hw.c 66 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629
  1. /*
  2. * Copyright (c) 2008-2010 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/io.h>
  17. #include <linux/slab.h>
  18. #include <asm/unaligned.h>
  19. #include "hw.h"
  20. #include "hw-ops.h"
  21. #include "rc.h"
  22. #include "ar9003_mac.h"
  23. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
  24. MODULE_AUTHOR("Atheros Communications");
  25. MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
  26. MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
  27. MODULE_LICENSE("Dual BSD/GPL");
  28. static int __init ath9k_init(void)
  29. {
  30. return 0;
  31. }
  32. module_init(ath9k_init);
  33. static void __exit ath9k_exit(void)
  34. {
  35. return;
  36. }
  37. module_exit(ath9k_exit);
  38. /* Private hardware callbacks */
  39. static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
  40. {
  41. ath9k_hw_private_ops(ah)->init_cal_settings(ah);
  42. }
  43. static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
  44. {
  45. ath9k_hw_private_ops(ah)->init_mode_regs(ah);
  46. }
  47. static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
  48. struct ath9k_channel *chan)
  49. {
  50. return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
  51. }
  52. static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
  53. {
  54. if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
  55. return;
  56. ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
  57. }
  58. static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
  59. {
  60. /* You will not have this callback if using the old ANI */
  61. if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
  62. return;
  63. ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
  64. }
  65. /********************/
  66. /* Helper Functions */
  67. /********************/
  68. static void ath9k_hw_set_clockrate(struct ath_hw *ah)
  69. {
  70. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  71. struct ath_common *common = ath9k_hw_common(ah);
  72. unsigned int clockrate;
  73. if (!ah->curchan) /* should really check for CCK instead */
  74. clockrate = ATH9K_CLOCK_RATE_CCK;
  75. else if (conf->channel->band == IEEE80211_BAND_2GHZ)
  76. clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
  77. else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
  78. clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
  79. else
  80. clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
  81. if (conf_is_ht40(conf))
  82. clockrate *= 2;
  83. common->clockrate = clockrate;
  84. }
  85. static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
  86. {
  87. struct ath_common *common = ath9k_hw_common(ah);
  88. return usecs * common->clockrate;
  89. }
  90. bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
  91. {
  92. int i;
  93. BUG_ON(timeout < AH_TIME_QUANTUM);
  94. for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
  95. if ((REG_READ(ah, reg) & mask) == val)
  96. return true;
  97. udelay(AH_TIME_QUANTUM);
  98. }
  99. ath_dbg(ath9k_hw_common(ah), ATH_DBG_ANY,
  100. "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
  101. timeout, reg, REG_READ(ah, reg), mask, val);
  102. return false;
  103. }
  104. EXPORT_SYMBOL(ath9k_hw_wait);
  105. void ath9k_hw_write_array(struct ath_hw *ah, struct ar5416IniArray *array,
  106. int column, unsigned int *writecnt)
  107. {
  108. int r;
  109. ENABLE_REGWRITE_BUFFER(ah);
  110. for (r = 0; r < array->ia_rows; r++) {
  111. REG_WRITE(ah, INI_RA(array, r, 0),
  112. INI_RA(array, r, column));
  113. DO_DELAY(*writecnt);
  114. }
  115. REGWRITE_BUFFER_FLUSH(ah);
  116. }
  117. u32 ath9k_hw_reverse_bits(u32 val, u32 n)
  118. {
  119. u32 retval;
  120. int i;
  121. for (i = 0, retval = 0; i < n; i++) {
  122. retval = (retval << 1) | (val & 1);
  123. val >>= 1;
  124. }
  125. return retval;
  126. }
  127. u16 ath9k_hw_computetxtime(struct ath_hw *ah,
  128. u8 phy, int kbps,
  129. u32 frameLen, u16 rateix,
  130. bool shortPreamble)
  131. {
  132. u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
  133. if (kbps == 0)
  134. return 0;
  135. switch (phy) {
  136. case WLAN_RC_PHY_CCK:
  137. phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
  138. if (shortPreamble)
  139. phyTime >>= 1;
  140. numBits = frameLen << 3;
  141. txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
  142. break;
  143. case WLAN_RC_PHY_OFDM:
  144. if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
  145. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
  146. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  147. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  148. txTime = OFDM_SIFS_TIME_QUARTER
  149. + OFDM_PREAMBLE_TIME_QUARTER
  150. + (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
  151. } else if (ah->curchan &&
  152. IS_CHAN_HALF_RATE(ah->curchan)) {
  153. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
  154. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  155. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  156. txTime = OFDM_SIFS_TIME_HALF +
  157. OFDM_PREAMBLE_TIME_HALF
  158. + (numSymbols * OFDM_SYMBOL_TIME_HALF);
  159. } else {
  160. bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
  161. numBits = OFDM_PLCP_BITS + (frameLen << 3);
  162. numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
  163. txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
  164. + (numSymbols * OFDM_SYMBOL_TIME);
  165. }
  166. break;
  167. default:
  168. ath_err(ath9k_hw_common(ah),
  169. "Unknown phy %u (rate ix %u)\n", phy, rateix);
  170. txTime = 0;
  171. break;
  172. }
  173. return txTime;
  174. }
  175. EXPORT_SYMBOL(ath9k_hw_computetxtime);
  176. void ath9k_hw_get_channel_centers(struct ath_hw *ah,
  177. struct ath9k_channel *chan,
  178. struct chan_centers *centers)
  179. {
  180. int8_t extoff;
  181. if (!IS_CHAN_HT40(chan)) {
  182. centers->ctl_center = centers->ext_center =
  183. centers->synth_center = chan->channel;
  184. return;
  185. }
  186. if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
  187. (chan->chanmode == CHANNEL_G_HT40PLUS)) {
  188. centers->synth_center =
  189. chan->channel + HT40_CHANNEL_CENTER_SHIFT;
  190. extoff = 1;
  191. } else {
  192. centers->synth_center =
  193. chan->channel - HT40_CHANNEL_CENTER_SHIFT;
  194. extoff = -1;
  195. }
  196. centers->ctl_center =
  197. centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
  198. /* 25 MHz spacing is supported by hw but not on upper layers */
  199. centers->ext_center =
  200. centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
  201. }
  202. /******************/
  203. /* Chip Revisions */
  204. /******************/
  205. static void ath9k_hw_read_revisions(struct ath_hw *ah)
  206. {
  207. u32 val;
  208. switch (ah->hw_version.devid) {
  209. case AR5416_AR9100_DEVID:
  210. ah->hw_version.macVersion = AR_SREV_VERSION_9100;
  211. break;
  212. case AR9300_DEVID_AR9340:
  213. ah->hw_version.macVersion = AR_SREV_VERSION_9340;
  214. val = REG_READ(ah, AR_SREV);
  215. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  216. return;
  217. }
  218. val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
  219. if (val == 0xFF) {
  220. val = REG_READ(ah, AR_SREV);
  221. ah->hw_version.macVersion =
  222. (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
  223. ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
  224. ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
  225. } else {
  226. if (!AR_SREV_9100(ah))
  227. ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
  228. ah->hw_version.macRev = val & AR_SREV_REVISION;
  229. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
  230. ah->is_pciexpress = true;
  231. }
  232. }
  233. /************************************/
  234. /* HW Attach, Detach, Init Routines */
  235. /************************************/
  236. static void ath9k_hw_disablepcie(struct ath_hw *ah)
  237. {
  238. if (!AR_SREV_5416(ah))
  239. return;
  240. REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
  241. REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
  242. REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
  243. REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
  244. REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
  245. REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
  246. REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
  247. REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
  248. REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
  249. REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
  250. }
  251. /* This should work for all families including legacy */
  252. static bool ath9k_hw_chip_test(struct ath_hw *ah)
  253. {
  254. struct ath_common *common = ath9k_hw_common(ah);
  255. u32 regAddr[2] = { AR_STA_ID0 };
  256. u32 regHold[2];
  257. static const u32 patternData[4] = {
  258. 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
  259. };
  260. int i, j, loop_max;
  261. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  262. loop_max = 2;
  263. regAddr[1] = AR_PHY_BASE + (8 << 2);
  264. } else
  265. loop_max = 1;
  266. for (i = 0; i < loop_max; i++) {
  267. u32 addr = regAddr[i];
  268. u32 wrData, rdData;
  269. regHold[i] = REG_READ(ah, addr);
  270. for (j = 0; j < 0x100; j++) {
  271. wrData = (j << 16) | j;
  272. REG_WRITE(ah, addr, wrData);
  273. rdData = REG_READ(ah, addr);
  274. if (rdData != wrData) {
  275. ath_err(common,
  276. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  277. addr, wrData, rdData);
  278. return false;
  279. }
  280. }
  281. for (j = 0; j < 4; j++) {
  282. wrData = patternData[j];
  283. REG_WRITE(ah, addr, wrData);
  284. rdData = REG_READ(ah, addr);
  285. if (wrData != rdData) {
  286. ath_err(common,
  287. "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
  288. addr, wrData, rdData);
  289. return false;
  290. }
  291. }
  292. REG_WRITE(ah, regAddr[i], regHold[i]);
  293. }
  294. udelay(100);
  295. return true;
  296. }
  297. static void ath9k_hw_init_config(struct ath_hw *ah)
  298. {
  299. int i;
  300. ah->config.dma_beacon_response_time = 2;
  301. ah->config.sw_beacon_response_time = 10;
  302. ah->config.additional_swba_backoff = 0;
  303. ah->config.ack_6mb = 0x0;
  304. ah->config.cwm_ignore_extcca = 0;
  305. ah->config.pcie_powersave_enable = 0;
  306. ah->config.pcie_clock_req = 0;
  307. ah->config.pcie_waen = 0;
  308. ah->config.analog_shiftreg = 1;
  309. ah->config.enable_ani = true;
  310. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  311. ah->config.spurchans[i][0] = AR_NO_SPUR;
  312. ah->config.spurchans[i][1] = AR_NO_SPUR;
  313. }
  314. /* PAPRD needs some more work to be enabled */
  315. ah->config.paprd_disable = 1;
  316. ah->config.rx_intr_mitigation = true;
  317. ah->config.pcieSerDesWrite = true;
  318. /*
  319. * We need this for PCI devices only (Cardbus, PCI, miniPCI)
  320. * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
  321. * This means we use it for all AR5416 devices, and the few
  322. * minor PCI AR9280 devices out there.
  323. *
  324. * Serialization is required because these devices do not handle
  325. * well the case of two concurrent reads/writes due to the latency
  326. * involved. During one read/write another read/write can be issued
  327. * on another CPU while the previous read/write may still be working
  328. * on our hardware, if we hit this case the hardware poops in a loop.
  329. * We prevent this by serializing reads and writes.
  330. *
  331. * This issue is not present on PCI-Express devices or pre-AR5416
  332. * devices (legacy, 802.11abg).
  333. */
  334. if (num_possible_cpus() > 1)
  335. ah->config.serialize_regmode = SER_REG_MODE_AUTO;
  336. }
  337. static void ath9k_hw_init_defaults(struct ath_hw *ah)
  338. {
  339. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  340. regulatory->country_code = CTRY_DEFAULT;
  341. regulatory->power_limit = MAX_RATE_POWER;
  342. regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
  343. ah->hw_version.magic = AR5416_MAGIC;
  344. ah->hw_version.subvendorid = 0;
  345. ah->atim_window = 0;
  346. ah->sta_id1_defaults =
  347. AR_STA_ID1_CRPT_MIC_ENABLE |
  348. AR_STA_ID1_MCAST_KSRCH;
  349. if (AR_SREV_9100(ah))
  350. ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
  351. ah->enable_32kHz_clock = DONT_USE_32KHZ;
  352. ah->slottime = 20;
  353. ah->globaltxtimeout = (u32) -1;
  354. ah->power_mode = ATH9K_PM_UNDEFINED;
  355. }
  356. static int ath9k_hw_init_macaddr(struct ath_hw *ah)
  357. {
  358. struct ath_common *common = ath9k_hw_common(ah);
  359. u32 sum;
  360. int i;
  361. u16 eeval;
  362. static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
  363. sum = 0;
  364. for (i = 0; i < 3; i++) {
  365. eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
  366. sum += eeval;
  367. common->macaddr[2 * i] = eeval >> 8;
  368. common->macaddr[2 * i + 1] = eeval & 0xff;
  369. }
  370. if (sum == 0 || sum == 0xffff * 3)
  371. return -EADDRNOTAVAIL;
  372. return 0;
  373. }
  374. static int ath9k_hw_post_init(struct ath_hw *ah)
  375. {
  376. struct ath_common *common = ath9k_hw_common(ah);
  377. int ecode;
  378. if (common->bus_ops->ath_bus_type != ATH_USB) {
  379. if (!ath9k_hw_chip_test(ah))
  380. return -ENODEV;
  381. }
  382. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  383. ecode = ar9002_hw_rf_claim(ah);
  384. if (ecode != 0)
  385. return ecode;
  386. }
  387. ecode = ath9k_hw_eeprom_init(ah);
  388. if (ecode != 0)
  389. return ecode;
  390. ath_dbg(ath9k_hw_common(ah), ATH_DBG_CONFIG,
  391. "Eeprom VER: %d, REV: %d\n",
  392. ah->eep_ops->get_eeprom_ver(ah),
  393. ah->eep_ops->get_eeprom_rev(ah));
  394. ecode = ath9k_hw_rf_alloc_ext_banks(ah);
  395. if (ecode) {
  396. ath_err(ath9k_hw_common(ah),
  397. "Failed allocating banks for external radio\n");
  398. ath9k_hw_rf_free_ext_banks(ah);
  399. return ecode;
  400. }
  401. if (!AR_SREV_9100(ah) && !AR_SREV_9340(ah)) {
  402. ath9k_hw_ani_setup(ah);
  403. ath9k_hw_ani_init(ah);
  404. }
  405. return 0;
  406. }
  407. static void ath9k_hw_attach_ops(struct ath_hw *ah)
  408. {
  409. if (AR_SREV_9300_20_OR_LATER(ah))
  410. ar9003_hw_attach_ops(ah);
  411. else
  412. ar9002_hw_attach_ops(ah);
  413. }
  414. /* Called for all hardware families */
  415. static int __ath9k_hw_init(struct ath_hw *ah)
  416. {
  417. struct ath_common *common = ath9k_hw_common(ah);
  418. int r = 0;
  419. ath9k_hw_read_revisions(ah);
  420. /*
  421. * Read back AR_WA into a permanent copy and set bits 14 and 17.
  422. * We need to do this to avoid RMW of this register. We cannot
  423. * read the reg when chip is asleep.
  424. */
  425. ah->WARegVal = REG_READ(ah, AR_WA);
  426. ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
  427. AR_WA_ASPM_TIMER_BASED_DISABLE);
  428. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
  429. ath_err(common, "Couldn't reset chip\n");
  430. return -EIO;
  431. }
  432. ath9k_hw_init_defaults(ah);
  433. ath9k_hw_init_config(ah);
  434. ath9k_hw_attach_ops(ah);
  435. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
  436. ath_err(common, "Couldn't wakeup chip\n");
  437. return -EIO;
  438. }
  439. if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
  440. if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
  441. ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
  442. !ah->is_pciexpress)) {
  443. ah->config.serialize_regmode =
  444. SER_REG_MODE_ON;
  445. } else {
  446. ah->config.serialize_regmode =
  447. SER_REG_MODE_OFF;
  448. }
  449. }
  450. ath_dbg(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
  451. ah->config.serialize_regmode);
  452. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  453. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
  454. else
  455. ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
  456. switch (ah->hw_version.macVersion) {
  457. case AR_SREV_VERSION_5416_PCI:
  458. case AR_SREV_VERSION_5416_PCIE:
  459. case AR_SREV_VERSION_9160:
  460. case AR_SREV_VERSION_9100:
  461. case AR_SREV_VERSION_9280:
  462. case AR_SREV_VERSION_9285:
  463. case AR_SREV_VERSION_9287:
  464. case AR_SREV_VERSION_9271:
  465. case AR_SREV_VERSION_9300:
  466. case AR_SREV_VERSION_9485:
  467. case AR_SREV_VERSION_9340:
  468. break;
  469. default:
  470. ath_err(common,
  471. "Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
  472. ah->hw_version.macVersion, ah->hw_version.macRev);
  473. return -EOPNOTSUPP;
  474. }
  475. if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah))
  476. ah->is_pciexpress = false;
  477. ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
  478. ath9k_hw_init_cal_settings(ah);
  479. ah->ani_function = ATH9K_ANI_ALL;
  480. if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  481. ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
  482. if (!AR_SREV_9300_20_OR_LATER(ah))
  483. ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
  484. ath9k_hw_init_mode_regs(ah);
  485. if (ah->is_pciexpress)
  486. ath9k_hw_configpcipowersave(ah, 0, 0);
  487. else
  488. ath9k_hw_disablepcie(ah);
  489. if (!AR_SREV_9300_20_OR_LATER(ah))
  490. ar9002_hw_cck_chan14_spread(ah);
  491. r = ath9k_hw_post_init(ah);
  492. if (r)
  493. return r;
  494. ath9k_hw_init_mode_gain_regs(ah);
  495. r = ath9k_hw_fill_cap_info(ah);
  496. if (r)
  497. return r;
  498. r = ath9k_hw_init_macaddr(ah);
  499. if (r) {
  500. ath_err(common, "Failed to initialize MAC address\n");
  501. return r;
  502. }
  503. if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
  504. ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
  505. else
  506. ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
  507. ah->bb_watchdog_timeout_ms = 25;
  508. common->state = ATH_HW_INITIALIZED;
  509. return 0;
  510. }
  511. int ath9k_hw_init(struct ath_hw *ah)
  512. {
  513. int ret;
  514. struct ath_common *common = ath9k_hw_common(ah);
  515. /* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
  516. switch (ah->hw_version.devid) {
  517. case AR5416_DEVID_PCI:
  518. case AR5416_DEVID_PCIE:
  519. case AR5416_AR9100_DEVID:
  520. case AR9160_DEVID_PCI:
  521. case AR9280_DEVID_PCI:
  522. case AR9280_DEVID_PCIE:
  523. case AR9285_DEVID_PCIE:
  524. case AR9287_DEVID_PCI:
  525. case AR9287_DEVID_PCIE:
  526. case AR2427_DEVID_PCIE:
  527. case AR9300_DEVID_PCIE:
  528. case AR9300_DEVID_AR9485_PCIE:
  529. case AR9300_DEVID_AR9340:
  530. break;
  531. default:
  532. if (common->bus_ops->ath_bus_type == ATH_USB)
  533. break;
  534. ath_err(common, "Hardware device ID 0x%04x not supported\n",
  535. ah->hw_version.devid);
  536. return -EOPNOTSUPP;
  537. }
  538. ret = __ath9k_hw_init(ah);
  539. if (ret) {
  540. ath_err(common,
  541. "Unable to initialize hardware; initialization status: %d\n",
  542. ret);
  543. return ret;
  544. }
  545. return 0;
  546. }
  547. EXPORT_SYMBOL(ath9k_hw_init);
  548. static void ath9k_hw_init_qos(struct ath_hw *ah)
  549. {
  550. ENABLE_REGWRITE_BUFFER(ah);
  551. REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
  552. REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
  553. REG_WRITE(ah, AR_QOS_NO_ACK,
  554. SM(2, AR_QOS_NO_ACK_TWO_BIT) |
  555. SM(5, AR_QOS_NO_ACK_BIT_OFF) |
  556. SM(0, AR_QOS_NO_ACK_BYTE_OFF));
  557. REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
  558. REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
  559. REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
  560. REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
  561. REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
  562. REGWRITE_BUFFER_FLUSH(ah);
  563. }
  564. u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
  565. {
  566. REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
  567. udelay(100);
  568. REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
  569. while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0)
  570. udelay(100);
  571. return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
  572. }
  573. EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
  574. static void ath9k_hw_init_pll(struct ath_hw *ah,
  575. struct ath9k_channel *chan)
  576. {
  577. u32 pll;
  578. if (AR_SREV_9485(ah)) {
  579. /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
  580. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  581. AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
  582. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  583. AR_CH0_DPLL2_KD, 0x40);
  584. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  585. AR_CH0_DPLL2_KI, 0x4);
  586. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  587. AR_CH0_BB_DPLL1_REFDIV, 0x5);
  588. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  589. AR_CH0_BB_DPLL1_NINI, 0x58);
  590. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
  591. AR_CH0_BB_DPLL1_NFRAC, 0x0);
  592. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  593. AR_CH0_BB_DPLL2_OUTDIV, 0x1);
  594. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  595. AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
  596. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  597. AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
  598. /* program BB PLL phase_shift to 0x6 */
  599. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
  600. AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
  601. REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
  602. AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
  603. udelay(1000);
  604. } else if (AR_SREV_9340(ah)) {
  605. u32 regval, pll2_divint, pll2_divfrac, refdiv;
  606. REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
  607. udelay(1000);
  608. REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
  609. udelay(100);
  610. if (ah->is_clk_25mhz) {
  611. pll2_divint = 0x54;
  612. pll2_divfrac = 0x1eb85;
  613. refdiv = 3;
  614. } else {
  615. pll2_divint = 88;
  616. pll2_divfrac = 0;
  617. refdiv = 5;
  618. }
  619. regval = REG_READ(ah, AR_PHY_PLL_MODE);
  620. regval |= (0x1 << 16);
  621. REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
  622. udelay(100);
  623. REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
  624. (pll2_divint << 18) | pll2_divfrac);
  625. udelay(100);
  626. regval = REG_READ(ah, AR_PHY_PLL_MODE);
  627. regval = (regval & 0x80071fff) | (0x1 << 30) | (0x1 << 13) |
  628. (0x4 << 26) | (0x18 << 19);
  629. REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
  630. REG_WRITE(ah, AR_PHY_PLL_MODE,
  631. REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
  632. udelay(1000);
  633. }
  634. pll = ath9k_hw_compute_pll_control(ah, chan);
  635. REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
  636. if (AR_SREV_9485(ah) || AR_SREV_9340(ah))
  637. udelay(1000);
  638. /* Switch the core clock for ar9271 to 117Mhz */
  639. if (AR_SREV_9271(ah)) {
  640. udelay(500);
  641. REG_WRITE(ah, 0x50040, 0x304);
  642. }
  643. udelay(RTC_PLL_SETTLE_DELAY);
  644. REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
  645. if (AR_SREV_9340(ah)) {
  646. if (ah->is_clk_25mhz) {
  647. REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
  648. REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
  649. REG_WRITE(ah, AR_SLP32_INC, 0x0001e7ae);
  650. } else {
  651. REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
  652. REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
  653. REG_WRITE(ah, AR_SLP32_INC, 0x0001e800);
  654. }
  655. udelay(100);
  656. }
  657. }
  658. static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
  659. enum nl80211_iftype opmode)
  660. {
  661. u32 sync_default = AR_INTR_SYNC_DEFAULT;
  662. u32 imr_reg = AR_IMR_TXERR |
  663. AR_IMR_TXURN |
  664. AR_IMR_RXERR |
  665. AR_IMR_RXORN |
  666. AR_IMR_BCNMISC;
  667. if (AR_SREV_9340(ah))
  668. sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
  669. if (AR_SREV_9300_20_OR_LATER(ah)) {
  670. imr_reg |= AR_IMR_RXOK_HP;
  671. if (ah->config.rx_intr_mitigation)
  672. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  673. else
  674. imr_reg |= AR_IMR_RXOK_LP;
  675. } else {
  676. if (ah->config.rx_intr_mitigation)
  677. imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
  678. else
  679. imr_reg |= AR_IMR_RXOK;
  680. }
  681. if (ah->config.tx_intr_mitigation)
  682. imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
  683. else
  684. imr_reg |= AR_IMR_TXOK;
  685. if (opmode == NL80211_IFTYPE_AP)
  686. imr_reg |= AR_IMR_MIB;
  687. ENABLE_REGWRITE_BUFFER(ah);
  688. REG_WRITE(ah, AR_IMR, imr_reg);
  689. ah->imrs2_reg |= AR_IMR_S2_GTT;
  690. REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
  691. if (!AR_SREV_9100(ah)) {
  692. REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
  693. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
  694. REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
  695. }
  696. REGWRITE_BUFFER_FLUSH(ah);
  697. if (AR_SREV_9300_20_OR_LATER(ah)) {
  698. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
  699. REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
  700. REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
  701. REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
  702. }
  703. }
  704. static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
  705. {
  706. u32 val = ath9k_hw_mac_to_clks(ah, us);
  707. val = min(val, (u32) 0xFFFF);
  708. REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
  709. }
  710. static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
  711. {
  712. u32 val = ath9k_hw_mac_to_clks(ah, us);
  713. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
  714. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
  715. }
  716. static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
  717. {
  718. u32 val = ath9k_hw_mac_to_clks(ah, us);
  719. val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
  720. REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
  721. }
  722. static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
  723. {
  724. if (tu > 0xFFFF) {
  725. ath_dbg(ath9k_hw_common(ah), ATH_DBG_XMIT,
  726. "bad global tx timeout %u\n", tu);
  727. ah->globaltxtimeout = (u32) -1;
  728. return false;
  729. } else {
  730. REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
  731. ah->globaltxtimeout = tu;
  732. return true;
  733. }
  734. }
  735. void ath9k_hw_init_global_settings(struct ath_hw *ah)
  736. {
  737. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  738. int acktimeout;
  739. int slottime;
  740. int sifstime;
  741. ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
  742. ah->misc_mode);
  743. if (ah->misc_mode != 0)
  744. REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
  745. if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
  746. sifstime = 16;
  747. else
  748. sifstime = 10;
  749. /* As defined by IEEE 802.11-2007 17.3.8.6 */
  750. slottime = ah->slottime + 3 * ah->coverage_class;
  751. acktimeout = slottime + sifstime;
  752. /*
  753. * Workaround for early ACK timeouts, add an offset to match the
  754. * initval's 64us ack timeout value.
  755. * This was initially only meant to work around an issue with delayed
  756. * BA frames in some implementations, but it has been found to fix ACK
  757. * timeout issues in other cases as well.
  758. */
  759. if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
  760. acktimeout += 64 - sifstime - ah->slottime;
  761. ath9k_hw_setslottime(ah, ah->slottime);
  762. ath9k_hw_set_ack_timeout(ah, acktimeout);
  763. ath9k_hw_set_cts_timeout(ah, acktimeout);
  764. if (ah->globaltxtimeout != (u32) -1)
  765. ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
  766. }
  767. EXPORT_SYMBOL(ath9k_hw_init_global_settings);
  768. void ath9k_hw_deinit(struct ath_hw *ah)
  769. {
  770. struct ath_common *common = ath9k_hw_common(ah);
  771. if (common->state < ATH_HW_INITIALIZED)
  772. goto free_hw;
  773. ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
  774. free_hw:
  775. ath9k_hw_rf_free_ext_banks(ah);
  776. }
  777. EXPORT_SYMBOL(ath9k_hw_deinit);
  778. /*******/
  779. /* INI */
  780. /*******/
  781. u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
  782. {
  783. u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
  784. if (IS_CHAN_B(chan))
  785. ctl |= CTL_11B;
  786. else if (IS_CHAN_G(chan))
  787. ctl |= CTL_11G;
  788. else
  789. ctl |= CTL_11A;
  790. return ctl;
  791. }
  792. /****************************************/
  793. /* Reset and Channel Switching Routines */
  794. /****************************************/
  795. static inline void ath9k_hw_set_dma(struct ath_hw *ah)
  796. {
  797. struct ath_common *common = ath9k_hw_common(ah);
  798. ENABLE_REGWRITE_BUFFER(ah);
  799. /*
  800. * set AHB_MODE not to do cacheline prefetches
  801. */
  802. if (!AR_SREV_9300_20_OR_LATER(ah))
  803. REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
  804. /*
  805. * let mac dma reads be in 128 byte chunks
  806. */
  807. REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
  808. REGWRITE_BUFFER_FLUSH(ah);
  809. /*
  810. * Restore TX Trigger Level to its pre-reset value.
  811. * The initial value depends on whether aggregation is enabled, and is
  812. * adjusted whenever underruns are detected.
  813. */
  814. if (!AR_SREV_9300_20_OR_LATER(ah))
  815. REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
  816. ENABLE_REGWRITE_BUFFER(ah);
  817. /*
  818. * let mac dma writes be in 128 byte chunks
  819. */
  820. REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
  821. /*
  822. * Setup receive FIFO threshold to hold off TX activities
  823. */
  824. REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
  825. if (AR_SREV_9300_20_OR_LATER(ah)) {
  826. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
  827. REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
  828. ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
  829. ah->caps.rx_status_len);
  830. }
  831. /*
  832. * reduce the number of usable entries in PCU TXBUF to avoid
  833. * wrap around issues.
  834. */
  835. if (AR_SREV_9285(ah)) {
  836. /* For AR9285 the number of Fifos are reduced to half.
  837. * So set the usable tx buf size also to half to
  838. * avoid data/delimiter underruns
  839. */
  840. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  841. AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
  842. } else if (!AR_SREV_9271(ah)) {
  843. REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
  844. AR_PCU_TXBUF_CTRL_USABLE_SIZE);
  845. }
  846. REGWRITE_BUFFER_FLUSH(ah);
  847. if (AR_SREV_9300_20_OR_LATER(ah))
  848. ath9k_hw_reset_txstatus_ring(ah);
  849. }
  850. static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
  851. {
  852. u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
  853. u32 set = AR_STA_ID1_KSRCH_MODE;
  854. switch (opmode) {
  855. case NL80211_IFTYPE_ADHOC:
  856. case NL80211_IFTYPE_MESH_POINT:
  857. set |= AR_STA_ID1_ADHOC;
  858. REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  859. break;
  860. case NL80211_IFTYPE_AP:
  861. set |= AR_STA_ID1_STA_AP;
  862. /* fall through */
  863. case NL80211_IFTYPE_STATION:
  864. REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
  865. break;
  866. default:
  867. if (!ah->is_monitoring)
  868. set = 0;
  869. break;
  870. }
  871. REG_RMW(ah, AR_STA_ID1, set, mask);
  872. }
  873. void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
  874. u32 *coef_mantissa, u32 *coef_exponent)
  875. {
  876. u32 coef_exp, coef_man;
  877. for (coef_exp = 31; coef_exp > 0; coef_exp--)
  878. if ((coef_scaled >> coef_exp) & 0x1)
  879. break;
  880. coef_exp = 14 - (coef_exp - COEF_SCALE_S);
  881. coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
  882. *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
  883. *coef_exponent = coef_exp - 16;
  884. }
  885. static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
  886. {
  887. u32 rst_flags;
  888. u32 tmpReg;
  889. if (AR_SREV_9100(ah)) {
  890. REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
  891. AR_RTC_DERIVED_CLK_PERIOD, 1);
  892. (void)REG_READ(ah, AR_RTC_DERIVED_CLK);
  893. }
  894. ENABLE_REGWRITE_BUFFER(ah);
  895. if (AR_SREV_9300_20_OR_LATER(ah)) {
  896. REG_WRITE(ah, AR_WA, ah->WARegVal);
  897. udelay(10);
  898. }
  899. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  900. AR_RTC_FORCE_WAKE_ON_INT);
  901. if (AR_SREV_9100(ah)) {
  902. rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
  903. AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
  904. } else {
  905. tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
  906. if (tmpReg &
  907. (AR_INTR_SYNC_LOCAL_TIMEOUT |
  908. AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
  909. u32 val;
  910. REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
  911. val = AR_RC_HOSTIF;
  912. if (!AR_SREV_9300_20_OR_LATER(ah))
  913. val |= AR_RC_AHB;
  914. REG_WRITE(ah, AR_RC, val);
  915. } else if (!AR_SREV_9300_20_OR_LATER(ah))
  916. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  917. rst_flags = AR_RTC_RC_MAC_WARM;
  918. if (type == ATH9K_RESET_COLD)
  919. rst_flags |= AR_RTC_RC_MAC_COLD;
  920. }
  921. REG_WRITE(ah, AR_RTC_RC, rst_flags);
  922. REGWRITE_BUFFER_FLUSH(ah);
  923. udelay(50);
  924. REG_WRITE(ah, AR_RTC_RC, 0);
  925. if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
  926. ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
  927. "RTC stuck in MAC reset\n");
  928. return false;
  929. }
  930. if (!AR_SREV_9100(ah))
  931. REG_WRITE(ah, AR_RC, 0);
  932. if (AR_SREV_9100(ah))
  933. udelay(50);
  934. return true;
  935. }
  936. static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
  937. {
  938. ENABLE_REGWRITE_BUFFER(ah);
  939. if (AR_SREV_9300_20_OR_LATER(ah)) {
  940. REG_WRITE(ah, AR_WA, ah->WARegVal);
  941. udelay(10);
  942. }
  943. REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
  944. AR_RTC_FORCE_WAKE_ON_INT);
  945. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  946. REG_WRITE(ah, AR_RC, AR_RC_AHB);
  947. REG_WRITE(ah, AR_RTC_RESET, 0);
  948. REGWRITE_BUFFER_FLUSH(ah);
  949. if (!AR_SREV_9300_20_OR_LATER(ah))
  950. udelay(2);
  951. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  952. REG_WRITE(ah, AR_RC, 0);
  953. REG_WRITE(ah, AR_RTC_RESET, 1);
  954. if (!ath9k_hw_wait(ah,
  955. AR_RTC_STATUS,
  956. AR_RTC_STATUS_M,
  957. AR_RTC_STATUS_ON,
  958. AH_WAIT_TIMEOUT)) {
  959. ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
  960. "RTC not waking up\n");
  961. return false;
  962. }
  963. return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
  964. }
  965. static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
  966. {
  967. if (AR_SREV_9300_20_OR_LATER(ah)) {
  968. REG_WRITE(ah, AR_WA, ah->WARegVal);
  969. udelay(10);
  970. }
  971. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  972. AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
  973. switch (type) {
  974. case ATH9K_RESET_POWER_ON:
  975. return ath9k_hw_set_reset_power_on(ah);
  976. case ATH9K_RESET_WARM:
  977. case ATH9K_RESET_COLD:
  978. return ath9k_hw_set_reset(ah, type);
  979. default:
  980. return false;
  981. }
  982. }
  983. static bool ath9k_hw_chip_reset(struct ath_hw *ah,
  984. struct ath9k_channel *chan)
  985. {
  986. if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
  987. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
  988. return false;
  989. } else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  990. return false;
  991. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  992. return false;
  993. ah->chip_fullsleep = false;
  994. ath9k_hw_init_pll(ah, chan);
  995. ath9k_hw_set_rfmode(ah, chan);
  996. return true;
  997. }
  998. static bool ath9k_hw_channel_change(struct ath_hw *ah,
  999. struct ath9k_channel *chan)
  1000. {
  1001. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1002. struct ath_common *common = ath9k_hw_common(ah);
  1003. struct ieee80211_channel *channel = chan->chan;
  1004. u32 qnum;
  1005. int r;
  1006. for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
  1007. if (ath9k_hw_numtxpending(ah, qnum)) {
  1008. ath_dbg(common, ATH_DBG_QUEUE,
  1009. "Transmit frames pending on queue %d\n", qnum);
  1010. return false;
  1011. }
  1012. }
  1013. if (!ath9k_hw_rfbus_req(ah)) {
  1014. ath_err(common, "Could not kill baseband RX\n");
  1015. return false;
  1016. }
  1017. ath9k_hw_set_channel_regs(ah, chan);
  1018. r = ath9k_hw_rf_set_freq(ah, chan);
  1019. if (r) {
  1020. ath_err(common, "Failed to set channel\n");
  1021. return false;
  1022. }
  1023. ath9k_hw_set_clockrate(ah);
  1024. ah->eep_ops->set_txpower(ah, chan,
  1025. ath9k_regd_get_ctl(regulatory, chan),
  1026. channel->max_antenna_gain * 2,
  1027. channel->max_power * 2,
  1028. min((u32) MAX_RATE_POWER,
  1029. (u32) regulatory->power_limit), false);
  1030. ath9k_hw_rfbus_done(ah);
  1031. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1032. ath9k_hw_set_delta_slope(ah, chan);
  1033. ath9k_hw_spur_mitigate_freq(ah, chan);
  1034. return true;
  1035. }
  1036. static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
  1037. {
  1038. u32 gpio_mask = ah->gpio_mask;
  1039. int i;
  1040. for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
  1041. if (!(gpio_mask & 1))
  1042. continue;
  1043. ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
  1044. ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
  1045. }
  1046. }
  1047. bool ath9k_hw_check_alive(struct ath_hw *ah)
  1048. {
  1049. int count = 50;
  1050. u32 reg;
  1051. if (AR_SREV_9285_12_OR_LATER(ah))
  1052. return true;
  1053. do {
  1054. reg = REG_READ(ah, AR_OBS_BUS_1);
  1055. if ((reg & 0x7E7FFFEF) == 0x00702400)
  1056. continue;
  1057. switch (reg & 0x7E000B00) {
  1058. case 0x1E000000:
  1059. case 0x52000B00:
  1060. case 0x18000B00:
  1061. continue;
  1062. default:
  1063. return true;
  1064. }
  1065. } while (count-- > 0);
  1066. return false;
  1067. }
  1068. EXPORT_SYMBOL(ath9k_hw_check_alive);
  1069. int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
  1070. struct ath9k_hw_cal_data *caldata, bool bChannelChange)
  1071. {
  1072. struct ath_common *common = ath9k_hw_common(ah);
  1073. u32 saveLedState;
  1074. struct ath9k_channel *curchan = ah->curchan;
  1075. u32 saveDefAntenna;
  1076. u32 macStaId1;
  1077. u64 tsf = 0;
  1078. int i, r;
  1079. ah->txchainmask = common->tx_chainmask;
  1080. ah->rxchainmask = common->rx_chainmask;
  1081. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1082. return -EIO;
  1083. if (curchan && !ah->chip_fullsleep)
  1084. ath9k_hw_getnf(ah, curchan);
  1085. ah->caldata = caldata;
  1086. if (caldata &&
  1087. (chan->channel != caldata->channel ||
  1088. (chan->channelFlags & ~CHANNEL_CW_INT) !=
  1089. (caldata->channelFlags & ~CHANNEL_CW_INT))) {
  1090. /* Operating channel changed, reset channel calibration data */
  1091. memset(caldata, 0, sizeof(*caldata));
  1092. ath9k_init_nfcal_hist_buffer(ah, chan);
  1093. }
  1094. if (bChannelChange &&
  1095. (ah->chip_fullsleep != true) &&
  1096. (ah->curchan != NULL) &&
  1097. (chan->channel != ah->curchan->channel) &&
  1098. ((chan->channelFlags & CHANNEL_ALL) ==
  1099. (ah->curchan->channelFlags & CHANNEL_ALL)) &&
  1100. (!AR_SREV_9280(ah) || AR_DEVID_7010(ah))) {
  1101. if (ath9k_hw_channel_change(ah, chan)) {
  1102. ath9k_hw_loadnf(ah, ah->curchan);
  1103. ath9k_hw_start_nfcal(ah, true);
  1104. if (AR_SREV_9271(ah))
  1105. ar9002_hw_load_ani_reg(ah, chan);
  1106. return 0;
  1107. }
  1108. }
  1109. saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
  1110. if (saveDefAntenna == 0)
  1111. saveDefAntenna = 1;
  1112. macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
  1113. /* For chips on which RTC reset is done, save TSF before it gets cleared */
  1114. if (AR_SREV_9100(ah) ||
  1115. (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
  1116. tsf = ath9k_hw_gettsf64(ah);
  1117. saveLedState = REG_READ(ah, AR_CFG_LED) &
  1118. (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
  1119. AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
  1120. ath9k_hw_mark_phy_inactive(ah);
  1121. ah->paprd_table_write_done = false;
  1122. /* Only required on the first reset */
  1123. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1124. REG_WRITE(ah,
  1125. AR9271_RESET_POWER_DOWN_CONTROL,
  1126. AR9271_RADIO_RF_RST);
  1127. udelay(50);
  1128. }
  1129. if (!ath9k_hw_chip_reset(ah, chan)) {
  1130. ath_err(common, "Chip reset failed\n");
  1131. return -EINVAL;
  1132. }
  1133. /* Only required on the first reset */
  1134. if (AR_SREV_9271(ah) && ah->htc_reset_init) {
  1135. ah->htc_reset_init = false;
  1136. REG_WRITE(ah,
  1137. AR9271_RESET_POWER_DOWN_CONTROL,
  1138. AR9271_GATE_MAC_CTL);
  1139. udelay(50);
  1140. }
  1141. /* Restore TSF */
  1142. if (tsf)
  1143. ath9k_hw_settsf64(ah, tsf);
  1144. if (AR_SREV_9280_20_OR_LATER(ah))
  1145. REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
  1146. if (!AR_SREV_9300_20_OR_LATER(ah))
  1147. ar9002_hw_enable_async_fifo(ah);
  1148. r = ath9k_hw_process_ini(ah, chan);
  1149. if (r)
  1150. return r;
  1151. /*
  1152. * Some AR91xx SoC devices frequently fail to accept TSF writes
  1153. * right after the chip reset. When that happens, write a new
  1154. * value after the initvals have been applied, with an offset
  1155. * based on measured time difference
  1156. */
  1157. if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
  1158. tsf += 1500;
  1159. ath9k_hw_settsf64(ah, tsf);
  1160. }
  1161. /* Setup MFP options for CCMP */
  1162. if (AR_SREV_9280_20_OR_LATER(ah)) {
  1163. /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
  1164. * frames when constructing CCMP AAD. */
  1165. REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
  1166. 0xc7ff);
  1167. ah->sw_mgmt_crypto = false;
  1168. } else if (AR_SREV_9160_10_OR_LATER(ah)) {
  1169. /* Disable hardware crypto for management frames */
  1170. REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
  1171. AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
  1172. REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
  1173. AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
  1174. ah->sw_mgmt_crypto = true;
  1175. } else
  1176. ah->sw_mgmt_crypto = true;
  1177. if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
  1178. ath9k_hw_set_delta_slope(ah, chan);
  1179. ath9k_hw_spur_mitigate_freq(ah, chan);
  1180. ah->eep_ops->set_board_values(ah, chan);
  1181. ENABLE_REGWRITE_BUFFER(ah);
  1182. REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
  1183. REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
  1184. | macStaId1
  1185. | AR_STA_ID1_RTS_USE_DEF
  1186. | (ah->config.
  1187. ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
  1188. | ah->sta_id1_defaults);
  1189. ath_hw_setbssidmask(common);
  1190. REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
  1191. ath9k_hw_write_associd(ah);
  1192. REG_WRITE(ah, AR_ISR, ~0);
  1193. REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
  1194. REGWRITE_BUFFER_FLUSH(ah);
  1195. ath9k_hw_set_operating_mode(ah, ah->opmode);
  1196. r = ath9k_hw_rf_set_freq(ah, chan);
  1197. if (r)
  1198. return r;
  1199. ath9k_hw_set_clockrate(ah);
  1200. ENABLE_REGWRITE_BUFFER(ah);
  1201. for (i = 0; i < AR_NUM_DCU; i++)
  1202. REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
  1203. REGWRITE_BUFFER_FLUSH(ah);
  1204. ah->intr_txqs = 0;
  1205. for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
  1206. ath9k_hw_resettxqueue(ah, i);
  1207. ath9k_hw_init_interrupt_masks(ah, ah->opmode);
  1208. ath9k_hw_ani_cache_ini_regs(ah);
  1209. ath9k_hw_init_qos(ah);
  1210. if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
  1211. ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
  1212. ath9k_hw_init_global_settings(ah);
  1213. if (!AR_SREV_9300_20_OR_LATER(ah)) {
  1214. ar9002_hw_update_async_fifo(ah);
  1215. ar9002_hw_enable_wep_aggregation(ah);
  1216. }
  1217. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
  1218. ath9k_hw_set_dma(ah);
  1219. REG_WRITE(ah, AR_OBS, 8);
  1220. if (ah->config.rx_intr_mitigation) {
  1221. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
  1222. REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
  1223. }
  1224. if (ah->config.tx_intr_mitigation) {
  1225. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
  1226. REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
  1227. }
  1228. ath9k_hw_init_bb(ah, chan);
  1229. if (!ath9k_hw_init_cal(ah, chan))
  1230. return -EIO;
  1231. ENABLE_REGWRITE_BUFFER(ah);
  1232. ath9k_hw_restore_chainmask(ah);
  1233. REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
  1234. REGWRITE_BUFFER_FLUSH(ah);
  1235. /*
  1236. * For big endian systems turn on swapping for descriptors
  1237. */
  1238. if (AR_SREV_9100(ah)) {
  1239. u32 mask;
  1240. mask = REG_READ(ah, AR_CFG);
  1241. if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
  1242. ath_dbg(common, ATH_DBG_RESET,
  1243. "CFG Byte Swap Set 0x%x\n", mask);
  1244. } else {
  1245. mask =
  1246. INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
  1247. REG_WRITE(ah, AR_CFG, mask);
  1248. ath_dbg(common, ATH_DBG_RESET,
  1249. "Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
  1250. }
  1251. } else {
  1252. if (common->bus_ops->ath_bus_type == ATH_USB) {
  1253. /* Configure AR9271 target WLAN */
  1254. if (AR_SREV_9271(ah))
  1255. REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
  1256. else
  1257. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1258. }
  1259. #ifdef __BIG_ENDIAN
  1260. else if (AR_SREV_9340(ah))
  1261. REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
  1262. else
  1263. REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
  1264. #endif
  1265. }
  1266. if (ah->btcoex_hw.enabled)
  1267. ath9k_hw_btcoex_enable(ah);
  1268. if (AR_SREV_9300_20_OR_LATER(ah))
  1269. ar9003_hw_bb_watchdog_config(ah);
  1270. ath9k_hw_apply_gpio_override(ah);
  1271. return 0;
  1272. }
  1273. EXPORT_SYMBOL(ath9k_hw_reset);
  1274. /******************************/
  1275. /* Power Management (Chipset) */
  1276. /******************************/
  1277. /*
  1278. * Notify Power Mgt is disabled in self-generated frames.
  1279. * If requested, force chip to sleep.
  1280. */
  1281. static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
  1282. {
  1283. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1284. if (setChip) {
  1285. /*
  1286. * Clear the RTC force wake bit to allow the
  1287. * mac to go to sleep.
  1288. */
  1289. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
  1290. AR_RTC_FORCE_WAKE_EN);
  1291. if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
  1292. REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
  1293. /* Shutdown chip. Active low */
  1294. if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
  1295. REG_CLR_BIT(ah, (AR_RTC_RESET),
  1296. AR_RTC_RESET_EN);
  1297. }
  1298. /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
  1299. if (AR_SREV_9300_20_OR_LATER(ah))
  1300. REG_WRITE(ah, AR_WA,
  1301. ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1302. }
  1303. /*
  1304. * Notify Power Management is enabled in self-generating
  1305. * frames. If request, set power mode of chip to
  1306. * auto/normal. Duration in units of 128us (1/8 TU).
  1307. */
  1308. static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
  1309. {
  1310. REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1311. if (setChip) {
  1312. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1313. if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
  1314. /* Set WakeOnInterrupt bit; clear ForceWake bit */
  1315. REG_WRITE(ah, AR_RTC_FORCE_WAKE,
  1316. AR_RTC_FORCE_WAKE_ON_INT);
  1317. } else {
  1318. /*
  1319. * Clear the RTC force wake bit to allow the
  1320. * mac to go to sleep.
  1321. */
  1322. REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
  1323. AR_RTC_FORCE_WAKE_EN);
  1324. }
  1325. }
  1326. /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
  1327. if (AR_SREV_9300_20_OR_LATER(ah))
  1328. REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
  1329. }
  1330. static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
  1331. {
  1332. u32 val;
  1333. int i;
  1334. /* Set Bits 14 and 17 of AR_WA before powering on the chip. */
  1335. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1336. REG_WRITE(ah, AR_WA, ah->WARegVal);
  1337. udelay(10);
  1338. }
  1339. if (setChip) {
  1340. if ((REG_READ(ah, AR_RTC_STATUS) &
  1341. AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
  1342. if (ath9k_hw_set_reset_reg(ah,
  1343. ATH9K_RESET_POWER_ON) != true) {
  1344. return false;
  1345. }
  1346. if (!AR_SREV_9300_20_OR_LATER(ah))
  1347. ath9k_hw_init_pll(ah, NULL);
  1348. }
  1349. if (AR_SREV_9100(ah))
  1350. REG_SET_BIT(ah, AR_RTC_RESET,
  1351. AR_RTC_RESET_EN);
  1352. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1353. AR_RTC_FORCE_WAKE_EN);
  1354. udelay(50);
  1355. for (i = POWER_UP_TIME / 50; i > 0; i--) {
  1356. val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
  1357. if (val == AR_RTC_STATUS_ON)
  1358. break;
  1359. udelay(50);
  1360. REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
  1361. AR_RTC_FORCE_WAKE_EN);
  1362. }
  1363. if (i == 0) {
  1364. ath_err(ath9k_hw_common(ah),
  1365. "Failed to wakeup in %uus\n",
  1366. POWER_UP_TIME / 20);
  1367. return false;
  1368. }
  1369. }
  1370. REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
  1371. return true;
  1372. }
  1373. bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
  1374. {
  1375. struct ath_common *common = ath9k_hw_common(ah);
  1376. int status = true, setChip = true;
  1377. static const char *modes[] = {
  1378. "AWAKE",
  1379. "FULL-SLEEP",
  1380. "NETWORK SLEEP",
  1381. "UNDEFINED"
  1382. };
  1383. if (ah->power_mode == mode)
  1384. return status;
  1385. ath_dbg(common, ATH_DBG_RESET, "%s -> %s\n",
  1386. modes[ah->power_mode], modes[mode]);
  1387. switch (mode) {
  1388. case ATH9K_PM_AWAKE:
  1389. status = ath9k_hw_set_power_awake(ah, setChip);
  1390. break;
  1391. case ATH9K_PM_FULL_SLEEP:
  1392. ath9k_set_power_sleep(ah, setChip);
  1393. ah->chip_fullsleep = true;
  1394. break;
  1395. case ATH9K_PM_NETWORK_SLEEP:
  1396. ath9k_set_power_network_sleep(ah, setChip);
  1397. break;
  1398. default:
  1399. ath_err(common, "Unknown power mode %u\n", mode);
  1400. return false;
  1401. }
  1402. ah->power_mode = mode;
  1403. /*
  1404. * XXX: If this warning never comes up after a while then
  1405. * simply keep the ATH_DBG_WARN_ON_ONCE() but make
  1406. * ath9k_hw_setpower() return type void.
  1407. */
  1408. if (!(ah->ah_flags & AH_UNPLUGGED))
  1409. ATH_DBG_WARN_ON_ONCE(!status);
  1410. return status;
  1411. }
  1412. EXPORT_SYMBOL(ath9k_hw_setpower);
  1413. /*******************/
  1414. /* Beacon Handling */
  1415. /*******************/
  1416. void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
  1417. {
  1418. int flags = 0;
  1419. ENABLE_REGWRITE_BUFFER(ah);
  1420. switch (ah->opmode) {
  1421. case NL80211_IFTYPE_ADHOC:
  1422. case NL80211_IFTYPE_MESH_POINT:
  1423. REG_SET_BIT(ah, AR_TXCFG,
  1424. AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
  1425. REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
  1426. TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
  1427. flags |= AR_NDP_TIMER_EN;
  1428. case NL80211_IFTYPE_AP:
  1429. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
  1430. REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
  1431. TU_TO_USEC(ah->config.dma_beacon_response_time));
  1432. REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
  1433. TU_TO_USEC(ah->config.sw_beacon_response_time));
  1434. flags |=
  1435. AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
  1436. break;
  1437. default:
  1438. ath_dbg(ath9k_hw_common(ah), ATH_DBG_BEACON,
  1439. "%s: unsupported opmode: %d\n",
  1440. __func__, ah->opmode);
  1441. return;
  1442. break;
  1443. }
  1444. REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
  1445. REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
  1446. REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
  1447. REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
  1448. REGWRITE_BUFFER_FLUSH(ah);
  1449. REG_SET_BIT(ah, AR_TIMER_MODE, flags);
  1450. }
  1451. EXPORT_SYMBOL(ath9k_hw_beaconinit);
  1452. void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
  1453. const struct ath9k_beacon_state *bs)
  1454. {
  1455. u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
  1456. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1457. struct ath_common *common = ath9k_hw_common(ah);
  1458. ENABLE_REGWRITE_BUFFER(ah);
  1459. REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
  1460. REG_WRITE(ah, AR_BEACON_PERIOD,
  1461. TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
  1462. REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
  1463. TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
  1464. REGWRITE_BUFFER_FLUSH(ah);
  1465. REG_RMW_FIELD(ah, AR_RSSI_THR,
  1466. AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
  1467. beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
  1468. if (bs->bs_sleepduration > beaconintval)
  1469. beaconintval = bs->bs_sleepduration;
  1470. dtimperiod = bs->bs_dtimperiod;
  1471. if (bs->bs_sleepduration > dtimperiod)
  1472. dtimperiod = bs->bs_sleepduration;
  1473. if (beaconintval == dtimperiod)
  1474. nextTbtt = bs->bs_nextdtim;
  1475. else
  1476. nextTbtt = bs->bs_nexttbtt;
  1477. ath_dbg(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
  1478. ath_dbg(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
  1479. ath_dbg(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
  1480. ath_dbg(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
  1481. ENABLE_REGWRITE_BUFFER(ah);
  1482. REG_WRITE(ah, AR_NEXT_DTIM,
  1483. TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
  1484. REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
  1485. REG_WRITE(ah, AR_SLEEP1,
  1486. SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
  1487. | AR_SLEEP1_ASSUME_DTIM);
  1488. if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
  1489. beacontimeout = (BEACON_TIMEOUT_VAL << 3);
  1490. else
  1491. beacontimeout = MIN_BEACON_TIMEOUT_VAL;
  1492. REG_WRITE(ah, AR_SLEEP2,
  1493. SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
  1494. REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
  1495. REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
  1496. REGWRITE_BUFFER_FLUSH(ah);
  1497. REG_SET_BIT(ah, AR_TIMER_MODE,
  1498. AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
  1499. AR_DTIM_TIMER_EN);
  1500. /* TSF Out of Range Threshold */
  1501. REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
  1502. }
  1503. EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
  1504. /*******************/
  1505. /* HW Capabilities */
  1506. /*******************/
  1507. int ath9k_hw_fill_cap_info(struct ath_hw *ah)
  1508. {
  1509. struct ath9k_hw_capabilities *pCap = &ah->caps;
  1510. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1511. struct ath_common *common = ath9k_hw_common(ah);
  1512. struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
  1513. u16 eeval;
  1514. u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
  1515. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
  1516. regulatory->current_rd = eeval;
  1517. eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
  1518. if (AR_SREV_9285_12_OR_LATER(ah))
  1519. eeval |= AR9285_RDEXT_DEFAULT;
  1520. regulatory->current_rd_ext = eeval;
  1521. if (ah->opmode != NL80211_IFTYPE_AP &&
  1522. ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
  1523. if (regulatory->current_rd == 0x64 ||
  1524. regulatory->current_rd == 0x65)
  1525. regulatory->current_rd += 5;
  1526. else if (regulatory->current_rd == 0x41)
  1527. regulatory->current_rd = 0x43;
  1528. ath_dbg(common, ATH_DBG_REGULATORY,
  1529. "regdomain mapped to 0x%x\n", regulatory->current_rd);
  1530. }
  1531. eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
  1532. if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
  1533. ath_err(common,
  1534. "no band has been marked as supported in EEPROM\n");
  1535. return -EINVAL;
  1536. }
  1537. if (eeval & AR5416_OPFLAGS_11A)
  1538. pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
  1539. if (eeval & AR5416_OPFLAGS_11G)
  1540. pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
  1541. pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
  1542. /*
  1543. * For AR9271 we will temporarilly uses the rx chainmax as read from
  1544. * the EEPROM.
  1545. */
  1546. if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
  1547. !(eeval & AR5416_OPFLAGS_11A) &&
  1548. !(AR_SREV_9271(ah)))
  1549. /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
  1550. pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
  1551. else if (AR_SREV_9100(ah))
  1552. pCap->rx_chainmask = 0x7;
  1553. else
  1554. /* Use rx_chainmask from EEPROM. */
  1555. pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
  1556. ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
  1557. /* enable key search for every frame in an aggregate */
  1558. if (AR_SREV_9300_20_OR_LATER(ah))
  1559. ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
  1560. common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
  1561. if (ah->hw_version.devid != AR2427_DEVID_PCIE)
  1562. pCap->hw_caps |= ATH9K_HW_CAP_HT;
  1563. else
  1564. pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
  1565. if (AR_SREV_9271(ah))
  1566. pCap->num_gpio_pins = AR9271_NUM_GPIO;
  1567. else if (AR_DEVID_7010(ah))
  1568. pCap->num_gpio_pins = AR7010_NUM_GPIO;
  1569. else if (AR_SREV_9285_12_OR_LATER(ah))
  1570. pCap->num_gpio_pins = AR9285_NUM_GPIO;
  1571. else if (AR_SREV_9280_20_OR_LATER(ah))
  1572. pCap->num_gpio_pins = AR928X_NUM_GPIO;
  1573. else
  1574. pCap->num_gpio_pins = AR_NUM_GPIO;
  1575. if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
  1576. pCap->hw_caps |= ATH9K_HW_CAP_CST;
  1577. pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
  1578. } else {
  1579. pCap->rts_aggr_limit = (8 * 1024);
  1580. }
  1581. #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
  1582. ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
  1583. if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
  1584. ah->rfkill_gpio =
  1585. MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
  1586. ah->rfkill_polarity =
  1587. MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
  1588. pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
  1589. }
  1590. #endif
  1591. if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
  1592. pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
  1593. else
  1594. pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
  1595. if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
  1596. pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
  1597. else
  1598. pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
  1599. if (common->btcoex_enabled) {
  1600. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1601. btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
  1602. btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO_9300;
  1603. btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO_9300;
  1604. btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO_9300;
  1605. } else if (AR_SREV_9280_20_OR_LATER(ah)) {
  1606. btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO_9280;
  1607. btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO_9280;
  1608. if (AR_SREV_9285(ah)) {
  1609. btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
  1610. btcoex_hw->btpriority_gpio =
  1611. ATH_BTPRIORITY_GPIO_9285;
  1612. } else {
  1613. btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
  1614. }
  1615. }
  1616. } else {
  1617. btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
  1618. }
  1619. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1620. pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
  1621. if (!AR_SREV_9485(ah))
  1622. pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
  1623. pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
  1624. pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
  1625. pCap->rx_status_len = sizeof(struct ar9003_rxs);
  1626. pCap->tx_desc_len = sizeof(struct ar9003_txc);
  1627. pCap->txs_len = sizeof(struct ar9003_txs);
  1628. if (!ah->config.paprd_disable &&
  1629. ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
  1630. pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
  1631. } else {
  1632. pCap->tx_desc_len = sizeof(struct ath_desc);
  1633. if (AR_SREV_9280_20(ah) &&
  1634. ((ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) <=
  1635. AR5416_EEP_MINOR_VER_16) ||
  1636. ah->eep_ops->get_eeprom(ah, EEP_FSTCLK_5G)))
  1637. pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
  1638. }
  1639. if (AR_SREV_9300_20_OR_LATER(ah))
  1640. pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
  1641. if (AR_SREV_9300_20_OR_LATER(ah))
  1642. ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
  1643. if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
  1644. pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
  1645. if (AR_SREV_9285(ah))
  1646. if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
  1647. ant_div_ctl1 =
  1648. ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
  1649. if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
  1650. pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
  1651. }
  1652. if (AR_SREV_9300_20_OR_LATER(ah)) {
  1653. if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
  1654. pCap->hw_caps |= ATH9K_HW_CAP_APM;
  1655. }
  1656. if (AR_SREV_9485_10(ah)) {
  1657. pCap->pcie_lcr_extsync_en = true;
  1658. pCap->pcie_lcr_offset = 0x80;
  1659. }
  1660. tx_chainmask = pCap->tx_chainmask;
  1661. rx_chainmask = pCap->rx_chainmask;
  1662. while (tx_chainmask || rx_chainmask) {
  1663. if (tx_chainmask & BIT(0))
  1664. pCap->max_txchains++;
  1665. if (rx_chainmask & BIT(0))
  1666. pCap->max_rxchains++;
  1667. tx_chainmask >>= 1;
  1668. rx_chainmask >>= 1;
  1669. }
  1670. return 0;
  1671. }
  1672. /****************************/
  1673. /* GPIO / RFKILL / Antennae */
  1674. /****************************/
  1675. static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
  1676. u32 gpio, u32 type)
  1677. {
  1678. int addr;
  1679. u32 gpio_shift, tmp;
  1680. if (gpio > 11)
  1681. addr = AR_GPIO_OUTPUT_MUX3;
  1682. else if (gpio > 5)
  1683. addr = AR_GPIO_OUTPUT_MUX2;
  1684. else
  1685. addr = AR_GPIO_OUTPUT_MUX1;
  1686. gpio_shift = (gpio % 6) * 5;
  1687. if (AR_SREV_9280_20_OR_LATER(ah)
  1688. || (addr != AR_GPIO_OUTPUT_MUX1)) {
  1689. REG_RMW(ah, addr, (type << gpio_shift),
  1690. (0x1f << gpio_shift));
  1691. } else {
  1692. tmp = REG_READ(ah, addr);
  1693. tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
  1694. tmp &= ~(0x1f << gpio_shift);
  1695. tmp |= (type << gpio_shift);
  1696. REG_WRITE(ah, addr, tmp);
  1697. }
  1698. }
  1699. void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
  1700. {
  1701. u32 gpio_shift;
  1702. BUG_ON(gpio >= ah->caps.num_gpio_pins);
  1703. if (AR_DEVID_7010(ah)) {
  1704. gpio_shift = gpio;
  1705. REG_RMW(ah, AR7010_GPIO_OE,
  1706. (AR7010_GPIO_OE_AS_INPUT << gpio_shift),
  1707. (AR7010_GPIO_OE_MASK << gpio_shift));
  1708. return;
  1709. }
  1710. gpio_shift = gpio << 1;
  1711. REG_RMW(ah,
  1712. AR_GPIO_OE_OUT,
  1713. (AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
  1714. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  1715. }
  1716. EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
  1717. u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
  1718. {
  1719. #define MS_REG_READ(x, y) \
  1720. (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
  1721. if (gpio >= ah->caps.num_gpio_pins)
  1722. return 0xffffffff;
  1723. if (AR_DEVID_7010(ah)) {
  1724. u32 val;
  1725. val = REG_READ(ah, AR7010_GPIO_IN);
  1726. return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
  1727. } else if (AR_SREV_9300_20_OR_LATER(ah))
  1728. return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
  1729. AR_GPIO_BIT(gpio)) != 0;
  1730. else if (AR_SREV_9271(ah))
  1731. return MS_REG_READ(AR9271, gpio) != 0;
  1732. else if (AR_SREV_9287_11_OR_LATER(ah))
  1733. return MS_REG_READ(AR9287, gpio) != 0;
  1734. else if (AR_SREV_9285_12_OR_LATER(ah))
  1735. return MS_REG_READ(AR9285, gpio) != 0;
  1736. else if (AR_SREV_9280_20_OR_LATER(ah))
  1737. return MS_REG_READ(AR928X, gpio) != 0;
  1738. else
  1739. return MS_REG_READ(AR, gpio) != 0;
  1740. }
  1741. EXPORT_SYMBOL(ath9k_hw_gpio_get);
  1742. void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
  1743. u32 ah_signal_type)
  1744. {
  1745. u32 gpio_shift;
  1746. if (AR_DEVID_7010(ah)) {
  1747. gpio_shift = gpio;
  1748. REG_RMW(ah, AR7010_GPIO_OE,
  1749. (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
  1750. (AR7010_GPIO_OE_MASK << gpio_shift));
  1751. return;
  1752. }
  1753. ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
  1754. gpio_shift = 2 * gpio;
  1755. REG_RMW(ah,
  1756. AR_GPIO_OE_OUT,
  1757. (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
  1758. (AR_GPIO_OE_OUT_DRV << gpio_shift));
  1759. }
  1760. EXPORT_SYMBOL(ath9k_hw_cfg_output);
  1761. void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
  1762. {
  1763. if (AR_DEVID_7010(ah)) {
  1764. val = val ? 0 : 1;
  1765. REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
  1766. AR_GPIO_BIT(gpio));
  1767. return;
  1768. }
  1769. if (AR_SREV_9271(ah))
  1770. val = ~val;
  1771. REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
  1772. AR_GPIO_BIT(gpio));
  1773. }
  1774. EXPORT_SYMBOL(ath9k_hw_set_gpio);
  1775. u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
  1776. {
  1777. return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
  1778. }
  1779. EXPORT_SYMBOL(ath9k_hw_getdefantenna);
  1780. void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
  1781. {
  1782. REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
  1783. }
  1784. EXPORT_SYMBOL(ath9k_hw_setantenna);
  1785. /*********************/
  1786. /* General Operation */
  1787. /*********************/
  1788. u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
  1789. {
  1790. u32 bits = REG_READ(ah, AR_RX_FILTER);
  1791. u32 phybits = REG_READ(ah, AR_PHY_ERR);
  1792. if (phybits & AR_PHY_ERR_RADAR)
  1793. bits |= ATH9K_RX_FILTER_PHYRADAR;
  1794. if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
  1795. bits |= ATH9K_RX_FILTER_PHYERR;
  1796. return bits;
  1797. }
  1798. EXPORT_SYMBOL(ath9k_hw_getrxfilter);
  1799. void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
  1800. {
  1801. u32 phybits;
  1802. ENABLE_REGWRITE_BUFFER(ah);
  1803. REG_WRITE(ah, AR_RX_FILTER, bits);
  1804. phybits = 0;
  1805. if (bits & ATH9K_RX_FILTER_PHYRADAR)
  1806. phybits |= AR_PHY_ERR_RADAR;
  1807. if (bits & ATH9K_RX_FILTER_PHYERR)
  1808. phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
  1809. REG_WRITE(ah, AR_PHY_ERR, phybits);
  1810. if (phybits)
  1811. REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
  1812. else
  1813. REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
  1814. REGWRITE_BUFFER_FLUSH(ah);
  1815. }
  1816. EXPORT_SYMBOL(ath9k_hw_setrxfilter);
  1817. bool ath9k_hw_phy_disable(struct ath_hw *ah)
  1818. {
  1819. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
  1820. return false;
  1821. ath9k_hw_init_pll(ah, NULL);
  1822. return true;
  1823. }
  1824. EXPORT_SYMBOL(ath9k_hw_phy_disable);
  1825. bool ath9k_hw_disable(struct ath_hw *ah)
  1826. {
  1827. if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
  1828. return false;
  1829. if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
  1830. return false;
  1831. ath9k_hw_init_pll(ah, NULL);
  1832. return true;
  1833. }
  1834. EXPORT_SYMBOL(ath9k_hw_disable);
  1835. void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
  1836. {
  1837. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  1838. struct ath9k_channel *chan = ah->curchan;
  1839. struct ieee80211_channel *channel = chan->chan;
  1840. regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
  1841. ah->eep_ops->set_txpower(ah, chan,
  1842. ath9k_regd_get_ctl(regulatory, chan),
  1843. channel->max_antenna_gain * 2,
  1844. channel->max_power * 2,
  1845. min((u32) MAX_RATE_POWER,
  1846. (u32) regulatory->power_limit), test);
  1847. }
  1848. EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
  1849. void ath9k_hw_setopmode(struct ath_hw *ah)
  1850. {
  1851. ath9k_hw_set_operating_mode(ah, ah->opmode);
  1852. }
  1853. EXPORT_SYMBOL(ath9k_hw_setopmode);
  1854. void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
  1855. {
  1856. REG_WRITE(ah, AR_MCAST_FIL0, filter0);
  1857. REG_WRITE(ah, AR_MCAST_FIL1, filter1);
  1858. }
  1859. EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
  1860. void ath9k_hw_write_associd(struct ath_hw *ah)
  1861. {
  1862. struct ath_common *common = ath9k_hw_common(ah);
  1863. REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
  1864. REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
  1865. ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
  1866. }
  1867. EXPORT_SYMBOL(ath9k_hw_write_associd);
  1868. #define ATH9K_MAX_TSF_READ 10
  1869. u64 ath9k_hw_gettsf64(struct ath_hw *ah)
  1870. {
  1871. u32 tsf_lower, tsf_upper1, tsf_upper2;
  1872. int i;
  1873. tsf_upper1 = REG_READ(ah, AR_TSF_U32);
  1874. for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
  1875. tsf_lower = REG_READ(ah, AR_TSF_L32);
  1876. tsf_upper2 = REG_READ(ah, AR_TSF_U32);
  1877. if (tsf_upper2 == tsf_upper1)
  1878. break;
  1879. tsf_upper1 = tsf_upper2;
  1880. }
  1881. WARN_ON( i == ATH9K_MAX_TSF_READ );
  1882. return (((u64)tsf_upper1 << 32) | tsf_lower);
  1883. }
  1884. EXPORT_SYMBOL(ath9k_hw_gettsf64);
  1885. void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
  1886. {
  1887. REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
  1888. REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
  1889. }
  1890. EXPORT_SYMBOL(ath9k_hw_settsf64);
  1891. void ath9k_hw_reset_tsf(struct ath_hw *ah)
  1892. {
  1893. if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
  1894. AH_TSF_WRITE_TIMEOUT))
  1895. ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
  1896. "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
  1897. REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
  1898. }
  1899. EXPORT_SYMBOL(ath9k_hw_reset_tsf);
  1900. void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
  1901. {
  1902. if (setting)
  1903. ah->misc_mode |= AR_PCU_TX_ADD_TSF;
  1904. else
  1905. ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
  1906. }
  1907. EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
  1908. void ath9k_hw_set11nmac2040(struct ath_hw *ah)
  1909. {
  1910. struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
  1911. u32 macmode;
  1912. if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
  1913. macmode = AR_2040_JOINED_RX_CLEAR;
  1914. else
  1915. macmode = 0;
  1916. REG_WRITE(ah, AR_2040_MODE, macmode);
  1917. }
  1918. /* HW Generic timers configuration */
  1919. static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
  1920. {
  1921. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1922. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1923. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1924. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1925. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1926. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1927. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1928. {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
  1929. {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
  1930. {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
  1931. AR_NDP2_TIMER_MODE, 0x0002},
  1932. {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
  1933. AR_NDP2_TIMER_MODE, 0x0004},
  1934. {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
  1935. AR_NDP2_TIMER_MODE, 0x0008},
  1936. {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
  1937. AR_NDP2_TIMER_MODE, 0x0010},
  1938. {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
  1939. AR_NDP2_TIMER_MODE, 0x0020},
  1940. {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
  1941. AR_NDP2_TIMER_MODE, 0x0040},
  1942. {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
  1943. AR_NDP2_TIMER_MODE, 0x0080}
  1944. };
  1945. /* HW generic timer primitives */
  1946. /* compute and clear index of rightmost 1 */
  1947. static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
  1948. {
  1949. u32 b;
  1950. b = *mask;
  1951. b &= (0-b);
  1952. *mask &= ~b;
  1953. b *= debruijn32;
  1954. b >>= 27;
  1955. return timer_table->gen_timer_index[b];
  1956. }
  1957. u32 ath9k_hw_gettsf32(struct ath_hw *ah)
  1958. {
  1959. return REG_READ(ah, AR_TSF_L32);
  1960. }
  1961. EXPORT_SYMBOL(ath9k_hw_gettsf32);
  1962. struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
  1963. void (*trigger)(void *),
  1964. void (*overflow)(void *),
  1965. void *arg,
  1966. u8 timer_index)
  1967. {
  1968. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  1969. struct ath_gen_timer *timer;
  1970. timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
  1971. if (timer == NULL) {
  1972. ath_err(ath9k_hw_common(ah),
  1973. "Failed to allocate memory for hw timer[%d]\n",
  1974. timer_index);
  1975. return NULL;
  1976. }
  1977. /* allocate a hardware generic timer slot */
  1978. timer_table->timers[timer_index] = timer;
  1979. timer->index = timer_index;
  1980. timer->trigger = trigger;
  1981. timer->overflow = overflow;
  1982. timer->arg = arg;
  1983. return timer;
  1984. }
  1985. EXPORT_SYMBOL(ath_gen_timer_alloc);
  1986. void ath9k_hw_gen_timer_start(struct ath_hw *ah,
  1987. struct ath_gen_timer *timer,
  1988. u32 trig_timeout,
  1989. u32 timer_period)
  1990. {
  1991. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  1992. u32 tsf, timer_next;
  1993. BUG_ON(!timer_period);
  1994. set_bit(timer->index, &timer_table->timer_mask.timer_bits);
  1995. tsf = ath9k_hw_gettsf32(ah);
  1996. timer_next = tsf + trig_timeout;
  1997. ath_dbg(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
  1998. "current tsf %x period %x timer_next %x\n",
  1999. tsf, timer_period, timer_next);
  2000. /*
  2001. * Program generic timer registers
  2002. */
  2003. REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
  2004. timer_next);
  2005. REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
  2006. timer_period);
  2007. REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2008. gen_tmr_configuration[timer->index].mode_mask);
  2009. /* Enable both trigger and thresh interrupt masks */
  2010. REG_SET_BIT(ah, AR_IMR_S5,
  2011. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2012. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2013. }
  2014. EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
  2015. void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
  2016. {
  2017. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2018. if ((timer->index < AR_FIRST_NDP_TIMER) ||
  2019. (timer->index >= ATH_MAX_GEN_TIMER)) {
  2020. return;
  2021. }
  2022. /* Clear generic timer enable bits. */
  2023. REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
  2024. gen_tmr_configuration[timer->index].mode_mask);
  2025. /* Disable both trigger and thresh interrupt masks */
  2026. REG_CLR_BIT(ah, AR_IMR_S5,
  2027. (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
  2028. SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
  2029. clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
  2030. }
  2031. EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
  2032. void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
  2033. {
  2034. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2035. /* free the hardware generic timer slot */
  2036. timer_table->timers[timer->index] = NULL;
  2037. kfree(timer);
  2038. }
  2039. EXPORT_SYMBOL(ath_gen_timer_free);
  2040. /*
  2041. * Generic Timer Interrupts handling
  2042. */
  2043. void ath_gen_timer_isr(struct ath_hw *ah)
  2044. {
  2045. struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
  2046. struct ath_gen_timer *timer;
  2047. struct ath_common *common = ath9k_hw_common(ah);
  2048. u32 trigger_mask, thresh_mask, index;
  2049. /* get hardware generic timer interrupt status */
  2050. trigger_mask = ah->intr_gen_timer_trigger;
  2051. thresh_mask = ah->intr_gen_timer_thresh;
  2052. trigger_mask &= timer_table->timer_mask.val;
  2053. thresh_mask &= timer_table->timer_mask.val;
  2054. trigger_mask &= ~thresh_mask;
  2055. while (thresh_mask) {
  2056. index = rightmost_index(timer_table, &thresh_mask);
  2057. timer = timer_table->timers[index];
  2058. BUG_ON(!timer);
  2059. ath_dbg(common, ATH_DBG_HWTIMER,
  2060. "TSF overflow for Gen timer %d\n", index);
  2061. timer->overflow(timer->arg);
  2062. }
  2063. while (trigger_mask) {
  2064. index = rightmost_index(timer_table, &trigger_mask);
  2065. timer = timer_table->timers[index];
  2066. BUG_ON(!timer);
  2067. ath_dbg(common, ATH_DBG_HWTIMER,
  2068. "Gen timer[%d] trigger\n", index);
  2069. timer->trigger(timer->arg);
  2070. }
  2071. }
  2072. EXPORT_SYMBOL(ath_gen_timer_isr);
  2073. /********/
  2074. /* HTC */
  2075. /********/
  2076. void ath9k_hw_htc_resetinit(struct ath_hw *ah)
  2077. {
  2078. ah->htc_reset_init = true;
  2079. }
  2080. EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
  2081. static struct {
  2082. u32 version;
  2083. const char * name;
  2084. } ath_mac_bb_names[] = {
  2085. /* Devices with external radios */
  2086. { AR_SREV_VERSION_5416_PCI, "5416" },
  2087. { AR_SREV_VERSION_5416_PCIE, "5418" },
  2088. { AR_SREV_VERSION_9100, "9100" },
  2089. { AR_SREV_VERSION_9160, "9160" },
  2090. /* Single-chip solutions */
  2091. { AR_SREV_VERSION_9280, "9280" },
  2092. { AR_SREV_VERSION_9285, "9285" },
  2093. { AR_SREV_VERSION_9287, "9287" },
  2094. { AR_SREV_VERSION_9271, "9271" },
  2095. { AR_SREV_VERSION_9300, "9300" },
  2096. { AR_SREV_VERSION_9485, "9485" },
  2097. };
  2098. /* For devices with external radios */
  2099. static struct {
  2100. u16 version;
  2101. const char * name;
  2102. } ath_rf_names[] = {
  2103. { 0, "5133" },
  2104. { AR_RAD5133_SREV_MAJOR, "5133" },
  2105. { AR_RAD5122_SREV_MAJOR, "5122" },
  2106. { AR_RAD2133_SREV_MAJOR, "2133" },
  2107. { AR_RAD2122_SREV_MAJOR, "2122" }
  2108. };
  2109. /*
  2110. * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
  2111. */
  2112. static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
  2113. {
  2114. int i;
  2115. for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
  2116. if (ath_mac_bb_names[i].version == mac_bb_version) {
  2117. return ath_mac_bb_names[i].name;
  2118. }
  2119. }
  2120. return "????";
  2121. }
  2122. /*
  2123. * Return the RF name. "????" is returned if the RF is unknown.
  2124. * Used for devices with external radios.
  2125. */
  2126. static const char *ath9k_hw_rf_name(u16 rf_version)
  2127. {
  2128. int i;
  2129. for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
  2130. if (ath_rf_names[i].version == rf_version) {
  2131. return ath_rf_names[i].name;
  2132. }
  2133. }
  2134. return "????";
  2135. }
  2136. void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
  2137. {
  2138. int used;
  2139. /* chipsets >= AR9280 are single-chip */
  2140. if (AR_SREV_9280_20_OR_LATER(ah)) {
  2141. used = snprintf(hw_name, len,
  2142. "Atheros AR%s Rev:%x",
  2143. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2144. ah->hw_version.macRev);
  2145. }
  2146. else {
  2147. used = snprintf(hw_name, len,
  2148. "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
  2149. ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
  2150. ah->hw_version.macRev,
  2151. ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
  2152. AR_RADIO_SREV_MAJOR)),
  2153. ah->hw_version.phyRev);
  2154. }
  2155. hw_name[used] = '\0';
  2156. }
  2157. EXPORT_SYMBOL(ath9k_hw_name);