efuse.c 32 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189
  1. /******************************************************************************
  2. *
  3. * Copyright(c) 2009-2010 Realtek Corporation.
  4. *
  5. * Tmis program is free software; you can redistribute it and/or modify it
  6. * under the terms of version 2 of the GNU General Public License as
  7. * published by the Free Software Foundation.
  8. *
  9. * Tmis program is distributed in the hope that it will be useful, but WITHOUT
  10. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  12. * more details.
  13. *
  14. * You should have received a copy of the GNU General Public License along with
  15. * tmis program; if not, write to the Free Software Foundation, Inc.,
  16. * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
  17. *
  18. * Tme full GNU General Public License is included in this distribution in the
  19. * file called LICENSE.
  20. *
  21. * Contact Information:
  22. * wlanfae <wlanfae@realtek.com>
  23. * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
  24. * Hsinchu 300, Taiwan.
  25. *
  26. * Larry Finger <Larry.Finger@lwfinger.net>
  27. *
  28. *****************************************************************************/
  29. #include "wifi.h"
  30. #include "efuse.h"
  31. static const u8 MAX_PGPKT_SIZE = 9;
  32. static const u8 PGPKT_DATA_SIZE = 8;
  33. static const int EFUSE_MAX_SIZE = 512;
  34. static const u8 EFUSE_OOB_PROTECT_BYTES = 15;
  35. static const struct efuse_map RTL8712_SDIO_EFUSE_TABLE[] = {
  36. {0, 0, 0, 2},
  37. {0, 1, 0, 2},
  38. {0, 2, 0, 2},
  39. {1, 0, 0, 1},
  40. {1, 0, 1, 1},
  41. {1, 1, 0, 1},
  42. {1, 1, 1, 3},
  43. {1, 3, 0, 17},
  44. {3, 3, 1, 48},
  45. {10, 0, 0, 6},
  46. {10, 3, 0, 1},
  47. {10, 3, 1, 1},
  48. {11, 0, 0, 28}
  49. };
  50. static void efuse_shadow_read_1byte(struct ieee80211_hw *hw, u16 offset,
  51. u8 *value);
  52. static void efuse_shadow_read_2byte(struct ieee80211_hw *hw, u16 offset,
  53. u16 *value);
  54. static void efuse_shadow_read_4byte(struct ieee80211_hw *hw, u16 offset,
  55. u32 *value);
  56. static void efuse_shadow_write_1byte(struct ieee80211_hw *hw, u16 offset,
  57. u8 value);
  58. static void efuse_shadow_write_2byte(struct ieee80211_hw *hw, u16 offset,
  59. u16 value);
  60. static void efuse_shadow_write_4byte(struct ieee80211_hw *hw, u16 offset,
  61. u32 value);
  62. static int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr,
  63. u8 *data);
  64. static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr,
  65. u8 data);
  66. static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse);
  67. static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset,
  68. u8 *data);
  69. static int efuse_pg_packet_write(struct ieee80211_hw *hw, u8 offset,
  70. u8 word_en, u8 *data);
  71. static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
  72. u8 *targetdata);
  73. static u8 efuse_word_enable_data_write(struct ieee80211_hw *hw,
  74. u16 efuse_addr, u8 word_en, u8 *data);
  75. static void efuse_power_switch(struct ieee80211_hw *hw, u8 write,
  76. u8 pwrstate);
  77. static u16 efuse_get_current_size(struct ieee80211_hw *hw);
  78. static u8 efuse_calculate_word_cnts(u8 word_en);
  79. void efuse_initialize(struct ieee80211_hw *hw)
  80. {
  81. struct rtl_priv *rtlpriv = rtl_priv(hw);
  82. u8 bytetemp;
  83. u8 temp;
  84. bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1);
  85. temp = bytetemp | 0x20;
  86. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1, temp);
  87. bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1);
  88. temp = bytetemp & 0xFE;
  89. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1, temp);
  90. bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3);
  91. temp = bytetemp | 0x80;
  92. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3, temp);
  93. rtl_write_byte(rtlpriv, 0x2F8, 0x3);
  94. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
  95. }
  96. u8 efuse_read_1byte(struct ieee80211_hw *hw, u16 address)
  97. {
  98. struct rtl_priv *rtlpriv = rtl_priv(hw);
  99. u8 data;
  100. u8 bytetemp;
  101. u8 temp;
  102. u32 k = 0;
  103. const u32 efuse_len =
  104. rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
  105. if (address < efuse_len) {
  106. temp = address & 0xFF;
  107. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
  108. temp);
  109. bytetemp = rtl_read_byte(rtlpriv,
  110. rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
  111. temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
  112. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
  113. temp);
  114. bytetemp = rtl_read_byte(rtlpriv,
  115. rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
  116. temp = bytetemp & 0x7F;
  117. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
  118. temp);
  119. bytetemp = rtl_read_byte(rtlpriv,
  120. rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
  121. while (!(bytetemp & 0x80)) {
  122. bytetemp = rtl_read_byte(rtlpriv,
  123. rtlpriv->cfg->
  124. maps[EFUSE_CTRL] + 3);
  125. k++;
  126. if (k == 1000) {
  127. k = 0;
  128. break;
  129. }
  130. }
  131. data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
  132. return data;
  133. } else
  134. return 0xFF;
  135. }
  136. EXPORT_SYMBOL(efuse_read_1byte);
  137. void efuse_write_1byte(struct ieee80211_hw *hw, u16 address, u8 value)
  138. {
  139. struct rtl_priv *rtlpriv = rtl_priv(hw);
  140. u8 bytetemp;
  141. u8 temp;
  142. u32 k = 0;
  143. const u32 efuse_len =
  144. rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
  145. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
  146. ("Addr=%x Data =%x\n", address, value));
  147. if (address < efuse_len) {
  148. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], value);
  149. temp = address & 0xFF;
  150. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
  151. temp);
  152. bytetemp = rtl_read_byte(rtlpriv,
  153. rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
  154. temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
  155. rtl_write_byte(rtlpriv,
  156. rtlpriv->cfg->maps[EFUSE_CTRL] + 2, temp);
  157. bytetemp = rtl_read_byte(rtlpriv,
  158. rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
  159. temp = bytetemp | 0x80;
  160. rtl_write_byte(rtlpriv,
  161. rtlpriv->cfg->maps[EFUSE_CTRL] + 3, temp);
  162. bytetemp = rtl_read_byte(rtlpriv,
  163. rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
  164. while (bytetemp & 0x80) {
  165. bytetemp = rtl_read_byte(rtlpriv,
  166. rtlpriv->cfg->
  167. maps[EFUSE_CTRL] + 3);
  168. k++;
  169. if (k == 100) {
  170. k = 0;
  171. break;
  172. }
  173. }
  174. }
  175. }
  176. void read_efuse_byte(struct ieee80211_hw *hw, u16 _offset, u8 *pbuf)
  177. {
  178. struct rtl_priv *rtlpriv = rtl_priv(hw);
  179. u32 value32;
  180. u8 readbyte;
  181. u16 retry;
  182. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
  183. (_offset & 0xff));
  184. readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
  185. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
  186. ((_offset >> 8) & 0x03) | (readbyte & 0xfc));
  187. readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
  188. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
  189. (readbyte & 0x7f));
  190. retry = 0;
  191. value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
  192. while (!(((value32 >> 24) & 0xff) & 0x80) && (retry < 10000)) {
  193. value32 = rtl_read_dword(rtlpriv,
  194. rtlpriv->cfg->maps[EFUSE_CTRL]);
  195. retry++;
  196. }
  197. udelay(50);
  198. value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
  199. *pbuf = (u8) (value32 & 0xff);
  200. }
  201. void read_efuse(struct ieee80211_hw *hw, u16 _offset, u16 _size_byte, u8 *pbuf)
  202. {
  203. struct rtl_priv *rtlpriv = rtl_priv(hw);
  204. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  205. u8 efuse_tbl[HWSET_MAX_SIZE];
  206. u8 rtemp8[1];
  207. u16 efuse_addr = 0;
  208. u8 offset, wren;
  209. u16 i;
  210. u16 j;
  211. const u16 efuse_max_section =
  212. rtlpriv->cfg->maps[EFUSE_MAX_SECTION_MAP];
  213. const u32 efuse_len =
  214. rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
  215. u16 efuse_word[EFUSE_MAX_SECTION][EFUSE_MAX_WORD_UNIT];
  216. u16 efuse_utilized = 0;
  217. u8 efuse_usage;
  218. if ((_offset + _size_byte) > rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]) {
  219. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
  220. ("read_efuse(): Invalid offset(%#x) with read "
  221. "bytes(%#x)!!\n", _offset, _size_byte));
  222. return;
  223. }
  224. for (i = 0; i < efuse_max_section; i++)
  225. for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
  226. efuse_word[i][j] = 0xFFFF;
  227. read_efuse_byte(hw, efuse_addr, rtemp8);
  228. if (*rtemp8 != 0xFF) {
  229. efuse_utilized++;
  230. RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
  231. ("Addr=%d\n", efuse_addr));
  232. efuse_addr++;
  233. }
  234. while ((*rtemp8 != 0xFF) && (efuse_addr < efuse_len)) {
  235. offset = ((*rtemp8 >> 4) & 0x0f);
  236. if (offset < efuse_max_section) {
  237. wren = (*rtemp8 & 0x0f);
  238. RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
  239. ("offset-%d Worden=%x\n", offset, wren));
  240. for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
  241. if (!(wren & 0x01)) {
  242. RTPRINT(rtlpriv, FEEPROM,
  243. EFUSE_READ_ALL, ("Addr=%d\n",
  244. efuse_addr));
  245. read_efuse_byte(hw, efuse_addr, rtemp8);
  246. efuse_addr++;
  247. efuse_utilized++;
  248. efuse_word[offset][i] = (*rtemp8 & 0xff);
  249. if (efuse_addr >= efuse_len)
  250. break;
  251. RTPRINT(rtlpriv, FEEPROM,
  252. EFUSE_READ_ALL, ("Addr=%d\n",
  253. efuse_addr));
  254. read_efuse_byte(hw, efuse_addr, rtemp8);
  255. efuse_addr++;
  256. efuse_utilized++;
  257. efuse_word[offset][i] |=
  258. (((u16)*rtemp8 << 8) & 0xff00);
  259. if (efuse_addr >= efuse_len)
  260. break;
  261. }
  262. wren >>= 1;
  263. }
  264. }
  265. RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
  266. ("Addr=%d\n", efuse_addr));
  267. read_efuse_byte(hw, efuse_addr, rtemp8);
  268. if (*rtemp8 != 0xFF && (efuse_addr < efuse_len)) {
  269. efuse_utilized++;
  270. efuse_addr++;
  271. }
  272. }
  273. for (i = 0; i < efuse_max_section; i++) {
  274. for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
  275. efuse_tbl[(i * 8) + (j * 2)] =
  276. (efuse_word[i][j] & 0xff);
  277. efuse_tbl[(i * 8) + ((j * 2) + 1)] =
  278. ((efuse_word[i][j] >> 8) & 0xff);
  279. }
  280. }
  281. for (i = 0; i < _size_byte; i++)
  282. pbuf[i] = efuse_tbl[_offset + i];
  283. rtlefuse->efuse_usedbytes = efuse_utilized;
  284. efuse_usage = (u8) ((efuse_utilized * 100) / efuse_len);
  285. rtlefuse->efuse_usedpercentage = efuse_usage;
  286. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_BYTES,
  287. (u8 *)&efuse_utilized);
  288. rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_USAGE,
  289. (u8 *)&efuse_usage);
  290. }
  291. bool efuse_shadow_update_chk(struct ieee80211_hw *hw)
  292. {
  293. struct rtl_priv *rtlpriv = rtl_priv(hw);
  294. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  295. u8 section_idx, i, Base;
  296. u16 words_need = 0, hdr_num = 0, totalbytes, efuse_used;
  297. bool wordchanged, result = true;
  298. for (section_idx = 0; section_idx < 16; section_idx++) {
  299. Base = section_idx * 8;
  300. wordchanged = false;
  301. for (i = 0; i < 8; i = i + 2) {
  302. if ((rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i] !=
  303. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i]) ||
  304. (rtlefuse->efuse_map[EFUSE_INIT_MAP][Base + i + 1] !=
  305. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][Base + i +
  306. 1])) {
  307. words_need++;
  308. wordchanged = true;
  309. }
  310. }
  311. if (wordchanged == true)
  312. hdr_num++;
  313. }
  314. totalbytes = hdr_num + words_need * 2;
  315. efuse_used = rtlefuse->efuse_usedbytes;
  316. if ((totalbytes + efuse_used) >=
  317. (EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES))
  318. result = false;
  319. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
  320. ("efuse_shadow_update_chk(): totalbytes(%#x), "
  321. "hdr_num(%#x), words_need(%#x), efuse_used(%d)\n",
  322. totalbytes, hdr_num, words_need, efuse_used));
  323. return result;
  324. }
  325. void efuse_shadow_read(struct ieee80211_hw *hw, u8 type,
  326. u16 offset, u32 *value)
  327. {
  328. if (type == 1)
  329. efuse_shadow_read_1byte(hw, offset, (u8 *) value);
  330. else if (type == 2)
  331. efuse_shadow_read_2byte(hw, offset, (u16 *) value);
  332. else if (type == 4)
  333. efuse_shadow_read_4byte(hw, offset, (u32 *) value);
  334. }
  335. void efuse_shadow_write(struct ieee80211_hw *hw, u8 type, u16 offset,
  336. u32 value)
  337. {
  338. if (type == 1)
  339. efuse_shadow_write_1byte(hw, offset, (u8) value);
  340. else if (type == 2)
  341. efuse_shadow_write_2byte(hw, offset, (u16) value);
  342. else if (type == 4)
  343. efuse_shadow_write_4byte(hw, offset, value);
  344. }
  345. bool efuse_shadow_update(struct ieee80211_hw *hw)
  346. {
  347. struct rtl_priv *rtlpriv = rtl_priv(hw);
  348. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  349. u16 i, offset, base;
  350. u8 word_en = 0x0F;
  351. u8 first_pg = false;
  352. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, ("--->\n"));
  353. if (!efuse_shadow_update_chk(hw)) {
  354. efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
  355. memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
  356. &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
  357. rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
  358. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
  359. ("<---efuse out of capacity!!\n"));
  360. return false;
  361. }
  362. efuse_power_switch(hw, true, true);
  363. for (offset = 0; offset < 16; offset++) {
  364. word_en = 0x0F;
  365. base = offset * 8;
  366. for (i = 0; i < 8; i++) {
  367. if (first_pg == true) {
  368. word_en &= ~(BIT(i / 2));
  369. rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
  370. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
  371. } else {
  372. if (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] !=
  373. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]) {
  374. word_en &= ~(BIT(i / 2));
  375. rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
  376. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
  377. }
  378. }
  379. }
  380. if (word_en != 0x0F) {
  381. u8 tmpdata[8];
  382. memcpy(tmpdata,
  383. &rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base],
  384. 8);
  385. RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_LOUD,
  386. ("U-efuse\n"), tmpdata, 8);
  387. if (!efuse_pg_packet_write(hw, (u8) offset, word_en,
  388. tmpdata)) {
  389. RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
  390. ("PG section(%#x) fail!!\n", offset));
  391. break;
  392. }
  393. }
  394. }
  395. efuse_power_switch(hw, true, false);
  396. efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
  397. memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
  398. &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
  399. rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
  400. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, ("<---\n"));
  401. return true;
  402. }
  403. void rtl_efuse_shadow_map_update(struct ieee80211_hw *hw)
  404. {
  405. struct rtl_priv *rtlpriv = rtl_priv(hw);
  406. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  407. if (rtlefuse->autoload_failflag == true)
  408. memset(&rtlefuse->efuse_map[EFUSE_INIT_MAP][0], 0xFF,
  409. rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
  410. else
  411. efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
  412. memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
  413. &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
  414. rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
  415. }
  416. EXPORT_SYMBOL(rtl_efuse_shadow_map_update);
  417. void efuse_force_write_vendor_Id(struct ieee80211_hw *hw)
  418. {
  419. u8 tmpdata[8] = { 0xFF, 0xFF, 0xEC, 0x10, 0xFF, 0xFF, 0xFF, 0xFF };
  420. efuse_power_switch(hw, true, true);
  421. efuse_pg_packet_write(hw, 1, 0xD, tmpdata);
  422. efuse_power_switch(hw, true, false);
  423. }
  424. void efuse_re_pg_section(struct ieee80211_hw *hw, u8 section_idx)
  425. {
  426. }
  427. static void efuse_shadow_read_1byte(struct ieee80211_hw *hw,
  428. u16 offset, u8 *value)
  429. {
  430. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  431. *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
  432. }
  433. static void efuse_shadow_read_2byte(struct ieee80211_hw *hw,
  434. u16 offset, u16 *value)
  435. {
  436. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  437. *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
  438. *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
  439. }
  440. static void efuse_shadow_read_4byte(struct ieee80211_hw *hw,
  441. u16 offset, u32 *value)
  442. {
  443. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  444. *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
  445. *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
  446. *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] << 16;
  447. *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] << 24;
  448. }
  449. static void efuse_shadow_write_1byte(struct ieee80211_hw *hw,
  450. u16 offset, u8 value)
  451. {
  452. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  453. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value;
  454. }
  455. static void efuse_shadow_write_2byte(struct ieee80211_hw *hw,
  456. u16 offset, u16 value)
  457. {
  458. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  459. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value & 0x00FF;
  460. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] = value >> 8;
  461. }
  462. static void efuse_shadow_write_4byte(struct ieee80211_hw *hw,
  463. u16 offset, u32 value)
  464. {
  465. struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
  466. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] =
  467. (u8) (value & 0x000000FF);
  468. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] =
  469. (u8) ((value >> 8) & 0x0000FF);
  470. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] =
  471. (u8) ((value >> 16) & 0x00FF);
  472. rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] =
  473. (u8) ((value >> 24) & 0xFF);
  474. }
  475. static int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr, u8 *data)
  476. {
  477. struct rtl_priv *rtlpriv = rtl_priv(hw);
  478. u8 tmpidx = 0;
  479. int result;
  480. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
  481. (u8) (addr & 0xff));
  482. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
  483. ((u8) ((addr >> 8) & 0x03)) |
  484. (rtl_read_byte(rtlpriv,
  485. rtlpriv->cfg->maps[EFUSE_CTRL] + 2) &
  486. 0xFC));
  487. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
  488. while (!(0x80 & rtl_read_byte(rtlpriv,
  489. rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
  490. && (tmpidx < 100)) {
  491. tmpidx++;
  492. }
  493. if (tmpidx < 100) {
  494. *data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
  495. result = true;
  496. } else {
  497. *data = 0xff;
  498. result = false;
  499. }
  500. return result;
  501. }
  502. static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr, u8 data)
  503. {
  504. struct rtl_priv *rtlpriv = rtl_priv(hw);
  505. u8 tmpidx = 0;
  506. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
  507. ("Addr = %x Data=%x\n", addr, data));
  508. rtl_write_byte(rtlpriv,
  509. rtlpriv->cfg->maps[EFUSE_CTRL] + 1, (u8) (addr & 0xff));
  510. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
  511. (rtl_read_byte(rtlpriv,
  512. rtlpriv->cfg->maps[EFUSE_CTRL] +
  513. 2) & 0xFC) | (u8) ((addr >> 8) & 0x03));
  514. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], data);
  515. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0xF2);
  516. while ((0x80 & rtl_read_byte(rtlpriv,
  517. rtlpriv->cfg->maps[EFUSE_CTRL] + 3))
  518. && (tmpidx < 100)) {
  519. tmpidx++;
  520. }
  521. if (tmpidx < 100)
  522. return true;
  523. return false;
  524. }
  525. static void efuse_read_all_map(struct ieee80211_hw *hw, u8 * efuse)
  526. {
  527. struct rtl_priv *rtlpriv = rtl_priv(hw);
  528. efuse_power_switch(hw, false, true);
  529. read_efuse(hw, 0, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE], efuse);
  530. efuse_power_switch(hw, false, false);
  531. }
  532. static void efuse_read_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
  533. u8 efuse_data, u8 offset, u8 *tmpdata,
  534. u8 *readstate)
  535. {
  536. bool dataempty = true;
  537. u8 hoffset;
  538. u8 tmpidx;
  539. u8 hworden;
  540. u8 word_cnts;
  541. hoffset = (efuse_data >> 4) & 0x0F;
  542. hworden = efuse_data & 0x0F;
  543. word_cnts = efuse_calculate_word_cnts(hworden);
  544. if (hoffset == offset) {
  545. for (tmpidx = 0; tmpidx < word_cnts * 2; tmpidx++) {
  546. if (efuse_one_byte_read(hw, *efuse_addr + 1 + tmpidx,
  547. &efuse_data)) {
  548. tmpdata[tmpidx] = efuse_data;
  549. if (efuse_data != 0xff)
  550. dataempty = true;
  551. }
  552. }
  553. if (dataempty == true) {
  554. *readstate = PG_STATE_DATA;
  555. } else {
  556. *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
  557. *readstate = PG_STATE_HEADER;
  558. }
  559. } else {
  560. *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
  561. *readstate = PG_STATE_HEADER;
  562. }
  563. }
  564. static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset, u8 *data)
  565. {
  566. u8 readstate = PG_STATE_HEADER;
  567. bool continual = true;
  568. u8 efuse_data, word_cnts = 0;
  569. u16 efuse_addr = 0;
  570. u8 tmpdata[8];
  571. if (data == NULL)
  572. return false;
  573. if (offset > 15)
  574. return false;
  575. memset(data, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
  576. memset(tmpdata, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
  577. while (continual && (efuse_addr < EFUSE_MAX_SIZE)) {
  578. if (readstate & PG_STATE_HEADER) {
  579. if (efuse_one_byte_read(hw, efuse_addr, &efuse_data)
  580. && (efuse_data != 0xFF))
  581. efuse_read_data_case1(hw, &efuse_addr,
  582. efuse_data,
  583. offset, tmpdata,
  584. &readstate);
  585. else
  586. continual = false;
  587. } else if (readstate & PG_STATE_DATA) {
  588. efuse_word_enable_data_read(0, tmpdata, data);
  589. efuse_addr = efuse_addr + (word_cnts * 2) + 1;
  590. readstate = PG_STATE_HEADER;
  591. }
  592. }
  593. if ((data[0] == 0xff) && (data[1] == 0xff) &&
  594. (data[2] == 0xff) && (data[3] == 0xff) &&
  595. (data[4] == 0xff) && (data[5] == 0xff) &&
  596. (data[6] == 0xff) && (data[7] == 0xff))
  597. return false;
  598. else
  599. return true;
  600. }
  601. static void efuse_write_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
  602. u8 efuse_data, u8 offset, int *continual,
  603. u8 *write_state, struct pgpkt_struct *target_pkt,
  604. int *repeat_times, int *result, u8 word_en)
  605. {
  606. struct rtl_priv *rtlpriv = rtl_priv(hw);
  607. struct pgpkt_struct tmp_pkt;
  608. bool dataempty = true;
  609. u8 originaldata[8 * sizeof(u8)];
  610. u8 badworden = 0x0F;
  611. u8 match_word_en, tmp_word_en;
  612. u8 tmpindex;
  613. u8 tmp_header = efuse_data;
  614. u8 tmp_word_cnts;
  615. tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
  616. tmp_pkt.word_en = tmp_header & 0x0F;
  617. tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
  618. if (tmp_pkt.offset != target_pkt->offset) {
  619. *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
  620. *write_state = PG_STATE_HEADER;
  621. } else {
  622. for (tmpindex = 0; tmpindex < (tmp_word_cnts * 2); tmpindex++) {
  623. u16 address = *efuse_addr + 1 + tmpindex;
  624. if (efuse_one_byte_read(hw, address,
  625. &efuse_data) && (efuse_data != 0xFF))
  626. dataempty = false;
  627. }
  628. if (dataempty == false) {
  629. *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
  630. *write_state = PG_STATE_HEADER;
  631. } else {
  632. match_word_en = 0x0F;
  633. if (!((target_pkt->word_en & BIT(0)) |
  634. (tmp_pkt.word_en & BIT(0))))
  635. match_word_en &= (~BIT(0));
  636. if (!((target_pkt->word_en & BIT(1)) |
  637. (tmp_pkt.word_en & BIT(1))))
  638. match_word_en &= (~BIT(1));
  639. if (!((target_pkt->word_en & BIT(2)) |
  640. (tmp_pkt.word_en & BIT(2))))
  641. match_word_en &= (~BIT(2));
  642. if (!((target_pkt->word_en & BIT(3)) |
  643. (tmp_pkt.word_en & BIT(3))))
  644. match_word_en &= (~BIT(3));
  645. if ((match_word_en & 0x0F) != 0x0F) {
  646. badworden = efuse_word_enable_data_write(
  647. hw, *efuse_addr + 1,
  648. tmp_pkt.word_en,
  649. target_pkt->data);
  650. if (0x0F != (badworden & 0x0F)) {
  651. u8 reorg_offset = offset;
  652. u8 reorg_worden = badworden;
  653. efuse_pg_packet_write(hw, reorg_offset,
  654. reorg_worden,
  655. originaldata);
  656. }
  657. tmp_word_en = 0x0F;
  658. if ((target_pkt->word_en & BIT(0)) ^
  659. (match_word_en & BIT(0)))
  660. tmp_word_en &= (~BIT(0));
  661. if ((target_pkt->word_en & BIT(1)) ^
  662. (match_word_en & BIT(1)))
  663. tmp_word_en &= (~BIT(1));
  664. if ((target_pkt->word_en & BIT(2)) ^
  665. (match_word_en & BIT(2)))
  666. tmp_word_en &= (~BIT(2));
  667. if ((target_pkt->word_en & BIT(3)) ^
  668. (match_word_en & BIT(3)))
  669. tmp_word_en &= (~BIT(3));
  670. if ((tmp_word_en & 0x0F) != 0x0F) {
  671. *efuse_addr = efuse_get_current_size(hw);
  672. target_pkt->offset = offset;
  673. target_pkt->word_en = tmp_word_en;
  674. } else {
  675. *continual = false;
  676. }
  677. *write_state = PG_STATE_HEADER;
  678. *repeat_times += 1;
  679. if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
  680. *continual = false;
  681. *result = false;
  682. }
  683. } else {
  684. *efuse_addr += (2 * tmp_word_cnts) + 1;
  685. target_pkt->offset = offset;
  686. target_pkt->word_en = word_en;
  687. *write_state = PG_STATE_HEADER;
  688. }
  689. }
  690. }
  691. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, ("efuse PG_STATE_HEADER-1\n"));
  692. }
  693. static void efuse_write_data_case2(struct ieee80211_hw *hw, u16 *efuse_addr,
  694. int *continual, u8 *write_state,
  695. struct pgpkt_struct target_pkt,
  696. int *repeat_times, int *result)
  697. {
  698. struct rtl_priv *rtlpriv = rtl_priv(hw);
  699. struct pgpkt_struct tmp_pkt;
  700. u8 pg_header;
  701. u8 tmp_header;
  702. u8 originaldata[8 * sizeof(u8)];
  703. u8 tmp_word_cnts;
  704. u8 badworden = 0x0F;
  705. pg_header = ((target_pkt.offset << 4) & 0xf0) | target_pkt.word_en;
  706. efuse_one_byte_write(hw, *efuse_addr, pg_header);
  707. efuse_one_byte_read(hw, *efuse_addr, &tmp_header);
  708. if (tmp_header == pg_header) {
  709. *write_state = PG_STATE_DATA;
  710. } else if (tmp_header == 0xFF) {
  711. *write_state = PG_STATE_HEADER;
  712. *repeat_times += 1;
  713. if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
  714. *continual = false;
  715. *result = false;
  716. }
  717. } else {
  718. tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
  719. tmp_pkt.word_en = tmp_header & 0x0F;
  720. tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
  721. memset(originaldata, 0xff, 8 * sizeof(u8));
  722. if (efuse_pg_packet_read(hw, tmp_pkt.offset, originaldata)) {
  723. badworden = efuse_word_enable_data_write(hw,
  724. *efuse_addr + 1, tmp_pkt.word_en,
  725. originaldata);
  726. if (0x0F != (badworden & 0x0F)) {
  727. u8 reorg_offset = tmp_pkt.offset;
  728. u8 reorg_worden = badworden;
  729. efuse_pg_packet_write(hw, reorg_offset,
  730. reorg_worden,
  731. originaldata);
  732. *efuse_addr = efuse_get_current_size(hw);
  733. } else {
  734. *efuse_addr = *efuse_addr + (tmp_word_cnts * 2)
  735. + 1;
  736. }
  737. } else {
  738. *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
  739. }
  740. *write_state = PG_STATE_HEADER;
  741. *repeat_times += 1;
  742. if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
  743. *continual = false;
  744. *result = false;
  745. }
  746. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
  747. ("efuse PG_STATE_HEADER-2\n"));
  748. }
  749. }
  750. static int efuse_pg_packet_write(struct ieee80211_hw *hw,
  751. u8 offset, u8 word_en, u8 *data)
  752. {
  753. struct rtl_priv *rtlpriv = rtl_priv(hw);
  754. struct pgpkt_struct target_pkt;
  755. u8 write_state = PG_STATE_HEADER;
  756. int continual = true, dataempty = true, result = true;
  757. u16 efuse_addr = 0;
  758. u8 efuse_data;
  759. u8 target_word_cnts = 0;
  760. u8 badworden = 0x0F;
  761. static int repeat_times;
  762. if (efuse_get_current_size(hw) >=
  763. (EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES)) {
  764. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
  765. ("efuse_pg_packet_write error\n"));
  766. return false;
  767. }
  768. target_pkt.offset = offset;
  769. target_pkt.word_en = word_en;
  770. memset(target_pkt.data, 0xFF, 8 * sizeof(u8));
  771. efuse_word_enable_data_read(word_en, data, target_pkt.data);
  772. target_word_cnts = efuse_calculate_word_cnts(target_pkt.word_en);
  773. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, ("efuse Power ON\n"));
  774. while (continual && (efuse_addr <
  775. (EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES))) {
  776. if (write_state == PG_STATE_HEADER) {
  777. dataempty = true;
  778. badworden = 0x0F;
  779. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
  780. ("efuse PG_STATE_HEADER\n"));
  781. if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
  782. (efuse_data != 0xFF))
  783. efuse_write_data_case1(hw, &efuse_addr,
  784. efuse_data, offset,
  785. &continual,
  786. &write_state, &target_pkt,
  787. &repeat_times, &result,
  788. word_en);
  789. else
  790. efuse_write_data_case2(hw, &efuse_addr,
  791. &continual,
  792. &write_state,
  793. target_pkt,
  794. &repeat_times,
  795. &result);
  796. } else if (write_state == PG_STATE_DATA) {
  797. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
  798. ("efuse PG_STATE_DATA\n"));
  799. badworden =
  800. efuse_word_enable_data_write(hw, efuse_addr + 1,
  801. target_pkt.word_en,
  802. target_pkt.data);
  803. if ((badworden & 0x0F) == 0x0F) {
  804. continual = false;
  805. } else {
  806. efuse_addr += (2 * target_word_cnts) + 1;
  807. target_pkt.offset = offset;
  808. target_pkt.word_en = badworden;
  809. target_word_cnts =
  810. efuse_calculate_word_cnts(target_pkt.
  811. word_en);
  812. write_state = PG_STATE_HEADER;
  813. repeat_times++;
  814. if (repeat_times > EFUSE_REPEAT_THRESHOLD_) {
  815. continual = false;
  816. result = false;
  817. }
  818. RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
  819. ("efuse PG_STATE_HEADER-3\n"));
  820. }
  821. }
  822. }
  823. if (efuse_addr >= (EFUSE_MAX_SIZE - EFUSE_OOB_PROTECT_BYTES)) {
  824. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
  825. ("efuse_addr(%#x) Out of size!!\n", efuse_addr));
  826. }
  827. return true;
  828. }
  829. static void efuse_word_enable_data_read(u8 word_en,
  830. u8 *sourdata, u8 *targetdata)
  831. {
  832. if (!(word_en & BIT(0))) {
  833. targetdata[0] = sourdata[0];
  834. targetdata[1] = sourdata[1];
  835. }
  836. if (!(word_en & BIT(1))) {
  837. targetdata[2] = sourdata[2];
  838. targetdata[3] = sourdata[3];
  839. }
  840. if (!(word_en & BIT(2))) {
  841. targetdata[4] = sourdata[4];
  842. targetdata[5] = sourdata[5];
  843. }
  844. if (!(word_en & BIT(3))) {
  845. targetdata[6] = sourdata[6];
  846. targetdata[7] = sourdata[7];
  847. }
  848. }
  849. static u8 efuse_word_enable_data_write(struct ieee80211_hw *hw,
  850. u16 efuse_addr, u8 word_en, u8 *data)
  851. {
  852. struct rtl_priv *rtlpriv = rtl_priv(hw);
  853. u16 tmpaddr;
  854. u16 start_addr = efuse_addr;
  855. u8 badworden = 0x0F;
  856. u8 tmpdata[8];
  857. memset(tmpdata, 0xff, PGPKT_DATA_SIZE);
  858. RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
  859. ("word_en = %x efuse_addr=%x\n", word_en, efuse_addr));
  860. if (!(word_en & BIT(0))) {
  861. tmpaddr = start_addr;
  862. efuse_one_byte_write(hw, start_addr++, data[0]);
  863. efuse_one_byte_write(hw, start_addr++, data[1]);
  864. efuse_one_byte_read(hw, tmpaddr, &tmpdata[0]);
  865. efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[1]);
  866. if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
  867. badworden &= (~BIT(0));
  868. }
  869. if (!(word_en & BIT(1))) {
  870. tmpaddr = start_addr;
  871. efuse_one_byte_write(hw, start_addr++, data[2]);
  872. efuse_one_byte_write(hw, start_addr++, data[3]);
  873. efuse_one_byte_read(hw, tmpaddr, &tmpdata[2]);
  874. efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[3]);
  875. if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
  876. badworden &= (~BIT(1));
  877. }
  878. if (!(word_en & BIT(2))) {
  879. tmpaddr = start_addr;
  880. efuse_one_byte_write(hw, start_addr++, data[4]);
  881. efuse_one_byte_write(hw, start_addr++, data[5]);
  882. efuse_one_byte_read(hw, tmpaddr, &tmpdata[4]);
  883. efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[5]);
  884. if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
  885. badworden &= (~BIT(2));
  886. }
  887. if (!(word_en & BIT(3))) {
  888. tmpaddr = start_addr;
  889. efuse_one_byte_write(hw, start_addr++, data[6]);
  890. efuse_one_byte_write(hw, start_addr++, data[7]);
  891. efuse_one_byte_read(hw, tmpaddr, &tmpdata[6]);
  892. efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[7]);
  893. if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
  894. badworden &= (~BIT(3));
  895. }
  896. return badworden;
  897. }
  898. static void efuse_power_switch(struct ieee80211_hw *hw, u8 write, u8 pwrstate)
  899. {
  900. struct rtl_priv *rtlpriv = rtl_priv(hw);
  901. struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
  902. u8 tempval;
  903. u16 tmpV16;
  904. if (pwrstate && (rtlhal->hw_type !=
  905. HARDWARE_TYPE_RTL8192SE)) {
  906. tmpV16 = rtl_read_word(rtlpriv,
  907. rtlpriv->cfg->maps[SYS_ISO_CTRL]);
  908. if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_PWC_EV12V])) {
  909. tmpV16 |= rtlpriv->cfg->maps[EFUSE_PWC_EV12V];
  910. rtl_write_word(rtlpriv,
  911. rtlpriv->cfg->maps[SYS_ISO_CTRL],
  912. tmpV16);
  913. }
  914. tmpV16 = rtl_read_word(rtlpriv,
  915. rtlpriv->cfg->maps[SYS_FUNC_EN]);
  916. if (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_FEN_ELDR])) {
  917. tmpV16 |= rtlpriv->cfg->maps[EFUSE_FEN_ELDR];
  918. rtl_write_word(rtlpriv,
  919. rtlpriv->cfg->maps[SYS_FUNC_EN], tmpV16);
  920. }
  921. tmpV16 = rtl_read_word(rtlpriv, rtlpriv->cfg->maps[SYS_CLK]);
  922. if ((!(tmpV16 & rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN])) ||
  923. (!(tmpV16 & rtlpriv->cfg->maps[EFUSE_ANA8M]))) {
  924. tmpV16 |= (rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN] |
  925. rtlpriv->cfg->maps[EFUSE_ANA8M]);
  926. rtl_write_word(rtlpriv,
  927. rtlpriv->cfg->maps[SYS_CLK], tmpV16);
  928. }
  929. }
  930. if (pwrstate) {
  931. if (write) {
  932. tempval = rtl_read_byte(rtlpriv,
  933. rtlpriv->cfg->maps[EFUSE_TEST] +
  934. 3);
  935. if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE) {
  936. tempval &= 0x0F;
  937. tempval |= (VOLTAGE_V25 << 4);
  938. }
  939. rtl_write_byte(rtlpriv,
  940. rtlpriv->cfg->maps[EFUSE_TEST] + 3,
  941. (tempval | 0x80));
  942. }
  943. if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
  944. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
  945. 0x03);
  946. }
  947. } else {
  948. if (write) {
  949. tempval = rtl_read_byte(rtlpriv,
  950. rtlpriv->cfg->maps[EFUSE_TEST] +
  951. 3);
  952. rtl_write_byte(rtlpriv,
  953. rtlpriv->cfg->maps[EFUSE_TEST] + 3,
  954. (tempval & 0x7F));
  955. }
  956. if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
  957. rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
  958. 0x02);
  959. }
  960. }
  961. }
  962. static u16 efuse_get_current_size(struct ieee80211_hw *hw)
  963. {
  964. int continual = true;
  965. u16 efuse_addr = 0;
  966. u8 hoffset, hworden;
  967. u8 efuse_data, word_cnts;
  968. while (continual && efuse_one_byte_read(hw, efuse_addr, &efuse_data)
  969. && (efuse_addr < EFUSE_MAX_SIZE)) {
  970. if (efuse_data != 0xFF) {
  971. hoffset = (efuse_data >> 4) & 0x0F;
  972. hworden = efuse_data & 0x0F;
  973. word_cnts = efuse_calculate_word_cnts(hworden);
  974. efuse_addr = efuse_addr + (word_cnts * 2) + 1;
  975. } else {
  976. continual = false;
  977. }
  978. }
  979. return efuse_addr;
  980. }
  981. static u8 efuse_calculate_word_cnts(u8 word_en)
  982. {
  983. u8 word_cnts = 0;
  984. if (!(word_en & BIT(0)))
  985. word_cnts++;
  986. if (!(word_en & BIT(1)))
  987. word_cnts++;
  988. if (!(word_en & BIT(2)))
  989. word_cnts++;
  990. if (!(word_en & BIT(3)))
  991. word_cnts++;
  992. return word_cnts;
  993. }