMM_CHIP_A_TX_PAGE_BOUNDARY;
  750. rtl_write_byte(rtlpriv, REG_TXPKTBUF_BCNQ_BDNY, txpktbuf_bndy);
  751. rtl_write_byte(rtlpriv, REG_TXPKTBUF_MGQ_BDNY, txpktbuf_bndy);
  752. rtl_write_byte(rtlpriv, REG_TXPKTBUF_WMAC_LBK_BF_HD, txpktbuf_bndy);
  753. rtl_write_byte(rtlpriv, REG_TRXFF_BNDY, txpktbuf_bndy);
  754. rtl_write_byte(rtlpriv, REG_TDECTRL+1, txpktbuf_bndy);
  755. rtl_write_word(rtlpriv, (REG_TRXFF_BNDY + 2), 0x27FF);
  756. value8 = _PSRX(RX_PAGE_SIZE_REG_VALUE) | _PSTX(PBP_128);
  757. rtl_write_byte(rtlpriv, REG_PBP, value8);
  758. }
  759. static void _rtl92c_init_chipN_reg_priority(struct ieee80211_hw *hw, u16 beQ,
  760. u16 bkQ, u16 viQ, u16 voQ,
  761. u16 mgtQ, u16 hiQ)
  762. {
  763. struct rtl_priv *rtlpriv = rtl_priv(hw);
  764. u16 value16 = (rtl_read_word(rtlpriv, REG_TRXDMA_CTRL) & 0x7);
  765. value16 |= _TXDMA_BEQ_MAP(beQ) | _TXDMA_BKQ_MAP(bkQ) |
  766. _TXDMA_VIQ_MAP(viQ) | _TXDMA_VOQ_MAP(voQ) |
  767. _TXDMA_MGQ_MAP(mgtQ) | _TXDMA_HIQ_MAP(hiQ);
  768. rtl_write_word(rtlpriv, REG_TRXDMA_CTRL, value16);
  769. }
  770. static void _rtl92cu_init_chipN_one_out_ep_priority(struct ieee80211_hw *hw,
  771. bool wmm_enable,
  772. u8 queue_sel)
  773. {
  774. u16 uninitialized_var(value);
  775. switch (queue_sel) {
  776. case TX_SELE_HQ:
  777. value = QUEUE_HIGH;
  778. break;
  779. case TX_SELE_LQ:
  780. value = QUEUE_LOW;
  781. break;
  782. case TX_SELE_NQ:
  783. value = QUEUE_NORMAL;
  784. break;
  785. default:
  786. WARN_ON(1); /* Shall not reach here! */
  787. break;
  788. }
  789. _rtl92c_init_chipN_reg_priority(hw, value, value, value, value,
  790. value, value);
  791. printk(KERN_INFO "rtl8192cu: Tx queue select: 0x%02x\n", queue_sel);
  792. }
  793. static void _rtl92cu_init_chipN_two_out_ep_priority(struct ieee80211_hw *hw,
  794. bool wmm_enable,
  795. u8 queue_sel)
  796. {
  797. u16 beQ, bkQ, viQ, voQ, mgtQ, hiQ;
  798. u16 uninitialized_var(valueHi);
  799. u16 uninitialized_var(valueLow);
  800. switch (queue_sel) {
  801. case (TX_SELE_HQ | TX_SELE_LQ):
  802. valueHi = QUEUE_HIGH;
  803. valueLow = QUEUE_LOW;
  804. break;
  805. case (TX_SELE_NQ | TX_SELE_LQ):
  806. valueHi = QUEUE_NORMAL;
  807. valueLow = QUEUE_LOW;
  808. break;
  809. case (TX_SELE_HQ | TX_SELE_NQ):
  810. valueHi = QUEUE_HIGH;
  811. valueLow = QUEUE_NORMAL;
  812. break;
  813. default:
  814. WARN_ON(1);
  815. break;
  816. }
  817. if (!wmm_enable) {
  818. beQ = valueLow;
  819. bkQ = valueLow;
  820. viQ = valueHi;
  821. voQ = valueHi;
  822. mgtQ = valueHi;
  823. hiQ = valueHi;
  824. } else {/* for WMM ,CONFIG_OUT_EP_WIFI_MODE */
  825. beQ = valueHi;
  826. bkQ = valueLow;
  827. viQ = valueLow;
  828. voQ = valueHi;
  829. mgtQ = valueHi;
  830. hiQ = valueHi;
  831. }
  832. _rtl92c_init_chipN_reg_priority(hw, beQ, bkQ, viQ, voQ, mgtQ, hiQ);
  833. printk(KERN_INFO "rtl8192cu: Tx queue select: 0x%02x\n", queue_sel);
  834. }
  835. static void _rtl92cu_init_chipN_three_out_ep_priority(struct ieee80211_hw *hw,
  836. bool wmm_enable,
  837. u8 queue_sel)
  838. {
  839. u16 beQ, bkQ, viQ, voQ, mgtQ, hiQ;
  840. struct rtl_priv *rtlpriv = rtl_priv(hw);
  841. if (!wmm_enable) { /* typical setting */
  842. beQ = QUEUE_LOW;
  843. bkQ = QUEUE_LOW;
  844. viQ = QUEUE_NORMAL;
  845. voQ = QUEUE_HIGH;
  846. mgtQ = QUEUE_HIGH;
  847. hiQ = QUEUE_HIGH;
  848. } else { /* for WMM */
  849. beQ = QUEUE_LOW;
  850. bkQ = QUEUE_NORMAL;
  851. viQ = QUEUE_NORMAL;
  852. voQ = QUEUE_HIGH;
  853. mgtQ = QUEUE_HIGH;
  854. hiQ = QUEUE_HIGH;
  855. }
  856. _rtl92c_init_chipN_reg_priority(hw, beQ, bkQ, viQ, voQ, mgtQ, hiQ);
  857. RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG,
  858. ("Tx queue select :0x%02x..\n", queue_sel));
  859. }
  860. static void _rtl92cu_init_chipN_queue_priority(struct ieee80211_hw *hw,
  861. bool wmm_enable,
  862. u8 out_ep_num,
  863. u8 queue_sel)
  864. {
  865. switch (out_ep_num) {
  866. case 1:
  867. _rtl92cu_init_chipN_one_out_ep_priority(hw, wmm_enable,
  868. queue_sel);
  869. break;
  870. case 2:
  871. _rtl92cu_init_chipN_two_out_ep_priority(hw, wmm_enable,
  872. queue_sel);
  873. break;
  874. case 3:
  875. _rtl92cu_init_chipN_three_out_ep_priority(hw, wmm_enable,
  876. queue_sel);
  877. break;
  878. default:
  879. WARN_ON(1); /* Shall not reach here! */
  880. break;
  881. }
  882. }
  883. static void _rtl92cu_init_chipT_queue_priority(struct ieee80211_hw *hw,
  884. bool wmm_enable,
  885. u8 out_ep_num,
  886. u8 queue_sel)
  887. {
  888. u8 hq_sele = 0;
  889. struct rtl_priv *rtlpriv = rtl_priv(hw);
  890. switch (out_ep_num) {
  891. case 2: /* (TX_SELE_HQ|TX_SELE_LQ) */
  892. if (!wmm_enable) /* typical setting */
  893. hq_sele = HQSEL_VOQ | HQSEL_VIQ | HQSEL_MGTQ |
  894. HQSEL_HIQ;
  895. else /* for WMM */
  896. hq_sele = HQSEL_VOQ | HQSEL_BEQ | HQSEL_MGTQ |
  897. HQSEL_HIQ;
  898. break;
  899. case 1:
  900. if (TX_SELE_LQ == queue_sel) {
  901. /* map all endpoint to Low queue */
  902. hq_sele = 0;
  903. } else if (TX_SELE_HQ == queue_sel) {
  904. /* map all endpoint to High queue */
  905. hq_sele = HQSEL_VOQ | HQSEL_VIQ | HQSEL_BEQ |
  906. HQSEL_BKQ | HQSEL_MGTQ | HQSEL_HIQ;
  907. }
  908. break;
  909. default:
  910. WARN_ON(1); /* Shall not reach here! */
  911. break;
  912. }
  913. rtl_write_byte(rtlpriv, (REG_TRXDMA_CTRL+1), hq_sele);
  914. RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG,
  915. ("Tx queue select :0x%02x..\n", hq_sele));
  916. }
  917. static void _rtl92cu_init_queue_priority(struct ieee80211_hw *hw,
  918. bool wmm_enable,
  919. u8 out_ep_num,
  920. u8 queue_sel)
  921. {
  922. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  923. if (IS_NORMAL_CHIP(rtlhal->version))
  924. _rtl92cu_init_chipN_queue_priority(hw, wmm_enable, out_ep_num,
  925. queue_sel);
  926. else
  927. _rtl92cu_init_chipT_queue_priority(hw, wmm_enable, out_ep_num,
  928. queue_sel);
  929. }
  930. static void _rtl92cu_init_usb_aggregation(struct ieee80211_hw *hw)
  931. {
  932. }
  933. static void _rtl92cu_init_wmac_setting(struct ieee80211_hw *hw)
  934. {
  935. u16 value16;
  936. struct rtl_priv *rtlpriv = rtl_priv(hw);
  937. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  938. mac->rx_conf = (RCR_APM | RCR_AM | RCR_ADF | RCR_AB | RCR_APPFCS |
  939. RCR_APP_ICV | RCR_AMF | RCR_HTC_LOC_CTRL |
  940. RCR_APP_MIC | RCR_APP_PHYSTS | RCR_ACRC32);
  941. rtl_write_dword(rtlpriv, REG_RCR, mac->rx_conf);
  942. /* Accept all multicast address */
  943. rtl_write_dword(rtlpriv, REG_MAR, 0xFFFFFFFF);
  944. rtl_write_dword(rtlpriv, REG_MAR + 4, 0xFFFFFFFF);
  945. /* Accept all management frames */
  946. value16 = 0xFFFF;
  947. rtl92c_set_mgt_filter(hw, value16);
  948. /* Reject all control frame - default value is 0 */
  949. rtl92c_set_ctrl_filter(hw, 0x0);
  950. /* Accept all data frames */
  951. value16 = 0xFFFF;
  952. rtl92c_set_data_filter(hw, value16);
  953. }
  954. static int _rtl92cu_init_mac(struct ieee80211_hw *hw)
  955. {
  956. struct rtl_priv *rtlpriv = rtl_priv(hw);
  957. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  958. struct rtl_usb_priv *usb_priv = rtl_usbpriv(hw);
  959. struct rtl_usb *rtlusb = rtl_usbdev(usb_priv);
  960. int err = 0;
  961. u32 boundary = 0;
  962. u8 wmm_enable = false; /* TODO */
  963. u8 out_ep_nums = rtlusb->out_ep_nums;
  964. u8 queue_sel = rtlusb->out_queue_sel;
  965. err = _rtl92cu_init_power_on(hw);
  966. if (err) {
  967. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  968. ("Failed to init power on!\n"));
  969. return err;
  970. }
  971. if (!wmm_enable) {
  972. boundary = TX_PAGE_BOUNDARY;
  973. } else { /* for WMM */
  974. boundary = (IS_NORMAL_CHIP(rtlhal->version))
  975. ? WMM_CHIP_B_TX_PAGE_BOUNDARY
  976. : WMM_CHIP_A_TX_PAGE_BOUNDARY;
  977. }
  978. if (false == rtl92c_init_llt_table(hw, boundary)) {
  979. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  980. ("Failed to init LLT Table!\n"));
  981. return -EINVAL;
  982. }
  983. _rtl92cu_init_queue_reserved_page(hw, wmm_enable, out_ep_nums,
  984. queue_sel);
  985. _rtl92c_init_trx_buffer(hw, wmm_enable);
  986. _rtl92cu_init_queue_priority(hw, wmm_enable, out_ep_nums,
  987. queue_sel);
  988. /* Get Rx PHY status in order to report RSSI and others. */
  989. rtl92c_init_driver_info_size(hw, RTL92C_DRIVER_INFO_SIZE);
  990. rtl92c_init_interrupt(hw);
  991. rtl92c_init_network_type(hw);
  992. _rtl92cu_init_wmac_setting(hw);
  993. rtl92c_init_adaptive_ctrl(hw);
  994. rtl92c_init_edca(hw);
  995. rtl92c_init_rate_fallback(hw);
  996. rtl92c_init_retry_function(hw);
  997. _rtl92cu_init_usb_aggregation(hw);
  998. rtlpriv->cfg->ops->set_bw_mode(hw, NL80211_CHAN_HT20);
  999. rtl92c_set_min_space(hw, IS_92C_SERIAL(rtlhal->version));
  1000. rtl92c_init_beacon_parameters(hw, rtlhal->version);
  1001. rtl92c_init_ampdu_aggregation(hw);
  1002. rtl92c_init_beacon_max_error(hw, true);
  1003. return err;
  1004. }
  1005. void rtl92cu_enable_hw_security_config(struct ieee80211_hw *hw)
  1006. {
  1007. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1008. u8 sec_reg_value = 0x0;
  1009. struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
  1010. RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
  1011. ("PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
  1012. rtlpriv->sec.pairwise_enc_algorithm,
  1013. rtlpriv->sec.group_enc_algorithm));
  1014. if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
  1015. RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
  1016. ("not open sw encryption\n"));
  1017. return;
  1018. }
  1019. sec_reg_value = SCR_TxEncEnable | SCR_RxDecEnable;
  1020. if (rtlpriv->sec.use_defaultkey) {
  1021. sec_reg_value |= SCR_TxUseDK;
  1022. sec_reg_value |= SCR_RxUseDK;
  1023. }
  1024. if (IS_NORMAL_CHIP(rtlhal->version))
  1025. sec_reg_value |= (SCR_RXBCUSEDK | SCR_TXBCUSEDK);
  1026. rtl_write_byte(rtlpriv, REG_CR + 1, 0x02);
  1027. RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD,
  1028. ("The SECR-value %x\n", sec_reg_value));
  1029. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
  1030. }
  1031. static void _rtl92cu_hw_configure(struct ieee80211_hw *hw)
  1032. {
  1033. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1034. struct rtl_usb *rtlusb = rtl_usbdev(rtl_usbpriv(hw));
  1035. /* To Fix MAC loopback mode fail. */
  1036. rtl_write_byte(rtlpriv, REG_LDOHCI12_CTRL, 0x0f);
  1037. rtl_write_byte(rtlpriv, 0x15, 0xe9);
  1038. /* HW SEQ CTRL */
  1039. /* set 0x0 to 0xFF by tynli. Default enable HW SEQ NUM. */
  1040. rtl_write_byte(rtlpriv, REG_HWSEQ_CTRL, 0xFF);
  1041. /* fixed USB interface interference issue */
  1042. rtl_write_byte(rtlpriv, 0xfe40, 0xe0);
  1043. rtl_write_byte(rtlpriv, 0xfe41, 0x8d);
  1044. rtl_write_byte(rtlpriv, 0xfe42, 0x80);
  1045. rtlusb->reg_bcn_ctrl_val = 0x18;
  1046. rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8)rtlusb->reg_bcn_ctrl_val);
  1047. }
  1048. static void _InitPABias(struct ieee80211_hw *hw)
  1049. {
  1050. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1051. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1052. u8 pa_setting;
  1053. /* FIXED PA current issue */
  1054. pa_setting = efuse_read_1byte(hw, 0x1FA);
  1055. if (!(pa_setting & BIT(0))) {
  1056. rtl_set_rfreg(hw, RF90_PATH_A, 0x15, 0x0FFFFF, 0x0F406);
  1057. rtl_set_rfreg(hw, RF90_PATH_A, 0x15, 0x0FFFFF, 0x4F406);
  1058. rtl_set_rfreg(hw, RF90_PATH_A, 0x15, 0x0FFFFF, 0x8F406);
  1059. rtl_set_rfreg(hw, RF90_PATH_A, 0x15, 0x0FFFFF, 0xCF406);
  1060. }
  1061. if (!(pa_setting & BIT(1)) && IS_NORMAL_CHIP(rtlhal->version) &&
  1062. IS_92C_SERIAL(rtlhal->version)) {
  1063. rtl_set_rfreg(hw, RF90_PATH_B, 0x15, 0x0FFFFF, 0x0F406);
  1064. rtl_set_rfreg(hw, RF90_PATH_B, 0x15, 0x0FFFFF, 0x4F406);
  1065. rtl_set_rfreg(hw, RF90_PATH_B, 0x15, 0x0FFFFF, 0x8F406);
  1066. rtl_set_rfreg(hw, RF90_PATH_B, 0x15, 0x0FFFFF, 0xCF406);
  1067. }
  1068. if (!(pa_setting & BIT(4))) {
  1069. pa_setting = rtl_read_byte(rtlpriv, 0x16);
  1070. pa_setting &= 0x0F;
  1071. rtl_write_byte(rtlpriv, 0x16, pa_setting | 0x90);
  1072. }
  1073. }
  1074. static void _InitAntenna_Selection(struct ieee80211_hw *hw)
  1075. {
  1076. #ifdef CONFIG_ANTENNA_DIVERSITY
  1077. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1078. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1079. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1080. if (pHalData->AntDivCfg == 0)
  1081. return;
  1082. if (rtlphy->rf_type == RF_1T1R) {
  1083. rtl_write_dword(rtlpriv, REG_LEDCFG0,
  1084. rtl_read_dword(rtlpriv,
  1085. REG_LEDCFG0)|BIT(23));
  1086. rtl_set_bbreg(hw, rFPGA0_XAB_RFPARAMETER, BIT(13), 0x01);
  1087. if (rtl_get_bbreg(hw, RFPGA0_XA_RFINTERFACEOE, 0x300) ==
  1088. Antenna_A)
  1089. pHalData->CurAntenna = Antenna_A;
  1090. else
  1091. pHalData->CurAntenna = Antenna_B;
  1092. }
  1093. #endif
  1094. }
  1095. static void _dump_registers(struct ieee80211_hw *hw)
  1096. {
  1097. }
  1098. static void _update_mac_setting(struct ieee80211_hw *hw)
  1099. {
  1100. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1101. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1102. mac->rx_conf = rtl_read_dword(rtlpriv, REG_RCR);
  1103. mac->rx_mgt_filter = rtl_read_word(rtlpriv, REG_RXFLTMAP0);
  1104. mac->rx_ctrl_filter = rtl_read_word(rtlpriv, REG_RXFLTMAP1);
  1105. mac->rx_data_filter = rtl_read_word(rtlpriv, REG_RXFLTMAP2);
  1106. }
  1107. int rtl92cu_hw_init(struct ieee80211_hw *hw)
  1108. {
  1109. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1110. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1111. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1112. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1113. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1114. int err = 0;
  1115. static bool iqk_initialized;
  1116. rtlhal->hw_type = HARDWARE_TYPE_RTL8192CU;
  1117. err = _rtl92cu_init_mac(hw);
  1118. if (err) {
  1119. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, ("init mac failed!\n"));
  1120. return err;
  1121. }
  1122. err = rtl92c_download_fw(hw);
  1123. if (err) {
  1124. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  1125. ("Failed to download FW. Init HW without FW now..\n"));
  1126. err = 1;
  1127. rtlhal->fw_ready = false;
  1128. return err;
  1129. } else {
  1130. rtlhal->fw_ready = true;
  1131. }
  1132. rtlhal->last_hmeboxnum = 0; /* h2c */
  1133. _rtl92cu_phy_param_tab_init(hw);
  1134. rtl92cu_phy_mac_config(hw);
  1135. rtl92cu_phy_bb_config(hw);
  1136. rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
  1137. rtl92c_phy_rf_config(hw);
  1138. if (IS_VENDOR_UMC_A_CUT(rtlhal->version) &&
  1139. !IS_92C_SERIAL(rtlhal->version)) {
  1140. rtl_set_rfreg(hw, RF90_PATH_A, RF_RX_G1, MASKDWORD, 0x30255);
  1141. rtl_set_rfreg(hw, RF90_PATH_A, RF_RX_G2, MASKDWORD, 0x50a00);
  1142. }
  1143. rtlphy->rfreg_chnlval[0] = rtl_get_rfreg(hw, (enum radio_path)0,
  1144. RF_CHNLBW, RFREG_OFFSET_MASK);
  1145. rtlphy->rfreg_chnlval[1] = rtl_get_rfreg(hw, (enum radio_path)1,
  1146. RF_CHNLBW, RFREG_OFFSET_MASK);
  1147. rtl92cu_bb_block_on(hw);
  1148. rtl_cam_reset_all_entry(hw);
  1149. rtl92cu_enable_hw_security_config(hw);
  1150. ppsc->rfpwr_state = ERFON;
  1151. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_ETHER_ADDR, mac->mac_addr);
  1152. if (ppsc->rfpwr_state == ERFON) {
  1153. rtl92c_phy_set_rfpath_switch(hw, 1);
  1154. if (iqk_initialized) {
  1155. rtl92c_phy_iq_calibrate(hw, false);
  1156. } else {
  1157. rtl92c_phy_iq_calibrate(hw, false);
  1158. iqk_initialized = true;
  1159. }
  1160. rtl92c_dm_check_txpower_tracking(hw);
  1161. rtl92c_phy_lc_calibrate(hw);
  1162. }
  1163. _rtl92cu_hw_configure(hw);
  1164. _InitPABias(hw);
  1165. _InitAntenna_Selection(hw);
  1166. _update_mac_setting(hw);
  1167. rtl92c_dm_init(hw);
  1168. _dump_registers(hw);
  1169. return err;
  1170. }
  1171. static void _DisableRFAFEAndResetBB(struct ieee80211_hw *hw)
  1172. {
  1173. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1174. /**************************************
  1175. a. TXPAUSE 0x522[7:0] = 0xFF Pause MAC TX queue
  1176. b. RF path 0 offset 0x00 = 0x00 disable RF
  1177. c. APSD_CTRL 0x600[7:0] = 0x40
  1178. d. SYS_FUNC_EN 0x02[7:0] = 0x16 reset BB state machine
  1179. e. SYS_FUNC_EN 0x02[7:0] = 0x14 reset BB state machine
  1180. ***************************************/
  1181. u8 eRFPath = 0, value8 = 0;
  1182. rtl_write_byte(rtlpriv, REG_TXPAUSE, 0xFF);
  1183. rtl_set_rfreg(hw, (enum radio_path)eRFPath, 0x0, MASKBYTE0, 0x0);
  1184. value8 |= APSDOFF;
  1185. rtl_write_byte(rtlpriv, REG_APSD_CTRL, value8); /*0x40*/
  1186. value8 = 0;
  1187. value8 |= (FEN_USBD | FEN_USBA | FEN_BB_GLB_RSTn);
  1188. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, value8);/*0x16*/
  1189. value8 &= (~FEN_BB_GLB_RSTn);
  1190. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, value8); /*0x14*/
  1191. }
  1192. static void _ResetDigitalProcedure1(struct ieee80211_hw *hw, bool bWithoutHWSM)
  1193. {
  1194. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1195. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1196. if (rtlhal->fw_version <= 0x20) {
  1197. /*****************************
  1198. f. MCUFWDL 0x80[7:0]=0 reset MCU ready status
  1199. g. SYS_FUNC_EN 0x02[10]= 0 reset MCU reg, (8051 reset)
  1200. h. SYS_FUNC_EN 0x02[15-12]= 5 reset MAC reg, DCORE
  1201. i. SYS_FUNC_EN 0x02[10]= 1 enable MCU reg, (8051 enable)
  1202. ******************************/
  1203. u16 valu16 = 0;
  1204. rtl_write_byte(rtlpriv, REG_MCUFWDL, 0);
  1205. valu16 = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
  1206. rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (valu16 &
  1207. (~FEN_CPUEN))); /* reset MCU ,8051 */
  1208. valu16 = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN)&0x0FFF;
  1209. rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (valu16 |
  1210. (FEN_HWPDN|FEN_ELDR))); /* reset MAC */
  1211. valu16 = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
  1212. rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (valu16 |
  1213. FEN_CPUEN)); /* enable MCU ,8051 */
  1214. } else {
  1215. u8 retry_cnts = 0;
  1216. /* IF fw in RAM code, do reset */
  1217. if (rtl_read_byte(rtlpriv, REG_MCUFWDL) & BIT(1)) {
  1218. /* reset MCU ready status */
  1219. rtl_write_byte(rtlpriv, REG_MCUFWDL, 0);
  1220. if (rtlhal->fw_ready) {
  1221. /* 8051 reset by self */
  1222. rtl_write_byte(rtlpriv, REG_HMETFR+3, 0x20);
  1223. while ((retry_cnts++ < 100) &&
  1224. (FEN_CPUEN & rtl_read_word(rtlpriv,
  1225. REG_SYS_FUNC_EN))) {
  1226. udelay(50);
  1227. }
  1228. if (retry_cnts >= 100) {
  1229. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1230. ("#####=> 8051 reset failed!.."
  1231. ".......................\n"););
  1232. /* if 8051 reset fail, reset MAC. */
  1233. rtl_write_byte(rtlpriv,
  1234. REG_SYS_FUNC_EN + 1,
  1235. 0x50);
  1236. udelay(100);
  1237. }
  1238. }
  1239. }
  1240. /* Reset MAC and Enable 8051 */
  1241. rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, 0x54);
  1242. rtl_write_byte(rtlpriv, REG_MCUFWDL, 0);
  1243. }
  1244. if (bWithoutHWSM) {
  1245. /*****************************
  1246. Without HW auto state machine
  1247. g.SYS_CLKR 0x08[15:0] = 0x30A3 disable MAC clock
  1248. h.AFE_PLL_CTRL 0x28[7:0] = 0x80 disable AFE PLL
  1249. i.AFE_XTAL_CTRL 0x24[15:0] = 0x880F gated AFE DIG_CLOCK
  1250. j.SYS_ISu_CTRL 0x00[7:0] = 0xF9 isolated digital to PON
  1251. ******************************/
  1252. rtl_write_word(rtlpriv, REG_SYS_CLKR, 0x70A3);
  1253. rtl_write_byte(rtlpriv, REG_AFE_PLL_CTRL, 0x80);
  1254. rtl_write_word(rtlpriv, REG_AFE_XTAL_CTRL, 0x880F);
  1255. rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xF9);
  1256. }
  1257. }
  1258. static void _ResetDigitalProcedure2(struct ieee80211_hw *hw)
  1259. {
  1260. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1261. /*****************************
  1262. k. SYS_FUNC_EN 0x03[7:0] = 0x44 disable ELDR runction
  1263. l. SYS_CLKR 0x08[15:0] = 0x3083 disable ELDR clock
  1264. m. SYS_ISO_CTRL 0x01[7:0] = 0x83 isolated ELDR to PON
  1265. ******************************/
  1266. rtl_write_word(rtlpriv, REG_SYS_CLKR, 0x70A3);
  1267. rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL+1, 0x82);
  1268. }
  1269. static void _DisableGPIO(struct ieee80211_hw *hw)
  1270. {
  1271. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1272. /***************************************
  1273. j. GPIO_PIN_CTRL 0x44[31:0]=0x000
  1274. k. Value = GPIO_PIN_CTRL[7:0]
  1275. l. GPIO_PIN_CTRL 0x44[31:0] = 0x00FF0000 | (value <<8); write ext PIN level
  1276. m. GPIO_MUXCFG 0x42 [15:0] = 0x0780
  1277. n. LEDCFG 0x4C[15:0] = 0x8080
  1278. ***************************************/
  1279. u8 value8;
  1280. u16 value16;
  1281. u32 value32;
  1282. /* 1. Disable GPIO[7:0] */
  1283. rtl_write_word(rtlpriv, REG_GPIO_PIN_CTRL+2, 0x0000);
  1284. value32 = rtl_read_dword(rtlpriv, REG_GPIO_PIN_CTRL) & 0xFFFF00FF;
  1285. value8 = (u8) (value32&0x000000FF);
  1286. value32 |= ((value8<<8) | 0x00FF0000);
  1287. rtl_write_dword(rtlpriv, REG_GPIO_PIN_CTRL, value32);
  1288. /* 2. Disable GPIO[10:8] */
  1289. rtl_write_byte(rtlpriv, REG_GPIO_MUXCFG+3, 0x00);
  1290. value16 = rtl_read_word(rtlpriv, REG_GPIO_MUXCFG+2) & 0xFF0F;
  1291. value8 = (u8) (value16&0x000F);
  1292. value16 |= ((value8<<4) | 0x0780);
  1293. rtl_write_word(rtlpriv, REG_GPIO_PIN_CTRL+2, value16);
  1294. /* 3. Disable LED0 & 1 */
  1295. rtl_write_word(rtlpriv, REG_LEDCFG0, 0x8080);
  1296. }
  1297. static void _DisableAnalog(struct ieee80211_hw *hw, bool bWithoutHWSM)
  1298. {
  1299. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1300. u16 value16 = 0;
  1301. u8 value8 = 0;
  1302. if (bWithoutHWSM) {
  1303. /*****************************
  1304. n. LDOA15_CTRL 0x20[7:0] = 0x04 disable A15 power
  1305. o. LDOV12D_CTRL 0x21[7:0] = 0x54 disable digital core power
  1306. r. When driver call disable, the ASIC will turn off remaining
  1307. clock automatically
  1308. ******************************/
  1309. rtl_write_byte(rtlpriv, REG_LDOA15_CTRL, 0x04);
  1310. value8 = rtl_read_byte(rtlpriv, REG_LDOV12D_CTRL);
  1311. value8 &= (~LDV12_EN);
  1312. rtl_write_byte(rtlpriv, REG_LDOV12D_CTRL, value8);
  1313. }
  1314. /*****************************
  1315. h. SPS0_CTRL 0x11[7:0] = 0x23 enter PFM mode
  1316. i. APS_FSMCO 0x04[15:0] = 0x4802 set USB suspend
  1317. ******************************/
  1318. rtl_write_byte(rtlpriv, REG_SPS0_CTRL, 0x23);
  1319. value16 |= (APDM_HOST | AFSM_HSUS | PFM_ALDN);
  1320. rtl_write_word(rtlpriv, REG_APS_FSMCO, (u16)value16);
  1321. rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0E);
  1322. }
  1323. static void _CardDisableHWSM(struct ieee80211_hw *hw)
  1324. {
  1325. /* ==== RF Off Sequence ==== */
  1326. _DisableRFAFEAndResetBB(hw);
  1327. /* ==== Reset digital sequence ====== */
  1328. _ResetDigitalProcedure1(hw, false);
  1329. /* ==== Pull GPIO PIN to balance level and LED control ====== */
  1330. _DisableGPIO(hw);
  1331. /* ==== Disable analog sequence === */
  1332. _DisableAnalog(hw, false);
  1333. }
  1334. static void _CardDisableWithoutHWSM(struct ieee80211_hw *hw)
  1335. {
  1336. /*==== RF Off Sequence ==== */
  1337. _DisableRFAFEAndResetBB(hw);
  1338. /* ==== Reset digital sequence ====== */
  1339. _ResetDigitalProcedure1(hw, true);
  1340. /* ==== Pull GPIO PIN to balance level and LED control ====== */
  1341. _DisableGPIO(hw);
  1342. /* ==== Reset digital sequence ====== */
  1343. _ResetDigitalProcedure2(hw);
  1344. /* ==== Disable analog sequence === */
  1345. _DisableAnalog(hw, true);
  1346. }
  1347. static void _rtl92cu_set_bcn_ctrl_reg(struct ieee80211_hw *hw,
  1348. u8 set_bits, u8 clear_bits)
  1349. {
  1350. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1351. struct rtl_usb *rtlusb = rtl_usbdev(rtl_usbpriv(hw));
  1352. rtlusb->reg_bcn_ctrl_val |= set_bits;
  1353. rtlusb->reg_bcn_ctrl_val &= ~clear_bits;
  1354. rtl_write_byte(rtlpriv, REG_BCN_CTRL, (u8) rtlusb->reg_bcn_ctrl_val);
  1355. }
  1356. static void _rtl92cu_stop_tx_beacon(struct ieee80211_hw *hw)
  1357. {
  1358. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1359. struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
  1360. u8 tmp1byte = 0;
  1361. if (IS_NORMAL_CHIP(rtlhal->version)) {
  1362. tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
  1363. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2,
  1364. tmp1byte & (~BIT(6)));
  1365. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0x64);
  1366. tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
  1367. tmp1byte &= ~(BIT(0));
  1368. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
  1369. } else {
  1370. rtl_write_byte(rtlpriv, REG_TXPAUSE,
  1371. rtl_read_byte(rtlpriv, REG_TXPAUSE) | BIT(6));
  1372. }
  1373. }
  1374. static void _rtl92cu_resume_tx_beacon(struct ieee80211_hw *hw)
  1375. {
  1376. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1377. struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
  1378. u8 tmp1byte = 0;
  1379. if (IS_NORMAL_CHIP(rtlhal->version)) {
  1380. tmp1byte = rtl_read_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2);
  1381. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2,
  1382. tmp1byte | BIT(6));
  1383. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 1, 0xff);
  1384. tmp1byte = rtl_read_byte(rtlpriv, REG_TBTT_PROHIBIT + 2);
  1385. tmp1byte |= BIT(0);
  1386. rtl_write_byte(rtlpriv, REG_TBTT_PROHIBIT + 2, tmp1byte);
  1387. } else {
  1388. rtl_write_byte(rtlpriv, REG_TXPAUSE,
  1389. rtl_read_byte(rtlpriv, REG_TXPAUSE) & (~BIT(6)));
  1390. }
  1391. }
  1392. static void _rtl92cu_enable_bcn_sub_func(struct ieee80211_hw *hw)
  1393. {
  1394. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1395. struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
  1396. if (IS_NORMAL_CHIP(rtlhal->version))
  1397. _rtl92cu_set_bcn_ctrl_reg(hw, 0, BIT(1));
  1398. else
  1399. _rtl92cu_set_bcn_ctrl_reg(hw, 0, BIT(4));
  1400. }
  1401. static void _rtl92cu_disable_bcn_sub_func(struct ieee80211_hw *hw)
  1402. {
  1403. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1404. struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
  1405. if (IS_NORMAL_CHIP(rtlhal->version))
  1406. _rtl92cu_set_bcn_ctrl_reg(hw, BIT(1), 0);
  1407. else
  1408. _rtl92cu_set_bcn_ctrl_reg(hw, BIT(4), 0);
  1409. }
  1410. static int _rtl92cu_set_media_status(struct ieee80211_hw *hw,
  1411. enum nl80211_iftype type)
  1412. {
  1413. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1414. u8 bt_msr = rtl_read_byte(rtlpriv, MSR);
  1415. enum led_ctl_mode ledaction = LED_CTL_NO_LINK;
  1416. bt_msr &= 0xfc;
  1417. rtl_write_byte(rtlpriv, REG_BCN_MAX_ERR, 0xFF);
  1418. if (type == NL80211_IFTYPE_UNSPECIFIED || type ==
  1419. NL80211_IFTYPE_STATION) {
  1420. _rtl92cu_stop_tx_beacon(hw);
  1421. _rtl92cu_enable_bcn_sub_func(hw);
  1422. } else if (type == NL80211_IFTYPE_ADHOC || type == NL80211_IFTYPE_AP) {
  1423. _rtl92cu_resume_tx_beacon(hw);
  1424. _rtl92cu_disable_bcn_sub_func(hw);
  1425. } else {
  1426. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING, ("Set HW_VAR_MEDIA_"
  1427. "STATUS:No such media status(%x).\n", type));
  1428. }
  1429. switch (type) {
  1430. case NL80211_IFTYPE_UNSPECIFIED:
  1431. bt_msr |= MSR_NOLINK;
  1432. ledaction = LED_CTL_LINK;
  1433. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  1434. ("Set Network type to NO LINK!\n"));
  1435. break;
  1436. case NL80211_IFTYPE_ADHOC:
  1437. bt_msr |= MSR_ADHOC;
  1438. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  1439. ("Set Network type to Ad Hoc!\n"));
  1440. break;
  1441. case NL80211_IFTYPE_STATION:
  1442. bt_msr |= MSR_INFRA;
  1443. ledaction = LED_CTL_LINK;
  1444. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  1445. ("Set Network type to STA!\n"));
  1446. break;
  1447. case NL80211_IFTYPE_AP:
  1448. bt_msr |= MSR_AP;
  1449. RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
  1450. ("Set Network type to AP!\n"));
  1451. break;
  1452. default:
  1453. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1454. ("Network type %d not support!\n", type));
  1455. goto error_out;
  1456. }
  1457. rtl_write_byte(rtlpriv, (MSR), bt_msr);
  1458. rtlpriv->cfg->ops->led_control(hw, ledaction);
  1459. if ((bt_msr & 0xfc) == MSR_AP)
  1460. rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x00);
  1461. else
  1462. rtl_write_byte(rtlpriv, REG_BCNTCFG + 1, 0x66);
  1463. return 0;
  1464. error_out:
  1465. return 1;
  1466. }
  1467. void rtl92cu_card_disable(struct ieee80211_hw *hw)
  1468. {
  1469. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1470. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1471. struct rtl_usb *rtlusb = rtl_usbdev(rtl_usbpriv(hw));
  1472. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1473. enum nl80211_iftype opmode;
  1474. mac->link_state = MAC80211_NOLINK;
  1475. opmode = NL80211_IFTYPE_UNSPECIFIED;
  1476. _rtl92cu_set_media_status(hw, opmode);
  1477. rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
  1478. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
  1479. if (rtlusb->disableHWSM)
  1480. _CardDisableHWSM(hw);
  1481. else
  1482. _CardDisableWithoutHWSM(hw);
  1483. }
  1484. void rtl92cu_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
  1485. {
  1486. /* dummy routine needed for callback from rtl_op_configure_filter() */
  1487. }
  1488. /*========================================================================== */
  1489. static void _rtl92cu_set_check_bssid(struct ieee80211_hw *hw,
  1490. enum nl80211_iftype type)
  1491. {
  1492. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1493. u32 reg_rcr = rtl_read_dword(rtlpriv, REG_RCR);
  1494. struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
  1495. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  1496. u8 filterout_non_associated_bssid = false;
  1497. switch (type) {
  1498. case NL80211_IFTYPE_ADHOC:
  1499. case NL80211_IFTYPE_STATION:
  1500. filterout_non_associated_bssid = true;
  1501. break;
  1502. case NL80211_IFTYPE_UNSPECIFIED:
  1503. case NL80211_IFTYPE_AP:
  1504. default:
  1505. break;
  1506. }
  1507. if (filterout_non_associated_bssid == true) {
  1508. if (IS_NORMAL_CHIP(rtlhal->version)) {
  1509. switch (rtlphy->current_io_type) {
  1510. case IO_CMD_RESUME_DM_BY_SCAN:
  1511. reg_rcr |= (RCR_CBSSID_DATA | RCR_CBSSID_BCN);
  1512. rtlpriv->cfg->ops->set_hw_reg(hw,
  1513. HW_VAR_RCR, (u8 *)(&reg_rcr));
  1514. /* enable update TSF */
  1515. _rtl92cu_set_bcn_ctrl_reg(hw, 0, BIT(4));
  1516. break;
  1517. case IO_CMD_PAUSE_DM_BY_SCAN:
  1518. reg_rcr &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN);
  1519. rtlpriv->cfg->ops->set_hw_reg(hw,
  1520. HW_VAR_RCR, (u8 *)(&reg_rcr));
  1521. /* disable update TSF */
  1522. _rtl92cu_set_bcn_ctrl_reg(hw, BIT(4), 0);
  1523. break;
  1524. }
  1525. } else {
  1526. reg_rcr |= (RCR_CBSSID);
  1527. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR,
  1528. (u8 *)(&reg_rcr));
  1529. _rtl92cu_set_bcn_ctrl_reg(hw, 0, (BIT(4)|BIT(5)));
  1530. }
  1531. } else if (filterout_non_associated_bssid == false) {
  1532. if (IS_NORMAL_CHIP(rtlhal->version)) {
  1533. reg_rcr &= (~(RCR_CBSSID_DATA | RCR_CBSSID_BCN));
  1534. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR,
  1535. (u8 *)(&reg_rcr));
  1536. _rtl92cu_set_bcn_ctrl_reg(hw, BIT(4), 0);
  1537. } else {
  1538. reg_rcr &= (~RCR_CBSSID);
  1539. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR,
  1540. (u8 *)(&reg_rcr));
  1541. _rtl92cu_set_bcn_ctrl_reg(hw, (BIT(4)|BIT(5)), 0);
  1542. }
  1543. }
  1544. }
  1545. int rtl92cu_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
  1546. {
  1547. if (_rtl92cu_set_media_status(hw, type))
  1548. return -EOPNOTSUPP;
  1549. _rtl92cu_set_check_bssid(hw, type);
  1550. return 0;
  1551. }
  1552. static void _InitBeaconParameters(struct ieee80211_hw *hw)
  1553. {
  1554. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1555. struct rtl_hal *rtlhal = rtl_hal(rtlpriv);
  1556. rtl_write_word(rtlpriv, REG_BCN_CTRL, 0x1010);
  1557. /* TODO: Remove these magic number */
  1558. rtl_write_word(rtlpriv, REG_TBTT_PROHIBIT, 0x6404);
  1559. rtl_write_byte(rtlpriv, REG_DRVERLYINT, DRIVER_EARLY_INT_TIME);
  1560. rtl_write_byte(rtlpriv, REG_BCNDMATIM, BCN_DMA_ATIME_INT_TIME);
  1561. /* Change beacon AIFS to the largest number
  1562. * beacause test chip does not contension before sending beacon. */
  1563. if (IS_NORMAL_CHIP(rtlhal->version))
  1564. rtl_write_word(rtlpriv, REG_BCNTCFG, 0x660F);
  1565. else
  1566. rtl_write_word(rtlpriv, REG_BCNTCFG, 0x66FF);
  1567. }
  1568. static void _beacon_function_enable(struct ieee80211_hw *hw, bool Enable,
  1569. bool Linked)
  1570. {
  1571. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1572. _rtl92cu_set_bcn_ctrl_reg(hw, (BIT(4) | BIT(3) | BIT(1)), 0x00);
  1573. rtl_write_byte(rtlpriv, REG_RD_CTRL+1, 0x6F);
  1574. }
  1575. void rtl92cu_set_beacon_related_registers(struct ieee80211_hw *hw)
  1576. {
  1577. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1578. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1579. u16 bcn_interval, atim_window;
  1580. u32 value32;
  1581. bcn_interval = mac->beacon_interval;
  1582. atim_window = 2; /*FIX MERGE */
  1583. rtl_write_word(rtlpriv, REG_ATIMWND, atim_window);
  1584. rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
  1585. _InitBeaconParameters(hw);
  1586. rtl_write_byte(rtlpriv, REG_SLOT, 0x09);
  1587. /*
  1588. * Force beacon frame transmission even after receiving beacon frame
  1589. * from other ad hoc STA
  1590. *
  1591. *
  1592. * Reset TSF Timer to zero, added by Roger. 2008.06.24
  1593. */
  1594. value32 = rtl_read_dword(rtlpriv, REG_TCR);
  1595. value32 &= ~TSFRST;
  1596. rtl_write_dword(rtlpriv, REG_TCR, value32);
  1597. value32 |= TSFRST;
  1598. rtl_write_dword(rtlpriv, REG_TCR, value32);
  1599. RT_TRACE(rtlpriv, COMP_INIT|COMP_BEACON, DBG_LOUD,
  1600. ("SetBeaconRelatedRegisters8192CUsb(): Set TCR(%x)\n",
  1601. value32));
  1602. /* TODO: Modify later (Find the right parameters)
  1603. * NOTE: Fix test chip's bug (about contention windows's randomness) */
  1604. if ((mac->opmode == NL80211_IFTYPE_ADHOC) ||
  1605. (mac->opmode == NL80211_IFTYPE_AP)) {
  1606. rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_CCK, 0x50);
  1607. rtl_write_byte(rtlpriv, REG_RXTSF_OFFSET_OFDM, 0x50);
  1608. }
  1609. _beacon_function_enable(hw, true, true);
  1610. }
  1611. void rtl92cu_set_beacon_interval(struct ieee80211_hw *hw)
  1612. {
  1613. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1614. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1615. u16 bcn_interval = mac->beacon_interval;
  1616. RT_TRACE(rtlpriv, COMP_BEACON, DBG_DMESG,
  1617. ("beacon_interval:%d\n", bcn_interval));
  1618. rtl_write_word(rtlpriv, REG_BCN_INTERVAL, bcn_interval);
  1619. }
  1620. void rtl92cu_update_interrupt_mask(struct ieee80211_hw *hw,
  1621. u32 add_msr, u32 rm_msr)
  1622. {
  1623. }
  1624. void rtl92cu_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
  1625. {
  1626. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1627. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1628. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1629. switch (variable) {
  1630. case HW_VAR_RCR:
  1631. *((u32 *)(val)) = mac->rx_conf;
  1632. break;
  1633. case HW_VAR_RF_STATE:
  1634. *((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
  1635. break;
  1636. case HW_VAR_FWLPS_RF_ON:{
  1637. enum rf_pwrstate rfState;
  1638. u32 val_rcr;
  1639. rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RF_STATE,
  1640. (u8 *)(&rfState));
  1641. if (rfState == ERFOFF) {
  1642. *((bool *) (val)) = true;
  1643. } else {
  1644. val_rcr = rtl_read_dword(rtlpriv, REG_RCR);
  1645. val_rcr &= 0x00070000;
  1646. if (val_rcr)
  1647. *((bool *) (val)) = false;
  1648. else
  1649. *((bool *) (val)) = true;
  1650. }
  1651. break;
  1652. }
  1653. case HW_VAR_FW_PSMODE_STATUS:
  1654. *((bool *) (val)) = ppsc->fw_current_inpsmode;
  1655. break;
  1656. case HW_VAR_CORRECT_TSF:{
  1657. u64 tsf;
  1658. u32 *ptsf_low = (u32 *)&tsf;
  1659. u32 *ptsf_high = ((u32 *)&tsf) + 1;
  1660. *ptsf_high = rtl_read_dword(rtlpriv, (REG_TSFTR + 4));
  1661. *ptsf_low = rtl_read_dword(rtlpriv, REG_TSFTR);
  1662. *((u64 *)(val)) = tsf;
  1663. break;
  1664. }
  1665. case HW_VAR_MGT_FILTER:
  1666. *((u16 *) (val)) = rtl_read_word(rtlpriv, REG_RXFLTMAP0);
  1667. break;
  1668. case HW_VAR_CTRL_FILTER:
  1669. *((u16 *) (val)) = rtl_read_word(rtlpriv, REG_RXFLTMAP1);
  1670. break;
  1671. case HW_VAR_DATA_FILTER:
  1672. *((u16 *) (val)) = rtl_read_word(rtlpriv, REG_RXFLTMAP2);
  1673. break;
  1674. default:
  1675. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1676. ("switch case not process\n"));
  1677. break;
  1678. }
  1679. }
  1680. void rtl92cu_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
  1681. {
  1682. struct rtl_priv *rtlpriv = rtl_priv(hw);
  1683. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  1684. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  1685. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  1686. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  1687. struct rtl_usb *rtlusb = rtl_usbdev(rtl_usbpriv(hw));
  1688. enum wireless_mode wirelessmode = mac->mode;
  1689. u8 idx = 0;
  1690. switch (variable) {
  1691. case HW_VAR_ETHER_ADDR:{
  1692. for (idx = 0; idx < ETH_ALEN; idx++) {
  1693. rtl_write_byte(rtlpriv, (REG_MACID + idx),
  1694. val[idx]);
  1695. }
  1696. break;
  1697. }
  1698. case HW_VAR_BASIC_RATE:{
  1699. u16 rate_cfg = ((u16 *) val)[0];
  1700. u8 rate_index = 0;
  1701. rate_cfg &= 0x15f;
  1702. /* TODO */
  1703. /* if (mac->current_network.vender == HT_IOT_PEER_CISCO
  1704. * && ((rate_cfg & 0x150) == 0)) {
  1705. * rate_cfg |= 0x010;
  1706. * } */
  1707. rate_cfg |= 0x01;
  1708. rtl_write_byte(rtlpriv, REG_RRSR, rate_cfg & 0xff);
  1709. rtl_write_byte(rtlpriv, REG_RRSR + 1,
  1710. (rate_cfg >> 8) & 0xff);
  1711. while (rate_cfg > 0x1) {
  1712. rate_cfg >>= 1;
  1713. rate_index++;
  1714. }
  1715. rtl_write_byte(rtlpriv, REG_INIRTS_RATE_SEL,
  1716. rate_index);
  1717. break;
  1718. }
  1719. case HW_VAR_BSSID:{
  1720. for (idx = 0; idx < ETH_ALEN; idx++) {
  1721. rtl_write_byte(rtlpriv, (REG_BSSID + idx),
  1722. val[idx]);
  1723. }
  1724. break;
  1725. }
  1726. case HW_VAR_SIFS:{
  1727. rtl_write_byte(rtlpriv, REG_SIFS_CCK + 1, val[0]);
  1728. rtl_write_byte(rtlpriv, REG_SIFS_OFDM + 1, val[1]);
  1729. rtl_write_byte(rtlpriv, REG_SPEC_SIFS + 1, val[0]);
  1730. rtl_write_byte(rtlpriv, REG_MAC_SPEC_SIFS + 1, val[0]);
  1731. rtl_write_byte(rtlpriv, REG_R2T_SIFS+1, val[0]);
  1732. rtl_write_byte(rtlpriv, REG_T2T_SIFS+1, val[0]);
  1733. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  1734. ("HW_VAR_SIFS\n"));
  1735. break;
  1736. }
  1737. case HW_VAR_SLOT_TIME:{
  1738. u8 e_aci;
  1739. u8 QOS_MODE = 1;
  1740. rtl_write_byte(rtlpriv, REG_SLOT, val[0]);
  1741. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  1742. ("HW_VAR_SLOT_TIME %x\n", val[0]));
  1743. if (QOS_MODE) {
  1744. for (e_aci = 0; e_aci < AC_MAX; e_aci++)
  1745. rtlpriv->cfg->ops->set_hw_reg(hw,
  1746. HW_VAR_AC_PARAM,
  1747. (u8 *)(&e_aci));
  1748. } else {
  1749. u8 sifstime = 0;
  1750. u8 u1bAIFS;
  1751. if (IS_WIRELESS_MODE_A(wirelessmode) ||
  1752. IS_WIRELESS_MODE_N_24G(wirelessmode) ||
  1753. IS_WIRELESS_MODE_N_5G(wirelessmode))
  1754. sifstime = 16;
  1755. else
  1756. sifstime = 10;
  1757. u1bAIFS = sifstime + (2 * val[0]);
  1758. rtl_write_byte(rtlpriv, REG_EDCA_VO_PARAM,
  1759. u1bAIFS);
  1760. rtl_write_byte(rtlpriv, REG_EDCA_VI_PARAM,
  1761. u1bAIFS);
  1762. rtl_write_byte(rtlpriv, REG_EDCA_BE_PARAM,
  1763. u1bAIFS);
  1764. rtl_write_byte(rtlpriv, REG_EDCA_BK_PARAM,
  1765. u1bAIFS);
  1766. }
  1767. break;
  1768. }
  1769. case HW_VAR_ACK_PREAMBLE:{
  1770. u8 reg_tmp;
  1771. u8 short_preamble = (bool) (*(u8 *) val);
  1772. reg_tmp = 0;
  1773. if (short_preamble)
  1774. reg_tmp |= 0x80;
  1775. rtl_write_byte(rtlpriv, REG_RRSR + 2, reg_tmp);
  1776. break;
  1777. }
  1778. case HW_VAR_AMPDU_MIN_SPACE:{
  1779. u8 min_spacing_to_set;
  1780. u8 sec_min_space;
  1781. min_spacing_to_set = *((u8 *) val);
  1782. if (min_spacing_to_set <= 7) {
  1783. switch (rtlpriv->sec.pairwise_enc_algorithm) {
  1784. case NO_ENCRYPTION:
  1785. case AESCCMP_ENCRYPTION:
  1786. sec_min_space = 0;
  1787. break;
  1788. case WEP40_ENCRYPTION:
  1789. case WEP104_ENCRYPTION:
  1790. case TKIP_ENCRYPTION:
  1791. sec_min_space = 6;
  1792. break;
  1793. default:
  1794. sec_min_space = 7;
  1795. break;
  1796. }
  1797. if (min_spacing_to_set < sec_min_space)
  1798. min_spacing_to_set = sec_min_space;
  1799. mac->min_space_cfg = ((mac->min_space_cfg &
  1800. 0xf8) |
  1801. min_spacing_to_set);
  1802. *val = min_spacing_to_set;
  1803. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  1804. ("Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
  1805. mac->min_space_cfg));
  1806. rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
  1807. mac->min_space_cfg);
  1808. }
  1809. break;
  1810. }
  1811. case HW_VAR_SHORTGI_DENSITY:{
  1812. u8 density_to_set;
  1813. density_to_set = *((u8 *) val);
  1814. density_to_set &= 0x1f;
  1815. mac->min_space_cfg &= 0x07;
  1816. mac->min_space_cfg |= (density_to_set << 3);
  1817. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  1818. ("Set HW_VAR_SHORTGI_DENSITY: %#x\n",
  1819. mac->min_space_cfg));
  1820. rtl_write_byte(rtlpriv, REG_AMPDU_MIN_SPACE,
  1821. mac->min_space_cfg);
  1822. break;
  1823. }
  1824. case HW_VAR_AMPDU_FACTOR:{
  1825. u8 regtoset_normal[4] = {0x41, 0xa8, 0x72, 0xb9};
  1826. u8 factor_toset;
  1827. u8 *p_regtoset = NULL;
  1828. u8 index = 0;
  1829. p_regtoset = regtoset_normal;
  1830. factor_toset = *((u8 *) val);
  1831. if (factor_toset <= 3) {
  1832. factor_toset = (1 << (factor_toset + 2));
  1833. if (factor_toset > 0xf)
  1834. factor_toset = 0xf;
  1835. for (index = 0; index < 4; index++) {
  1836. if ((p_regtoset[index] & 0xf0) >
  1837. (factor_toset << 4))
  1838. p_regtoset[index] =
  1839. (p_regtoset[index] & 0x0f)
  1840. | (factor_toset << 4);
  1841. if ((p_regtoset[index] & 0x0f) >
  1842. factor_toset)
  1843. p_regtoset[index] =
  1844. (p_regtoset[index] & 0xf0)
  1845. | (factor_toset);
  1846. rtl_write_byte(rtlpriv,
  1847. (REG_AGGLEN_LMT + index),
  1848. p_regtoset[index]);
  1849. }
  1850. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  1851. ("Set HW_VAR_AMPDU_FACTOR: %#x\n",
  1852. factor_toset));
  1853. }
  1854. break;
  1855. }
  1856. case HW_VAR_AC_PARAM:{
  1857. u8 e_aci = *((u8 *) val);
  1858. u32 u4b_ac_param;
  1859. u16 cw_min = le16_to_cpu(mac->ac[e_aci].cw_min);
  1860. u16 cw_max = le16_to_cpu(mac->ac[e_aci].cw_max);
  1861. u16 tx_op = le16_to_cpu(mac->ac[e_aci].tx_op);
  1862. u4b_ac_param = (u32) mac->ac[e_aci].aifs;
  1863. u4b_ac_param |= (u32) ((cw_min & 0xF) <<
  1864. AC_PARAM_ECW_MIN_OFFSET);
  1865. u4b_ac_param |= (u32) ((cw_max & 0xF) <<
  1866. AC_PARAM_ECW_MAX_OFFSET);
  1867. u4b_ac_param |= (u32) tx_op << AC_PARAM_TXOP_OFFSET;
  1868. RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
  1869. ("queue:%x, ac_param:%x\n", e_aci,
  1870. u4b_ac_param));
  1871. switch (e_aci) {
  1872. case AC1_BK:
  1873. rtl_write_dword(rtlpriv, REG_EDCA_BK_PARAM,
  1874. u4b_ac_param);
  1875. break;
  1876. case AC0_BE:
  1877. rtl_write_dword(rtlpriv, REG_EDCA_BE_PARAM,
  1878. u4b_ac_param);
  1879. break;
  1880. case AC2_VI:
  1881. rtl_write_dword(rtlpriv, REG_EDCA_VI_PARAM,
  1882. u4b_ac_param);
  1883. break;
  1884. case AC3_VO:
  1885. rtl_write_dword(rtlpriv, REG_EDCA_VO_PARAM,
  1886. u4b_ac_param);
  1887. break;
  1888. default:
  1889. RT_ASSERT(false, ("SetHwReg8185(): invalid"
  1890. " aci: %d !\n", e_aci));
  1891. break;
  1892. }
  1893. if (rtlusb->acm_method != eAcmWay2_SW)
  1894. rtlpriv->cfg->ops->set_hw_reg(hw,
  1895. HW_VAR_ACM_CTRL, (u8 *)(&e_aci));
  1896. break;
  1897. }
  1898. case HW_VAR_ACM_CTRL:{
  1899. u8 e_aci = *((u8 *) val);
  1900. union aci_aifsn *p_aci_aifsn = (union aci_aifsn *)
  1901. (&(mac->ac[0].aifs));
  1902. u8 acm = p_aci_aifsn->f.acm;
  1903. u8 acm_ctrl = rtl_read_byte(rtlpriv, REG_ACMHWCTRL);
  1904. acm_ctrl =
  1905. acm_ctrl | ((rtlusb->acm_method == 2) ? 0x0 : 0x1);
  1906. if (acm) {
  1907. switch (e_aci) {
  1908. case AC0_BE:
  1909. acm_ctrl |= AcmHw_BeqEn;
  1910. break;
  1911. case AC2_VI:
  1912. acm_ctrl |= AcmHw_ViqEn;
  1913. break;
  1914. case AC3_VO:
  1915. acm_ctrl |= AcmHw_VoqEn;
  1916. break;
  1917. default:
  1918. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  1919. ("HW_VAR_ACM_CTRL acm set "
  1920. "failed: eACI is %d\n", acm));
  1921. break;
  1922. }
  1923. } else {
  1924. switch (e_aci) {
  1925. case AC0_BE:
  1926. acm_ctrl &= (~AcmHw_BeqEn);
  1927. break;
  1928. case AC2_VI:
  1929. acm_ctrl &= (~AcmHw_ViqEn);
  1930. break;
  1931. case AC3_VO:
  1932. acm_ctrl &= (~AcmHw_BeqEn);
  1933. break;
  1934. default:
  1935. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
  1936. ("switch case not process\n"));
  1937. break;
  1938. }
  1939. }
  1940. RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE,
  1941. ("SetHwReg8190pci(): [HW_VAR_ACM_CTRL] "
  1942. "Write 0x%X\n", acm_ctrl));
  1943. rtl_write_byte(rtlpriv, REG_ACMHWCTRL, acm_ctrl);
  1944. break;
  1945. }
  1946. case HW_VAR_RCR:{
  1947. rtl_write_dword(rtlpriv, REG_RCR, ((u32 *) (val))[0]);
  1948. mac->rx_conf = ((u32 *) (val))[0];
  1949. RT_TRACE(rtlpriv, COMP_RECV, DBG_DMESG,
  1950. ("### Set RCR(0x%08x) ###\n", mac->rx_conf));
  1951. break;
  1952. }
  1953. case HW_VAR_RETRY_LIMIT:{
  1954. u8 retry_limit = ((u8 *) (val))[0];
  1955. rtl_write_word(rtlpriv, REG_RL,
  1956. retry_limit << RETRY_LIMIT_SHORT_SHIFT |
  1957. retry_limit << RETRY_LIMIT_LONG_SHIFT);
  1958. RT_TRACE(rtlpriv, COMP_MLME, DBG_DMESG, ("Set HW_VAR_R"
  1959. "ETRY_LIMIT(0x%08x)\n", retry_limit));
  1960. break;
  1961. }
  1962. case HW_VAR_DUAL_TSF_RST:
  1963. rtl_write_byte(rtlpriv, REG_DUAL_TSF_RST, (BIT(0) | BIT(1)));
  1964. break;
  1965. case HW_VAR_EFUSE_BYTES:
  1966. rtlefuse->efuse_usedbytes = *((u16 *) val);
  1967. break;
  1968. case HW_VAR_EFUSE_USAGE:
  1969. rtlefuse->efuse_usedpercentage = *((u8 *) val);
  1970. break;
  1971. case HW_VAR_IO_CMD:
  1972. rtl92c_phy_set_io_cmd(hw, (*(enum io_type *)val));
  1973. break;
  1974. case HW_VAR_WPA_CONFIG:
  1975. rtl_write_byte(rtlpriv, REG_SECCFG, *((u8 *) val));
  1976. break;
  1977. case HW_VAR_SET_RPWM:{
  1978. u8 rpwm_val = rtl_read_byte(rtlpriv, REG_USB_HRPWM);
  1979. if (rpwm_val & BIT(7))
  1980. rtl_write_byte(rtlpriv, REG_USB_HRPWM,
  1981. (*(u8 *)val));
  1982. else
  1983. rtl_write_byte(rtlpriv, REG_USB_HRPWM,
  1984. ((*(u8 *)val) | BIT(7)));
  1985. break;
  1986. }
  1987. case HW_VAR_H2C_FW_PWRMODE:{
  1988. u8 psmode = (*(u8 *) val);
  1989. if ((psmode != FW_PS_ACTIVE_MODE) &&
  1990. (!IS_92C_SERIAL(rtlhal->version)))
  1991. rtl92c_dm_rf_saving(hw, true);
  1992. rtl92c_set_fw_pwrmode_cmd(hw, (*(u8 *) val));
  1993. break;
  1994. }
  1995. case HW_VAR_FW_PSMODE_STATUS:
  1996. ppsc->fw_current_inpsmode = *((bool *) val);
  1997. break;
  1998. case HW_VAR_H2C_FW_JOINBSSRPT:{
  1999. u8 mstatus = (*(u8 *) val);
  2000. u8 tmp_reg422;
  2001. bool recover = false;
  2002. if (mstatus == RT_MEDIA_CONNECT) {
  2003. rtlpriv->cfg->ops->set_hw_reg(hw,
  2004. HW_VAR_AID, NULL);
  2005. rtl_write_byte(rtlpriv, REG_CR + 1, 0x03);
  2006. _rtl92cu_set_bcn_ctrl_reg(hw, 0, BIT(3));
  2007. _rtl92cu_set_bcn_ctrl_reg(hw, BIT(4), 0);
  2008. tmp_reg422 = rtl_read_byte(rtlpriv,
  2009. REG_FWHW_TXQ_CTRL + 2);
  2010. if (tmp_reg422 & BIT(6))
  2011. recover = true;
  2012. rtl_write_byte(rtlpriv, REG_FWHW_TXQ_CTRL + 2,
  2013. tmp_reg422 & (~BIT(6)));
  2014. rtl92c_set_fw_rsvdpagepkt(hw, 0);
  2015. _rtl92cu_set_bcn_ctrl_reg(hw, BIT(3), 0);
  2016. _rtl92cu_set_bcn_ctrl_reg(hw, 0, BIT(4));
  2017. if (recover)
  2018. rtl_write_byte(rtlpriv,
  2019. REG_FWHW_TXQ_CTRL + 2,
  2020. tmp_reg422 | BIT(6));
  2021. rtl_write_byte(rtlpriv, REG_CR + 1, 0x02);
  2022. }
  2023. rtl92c_set_fw_joinbss_report_cmd(hw, (*(u8 *) val));
  2024. break;
  2025. }
  2026. case HW_VAR_AID:{
  2027. u16 u2btmp;
  2028. u2btmp = rtl_read_word(rtlpriv, REG_BCN_PSR_RPT);
  2029. u2btmp &= 0xC000;
  2030. rtl_write_word(rtlpriv, REG_BCN_PSR_RPT,
  2031. (u2btmp | mac->assoc_id));
  2032. break;
  2033. }
  2034. case HW_VAR_CORRECT_TSF:{
  2035. u8 btype_ibss = ((u8 *) (val))[0];
  2036. if (btype_ibss == true)
  2037. _rtl92cu_stop_tx_beacon(hw);
  2038. _rtl92cu_set_bcn_ctrl_reg(hw, 0, BIT(3));
  2039. rtl_write_dword(rtlpriv, REG_TSFTR, (u32)(mac->tsf &
  2040. 0xffffffff));
  2041. rtl_write_dword(rtlpriv, REG_TSFTR + 4,
  2042. (u32)((mac->tsf >> 32) & 0xffffffff));
  2043. _rtl92cu_set_bcn_ctrl_reg(hw, BIT(3), 0);
  2044. if (btype_ibss == true)
  2045. _rtl92cu_resume_tx_beacon(hw);
  2046. break;
  2047. }
  2048. case HW_VAR_MGT_FILTER:
  2049. rtl_write_word(rtlpriv, REG_RXFLTMAP0, *(u16 *)val);
  2050. break;
  2051. case HW_VAR_CTRL_FILTER:
  2052. rtl_write_word(rtlpriv, REG_RXFLTMAP1, *(u16 *)val);
  2053. break;
  2054. case HW_VAR_DATA_FILTER:
  2055. rtl_write_word(rtlpriv, REG_RXFLTMAP2, *(u16 *)val);
  2056. break;
  2057. default:
  2058. RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, ("switch case "
  2059. "not process\n"));
  2060. break;
  2061. }
  2062. }
  2063. void rtl92cu_update_hal_rate_table(struct ieee80211_hw *hw,
  2064. struct ieee80211_sta *sta,
  2065. u8 rssi_level)
  2066. {
  2067. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2068. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  2069. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  2070. u32 ratr_value = (u32) mac->basic_rates;
  2071. u8 *mcsrate = mac->mcs;
  2072. u8 ratr_index = 0;
  2073. u8 nmode = mac->ht_enable;
  2074. u8 mimo_ps = 1;
  2075. u16 shortgi_rate = 0;
  2076. u32 tmp_ratr_value = 0;
  2077. u8 curtxbw_40mhz = mac->bw_40;
  2078. u8 curshortgi_40mhz = mac->sgi_40;
  2079. u8 curshortgi_20mhz = mac->sgi_20;
  2080. enum wireless_mode wirelessmode = mac->mode;
  2081. ratr_value |= ((*(u16 *) (mcsrate))) << 12;
  2082. switch (wirelessmode) {
  2083. case WIRELESS_MODE_B:
  2084. if (ratr_value & 0x0000000c)
  2085. ratr_value &= 0x0000000d;
  2086. else
  2087. ratr_value &= 0x0000000f;
  2088. break;
  2089. case WIRELESS_MODE_G:
  2090. ratr_value &= 0x00000FF5;
  2091. break;
  2092. case WIRELESS_MODE_N_24G:
  2093. case WIRELESS_MODE_N_5G:
  2094. nmode = 1;
  2095. if (mimo_ps == 0) {
  2096. ratr_value &= 0x0007F005;
  2097. } else {
  2098. u32 ratr_mask;
  2099. if (get_rf_type(rtlphy) == RF_1T2R ||
  2100. get_rf_type(rtlphy) == RF_1T1R)
  2101. ratr_mask = 0x000ff005;
  2102. else
  2103. ratr_mask = 0x0f0ff005;
  2104. if (curtxbw_40mhz)
  2105. ratr_mask |= 0x00000010;
  2106. ratr_value &= ratr_mask;
  2107. }
  2108. break;
  2109. default:
  2110. if (rtlphy->rf_type == RF_1T2R)
  2111. ratr_value &= 0x000ff0ff;
  2112. else
  2113. ratr_value &= 0x0f0ff0ff;
  2114. break;
  2115. }
  2116. ratr_value &= 0x0FFFFFFF;
  2117. if (nmode && ((curtxbw_40mhz && curshortgi_40mhz) ||
  2118. (!curtxbw_40mhz && curshortgi_20mhz))) {
  2119. ratr_value |= 0x10000000;
  2120. tmp_ratr_value = (ratr_value >> 12);
  2121. for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
  2122. if ((1 << shortgi_rate) & tmp_ratr_value)
  2123. break;
  2124. }
  2125. shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
  2126. (shortgi_rate << 4) | (shortgi_rate);
  2127. }
  2128. rtl_write_dword(rtlpriv, REG_ARFR0 + ratr_index * 4, ratr_value);
  2129. RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, ("%x\n", rtl_read_dword(rtlpriv,
  2130. REG_ARFR0)));
  2131. }
  2132. void rtl92cu_update_hal_rate_mask(struct ieee80211_hw *hw, u8 rssi_level)
  2133. {
  2134. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2135. struct rtl_phy *rtlphy = &(rtlpriv->phy);
  2136. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  2137. u32 ratr_bitmap = (u32) mac->basic_rates;
  2138. u8 *p_mcsrate = mac->mcs;
  2139. u8 ratr_index = 0;
  2140. u8 curtxbw_40mhz = mac->bw_40;
  2141. u8 curshortgi_40mhz = mac->sgi_40;
  2142. u8 curshortgi_20mhz = mac->sgi_20;
  2143. enum wireless_mode wirelessmode = mac->mode;
  2144. bool shortgi = false;
  2145. u8 rate_mask[5];
  2146. u8 macid = 0;
  2147. u8 mimops = 1;
  2148. ratr_bitmap |= (p_mcsrate[1] << 20) | (p_mcsrate[0] << 12);
  2149. switch (wirelessmode) {
  2150. case WIRELESS_MODE_B:
  2151. ratr_index = RATR_INX_WIRELESS_B;
  2152. if (ratr_bitmap & 0x0000000c)
  2153. ratr_bitmap &= 0x0000000d;
  2154. else
  2155. ratr_bitmap &= 0x0000000f;
  2156. break;
  2157. case WIRELESS_MODE_G:
  2158. ratr_index = RATR_INX_WIRELESS_GB;
  2159. if (rssi_level == 1)
  2160. ratr_bitmap &= 0x00000f00;
  2161. else if (rssi_level == 2)
  2162. ratr_bitmap &= 0x00000ff0;
  2163. else
  2164. ratr_bitmap &= 0x00000ff5;
  2165. break;
  2166. case WIRELESS_MODE_A:
  2167. ratr_index = RATR_INX_WIRELESS_A;
  2168. ratr_bitmap &= 0x00000ff0;
  2169. break;
  2170. case WIRELESS_MODE_N_24G:
  2171. case WIRELESS_MODE_N_5G:
  2172. ratr_index = RATR_INX_WIRELESS_NGB;
  2173. if (mimops == 0) {
  2174. if (rssi_level == 1)
  2175. ratr_bitmap &= 0x00070000;
  2176. else if (rssi_level == 2)
  2177. ratr_bitmap &= 0x0007f000;
  2178. else
  2179. ratr_bitmap &= 0x0007f005;
  2180. } else {
  2181. if (rtlphy->rf_type == RF_1T2R ||
  2182. rtlphy->rf_type == RF_1T1R) {
  2183. if (curtxbw_40mhz) {
  2184. if (rssi_level == 1)
  2185. ratr_bitmap &= 0x000f0000;
  2186. else if (rssi_level == 2)
  2187. ratr_bitmap &= 0x000ff000;
  2188. else
  2189. ratr_bitmap &= 0x000ff015;
  2190. } else {
  2191. if (rssi_level == 1)
  2192. ratr_bitmap &= 0x000f0000;
  2193. else if (rssi_level == 2)
  2194. ratr_bitmap &= 0x000ff000;
  2195. else
  2196. ratr_bitmap &= 0x000ff005;
  2197. }
  2198. } else {
  2199. if (curtxbw_40mhz) {
  2200. if (rssi_level == 1)
  2201. ratr_bitmap &= 0x0f0f0000;
  2202. else if (rssi_level == 2)
  2203. ratr_bitmap &= 0x0f0ff000;
  2204. else
  2205. ratr_bitmap &= 0x0f0ff015;
  2206. } else {
  2207. if (rssi_level == 1)
  2208. ratr_bitmap &= 0x0f0f0000;
  2209. else if (rssi_level == 2)
  2210. ratr_bitmap &= 0x0f0ff000;
  2211. else
  2212. ratr_bitmap &= 0x0f0ff005;
  2213. }
  2214. }
  2215. }
  2216. if ((curtxbw_40mhz && curshortgi_40mhz) ||
  2217. (!curtxbw_40mhz && curshortgi_20mhz)) {
  2218. if (macid == 0)
  2219. shortgi = true;
  2220. else if (macid == 1)
  2221. shortgi = false;
  2222. }
  2223. break;
  2224. default:
  2225. ratr_index = RATR_INX_WIRELESS_NGB;
  2226. if (rtlphy->rf_type == RF_1T2R)
  2227. ratr_bitmap &= 0x000ff0ff;
  2228. else
  2229. ratr_bitmap &= 0x0f0ff0ff;
  2230. break;
  2231. }
  2232. RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, ("ratr_bitmap :%x\n",
  2233. ratr_bitmap));
  2234. *(u32 *)&rate_mask = ((ratr_bitmap & 0x0fffffff) |
  2235. ratr_index << 28);
  2236. rate_mask[4] = macid | (shortgi ? 0x20 : 0x00) | 0x80;
  2237. RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, ("Rate_index:%x, "
  2238. "ratr_val:%x, %x:%x:%x:%x:%x\n",
  2239. ratr_index, ratr_bitmap,
  2240. rate_mask[0], rate_mask[1],
  2241. rate_mask[2], rate_mask[3],
  2242. rate_mask[4]));
  2243. rtl92c_fill_h2c_cmd(hw, H2C_RA_MASK, 5, rate_mask);
  2244. }
  2245. void rtl92cu_update_channel_access_setting(struct ieee80211_hw *hw)
  2246. {
  2247. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2248. struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
  2249. u16 sifs_timer;
  2250. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME,
  2251. (u8 *)&mac->slot_time);
  2252. if (!mac->ht_enable)
  2253. sifs_timer = 0x0a0a;
  2254. else
  2255. sifs_timer = 0x0e0e;
  2256. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
  2257. }
  2258. bool rtl92cu_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 * valid)
  2259. {
  2260. struct rtl_priv *rtlpriv = rtl_priv(hw);
  2261. struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
  2262. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  2263. enum rf_pwrstate e_rfpowerstate_toset, cur_rfstate;
  2264. u8 u1tmp = 0;
  2265. bool actuallyset = false;
  2266. unsigned long flag = 0;
  2267. /* to do - usb autosuspend */
  2268. u8 usb_autosuspend = 0;
  2269. if (ppsc->swrf_processing)
  2270. return false;
  2271. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
  2272. if (ppsc->rfchange_inprogress) {
  2273. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  2274. return false;
  2275. } else {
  2276. ppsc->rfchange_inprogress = true;
  2277. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  2278. }
  2279. cur_rfstate = ppsc->rfpwr_state;
  2280. if (usb_autosuspend) {
  2281. /* to do................... */
  2282. } else {
  2283. if (ppsc->pwrdown_mode) {
  2284. u1tmp = rtl_read_byte(rtlpriv, REG_HSISR);
  2285. e_rfpowerstate_toset = (u1tmp & BIT(7)) ?
  2286. ERFOFF : ERFON;
  2287. RT_TRACE(rtlpriv, COMP_POWER, DBG_DMESG,
  2288. ("pwrdown, 0x5c(BIT7)=%02x\n", u1tmp));
  2289. } else {
  2290. rtl_write_byte(rtlpriv, REG_MAC_PINMUX_CFG,
  2291. rtl_read_byte(rtlpriv,
  2292. REG_MAC_PINMUX_CFG) & ~(BIT(3)));
  2293. u1tmp = rtl_read_byte(rtlpriv, REG_GPIO_IO_SEL);
  2294. e_rfpowerstate_toset = (u1tmp & BIT(3)) ?
  2295. ERFON : ERFOFF;
  2296. RT_TRACE(rtlpriv, COMP_POWER, DBG_DMESG,
  2297. ("GPIO_IN=%02x\n", u1tmp));
  2298. }
  2299. RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD, ("N-SS RF =%x\n",
  2300. e_rfpowerstate_toset));
  2301. }
  2302. if ((ppsc->hwradiooff) && (e_rfpowerstate_toset == ERFON)) {
  2303. RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD, ("GPIOChangeRF - HW "
  2304. "Radio ON, RF ON\n"));
  2305. ppsc->hwradiooff = false;
  2306. actuallyset = true;
  2307. } else if ((!ppsc->hwradiooff) && (e_rfpowerstate_toset ==
  2308. ERFOFF)) {
  2309. RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD, ("GPIOChangeRF - HW"
  2310. " Radio OFF\n"));
  2311. ppsc->hwradiooff = true;
  2312. actuallyset = true;
  2313. } else {
  2314. RT_TRACE(rtlpriv, COMP_POWER, DBG_LOUD ,
  2315. ("pHalData->bHwRadioOff and eRfPowerStateToSet do not"
  2316. " match: pHalData->bHwRadioOff %x, eRfPowerStateToSet "
  2317. "%x\n", ppsc->hwradiooff, e_rfpowerstate_toset));
  2318. }
  2319. if (actuallyset) {
  2320. ppsc->hwradiooff = 1;
  2321. if (e_rfpowerstate_toset == ERFON) {
  2322. if ((ppsc->reg_rfps_level & RT_RF_OFF_LEVL_ASPM) &&
  2323. RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_ASPM))
  2324. RT_CLEAR_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_ASPM);
  2325. else if ((ppsc->reg_rfps_level & RT_RF_OFF_LEVL_PCI_D3)
  2326. && RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_PCI_D3))
  2327. RT_CLEAR_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_PCI_D3);
  2328. }
  2329. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
  2330. ppsc->rfchange_inprogress = false;
  2331. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  2332. /* For power down module, we need to enable register block
  2333. * contrl reg at 0x1c. Then enable power down control bit
  2334. * of register 0x04 BIT4 and BIT15 as 1.
  2335. */
  2336. if (ppsc->pwrdown_mode && e_rfpowerstate_toset == ERFOFF) {
  2337. /* Enable register area 0x0-0xc. */
  2338. rtl_write_byte(rtlpriv, REG_RSV_CTRL, 0x0);
  2339. if (IS_HARDWARE_TYPE_8723U(rtlhal)) {
  2340. /*
  2341. * We should configure HW PDn source for WiFi
  2342. * ONLY, and then our HW will be set in
  2343. * power-down mode if PDn source from all
  2344. * functions are configured.
  2345. */
  2346. u1tmp = rtl_read_byte(rtlpriv,
  2347. REG_MULTI_FUNC_CTRL);
  2348. rtl_write_byte(rtlpriv, REG_MULTI_FUNC_CTRL,
  2349. (u1tmp|WL_HWPDN_EN));
  2350. } else {
  2351. rtl_write_word(rtlpriv, REG_APS_FSMCO, 0x8812);
  2352. }
  2353. }
  2354. if (e_rfpowerstate_toset == ERFOFF) {
  2355. if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_ASPM)
  2356. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_ASPM);
  2357. else if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_PCI_D3)
  2358. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_PCI_D3);
  2359. }
  2360. } else if (e_rfpowerstate_toset == ERFOFF || cur_rfstate == ERFOFF) {
  2361. /* Enter D3 or ASPM after GPIO had been done. */
  2362. if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_ASPM)
  2363. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_ASPM);
  2364. else if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_PCI_D3)
  2365. RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_PCI_D3);
  2366. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
  2367. ppsc->rfchange_inprogress = false;
  2368. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  2369. } else {
  2370. spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
  2371. ppsc->rfchange_inprogress = false;
  2372. spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
  2373. }
  2374. *valid = 1;
  2375. return !ppsc->hwradiooff;
  2376. }