xmit.c 64 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466
  1. /*
  2. * Copyright (c) 2008-2009 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include "ath9k.h"
  17. #include "ar9003_mac.h"
  18. #define BITS_PER_BYTE 8
  19. #define OFDM_PLCP_BITS 22
  20. #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1)
  21. #define L_STF 8
  22. #define L_LTF 8
  23. #define L_SIG 4
  24. #define HT_SIG 8
  25. #define HT_STF 4
  26. #define HT_LTF(_ns) (4 * (_ns))
  27. #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */
  28. #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */
  29. #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
  30. #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
  31. static u16 bits_per_symbol[][2] = {
  32. /* 20MHz 40MHz */
  33. { 26, 54 }, /* 0: BPSK */
  34. { 52, 108 }, /* 1: QPSK 1/2 */
  35. { 78, 162 }, /* 2: QPSK 3/4 */
  36. { 104, 216 }, /* 3: 16-QAM 1/2 */
  37. { 156, 324 }, /* 4: 16-QAM 3/4 */
  38. { 208, 432 }, /* 5: 64-QAM 2/3 */
  39. { 234, 486 }, /* 6: 64-QAM 3/4 */
  40. { 260, 540 }, /* 7: 64-QAM 5/6 */
  41. };
  42. #define IS_HT_RATE(_rate) ((_rate) & 0x80)
  43. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  44. struct ath_atx_tid *tid,
  45. struct list_head *bf_head);
  46. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  47. struct ath_txq *txq, struct list_head *bf_q,
  48. struct ath_tx_status *ts, int txok, int sendbar);
  49. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  50. struct list_head *head);
  51. static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf, int len);
  52. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  53. struct ath_tx_status *ts, int nframes, int nbad,
  54. int txok, bool update_rc);
  55. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  56. int seqno);
  57. enum {
  58. MCS_HT20,
  59. MCS_HT20_SGI,
  60. MCS_HT40,
  61. MCS_HT40_SGI,
  62. };
  63. static int ath_max_4ms_framelen[4][32] = {
  64. [MCS_HT20] = {
  65. 3212, 6432, 9648, 12864, 19300, 25736, 28952, 32172,
  66. 6424, 12852, 19280, 25708, 38568, 51424, 57852, 64280,
  67. 9628, 19260, 28896, 38528, 57792, 65532, 65532, 65532,
  68. 12828, 25656, 38488, 51320, 65532, 65532, 65532, 65532,
  69. },
  70. [MCS_HT20_SGI] = {
  71. 3572, 7144, 10720, 14296, 21444, 28596, 32172, 35744,
  72. 7140, 14284, 21428, 28568, 42856, 57144, 64288, 65532,
  73. 10700, 21408, 32112, 42816, 64228, 65532, 65532, 65532,
  74. 14256, 28516, 42780, 57040, 65532, 65532, 65532, 65532,
  75. },
  76. [MCS_HT40] = {
  77. 6680, 13360, 20044, 26724, 40092, 53456, 60140, 65532,
  78. 13348, 26700, 40052, 53400, 65532, 65532, 65532, 65532,
  79. 20004, 40008, 60016, 65532, 65532, 65532, 65532, 65532,
  80. 26644, 53292, 65532, 65532, 65532, 65532, 65532, 65532,
  81. },
  82. [MCS_HT40_SGI] = {
  83. 7420, 14844, 22272, 29696, 44544, 59396, 65532, 65532,
  84. 14832, 29668, 44504, 59340, 65532, 65532, 65532, 65532,
  85. 22232, 44464, 65532, 65532, 65532, 65532, 65532, 65532,
  86. 29616, 59232, 65532, 65532, 65532, 65532, 65532, 65532,
  87. }
  88. };
  89. /*********************/
  90. /* Aggregation logic */
  91. /*********************/
  92. static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
  93. {
  94. struct ath_atx_ac *ac = tid->ac;
  95. if (tid->paused)
  96. return;
  97. if (tid->sched)
  98. return;
  99. tid->sched = true;
  100. list_add_tail(&tid->list, &ac->tid_q);
  101. if (ac->sched)
  102. return;
  103. ac->sched = true;
  104. list_add_tail(&ac->list, &txq->axq_acq);
  105. }
  106. static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  107. {
  108. struct ath_txq *txq = tid->ac->txq;
  109. WARN_ON(!tid->paused);
  110. spin_lock_bh(&txq->axq_lock);
  111. tid->paused = false;
  112. if (list_empty(&tid->buf_q))
  113. goto unlock;
  114. ath_tx_queue_tid(txq, tid);
  115. ath_txq_schedule(sc, txq);
  116. unlock:
  117. spin_unlock_bh(&txq->axq_lock);
  118. }
  119. static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
  120. {
  121. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  122. BUILD_BUG_ON(sizeof(struct ath_frame_info) >
  123. sizeof(tx_info->rate_driver_data));
  124. return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
  125. }
  126. static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
  127. {
  128. struct ath_txq *txq = tid->ac->txq;
  129. struct ath_buf *bf;
  130. struct list_head bf_head;
  131. struct ath_tx_status ts;
  132. struct ath_frame_info *fi;
  133. INIT_LIST_HEAD(&bf_head);
  134. memset(&ts, 0, sizeof(ts));
  135. spin_lock_bh(&txq->axq_lock);
  136. while (!list_empty(&tid->buf_q)) {
  137. bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
  138. list_move_tail(&bf->list, &bf_head);
  139. spin_unlock_bh(&txq->axq_lock);
  140. fi = get_frame_info(bf->bf_mpdu);
  141. if (fi->retries) {
  142. ath_tx_update_baw(sc, tid, fi->seqno);
  143. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 1);
  144. } else {
  145. ath_tx_send_normal(sc, txq, NULL, &bf_head);
  146. }
  147. spin_lock_bh(&txq->axq_lock);
  148. }
  149. spin_unlock_bh(&txq->axq_lock);
  150. }
  151. static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  152. int seqno)
  153. {
  154. int index, cindex;
  155. index = ATH_BA_INDEX(tid->seq_start, seqno);
  156. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  157. __clear_bit(cindex, tid->tx_buf);
  158. while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
  159. INCR(tid->seq_start, IEEE80211_SEQ_MAX);
  160. INCR(tid->baw_head, ATH_TID_MAX_BUFS);
  161. }
  162. }
  163. static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
  164. u16 seqno)
  165. {
  166. int index, cindex;
  167. index = ATH_BA_INDEX(tid->seq_start, seqno);
  168. cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
  169. __set_bit(cindex, tid->tx_buf);
  170. if (index >= ((tid->baw_tail - tid->baw_head) &
  171. (ATH_TID_MAX_BUFS - 1))) {
  172. tid->baw_tail = cindex;
  173. INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
  174. }
  175. }
  176. /*
  177. * TODO: For frame(s) that are in the retry state, we will reuse the
  178. * sequence number(s) without setting the retry bit. The
  179. * alternative is to give up on these and BAR the receiver's window
  180. * forward.
  181. */
  182. static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
  183. struct ath_atx_tid *tid)
  184. {
  185. struct ath_buf *bf;
  186. struct list_head bf_head;
  187. struct ath_tx_status ts;
  188. struct ath_frame_info *fi;
  189. memset(&ts, 0, sizeof(ts));
  190. INIT_LIST_HEAD(&bf_head);
  191. for (;;) {
  192. if (list_empty(&tid->buf_q))
  193. break;
  194. bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
  195. list_move_tail(&bf->list, &bf_head);
  196. fi = get_frame_info(bf->bf_mpdu);
  197. if (fi->retries)
  198. ath_tx_update_baw(sc, tid, fi->seqno);
  199. spin_unlock(&txq->axq_lock);
  200. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0);
  201. spin_lock(&txq->axq_lock);
  202. }
  203. tid->seq_next = tid->seq_start;
  204. tid->baw_tail = tid->baw_head;
  205. }
  206. static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
  207. struct sk_buff *skb)
  208. {
  209. struct ath_frame_info *fi = get_frame_info(skb);
  210. struct ieee80211_hdr *hdr;
  211. TX_STAT_INC(txq->axq_qnum, a_retries);
  212. if (fi->retries++ > 0)
  213. return;
  214. hdr = (struct ieee80211_hdr *)skb->data;
  215. hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
  216. }
  217. static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
  218. {
  219. struct ath_buf *bf = NULL;
  220. spin_lock_bh(&sc->tx.txbuflock);
  221. if (unlikely(list_empty(&sc->tx.txbuf))) {
  222. spin_unlock_bh(&sc->tx.txbuflock);
  223. return NULL;
  224. }
  225. bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
  226. list_del(&bf->list);
  227. spin_unlock_bh(&sc->tx.txbuflock);
  228. return bf;
  229. }
  230. static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
  231. {
  232. spin_lock_bh(&sc->tx.txbuflock);
  233. list_add_tail(&bf->list, &sc->tx.txbuf);
  234. spin_unlock_bh(&sc->tx.txbuflock);
  235. }
  236. static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
  237. {
  238. struct ath_buf *tbf;
  239. tbf = ath_tx_get_buffer(sc);
  240. if (WARN_ON(!tbf))
  241. return NULL;
  242. ATH_TXBUF_RESET(tbf);
  243. tbf->bf_mpdu = bf->bf_mpdu;
  244. tbf->bf_buf_addr = bf->bf_buf_addr;
  245. memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
  246. tbf->bf_state = bf->bf_state;
  247. return tbf;
  248. }
  249. static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
  250. struct ath_tx_status *ts, int txok,
  251. int *nframes, int *nbad)
  252. {
  253. struct ath_frame_info *fi;
  254. u16 seq_st = 0;
  255. u32 ba[WME_BA_BMP_SIZE >> 5];
  256. int ba_index;
  257. int isaggr = 0;
  258. *nbad = 0;
  259. *nframes = 0;
  260. isaggr = bf_isaggr(bf);
  261. if (isaggr) {
  262. seq_st = ts->ts_seqnum;
  263. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  264. }
  265. while (bf) {
  266. fi = get_frame_info(bf->bf_mpdu);
  267. ba_index = ATH_BA_INDEX(seq_st, fi->seqno);
  268. (*nframes)++;
  269. if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
  270. (*nbad)++;
  271. bf = bf->bf_next;
  272. }
  273. }
  274. static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
  275. struct ath_buf *bf, struct list_head *bf_q,
  276. struct ath_tx_status *ts, int txok, bool retry)
  277. {
  278. struct ath_node *an = NULL;
  279. struct sk_buff *skb;
  280. struct ieee80211_sta *sta;
  281. struct ieee80211_hw *hw = sc->hw;
  282. struct ieee80211_hdr *hdr;
  283. struct ieee80211_tx_info *tx_info;
  284. struct ath_atx_tid *tid = NULL;
  285. struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
  286. struct list_head bf_head, bf_pending;
  287. u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0;
  288. u32 ba[WME_BA_BMP_SIZE >> 5];
  289. int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
  290. bool rc_update = true;
  291. struct ieee80211_tx_rate rates[4];
  292. struct ath_frame_info *fi;
  293. int nframes;
  294. u8 tidno;
  295. bool clear_filter;
  296. skb = bf->bf_mpdu;
  297. hdr = (struct ieee80211_hdr *)skb->data;
  298. tx_info = IEEE80211_SKB_CB(skb);
  299. memcpy(rates, tx_info->control.rates, sizeof(rates));
  300. rcu_read_lock();
  301. sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
  302. if (!sta) {
  303. rcu_read_unlock();
  304. INIT_LIST_HEAD(&bf_head);
  305. while (bf) {
  306. bf_next = bf->bf_next;
  307. bf->bf_state.bf_type |= BUF_XRETRY;
  308. if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) ||
  309. !bf->bf_stale || bf_next != NULL)
  310. list_move_tail(&bf->list, &bf_head);
  311. ath_tx_rc_status(sc, bf, ts, 1, 1, 0, false);
  312. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
  313. 0, 0);
  314. bf = bf_next;
  315. }
  316. return;
  317. }
  318. an = (struct ath_node *)sta->drv_priv;
  319. tidno = ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK;
  320. tid = ATH_AN_2_TID(an, tidno);
  321. /*
  322. * The hardware occasionally sends a tx status for the wrong TID.
  323. * In this case, the BA status cannot be considered valid and all
  324. * subframes need to be retransmitted
  325. */
  326. if (tidno != ts->tid)
  327. txok = false;
  328. isaggr = bf_isaggr(bf);
  329. memset(ba, 0, WME_BA_BMP_SIZE >> 3);
  330. if (isaggr && txok) {
  331. if (ts->ts_flags & ATH9K_TX_BA) {
  332. seq_st = ts->ts_seqnum;
  333. memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
  334. } else {
  335. /*
  336. * AR5416 can become deaf/mute when BA
  337. * issue happens. Chip needs to be reset.
  338. * But AP code may have sychronization issues
  339. * when perform internal reset in this routine.
  340. * Only enable reset in STA mode for now.
  341. */
  342. if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
  343. needreset = 1;
  344. }
  345. }
  346. INIT_LIST_HEAD(&bf_pending);
  347. INIT_LIST_HEAD(&bf_head);
  348. ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
  349. while (bf) {
  350. txfail = txpending = sendbar = 0;
  351. bf_next = bf->bf_next;
  352. skb = bf->bf_mpdu;
  353. tx_info = IEEE80211_SKB_CB(skb);
  354. fi = get_frame_info(skb);
  355. if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, fi->seqno))) {
  356. /* transmit completion, subframe is
  357. * acked by block ack */
  358. acked_cnt++;
  359. } else if (!isaggr && txok) {
  360. /* transmit completion */
  361. acked_cnt++;
  362. } else {
  363. if ((tid->state & AGGR_CLEANUP) || !retry) {
  364. /*
  365. * cleanup in progress, just fail
  366. * the un-acked sub-frames
  367. */
  368. txfail = 1;
  369. } else if (fi->retries < ATH_MAX_SW_RETRIES) {
  370. if (!(ts->ts_status & ATH9K_TXERR_FILT) ||
  371. !an->sleeping)
  372. ath_tx_set_retry(sc, txq, bf->bf_mpdu);
  373. clear_filter = true;
  374. txpending = 1;
  375. } else {
  376. bf->bf_state.bf_type |= BUF_XRETRY;
  377. txfail = 1;
  378. sendbar = 1;
  379. txfail_cnt++;
  380. }
  381. }
  382. if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) &&
  383. bf_next == NULL) {
  384. /*
  385. * Make sure the last desc is reclaimed if it
  386. * not a holding desc.
  387. */
  388. if (!bf_last->bf_stale)
  389. list_move_tail(&bf->list, &bf_head);
  390. else
  391. INIT_LIST_HEAD(&bf_head);
  392. } else {
  393. BUG_ON(list_empty(bf_q));
  394. list_move_tail(&bf->list, &bf_head);
  395. }
  396. if (!txpending || (tid->state & AGGR_CLEANUP)) {
  397. /*
  398. * complete the acked-ones/xretried ones; update
  399. * block-ack window
  400. */
  401. spin_lock_bh(&txq->axq_lock);
  402. ath_tx_update_baw(sc, tid, fi->seqno);
  403. spin_unlock_bh(&txq->axq_lock);
  404. if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
  405. memcpy(tx_info->control.rates, rates, sizeof(rates));
  406. ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok, true);
  407. rc_update = false;
  408. } else {
  409. ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok, false);
  410. }
  411. ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
  412. !txfail, sendbar);
  413. } else {
  414. /* retry the un-acked ones */
  415. ath9k_hw_set_clrdmask(sc->sc_ah, bf->bf_desc, false);
  416. if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)) {
  417. if (bf->bf_next == NULL && bf_last->bf_stale) {
  418. struct ath_buf *tbf;
  419. tbf = ath_clone_txbuf(sc, bf_last);
  420. /*
  421. * Update tx baw and complete the
  422. * frame with failed status if we
  423. * run out of tx buf.
  424. */
  425. if (!tbf) {
  426. spin_lock_bh(&txq->axq_lock);
  427. ath_tx_update_baw(sc, tid, fi->seqno);
  428. spin_unlock_bh(&txq->axq_lock);
  429. bf->bf_state.bf_type |=
  430. BUF_XRETRY;
  431. ath_tx_rc_status(sc, bf, ts, nframes,
  432. nbad, 0, false);
  433. ath_tx_complete_buf(sc, bf, txq,
  434. &bf_head,
  435. ts, 0, 0);
  436. break;
  437. }
  438. ath9k_hw_cleartxdesc(sc->sc_ah,
  439. tbf->bf_desc);
  440. list_add_tail(&tbf->list, &bf_head);
  441. } else {
  442. /*
  443. * Clear descriptor status words for
  444. * software retry
  445. */
  446. ath9k_hw_cleartxdesc(sc->sc_ah,
  447. bf->bf_desc);
  448. }
  449. }
  450. /*
  451. * Put this buffer to the temporary pending
  452. * queue to retain ordering
  453. */
  454. list_splice_tail_init(&bf_head, &bf_pending);
  455. }
  456. bf = bf_next;
  457. }
  458. /* prepend un-acked frames to the beginning of the pending frame queue */
  459. if (!list_empty(&bf_pending)) {
  460. if (an->sleeping)
  461. ieee80211_sta_set_tim(sta);
  462. spin_lock_bh(&txq->axq_lock);
  463. if (clear_filter)
  464. tid->ac->clear_ps_filter = true;
  465. list_splice(&bf_pending, &tid->buf_q);
  466. ath_tx_queue_tid(txq, tid);
  467. spin_unlock_bh(&txq->axq_lock);
  468. }
  469. if (tid->state & AGGR_CLEANUP) {
  470. ath_tx_flush_tid(sc, tid);
  471. if (tid->baw_head == tid->baw_tail) {
  472. tid->state &= ~AGGR_ADDBA_COMPLETE;
  473. tid->state &= ~AGGR_CLEANUP;
  474. }
  475. }
  476. rcu_read_unlock();
  477. if (needreset) {
  478. spin_unlock_bh(&sc->sc_pcu_lock);
  479. ath_reset(sc, false);
  480. spin_lock_bh(&sc->sc_pcu_lock);
  481. }
  482. }
  483. static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
  484. struct ath_atx_tid *tid)
  485. {
  486. struct sk_buff *skb;
  487. struct ieee80211_tx_info *tx_info;
  488. struct ieee80211_tx_rate *rates;
  489. u32 max_4ms_framelen, frmlen;
  490. u16 aggr_limit, legacy = 0;
  491. int i;
  492. skb = bf->bf_mpdu;
  493. tx_info = IEEE80211_SKB_CB(skb);
  494. rates = tx_info->control.rates;
  495. /*
  496. * Find the lowest frame length among the rate series that will have a
  497. * 4ms transmit duration.
  498. * TODO - TXOP limit needs to be considered.
  499. */
  500. max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
  501. for (i = 0; i < 4; i++) {
  502. if (rates[i].count) {
  503. int modeidx;
  504. if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
  505. legacy = 1;
  506. break;
  507. }
  508. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  509. modeidx = MCS_HT40;
  510. else
  511. modeidx = MCS_HT20;
  512. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  513. modeidx++;
  514. frmlen = ath_max_4ms_framelen[modeidx][rates[i].idx];
  515. max_4ms_framelen = min(max_4ms_framelen, frmlen);
  516. }
  517. }
  518. /*
  519. * limit aggregate size by the minimum rate if rate selected is
  520. * not a probe rate, if rate selected is a probe rate then
  521. * avoid aggregation of this packet.
  522. */
  523. if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
  524. return 0;
  525. if (sc->sc_flags & SC_OP_BT_PRIORITY_DETECTED)
  526. aggr_limit = min((max_4ms_framelen * 3) / 8,
  527. (u32)ATH_AMPDU_LIMIT_MAX);
  528. else
  529. aggr_limit = min(max_4ms_framelen,
  530. (u32)ATH_AMPDU_LIMIT_MAX);
  531. /*
  532. * h/w can accept aggregates upto 16 bit lengths (65535).
  533. * The IE, however can hold upto 65536, which shows up here
  534. * as zero. Ignore 65536 since we are constrained by hw.
  535. */
  536. if (tid->an->maxampdu)
  537. aggr_limit = min(aggr_limit, tid->an->maxampdu);
  538. return aggr_limit;
  539. }
  540. /*
  541. * Returns the number of delimiters to be added to
  542. * meet the minimum required mpdudensity.
  543. */
  544. static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
  545. struct ath_buf *bf, u16 frmlen)
  546. {
  547. struct sk_buff *skb = bf->bf_mpdu;
  548. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  549. u32 nsymbits, nsymbols;
  550. u16 minlen;
  551. u8 flags, rix;
  552. int width, streams, half_gi, ndelim, mindelim;
  553. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  554. /* Select standard number of delimiters based on frame length alone */
  555. ndelim = ATH_AGGR_GET_NDELIM(frmlen);
  556. /*
  557. * If encryption enabled, hardware requires some more padding between
  558. * subframes.
  559. * TODO - this could be improved to be dependent on the rate.
  560. * The hardware can keep up at lower rates, but not higher rates
  561. */
  562. if (fi->keyix != ATH9K_TXKEYIX_INVALID)
  563. ndelim += ATH_AGGR_ENCRYPTDELIM;
  564. /*
  565. * Convert desired mpdu density from microeconds to bytes based
  566. * on highest rate in rate series (i.e. first rate) to determine
  567. * required minimum length for subframe. Take into account
  568. * whether high rate is 20 or 40Mhz and half or full GI.
  569. *
  570. * If there is no mpdu density restriction, no further calculation
  571. * is needed.
  572. */
  573. if (tid->an->mpdudensity == 0)
  574. return ndelim;
  575. rix = tx_info->control.rates[0].idx;
  576. flags = tx_info->control.rates[0].flags;
  577. width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
  578. half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
  579. if (half_gi)
  580. nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
  581. else
  582. nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
  583. if (nsymbols == 0)
  584. nsymbols = 1;
  585. streams = HT_RC_2_STREAMS(rix);
  586. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  587. minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
  588. if (frmlen < minlen) {
  589. mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
  590. ndelim = max(mindelim, ndelim);
  591. }
  592. return ndelim;
  593. }
  594. static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
  595. struct ath_txq *txq,
  596. struct ath_atx_tid *tid,
  597. struct list_head *bf_q,
  598. int *aggr_len)
  599. {
  600. #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
  601. struct ath_buf *bf, *bf_first, *bf_prev = NULL;
  602. int rl = 0, nframes = 0, ndelim, prev_al = 0;
  603. u16 aggr_limit = 0, al = 0, bpad = 0,
  604. al_delta, h_baw = tid->baw_size / 2;
  605. enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
  606. struct ieee80211_tx_info *tx_info;
  607. struct ath_frame_info *fi;
  608. bf_first = list_first_entry(&tid->buf_q, struct ath_buf, list);
  609. do {
  610. bf = list_first_entry(&tid->buf_q, struct ath_buf, list);
  611. fi = get_frame_info(bf->bf_mpdu);
  612. /* do not step over block-ack window */
  613. if (!BAW_WITHIN(tid->seq_start, tid->baw_size, fi->seqno)) {
  614. status = ATH_AGGR_BAW_CLOSED;
  615. break;
  616. }
  617. if (!rl) {
  618. aggr_limit = ath_lookup_rate(sc, bf, tid);
  619. rl = 1;
  620. }
  621. /* do not exceed aggregation limit */
  622. al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
  623. if (nframes &&
  624. (aggr_limit < (al + bpad + al_delta + prev_al))) {
  625. status = ATH_AGGR_LIMITED;
  626. break;
  627. }
  628. tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
  629. if (nframes && ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) ||
  630. !(tx_info->control.rates[0].flags & IEEE80211_TX_RC_MCS)))
  631. break;
  632. /* do not exceed subframe limit */
  633. if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
  634. status = ATH_AGGR_LIMITED;
  635. break;
  636. }
  637. nframes++;
  638. /* add padding for previous frame to aggregation length */
  639. al += bpad + al_delta;
  640. /*
  641. * Get the delimiters needed to meet the MPDU
  642. * density for this node.
  643. */
  644. ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen);
  645. bpad = PADBYTES(al_delta) + (ndelim << 2);
  646. bf->bf_next = NULL;
  647. ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, 0);
  648. /* link buffers of this frame to the aggregate */
  649. if (!fi->retries)
  650. ath_tx_addto_baw(sc, tid, fi->seqno);
  651. ath9k_hw_set11n_aggr_middle(sc->sc_ah, bf->bf_desc, ndelim);
  652. list_move_tail(&bf->list, bf_q);
  653. if (bf_prev) {
  654. bf_prev->bf_next = bf;
  655. ath9k_hw_set_desc_link(sc->sc_ah, bf_prev->bf_desc,
  656. bf->bf_daddr);
  657. }
  658. bf_prev = bf;
  659. } while (!list_empty(&tid->buf_q));
  660. *aggr_len = al;
  661. return status;
  662. #undef PADBYTES
  663. }
  664. static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
  665. struct ath_atx_tid *tid)
  666. {
  667. struct ath_buf *bf;
  668. enum ATH_AGGR_STATUS status;
  669. struct ath_frame_info *fi;
  670. struct list_head bf_q;
  671. int aggr_len;
  672. do {
  673. if (list_empty(&tid->buf_q))
  674. return;
  675. INIT_LIST_HEAD(&bf_q);
  676. status = ath_tx_form_aggr(sc, txq, tid, &bf_q, &aggr_len);
  677. /*
  678. * no frames picked up to be aggregated;
  679. * block-ack window is not open.
  680. */
  681. if (list_empty(&bf_q))
  682. break;
  683. bf = list_first_entry(&bf_q, struct ath_buf, list);
  684. bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
  685. if (tid->ac->clear_ps_filter) {
  686. tid->ac->clear_ps_filter = false;
  687. ath9k_hw_set_clrdmask(sc->sc_ah, bf->bf_desc, true);
  688. }
  689. /* if only one frame, send as non-aggregate */
  690. if (bf == bf->bf_lastbf) {
  691. fi = get_frame_info(bf->bf_mpdu);
  692. bf->bf_state.bf_type &= ~BUF_AGGR;
  693. ath9k_hw_clr11n_aggr(sc->sc_ah, bf->bf_desc);
  694. ath_buf_set_rate(sc, bf, fi->framelen);
  695. ath_tx_txqaddbuf(sc, txq, &bf_q);
  696. continue;
  697. }
  698. /* setup first desc of aggregate */
  699. bf->bf_state.bf_type |= BUF_AGGR;
  700. ath_buf_set_rate(sc, bf, aggr_len);
  701. ath9k_hw_set11n_aggr_first(sc->sc_ah, bf->bf_desc, aggr_len);
  702. /* anchor last desc of aggregate */
  703. ath9k_hw_set11n_aggr_last(sc->sc_ah, bf->bf_lastbf->bf_desc);
  704. ath_tx_txqaddbuf(sc, txq, &bf_q);
  705. TX_STAT_INC(txq->axq_qnum, a_aggr);
  706. } while (txq->axq_ampdu_depth < ATH_AGGR_MIN_QDEPTH &&
  707. status != ATH_AGGR_BAW_CLOSED);
  708. }
  709. int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
  710. u16 tid, u16 *ssn)
  711. {
  712. struct ath_atx_tid *txtid;
  713. struct ath_node *an;
  714. an = (struct ath_node *)sta->drv_priv;
  715. txtid = ATH_AN_2_TID(an, tid);
  716. if (txtid->state & (AGGR_CLEANUP | AGGR_ADDBA_COMPLETE))
  717. return -EAGAIN;
  718. txtid->state |= AGGR_ADDBA_PROGRESS;
  719. txtid->paused = true;
  720. *ssn = txtid->seq_start = txtid->seq_next;
  721. memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
  722. txtid->baw_head = txtid->baw_tail = 0;
  723. return 0;
  724. }
  725. void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  726. {
  727. struct ath_node *an = (struct ath_node *)sta->drv_priv;
  728. struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
  729. struct ath_txq *txq = txtid->ac->txq;
  730. if (txtid->state & AGGR_CLEANUP)
  731. return;
  732. if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
  733. txtid->state &= ~AGGR_ADDBA_PROGRESS;
  734. return;
  735. }
  736. spin_lock_bh(&txq->axq_lock);
  737. txtid->paused = true;
  738. /*
  739. * If frames are still being transmitted for this TID, they will be
  740. * cleaned up during tx completion. To prevent race conditions, this
  741. * TID can only be reused after all in-progress subframes have been
  742. * completed.
  743. */
  744. if (txtid->baw_head != txtid->baw_tail)
  745. txtid->state |= AGGR_CLEANUP;
  746. else
  747. txtid->state &= ~AGGR_ADDBA_COMPLETE;
  748. spin_unlock_bh(&txq->axq_lock);
  749. ath_tx_flush_tid(sc, txtid);
  750. }
  751. bool ath_tx_aggr_sleep(struct ath_softc *sc, struct ath_node *an)
  752. {
  753. struct ath_atx_tid *tid;
  754. struct ath_atx_ac *ac;
  755. struct ath_txq *txq;
  756. bool buffered = false;
  757. int tidno;
  758. for (tidno = 0, tid = &an->tid[tidno];
  759. tidno < WME_NUM_TID; tidno++, tid++) {
  760. if (!tid->sched)
  761. continue;
  762. ac = tid->ac;
  763. txq = ac->txq;
  764. spin_lock_bh(&txq->axq_lock);
  765. if (!list_empty(&tid->buf_q))
  766. buffered = true;
  767. tid->sched = false;
  768. list_del(&tid->list);
  769. if (ac->sched) {
  770. ac->sched = false;
  771. list_del(&ac->list);
  772. }
  773. spin_unlock_bh(&txq->axq_lock);
  774. }
  775. return buffered;
  776. }
  777. void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
  778. {
  779. struct ath_atx_tid *tid;
  780. struct ath_atx_ac *ac;
  781. struct ath_txq *txq;
  782. int tidno;
  783. for (tidno = 0, tid = &an->tid[tidno];
  784. tidno < WME_NUM_TID; tidno++, tid++) {
  785. ac = tid->ac;
  786. txq = ac->txq;
  787. spin_lock_bh(&txq->axq_lock);
  788. ac->clear_ps_filter = true;
  789. if (!list_empty(&tid->buf_q) && !tid->paused) {
  790. ath_tx_queue_tid(txq, tid);
  791. ath_txq_schedule(sc, txq);
  792. }
  793. spin_unlock_bh(&txq->axq_lock);
  794. }
  795. }
  796. void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
  797. {
  798. struct ath_atx_tid *txtid;
  799. struct ath_node *an;
  800. an = (struct ath_node *)sta->drv_priv;
  801. if (sc->sc_flags & SC_OP_TXAGGR) {
  802. txtid = ATH_AN_2_TID(an, tid);
  803. txtid->baw_size =
  804. IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
  805. txtid->state |= AGGR_ADDBA_COMPLETE;
  806. txtid->state &= ~AGGR_ADDBA_PROGRESS;
  807. ath_tx_resume_tid(sc, txtid);
  808. }
  809. }
  810. /********************/
  811. /* Queue Management */
  812. /********************/
  813. static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
  814. struct ath_txq *txq)
  815. {
  816. struct ath_atx_ac *ac, *ac_tmp;
  817. struct ath_atx_tid *tid, *tid_tmp;
  818. list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
  819. list_del(&ac->list);
  820. ac->sched = false;
  821. list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
  822. list_del(&tid->list);
  823. tid->sched = false;
  824. ath_tid_drain(sc, txq, tid);
  825. }
  826. }
  827. }
  828. struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
  829. {
  830. struct ath_hw *ah = sc->sc_ah;
  831. struct ath_common *common = ath9k_hw_common(ah);
  832. struct ath9k_tx_queue_info qi;
  833. static const int subtype_txq_to_hwq[] = {
  834. [WME_AC_BE] = ATH_TXQ_AC_BE,
  835. [WME_AC_BK] = ATH_TXQ_AC_BK,
  836. [WME_AC_VI] = ATH_TXQ_AC_VI,
  837. [WME_AC_VO] = ATH_TXQ_AC_VO,
  838. };
  839. int axq_qnum, i;
  840. memset(&qi, 0, sizeof(qi));
  841. qi.tqi_subtype = subtype_txq_to_hwq[subtype];
  842. qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
  843. qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
  844. qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
  845. qi.tqi_physCompBuf = 0;
  846. /*
  847. * Enable interrupts only for EOL and DESC conditions.
  848. * We mark tx descriptors to receive a DESC interrupt
  849. * when a tx queue gets deep; otherwise waiting for the
  850. * EOL to reap descriptors. Note that this is done to
  851. * reduce interrupt load and this only defers reaping
  852. * descriptors, never transmitting frames. Aside from
  853. * reducing interrupts this also permits more concurrency.
  854. * The only potential downside is if the tx queue backs
  855. * up in which case the top half of the kernel may backup
  856. * due to a lack of tx descriptors.
  857. *
  858. * The UAPSD queue is an exception, since we take a desc-
  859. * based intr on the EOSP frames.
  860. */
  861. if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  862. qi.tqi_qflags = TXQ_FLAG_TXOKINT_ENABLE |
  863. TXQ_FLAG_TXERRINT_ENABLE;
  864. } else {
  865. if (qtype == ATH9K_TX_QUEUE_UAPSD)
  866. qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
  867. else
  868. qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
  869. TXQ_FLAG_TXDESCINT_ENABLE;
  870. }
  871. axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
  872. if (axq_qnum == -1) {
  873. /*
  874. * NB: don't print a message, this happens
  875. * normally on parts with too few tx queues
  876. */
  877. return NULL;
  878. }
  879. if (axq_qnum >= ARRAY_SIZE(sc->tx.txq)) {
  880. ath_err(common, "qnum %u out of range, max %zu!\n",
  881. axq_qnum, ARRAY_SIZE(sc->tx.txq));
  882. ath9k_hw_releasetxqueue(ah, axq_qnum);
  883. return NULL;
  884. }
  885. if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
  886. struct ath_txq *txq = &sc->tx.txq[axq_qnum];
  887. txq->axq_qnum = axq_qnum;
  888. txq->mac80211_qnum = -1;
  889. txq->axq_link = NULL;
  890. INIT_LIST_HEAD(&txq->axq_q);
  891. INIT_LIST_HEAD(&txq->axq_acq);
  892. spin_lock_init(&txq->axq_lock);
  893. txq->axq_depth = 0;
  894. txq->axq_ampdu_depth = 0;
  895. txq->axq_tx_inprogress = false;
  896. sc->tx.txqsetup |= 1<<axq_qnum;
  897. txq->txq_headidx = txq->txq_tailidx = 0;
  898. for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
  899. INIT_LIST_HEAD(&txq->txq_fifo[i]);
  900. INIT_LIST_HEAD(&txq->txq_fifo_pending);
  901. }
  902. return &sc->tx.txq[axq_qnum];
  903. }
  904. int ath_txq_update(struct ath_softc *sc, int qnum,
  905. struct ath9k_tx_queue_info *qinfo)
  906. {
  907. struct ath_hw *ah = sc->sc_ah;
  908. int error = 0;
  909. struct ath9k_tx_queue_info qi;
  910. if (qnum == sc->beacon.beaconq) {
  911. /*
  912. * XXX: for beacon queue, we just save the parameter.
  913. * It will be picked up by ath_beaconq_config when
  914. * it's necessary.
  915. */
  916. sc->beacon.beacon_qi = *qinfo;
  917. return 0;
  918. }
  919. BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
  920. ath9k_hw_get_txq_props(ah, qnum, &qi);
  921. qi.tqi_aifs = qinfo->tqi_aifs;
  922. qi.tqi_cwmin = qinfo->tqi_cwmin;
  923. qi.tqi_cwmax = qinfo->tqi_cwmax;
  924. qi.tqi_burstTime = qinfo->tqi_burstTime;
  925. qi.tqi_readyTime = qinfo->tqi_readyTime;
  926. if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
  927. ath_err(ath9k_hw_common(sc->sc_ah),
  928. "Unable to update hardware queue %u!\n", qnum);
  929. error = -EIO;
  930. } else {
  931. ath9k_hw_resettxqueue(ah, qnum);
  932. }
  933. return error;
  934. }
  935. int ath_cabq_update(struct ath_softc *sc)
  936. {
  937. struct ath9k_tx_queue_info qi;
  938. struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf;
  939. int qnum = sc->beacon.cabq->axq_qnum;
  940. ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
  941. /*
  942. * Ensure the readytime % is within the bounds.
  943. */
  944. if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
  945. sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
  946. else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
  947. sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
  948. qi.tqi_readyTime = (cur_conf->beacon_interval *
  949. sc->config.cabqReadytime) / 100;
  950. ath_txq_update(sc, qnum, &qi);
  951. return 0;
  952. }
  953. static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
  954. {
  955. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
  956. return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
  957. }
  958. /*
  959. * Drain a given TX queue (could be Beacon or Data)
  960. *
  961. * This assumes output has been stopped and
  962. * we do not need to block ath_tx_tasklet.
  963. */
  964. void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx)
  965. {
  966. struct ath_buf *bf, *lastbf;
  967. struct list_head bf_head;
  968. struct ath_tx_status ts;
  969. memset(&ts, 0, sizeof(ts));
  970. INIT_LIST_HEAD(&bf_head);
  971. for (;;) {
  972. spin_lock_bh(&txq->axq_lock);
  973. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  974. if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
  975. txq->txq_headidx = txq->txq_tailidx = 0;
  976. spin_unlock_bh(&txq->axq_lock);
  977. break;
  978. } else {
  979. bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx],
  980. struct ath_buf, list);
  981. }
  982. } else {
  983. if (list_empty(&txq->axq_q)) {
  984. txq->axq_link = NULL;
  985. spin_unlock_bh(&txq->axq_lock);
  986. break;
  987. }
  988. bf = list_first_entry(&txq->axq_q, struct ath_buf,
  989. list);
  990. if (bf->bf_stale) {
  991. list_del(&bf->list);
  992. spin_unlock_bh(&txq->axq_lock);
  993. ath_tx_return_buffer(sc, bf);
  994. continue;
  995. }
  996. }
  997. lastbf = bf->bf_lastbf;
  998. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  999. list_cut_position(&bf_head,
  1000. &txq->txq_fifo[txq->txq_tailidx],
  1001. &lastbf->list);
  1002. INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
  1003. } else {
  1004. /* remove ath_buf's of the same mpdu from txq */
  1005. list_cut_position(&bf_head, &txq->axq_q, &lastbf->list);
  1006. }
  1007. txq->axq_depth--;
  1008. if (bf_is_ampdu_not_probing(bf))
  1009. txq->axq_ampdu_depth--;
  1010. spin_unlock_bh(&txq->axq_lock);
  1011. if (bf_isampdu(bf))
  1012. ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, 0,
  1013. retry_tx);
  1014. else
  1015. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0);
  1016. }
  1017. spin_lock_bh(&txq->axq_lock);
  1018. txq->axq_tx_inprogress = false;
  1019. spin_unlock_bh(&txq->axq_lock);
  1020. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1021. spin_lock_bh(&txq->axq_lock);
  1022. while (!list_empty(&txq->txq_fifo_pending)) {
  1023. bf = list_first_entry(&txq->txq_fifo_pending,
  1024. struct ath_buf, list);
  1025. list_cut_position(&bf_head,
  1026. &txq->txq_fifo_pending,
  1027. &bf->bf_lastbf->list);
  1028. spin_unlock_bh(&txq->axq_lock);
  1029. if (bf_isampdu(bf))
  1030. ath_tx_complete_aggr(sc, txq, bf, &bf_head,
  1031. &ts, 0, retry_tx);
  1032. else
  1033. ath_tx_complete_buf(sc, bf, txq, &bf_head,
  1034. &ts, 0, 0);
  1035. spin_lock_bh(&txq->axq_lock);
  1036. }
  1037. spin_unlock_bh(&txq->axq_lock);
  1038. }
  1039. /* flush any pending frames if aggregation is enabled */
  1040. if (sc->sc_flags & SC_OP_TXAGGR) {
  1041. if (!retry_tx) {
  1042. spin_lock_bh(&txq->axq_lock);
  1043. ath_txq_drain_pending_buffers(sc, txq);
  1044. spin_unlock_bh(&txq->axq_lock);
  1045. }
  1046. }
  1047. }
  1048. bool ath_drain_all_txq(struct ath_softc *sc, bool retry_tx)
  1049. {
  1050. struct ath_hw *ah = sc->sc_ah;
  1051. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1052. struct ath_txq *txq;
  1053. int i, npend = 0;
  1054. if (sc->sc_flags & SC_OP_INVALID)
  1055. return true;
  1056. ath9k_hw_abort_tx_dma(ah);
  1057. /* Check if any queue remains active */
  1058. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1059. if (!ATH_TXQ_SETUP(sc, i))
  1060. continue;
  1061. npend += ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum);
  1062. }
  1063. if (npend)
  1064. ath_err(common, "Failed to stop TX DMA!\n");
  1065. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1066. if (!ATH_TXQ_SETUP(sc, i))
  1067. continue;
  1068. /*
  1069. * The caller will resume queues with ieee80211_wake_queues.
  1070. * Mark the queue as not stopped to prevent ath_tx_complete
  1071. * from waking the queue too early.
  1072. */
  1073. txq = &sc->tx.txq[i];
  1074. txq->stopped = false;
  1075. ath_draintxq(sc, txq, retry_tx);
  1076. }
  1077. return !npend;
  1078. }
  1079. void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
  1080. {
  1081. ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
  1082. sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
  1083. }
  1084. /* For each axq_acq entry, for each tid, try to schedule packets
  1085. * for transmit until ampdu_depth has reached min Q depth.
  1086. */
  1087. void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
  1088. {
  1089. struct ath_atx_ac *ac, *ac_tmp, *last_ac;
  1090. struct ath_atx_tid *tid, *last_tid;
  1091. if (list_empty(&txq->axq_acq) ||
  1092. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1093. return;
  1094. ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
  1095. last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list);
  1096. list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
  1097. last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
  1098. list_del(&ac->list);
  1099. ac->sched = false;
  1100. while (!list_empty(&ac->tid_q)) {
  1101. tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
  1102. list);
  1103. list_del(&tid->list);
  1104. tid->sched = false;
  1105. if (tid->paused)
  1106. continue;
  1107. ath_tx_sched_aggr(sc, txq, tid);
  1108. /*
  1109. * add tid to round-robin queue if more frames
  1110. * are pending for the tid
  1111. */
  1112. if (!list_empty(&tid->buf_q))
  1113. ath_tx_queue_tid(txq, tid);
  1114. if (tid == last_tid ||
  1115. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1116. break;
  1117. }
  1118. if (!list_empty(&ac->tid_q)) {
  1119. if (!ac->sched) {
  1120. ac->sched = true;
  1121. list_add_tail(&ac->list, &txq->axq_acq);
  1122. }
  1123. }
  1124. if (ac == last_ac ||
  1125. txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
  1126. return;
  1127. }
  1128. }
  1129. /***********/
  1130. /* TX, DMA */
  1131. /***********/
  1132. /*
  1133. * Insert a chain of ath_buf (descriptors) on a txq and
  1134. * assume the descriptors are already chained together by caller.
  1135. */
  1136. static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
  1137. struct list_head *head)
  1138. {
  1139. struct ath_hw *ah = sc->sc_ah;
  1140. struct ath_common *common = ath9k_hw_common(ah);
  1141. struct ath_buf *bf;
  1142. /*
  1143. * Insert the frame on the outbound list and
  1144. * pass it on to the hardware.
  1145. */
  1146. if (list_empty(head))
  1147. return;
  1148. bf = list_first_entry(head, struct ath_buf, list);
  1149. ath_dbg(common, ATH_DBG_QUEUE,
  1150. "qnum: %d, txq depth: %d\n", txq->axq_qnum, txq->axq_depth);
  1151. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1152. if (txq->axq_depth >= ATH_TXFIFO_DEPTH) {
  1153. list_splice_tail_init(head, &txq->txq_fifo_pending);
  1154. return;
  1155. }
  1156. if (!list_empty(&txq->txq_fifo[txq->txq_headidx]))
  1157. ath_dbg(common, ATH_DBG_XMIT,
  1158. "Initializing tx fifo %d which is non-empty\n",
  1159. txq->txq_headidx);
  1160. INIT_LIST_HEAD(&txq->txq_fifo[txq->txq_headidx]);
  1161. list_splice_init(head, &txq->txq_fifo[txq->txq_headidx]);
  1162. INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
  1163. TX_STAT_INC(txq->axq_qnum, puttxbuf);
  1164. ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
  1165. ath_dbg(common, ATH_DBG_XMIT, "TXDP[%u] = %llx (%p)\n",
  1166. txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
  1167. } else {
  1168. list_splice_tail_init(head, &txq->axq_q);
  1169. if (txq->axq_link == NULL) {
  1170. TX_STAT_INC(txq->axq_qnum, puttxbuf);
  1171. ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
  1172. ath_dbg(common, ATH_DBG_XMIT, "TXDP[%u] = %llx (%p)\n",
  1173. txq->axq_qnum, ito64(bf->bf_daddr),
  1174. bf->bf_desc);
  1175. } else {
  1176. *txq->axq_link = bf->bf_daddr;
  1177. ath_dbg(common, ATH_DBG_XMIT,
  1178. "link[%u] (%p)=%llx (%p)\n",
  1179. txq->axq_qnum, txq->axq_link,
  1180. ito64(bf->bf_daddr), bf->bf_desc);
  1181. }
  1182. ath9k_hw_get_desc_link(ah, bf->bf_lastbf->bf_desc,
  1183. &txq->axq_link);
  1184. TX_STAT_INC(txq->axq_qnum, txstart);
  1185. ath9k_hw_txstart(ah, txq->axq_qnum);
  1186. }
  1187. txq->axq_depth++;
  1188. if (bf_is_ampdu_not_probing(bf))
  1189. txq->axq_ampdu_depth++;
  1190. }
  1191. static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid,
  1192. struct ath_buf *bf, struct ath_tx_control *txctl)
  1193. {
  1194. struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
  1195. struct list_head bf_head;
  1196. bf->bf_state.bf_type |= BUF_AMPDU;
  1197. /*
  1198. * Do not queue to h/w when any of the following conditions is true:
  1199. * - there are pending frames in software queue
  1200. * - the TID is currently paused for ADDBA/BAR request
  1201. * - seqno is not within block-ack window
  1202. * - h/w queue depth exceeds low water mark
  1203. */
  1204. if (!list_empty(&tid->buf_q) || tid->paused ||
  1205. !BAW_WITHIN(tid->seq_start, tid->baw_size, fi->seqno) ||
  1206. txctl->txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) {
  1207. /*
  1208. * Add this frame to software queue for scheduling later
  1209. * for aggregation.
  1210. */
  1211. TX_STAT_INC(txctl->txq->axq_qnum, a_queued_sw);
  1212. list_add_tail(&bf->list, &tid->buf_q);
  1213. ath_tx_queue_tid(txctl->txq, tid);
  1214. return;
  1215. }
  1216. INIT_LIST_HEAD(&bf_head);
  1217. list_add(&bf->list, &bf_head);
  1218. /* Add sub-frame to BAW */
  1219. if (!fi->retries)
  1220. ath_tx_addto_baw(sc, tid, fi->seqno);
  1221. /* Queue to h/w without aggregation */
  1222. TX_STAT_INC(txctl->txq->axq_qnum, a_queued_hw);
  1223. bf->bf_lastbf = bf;
  1224. ath_buf_set_rate(sc, bf, fi->framelen);
  1225. ath_tx_txqaddbuf(sc, txctl->txq, &bf_head);
  1226. }
  1227. static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
  1228. struct ath_atx_tid *tid,
  1229. struct list_head *bf_head)
  1230. {
  1231. struct ath_frame_info *fi;
  1232. struct ath_buf *bf;
  1233. bf = list_first_entry(bf_head, struct ath_buf, list);
  1234. bf->bf_state.bf_type &= ~BUF_AMPDU;
  1235. /* update starting sequence number for subsequent ADDBA request */
  1236. if (tid)
  1237. INCR(tid->seq_start, IEEE80211_SEQ_MAX);
  1238. bf->bf_lastbf = bf;
  1239. fi = get_frame_info(bf->bf_mpdu);
  1240. ath_buf_set_rate(sc, bf, fi->framelen);
  1241. ath_tx_txqaddbuf(sc, txq, bf_head);
  1242. TX_STAT_INC(txq->axq_qnum, queued);
  1243. }
  1244. static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
  1245. {
  1246. struct ieee80211_hdr *hdr;
  1247. enum ath9k_pkt_type htype;
  1248. __le16 fc;
  1249. hdr = (struct ieee80211_hdr *)skb->data;
  1250. fc = hdr->frame_control;
  1251. if (ieee80211_is_beacon(fc))
  1252. htype = ATH9K_PKT_TYPE_BEACON;
  1253. else if (ieee80211_is_probe_resp(fc))
  1254. htype = ATH9K_PKT_TYPE_PROBE_RESP;
  1255. else if (ieee80211_is_atim(fc))
  1256. htype = ATH9K_PKT_TYPE_ATIM;
  1257. else if (ieee80211_is_pspoll(fc))
  1258. htype = ATH9K_PKT_TYPE_PSPOLL;
  1259. else
  1260. htype = ATH9K_PKT_TYPE_NORMAL;
  1261. return htype;
  1262. }
  1263. static void setup_frame_info(struct ieee80211_hw *hw, struct sk_buff *skb,
  1264. int framelen)
  1265. {
  1266. struct ath_softc *sc = hw->priv;
  1267. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1268. struct ieee80211_sta *sta = tx_info->control.sta;
  1269. struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
  1270. struct ieee80211_hdr *hdr;
  1271. struct ath_frame_info *fi = get_frame_info(skb);
  1272. struct ath_node *an = NULL;
  1273. struct ath_atx_tid *tid;
  1274. enum ath9k_key_type keytype;
  1275. u16 seqno = 0;
  1276. u8 tidno;
  1277. keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
  1278. if (sta)
  1279. an = (struct ath_node *) sta->drv_priv;
  1280. hdr = (struct ieee80211_hdr *)skb->data;
  1281. if (an && ieee80211_is_data_qos(hdr->frame_control) &&
  1282. conf_is_ht(&hw->conf) && (sc->sc_flags & SC_OP_TXAGGR)) {
  1283. tidno = ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK;
  1284. /*
  1285. * Override seqno set by upper layer with the one
  1286. * in tx aggregation state.
  1287. */
  1288. tid = ATH_AN_2_TID(an, tidno);
  1289. seqno = tid->seq_next;
  1290. hdr->seq_ctrl = cpu_to_le16(seqno << IEEE80211_SEQ_SEQ_SHIFT);
  1291. INCR(tid->seq_next, IEEE80211_SEQ_MAX);
  1292. }
  1293. memset(fi, 0, sizeof(*fi));
  1294. if (hw_key)
  1295. fi->keyix = hw_key->hw_key_idx;
  1296. else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
  1297. fi->keyix = an->ps_key;
  1298. else
  1299. fi->keyix = ATH9K_TXKEYIX_INVALID;
  1300. fi->keytype = keytype;
  1301. fi->framelen = framelen;
  1302. fi->seqno = seqno;
  1303. }
  1304. static int setup_tx_flags(struct sk_buff *skb)
  1305. {
  1306. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1307. int flags = 0;
  1308. flags |= ATH9K_TXDESC_INTREQ;
  1309. if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
  1310. flags |= ATH9K_TXDESC_NOACK;
  1311. if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
  1312. flags |= ATH9K_TXDESC_LDPC;
  1313. return flags;
  1314. }
  1315. /*
  1316. * rix - rate index
  1317. * pktlen - total bytes (delims + data + fcs + pads + pad delims)
  1318. * width - 0 for 20 MHz, 1 for 40 MHz
  1319. * half_gi - to use 4us v/s 3.6 us for symbol time
  1320. */
  1321. static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
  1322. int width, int half_gi, bool shortPreamble)
  1323. {
  1324. u32 nbits, nsymbits, duration, nsymbols;
  1325. int streams;
  1326. /* find number of symbols: PLCP + data */
  1327. streams = HT_RC_2_STREAMS(rix);
  1328. nbits = (pktlen << 3) + OFDM_PLCP_BITS;
  1329. nsymbits = bits_per_symbol[rix % 8][width] * streams;
  1330. nsymbols = (nbits + nsymbits - 1) / nsymbits;
  1331. if (!half_gi)
  1332. duration = SYMBOL_TIME(nsymbols);
  1333. else
  1334. duration = SYMBOL_TIME_HALFGI(nsymbols);
  1335. /* addup duration for legacy/ht training and signal fields */
  1336. duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
  1337. return duration;
  1338. }
  1339. u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
  1340. {
  1341. struct ath_hw *ah = sc->sc_ah;
  1342. struct ath9k_channel *curchan = ah->curchan;
  1343. if ((sc->sc_flags & SC_OP_ENABLE_APM) &&
  1344. (curchan->channelFlags & CHANNEL_5GHZ) &&
  1345. (chainmask == 0x7) && (rate < 0x90))
  1346. return 0x3;
  1347. else
  1348. return chainmask;
  1349. }
  1350. static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf, int len)
  1351. {
  1352. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1353. struct ath9k_11n_rate_series series[4];
  1354. struct sk_buff *skb;
  1355. struct ieee80211_tx_info *tx_info;
  1356. struct ieee80211_tx_rate *rates;
  1357. const struct ieee80211_rate *rate;
  1358. struct ieee80211_hdr *hdr;
  1359. int i, flags = 0;
  1360. u8 rix = 0, ctsrate = 0;
  1361. bool is_pspoll;
  1362. memset(series, 0, sizeof(struct ath9k_11n_rate_series) * 4);
  1363. skb = bf->bf_mpdu;
  1364. tx_info = IEEE80211_SKB_CB(skb);
  1365. rates = tx_info->control.rates;
  1366. hdr = (struct ieee80211_hdr *)skb->data;
  1367. is_pspoll = ieee80211_is_pspoll(hdr->frame_control);
  1368. /*
  1369. * We check if Short Preamble is needed for the CTS rate by
  1370. * checking the BSS's global flag.
  1371. * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
  1372. */
  1373. rate = ieee80211_get_rts_cts_rate(sc->hw, tx_info);
  1374. ctsrate = rate->hw_value;
  1375. if (sc->sc_flags & SC_OP_PREAMBLE_SHORT)
  1376. ctsrate |= rate->hw_value_short;
  1377. for (i = 0; i < 4; i++) {
  1378. bool is_40, is_sgi, is_sp;
  1379. int phy;
  1380. if (!rates[i].count || (rates[i].idx < 0))
  1381. continue;
  1382. rix = rates[i].idx;
  1383. series[i].Tries = rates[i].count;
  1384. if ((sc->config.ath_aggr_prot && bf_isaggr(bf)) ||
  1385. (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS)) {
  1386. series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  1387. flags |= ATH9K_TXDESC_RTSENA;
  1388. } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
  1389. series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
  1390. flags |= ATH9K_TXDESC_CTSENA;
  1391. }
  1392. if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
  1393. series[i].RateFlags |= ATH9K_RATESERIES_2040;
  1394. if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
  1395. series[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
  1396. is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
  1397. is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
  1398. is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
  1399. if (rates[i].flags & IEEE80211_TX_RC_MCS) {
  1400. /* MCS rates */
  1401. series[i].Rate = rix | 0x80;
  1402. series[i].ChSel = ath_txchainmask_reduction(sc,
  1403. common->tx_chainmask, series[i].Rate);
  1404. series[i].PktDuration = ath_pkt_duration(sc, rix, len,
  1405. is_40, is_sgi, is_sp);
  1406. if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
  1407. series[i].RateFlags |= ATH9K_RATESERIES_STBC;
  1408. continue;
  1409. }
  1410. /* legacy rates */
  1411. if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
  1412. !(rate->flags & IEEE80211_RATE_ERP_G))
  1413. phy = WLAN_RC_PHY_CCK;
  1414. else
  1415. phy = WLAN_RC_PHY_OFDM;
  1416. rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
  1417. series[i].Rate = rate->hw_value;
  1418. if (rate->hw_value_short) {
  1419. if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
  1420. series[i].Rate |= rate->hw_value_short;
  1421. } else {
  1422. is_sp = false;
  1423. }
  1424. if (bf->bf_state.bfs_paprd)
  1425. series[i].ChSel = common->tx_chainmask;
  1426. else
  1427. series[i].ChSel = ath_txchainmask_reduction(sc,
  1428. common->tx_chainmask, series[i].Rate);
  1429. series[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
  1430. phy, rate->bitrate * 100, len, rix, is_sp);
  1431. }
  1432. /* For AR5416 - RTS cannot be followed by a frame larger than 8K */
  1433. if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
  1434. flags &= ~ATH9K_TXDESC_RTSENA;
  1435. /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
  1436. if (flags & ATH9K_TXDESC_RTSENA)
  1437. flags &= ~ATH9K_TXDESC_CTSENA;
  1438. /* set dur_update_en for l-sig computation except for PS-Poll frames */
  1439. ath9k_hw_set11n_ratescenario(sc->sc_ah, bf->bf_desc,
  1440. bf->bf_lastbf->bf_desc,
  1441. !is_pspoll, ctsrate,
  1442. 0, series, 4, flags);
  1443. if (sc->config.ath_aggr_prot && flags)
  1444. ath9k_hw_set11n_burstduration(sc->sc_ah, bf->bf_desc, 8192);
  1445. }
  1446. static struct ath_buf *ath_tx_setup_buffer(struct ieee80211_hw *hw,
  1447. struct ath_txq *txq,
  1448. struct sk_buff *skb)
  1449. {
  1450. struct ath_softc *sc = hw->priv;
  1451. struct ath_hw *ah = sc->sc_ah;
  1452. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1453. struct ath_frame_info *fi = get_frame_info(skb);
  1454. struct ath_buf *bf;
  1455. struct ath_desc *ds;
  1456. int frm_type;
  1457. bf = ath_tx_get_buffer(sc);
  1458. if (!bf) {
  1459. ath_dbg(common, ATH_DBG_XMIT, "TX buffers are full\n");
  1460. return NULL;
  1461. }
  1462. ATH_TXBUF_RESET(bf);
  1463. bf->bf_flags = setup_tx_flags(skb);
  1464. bf->bf_mpdu = skb;
  1465. bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
  1466. skb->len, DMA_TO_DEVICE);
  1467. if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
  1468. bf->bf_mpdu = NULL;
  1469. bf->bf_buf_addr = 0;
  1470. ath_err(ath9k_hw_common(sc->sc_ah),
  1471. "dma_mapping_error() on TX\n");
  1472. ath_tx_return_buffer(sc, bf);
  1473. return NULL;
  1474. }
  1475. frm_type = get_hw_packet_type(skb);
  1476. ds = bf->bf_desc;
  1477. ath9k_hw_set_desc_link(ah, ds, 0);
  1478. ath9k_hw_set11n_txdesc(ah, ds, fi->framelen, frm_type, MAX_RATE_POWER,
  1479. fi->keyix, fi->keytype, bf->bf_flags);
  1480. ath9k_hw_filltxdesc(ah, ds,
  1481. skb->len, /* segment length */
  1482. true, /* first segment */
  1483. true, /* last segment */
  1484. ds, /* first descriptor */
  1485. bf->bf_buf_addr,
  1486. txq->axq_qnum);
  1487. return bf;
  1488. }
  1489. /* FIXME: tx power */
  1490. static void ath_tx_start_dma(struct ath_softc *sc, struct ath_buf *bf,
  1491. struct ath_tx_control *txctl)
  1492. {
  1493. struct sk_buff *skb = bf->bf_mpdu;
  1494. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1495. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1496. struct list_head bf_head;
  1497. struct ath_atx_tid *tid = NULL;
  1498. u8 tidno;
  1499. spin_lock_bh(&txctl->txq->axq_lock);
  1500. if ((sc->sc_flags & SC_OP_TXAGGR) && txctl->an &&
  1501. ieee80211_is_data_qos(hdr->frame_control)) {
  1502. tidno = ieee80211_get_qos_ctl(hdr)[0] &
  1503. IEEE80211_QOS_CTL_TID_MASK;
  1504. tid = ATH_AN_2_TID(txctl->an, tidno);
  1505. WARN_ON(tid->ac->txq != txctl->txq);
  1506. }
  1507. if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && tid) {
  1508. /*
  1509. * Try aggregation if it's a unicast data frame
  1510. * and the destination is HT capable.
  1511. */
  1512. ath_tx_send_ampdu(sc, tid, bf, txctl);
  1513. } else {
  1514. INIT_LIST_HEAD(&bf_head);
  1515. list_add_tail(&bf->list, &bf_head);
  1516. bf->bf_state.bfs_ftype = txctl->frame_type;
  1517. bf->bf_state.bfs_paprd = txctl->paprd;
  1518. if (bf->bf_state.bfs_paprd)
  1519. ar9003_hw_set_paprd_txdesc(sc->sc_ah, bf->bf_desc,
  1520. bf->bf_state.bfs_paprd);
  1521. if (txctl->paprd)
  1522. bf->bf_state.bfs_paprd_timestamp = jiffies;
  1523. if (tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
  1524. ath9k_hw_set_clrdmask(sc->sc_ah, bf->bf_desc, true);
  1525. ath_tx_send_normal(sc, txctl->txq, tid, &bf_head);
  1526. }
  1527. spin_unlock_bh(&txctl->txq->axq_lock);
  1528. }
  1529. /* Upon failure caller should free skb */
  1530. int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
  1531. struct ath_tx_control *txctl)
  1532. {
  1533. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
  1534. struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
  1535. struct ieee80211_sta *sta = info->control.sta;
  1536. struct ath_softc *sc = hw->priv;
  1537. struct ath_txq *txq = txctl->txq;
  1538. struct ath_buf *bf;
  1539. int padpos, padsize;
  1540. int frmlen = skb->len + FCS_LEN;
  1541. int q;
  1542. /* NOTE: sta can be NULL according to net/mac80211.h */
  1543. if (sta)
  1544. txctl->an = (struct ath_node *)sta->drv_priv;
  1545. if (info->control.hw_key)
  1546. frmlen += info->control.hw_key->icv_len;
  1547. /*
  1548. * As a temporary workaround, assign seq# here; this will likely need
  1549. * to be cleaned up to work better with Beacon transmission and virtual
  1550. * BSSes.
  1551. */
  1552. if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
  1553. if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
  1554. sc->tx.seq_no += 0x10;
  1555. hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
  1556. hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
  1557. }
  1558. /* Add the padding after the header if this is not already done */
  1559. padpos = ath9k_cmn_padpos(hdr->frame_control);
  1560. padsize = padpos & 3;
  1561. if (padsize && skb->len > padpos) {
  1562. if (skb_headroom(skb) < padsize)
  1563. return -ENOMEM;
  1564. skb_push(skb, padsize);
  1565. memmove(skb->data, skb->data + padsize, padpos);
  1566. }
  1567. setup_frame_info(hw, skb, frmlen);
  1568. /*
  1569. * At this point, the vif, hw_key and sta pointers in the tx control
  1570. * info are no longer valid (overwritten by the ath_frame_info data.
  1571. */
  1572. bf = ath_tx_setup_buffer(hw, txctl->txq, skb);
  1573. if (unlikely(!bf))
  1574. return -ENOMEM;
  1575. q = skb_get_queue_mapping(skb);
  1576. spin_lock_bh(&txq->axq_lock);
  1577. if (txq == sc->tx.txq_map[q] &&
  1578. ++txq->pending_frames > ATH_MAX_QDEPTH && !txq->stopped) {
  1579. ieee80211_stop_queue(sc->hw, q);
  1580. txq->stopped = 1;
  1581. }
  1582. spin_unlock_bh(&txq->axq_lock);
  1583. ath_tx_start_dma(sc, bf, txctl);
  1584. return 0;
  1585. }
  1586. /*****************/
  1587. /* TX Completion */
  1588. /*****************/
  1589. static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
  1590. int tx_flags, int ftype, struct ath_txq *txq)
  1591. {
  1592. struct ieee80211_hw *hw = sc->hw;
  1593. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1594. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1595. struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
  1596. int q, padpos, padsize;
  1597. ath_dbg(common, ATH_DBG_XMIT, "TX complete: skb: %p\n", skb);
  1598. if (tx_flags & ATH_TX_BAR)
  1599. tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
  1600. if (!(tx_flags & (ATH_TX_ERROR | ATH_TX_XRETRY))) {
  1601. /* Frame was ACKed */
  1602. tx_info->flags |= IEEE80211_TX_STAT_ACK;
  1603. }
  1604. padpos = ath9k_cmn_padpos(hdr->frame_control);
  1605. padsize = padpos & 3;
  1606. if (padsize && skb->len>padpos+padsize) {
  1607. /*
  1608. * Remove MAC header padding before giving the frame back to
  1609. * mac80211.
  1610. */
  1611. memmove(skb->data + padsize, skb->data, padpos);
  1612. skb_pull(skb, padsize);
  1613. }
  1614. if (sc->ps_flags & PS_WAIT_FOR_TX_ACK) {
  1615. sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
  1616. ath_dbg(common, ATH_DBG_PS,
  1617. "Going back to sleep after having received TX status (0x%lx)\n",
  1618. sc->ps_flags & (PS_WAIT_FOR_BEACON |
  1619. PS_WAIT_FOR_CAB |
  1620. PS_WAIT_FOR_PSPOLL_DATA |
  1621. PS_WAIT_FOR_TX_ACK));
  1622. }
  1623. q = skb_get_queue_mapping(skb);
  1624. if (txq == sc->tx.txq_map[q]) {
  1625. spin_lock_bh(&txq->axq_lock);
  1626. if (WARN_ON(--txq->pending_frames < 0))
  1627. txq->pending_frames = 0;
  1628. if (txq->stopped && txq->pending_frames < ATH_MAX_QDEPTH) {
  1629. ieee80211_wake_queue(sc->hw, q);
  1630. txq->stopped = 0;
  1631. }
  1632. spin_unlock_bh(&txq->axq_lock);
  1633. }
  1634. ieee80211_tx_status(hw, skb);
  1635. }
  1636. static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
  1637. struct ath_txq *txq, struct list_head *bf_q,
  1638. struct ath_tx_status *ts, int txok, int sendbar)
  1639. {
  1640. struct sk_buff *skb = bf->bf_mpdu;
  1641. unsigned long flags;
  1642. int tx_flags = 0;
  1643. if (sendbar)
  1644. tx_flags = ATH_TX_BAR;
  1645. if (!txok) {
  1646. tx_flags |= ATH_TX_ERROR;
  1647. if (bf_isxretried(bf))
  1648. tx_flags |= ATH_TX_XRETRY;
  1649. }
  1650. dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
  1651. bf->bf_buf_addr = 0;
  1652. if (bf->bf_state.bfs_paprd) {
  1653. if (time_after(jiffies,
  1654. bf->bf_state.bfs_paprd_timestamp +
  1655. msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
  1656. dev_kfree_skb_any(skb);
  1657. else
  1658. complete(&sc->paprd_complete);
  1659. } else {
  1660. ath_debug_stat_tx(sc, bf, ts, txq);
  1661. ath_tx_complete(sc, skb, tx_flags,
  1662. bf->bf_state.bfs_ftype, txq);
  1663. }
  1664. /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
  1665. * accidentally reference it later.
  1666. */
  1667. bf->bf_mpdu = NULL;
  1668. /*
  1669. * Return the list of ath_buf of this mpdu to free queue
  1670. */
  1671. spin_lock_irqsave(&sc->tx.txbuflock, flags);
  1672. list_splice_tail_init(bf_q, &sc->tx.txbuf);
  1673. spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
  1674. }
  1675. static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
  1676. struct ath_tx_status *ts, int nframes, int nbad,
  1677. int txok, bool update_rc)
  1678. {
  1679. struct sk_buff *skb = bf->bf_mpdu;
  1680. struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
  1681. struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
  1682. struct ieee80211_hw *hw = sc->hw;
  1683. struct ath_hw *ah = sc->sc_ah;
  1684. u8 i, tx_rateindex;
  1685. if (txok)
  1686. tx_info->status.ack_signal = ts->ts_rssi;
  1687. tx_rateindex = ts->ts_rateindex;
  1688. WARN_ON(tx_rateindex >= hw->max_rates);
  1689. if (ts->ts_status & ATH9K_TXERR_FILT)
  1690. tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
  1691. if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && update_rc) {
  1692. tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
  1693. BUG_ON(nbad > nframes);
  1694. tx_info->status.ampdu_len = nframes;
  1695. tx_info->status.ampdu_ack_len = nframes - nbad;
  1696. }
  1697. if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
  1698. (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0 && update_rc) {
  1699. /*
  1700. * If an underrun error is seen assume it as an excessive
  1701. * retry only if max frame trigger level has been reached
  1702. * (2 KB for single stream, and 4 KB for dual stream).
  1703. * Adjust the long retry as if the frame was tried
  1704. * hw->max_rate_tries times to affect how rate control updates
  1705. * PER for the failed rate.
  1706. * In case of congestion on the bus penalizing this type of
  1707. * underruns should help hardware actually transmit new frames
  1708. * successfully by eventually preferring slower rates.
  1709. * This itself should also alleviate congestion on the bus.
  1710. */
  1711. if (ieee80211_is_data(hdr->frame_control) &&
  1712. (ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
  1713. ATH9K_TX_DELIM_UNDERRUN)) &&
  1714. ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
  1715. tx_info->status.rates[tx_rateindex].count =
  1716. hw->max_rate_tries;
  1717. }
  1718. for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
  1719. tx_info->status.rates[i].count = 0;
  1720. tx_info->status.rates[i].idx = -1;
  1721. }
  1722. tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
  1723. }
  1724. static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
  1725. {
  1726. struct ath_hw *ah = sc->sc_ah;
  1727. struct ath_common *common = ath9k_hw_common(ah);
  1728. struct ath_buf *bf, *lastbf, *bf_held = NULL;
  1729. struct list_head bf_head;
  1730. struct ath_desc *ds;
  1731. struct ath_tx_status ts;
  1732. int txok;
  1733. int status;
  1734. ath_dbg(common, ATH_DBG_QUEUE, "tx queue %d (%x), link %p\n",
  1735. txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
  1736. txq->axq_link);
  1737. for (;;) {
  1738. spin_lock_bh(&txq->axq_lock);
  1739. if (list_empty(&txq->axq_q)) {
  1740. txq->axq_link = NULL;
  1741. if (sc->sc_flags & SC_OP_TXAGGR)
  1742. ath_txq_schedule(sc, txq);
  1743. spin_unlock_bh(&txq->axq_lock);
  1744. break;
  1745. }
  1746. bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
  1747. /*
  1748. * There is a race condition that a BH gets scheduled
  1749. * after sw writes TxE and before hw re-load the last
  1750. * descriptor to get the newly chained one.
  1751. * Software must keep the last DONE descriptor as a
  1752. * holding descriptor - software does so by marking
  1753. * it with the STALE flag.
  1754. */
  1755. bf_held = NULL;
  1756. if (bf->bf_stale) {
  1757. bf_held = bf;
  1758. if (list_is_last(&bf_held->list, &txq->axq_q)) {
  1759. spin_unlock_bh(&txq->axq_lock);
  1760. break;
  1761. } else {
  1762. bf = list_entry(bf_held->list.next,
  1763. struct ath_buf, list);
  1764. }
  1765. }
  1766. lastbf = bf->bf_lastbf;
  1767. ds = lastbf->bf_desc;
  1768. memset(&ts, 0, sizeof(ts));
  1769. status = ath9k_hw_txprocdesc(ah, ds, &ts);
  1770. if (status == -EINPROGRESS) {
  1771. spin_unlock_bh(&txq->axq_lock);
  1772. break;
  1773. }
  1774. TX_STAT_INC(txq->axq_qnum, txprocdesc);
  1775. /*
  1776. * Remove ath_buf's of the same transmit unit from txq,
  1777. * however leave the last descriptor back as the holding
  1778. * descriptor for hw.
  1779. */
  1780. lastbf->bf_stale = true;
  1781. INIT_LIST_HEAD(&bf_head);
  1782. if (!list_is_singular(&lastbf->list))
  1783. list_cut_position(&bf_head,
  1784. &txq->axq_q, lastbf->list.prev);
  1785. txq->axq_depth--;
  1786. txok = !(ts.ts_status & ATH9K_TXERR_MASK);
  1787. txq->axq_tx_inprogress = false;
  1788. if (bf_held)
  1789. list_del(&bf_held->list);
  1790. if (bf_is_ampdu_not_probing(bf))
  1791. txq->axq_ampdu_depth--;
  1792. spin_unlock_bh(&txq->axq_lock);
  1793. if (bf_held)
  1794. ath_tx_return_buffer(sc, bf_held);
  1795. if (!bf_isampdu(bf)) {
  1796. /*
  1797. * This frame is sent out as a single frame.
  1798. * Use hardware retry status for this frame.
  1799. */
  1800. if (ts.ts_status & ATH9K_TXERR_XRETRY)
  1801. bf->bf_state.bf_type |= BUF_XRETRY;
  1802. ath_tx_rc_status(sc, bf, &ts, 1, txok ? 0 : 1, txok, true);
  1803. }
  1804. if (bf_isampdu(bf))
  1805. ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, txok,
  1806. true);
  1807. else
  1808. ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, txok, 0);
  1809. spin_lock_bh(&txq->axq_lock);
  1810. if (sc->sc_flags & SC_OP_TXAGGR)
  1811. ath_txq_schedule(sc, txq);
  1812. spin_unlock_bh(&txq->axq_lock);
  1813. }
  1814. }
  1815. static void ath_tx_complete_poll_work(struct work_struct *work)
  1816. {
  1817. struct ath_softc *sc = container_of(work, struct ath_softc,
  1818. tx_complete_work.work);
  1819. struct ath_txq *txq;
  1820. int i;
  1821. bool needreset = false;
  1822. #ifdef CONFIG_ATH9K_DEBUGFS
  1823. sc->tx_complete_poll_work_seen++;
  1824. #endif
  1825. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  1826. if (ATH_TXQ_SETUP(sc, i)) {
  1827. txq = &sc->tx.txq[i];
  1828. spin_lock_bh(&txq->axq_lock);
  1829. if (txq->axq_depth) {
  1830. if (txq->axq_tx_inprogress) {
  1831. needreset = true;
  1832. spin_unlock_bh(&txq->axq_lock);
  1833. break;
  1834. } else {
  1835. txq->axq_tx_inprogress = true;
  1836. }
  1837. }
  1838. spin_unlock_bh(&txq->axq_lock);
  1839. }
  1840. if (needreset) {
  1841. ath_dbg(ath9k_hw_common(sc->sc_ah), ATH_DBG_RESET,
  1842. "tx hung, resetting the chip\n");
  1843. ath_reset(sc, true);
  1844. }
  1845. ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work,
  1846. msecs_to_jiffies(ATH_TX_COMPLETE_POLL_INT));
  1847. }
  1848. void ath_tx_tasklet(struct ath_softc *sc)
  1849. {
  1850. int i;
  1851. u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1);
  1852. ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask);
  1853. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
  1854. if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
  1855. ath_tx_processq(sc, &sc->tx.txq[i]);
  1856. }
  1857. }
  1858. void ath_tx_edma_tasklet(struct ath_softc *sc)
  1859. {
  1860. struct ath_tx_status txs;
  1861. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1862. struct ath_hw *ah = sc->sc_ah;
  1863. struct ath_txq *txq;
  1864. struct ath_buf *bf, *lastbf;
  1865. struct list_head bf_head;
  1866. int status;
  1867. int txok;
  1868. for (;;) {
  1869. status = ath9k_hw_txprocdesc(ah, NULL, (void *)&txs);
  1870. if (status == -EINPROGRESS)
  1871. break;
  1872. if (status == -EIO) {
  1873. ath_dbg(common, ATH_DBG_XMIT,
  1874. "Error processing tx status\n");
  1875. break;
  1876. }
  1877. /* Skip beacon completions */
  1878. if (txs.qid == sc->beacon.beaconq)
  1879. continue;
  1880. txq = &sc->tx.txq[txs.qid];
  1881. spin_lock_bh(&txq->axq_lock);
  1882. if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
  1883. spin_unlock_bh(&txq->axq_lock);
  1884. return;
  1885. }
  1886. bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx],
  1887. struct ath_buf, list);
  1888. lastbf = bf->bf_lastbf;
  1889. INIT_LIST_HEAD(&bf_head);
  1890. list_cut_position(&bf_head, &txq->txq_fifo[txq->txq_tailidx],
  1891. &lastbf->list);
  1892. INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
  1893. txq->axq_depth--;
  1894. txq->axq_tx_inprogress = false;
  1895. if (bf_is_ampdu_not_probing(bf))
  1896. txq->axq_ampdu_depth--;
  1897. spin_unlock_bh(&txq->axq_lock);
  1898. txok = !(txs.ts_status & ATH9K_TXERR_MASK);
  1899. if (!bf_isampdu(bf)) {
  1900. if (txs.ts_status & ATH9K_TXERR_XRETRY)
  1901. bf->bf_state.bf_type |= BUF_XRETRY;
  1902. ath_tx_rc_status(sc, bf, &txs, 1, txok ? 0 : 1, txok, true);
  1903. }
  1904. if (bf_isampdu(bf))
  1905. ath_tx_complete_aggr(sc, txq, bf, &bf_head, &txs,
  1906. txok, true);
  1907. else
  1908. ath_tx_complete_buf(sc, bf, txq, &bf_head,
  1909. &txs, txok, 0);
  1910. spin_lock_bh(&txq->axq_lock);
  1911. if (!list_empty(&txq->txq_fifo_pending)) {
  1912. INIT_LIST_HEAD(&bf_head);
  1913. bf = list_first_entry(&txq->txq_fifo_pending,
  1914. struct ath_buf, list);
  1915. list_cut_position(&bf_head,
  1916. &txq->txq_fifo_pending,
  1917. &bf->bf_lastbf->list);
  1918. ath_tx_txqaddbuf(sc, txq, &bf_head);
  1919. } else if (sc->sc_flags & SC_OP_TXAGGR)
  1920. ath_txq_schedule(sc, txq);
  1921. spin_unlock_bh(&txq->axq_lock);
  1922. }
  1923. }
  1924. /*****************/
  1925. /* Init, Cleanup */
  1926. /*****************/
  1927. static int ath_txstatus_setup(struct ath_softc *sc, int size)
  1928. {
  1929. struct ath_descdma *dd = &sc->txsdma;
  1930. u8 txs_len = sc->sc_ah->caps.txs_len;
  1931. dd->dd_desc_len = size * txs_len;
  1932. dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
  1933. &dd->dd_desc_paddr, GFP_KERNEL);
  1934. if (!dd->dd_desc)
  1935. return -ENOMEM;
  1936. return 0;
  1937. }
  1938. static int ath_tx_edma_init(struct ath_softc *sc)
  1939. {
  1940. int err;
  1941. err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
  1942. if (!err)
  1943. ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
  1944. sc->txsdma.dd_desc_paddr,
  1945. ATH_TXSTATUS_RING_SIZE);
  1946. return err;
  1947. }
  1948. static void ath_tx_edma_cleanup(struct ath_softc *sc)
  1949. {
  1950. struct ath_descdma *dd = &sc->txsdma;
  1951. dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
  1952. dd->dd_desc_paddr);
  1953. }
  1954. int ath_tx_init(struct ath_softc *sc, int nbufs)
  1955. {
  1956. struct ath_common *common = ath9k_hw_common(sc->sc_ah);
  1957. int error = 0;
  1958. spin_lock_init(&sc->tx.txbuflock);
  1959. error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
  1960. "tx", nbufs, 1, 1);
  1961. if (error != 0) {
  1962. ath_err(common,
  1963. "Failed to allocate tx descriptors: %d\n", error);
  1964. goto err;
  1965. }
  1966. error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
  1967. "beacon", ATH_BCBUF, 1, 1);
  1968. if (error != 0) {
  1969. ath_err(common,
  1970. "Failed to allocate beacon descriptors: %d\n", error);
  1971. goto err;
  1972. }
  1973. INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
  1974. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
  1975. error = ath_tx_edma_init(sc);
  1976. if (error)
  1977. goto err;
  1978. }
  1979. err:
  1980. if (error != 0)
  1981. ath_tx_cleanup(sc);
  1982. return error;
  1983. }
  1984. void ath_tx_cleanup(struct ath_softc *sc)
  1985. {
  1986. if (sc->beacon.bdma.dd_desc_len != 0)
  1987. ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf);
  1988. if (sc->tx.txdma.dd_desc_len != 0)
  1989. ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf);
  1990. if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
  1991. ath_tx_edma_cleanup(sc);
  1992. }
  1993. void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
  1994. {
  1995. struct ath_atx_tid *tid;
  1996. struct ath_atx_ac *ac;
  1997. int tidno, acno;
  1998. for (tidno = 0, tid = &an->tid[tidno];
  1999. tidno < WME_NUM_TID;
  2000. tidno++, tid++) {
  2001. tid->an = an;
  2002. tid->tidno = tidno;
  2003. tid->seq_start = tid->seq_next = 0;
  2004. tid->baw_size = WME_MAX_BA;
  2005. tid->baw_head = tid->baw_tail = 0;
  2006. tid->sched = false;
  2007. tid->paused = false;
  2008. tid->state &= ~AGGR_CLEANUP;
  2009. INIT_LIST_HEAD(&tid->buf_q);
  2010. acno = TID_TO_WME_AC(tidno);
  2011. tid->ac = &an->ac[acno];
  2012. tid->state &= ~AGGR_ADDBA_COMPLETE;
  2013. tid->state &= ~AGGR_ADDBA_PROGRESS;
  2014. }
  2015. for (acno = 0, ac = &an->ac[acno];
  2016. acno < WME_NUM_AC; acno++, ac++) {
  2017. ac->sched = false;
  2018. ac->txq = sc->tx.txq_map[acno];
  2019. INIT_LIST_HEAD(&ac->tid_q);
  2020. }
  2021. }
  2022. void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
  2023. {
  2024. struct ath_atx_ac *ac;
  2025. struct ath_atx_tid *tid;
  2026. struct ath_txq *txq;
  2027. int tidno;
  2028. for (tidno = 0, tid = &an->tid[tidno];
  2029. tidno < WME_NUM_TID; tidno++, tid++) {
  2030. ac = tid->ac;
  2031. txq = ac->txq;
  2032. spin_lock_bh(&txq->axq_lock);
  2033. if (tid->sched) {
  2034. list_del(&tid->list);
  2035. tid->sched = false;
  2036. }
  2037. if (ac->sched) {
  2038. list_del(&ac->list);
  2039. tid->ac->sched = false;
  2040. }
  2041. ath_tid_drain(sc, txq, tid);
  2042. tid->state &= ~AGGR_ADDBA_COMPLETE;
  2043. tid->state &= ~AGGR_CLEANUP;
  2044. spin_unlock_bh(&txq->axq_lock);
  2045. }
  2046. }