eeprom_9287.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008
  1. /*
  2. * Copyright (c) 2008-2009 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include "hw.h"
  17. #include "ar9002_phy.h"
  18. #define SIZE_EEPROM_AR9287 (sizeof(struct ar9287_eeprom) / sizeof(u16))
  19. static int ath9k_hw_ar9287_get_eeprom_ver(struct ath_hw *ah)
  20. {
  21. return (ah->eeprom.map9287.baseEepHeader.version >> 12) & 0xF;
  22. }
  23. static int ath9k_hw_ar9287_get_eeprom_rev(struct ath_hw *ah)
  24. {
  25. return (ah->eeprom.map9287.baseEepHeader.version) & 0xFFF;
  26. }
  27. static bool __ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
  28. {
  29. struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  30. struct ath_common *common = ath9k_hw_common(ah);
  31. u16 *eep_data;
  32. int addr, eep_start_loc = AR9287_EEP_START_LOC;
  33. eep_data = (u16 *)eep;
  34. for (addr = 0; addr < SIZE_EEPROM_AR9287; addr++) {
  35. if (!ath9k_hw_nvram_read(common, addr + eep_start_loc,
  36. eep_data)) {
  37. ath_dbg(common, ATH_DBG_EEPROM,
  38. "Unable to read eeprom region\n");
  39. return false;
  40. }
  41. eep_data++;
  42. }
  43. return true;
  44. }
  45. static bool __ath9k_hw_usb_ar9287_fill_eeprom(struct ath_hw *ah)
  46. {
  47. u16 *eep_data = (u16 *)&ah->eeprom.map9287;
  48. ath9k_hw_usb_gen_fill_eeprom(ah, eep_data,
  49. AR9287_HTC_EEP_START_LOC,
  50. SIZE_EEPROM_AR9287);
  51. return true;
  52. }
  53. static bool ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
  54. {
  55. struct ath_common *common = ath9k_hw_common(ah);
  56. if (!ath9k_hw_use_flash(ah)) {
  57. ath_dbg(common, ATH_DBG_EEPROM,
  58. "Reading from EEPROM, not flash\n");
  59. }
  60. if (common->bus_ops->ath_bus_type == ATH_USB)
  61. return __ath9k_hw_usb_ar9287_fill_eeprom(ah);
  62. else
  63. return __ath9k_hw_ar9287_fill_eeprom(ah);
  64. }
  65. static int ath9k_hw_ar9287_check_eeprom(struct ath_hw *ah)
  66. {
  67. u32 sum = 0, el, integer;
  68. u16 temp, word, magic, magic2, *eepdata;
  69. int i, addr;
  70. bool need_swap = false;
  71. struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  72. struct ath_common *common = ath9k_hw_common(ah);
  73. if (!ath9k_hw_use_flash(ah)) {
  74. if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET,
  75. &magic)) {
  76. ath_err(common, "Reading Magic # failed\n");
  77. return false;
  78. }
  79. ath_dbg(common, ATH_DBG_EEPROM,
  80. "Read Magic = 0x%04X\n", magic);
  81. if (magic != AR5416_EEPROM_MAGIC) {
  82. magic2 = swab16(magic);
  83. if (magic2 == AR5416_EEPROM_MAGIC) {
  84. need_swap = true;
  85. eepdata = (u16 *)(&ah->eeprom);
  86. for (addr = 0; addr < SIZE_EEPROM_AR9287; addr++) {
  87. temp = swab16(*eepdata);
  88. *eepdata = temp;
  89. eepdata++;
  90. }
  91. } else {
  92. ath_err(common,
  93. "Invalid EEPROM Magic. Endianness mismatch.\n");
  94. return -EINVAL;
  95. }
  96. }
  97. }
  98. ath_dbg(common, ATH_DBG_EEPROM, "need_swap = %s.\n",
  99. need_swap ? "True" : "False");
  100. if (need_swap)
  101. el = swab16(ah->eeprom.map9287.baseEepHeader.length);
  102. else
  103. el = ah->eeprom.map9287.baseEepHeader.length;
  104. if (el > sizeof(struct ar9287_eeprom))
  105. el = sizeof(struct ar9287_eeprom) / sizeof(u16);
  106. else
  107. el = el / sizeof(u16);
  108. eepdata = (u16 *)(&ah->eeprom);
  109. for (i = 0; i < el; i++)
  110. sum ^= *eepdata++;
  111. if (need_swap) {
  112. word = swab16(eep->baseEepHeader.length);
  113. eep->baseEepHeader.length = word;
  114. word = swab16(eep->baseEepHeader.checksum);
  115. eep->baseEepHeader.checksum = word;
  116. word = swab16(eep->baseEepHeader.version);
  117. eep->baseEepHeader.version = word;
  118. word = swab16(eep->baseEepHeader.regDmn[0]);
  119. eep->baseEepHeader.regDmn[0] = word;
  120. word = swab16(eep->baseEepHeader.regDmn[1]);
  121. eep->baseEepHeader.regDmn[1] = word;
  122. word = swab16(eep->baseEepHeader.rfSilent);
  123. eep->baseEepHeader.rfSilent = word;
  124. word = swab16(eep->baseEepHeader.blueToothOptions);
  125. eep->baseEepHeader.blueToothOptions = word;
  126. word = swab16(eep->baseEepHeader.deviceCap);
  127. eep->baseEepHeader.deviceCap = word;
  128. integer = swab32(eep->modalHeader.antCtrlCommon);
  129. eep->modalHeader.antCtrlCommon = integer;
  130. for (i = 0; i < AR9287_MAX_CHAINS; i++) {
  131. integer = swab32(eep->modalHeader.antCtrlChain[i]);
  132. eep->modalHeader.antCtrlChain[i] = integer;
  133. }
  134. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  135. word = swab16(eep->modalHeader.spurChans[i].spurChan);
  136. eep->modalHeader.spurChans[i].spurChan = word;
  137. }
  138. }
  139. if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR9287_EEP_VER
  140. || ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
  141. ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
  142. sum, ah->eep_ops->get_eeprom_ver(ah));
  143. return -EINVAL;
  144. }
  145. return 0;
  146. }
  147. static u32 ath9k_hw_ar9287_get_eeprom(struct ath_hw *ah,
  148. enum eeprom_param param)
  149. {
  150. struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  151. struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
  152. struct base_eep_ar9287_header *pBase = &eep->baseEepHeader;
  153. u16 ver_minor;
  154. ver_minor = pBase->version & AR9287_EEP_VER_MINOR_MASK;
  155. switch (param) {
  156. case EEP_NFTHRESH_2:
  157. return pModal->noiseFloorThreshCh[0];
  158. case EEP_MAC_LSW:
  159. return pBase->macAddr[0] << 8 | pBase->macAddr[1];
  160. case EEP_MAC_MID:
  161. return pBase->macAddr[2] << 8 | pBase->macAddr[3];
  162. case EEP_MAC_MSW:
  163. return pBase->macAddr[4] << 8 | pBase->macAddr[5];
  164. case EEP_REG_0:
  165. return pBase->regDmn[0];
  166. case EEP_REG_1:
  167. return pBase->regDmn[1];
  168. case EEP_OP_CAP:
  169. return pBase->deviceCap;
  170. case EEP_OP_MODE:
  171. return pBase->opCapFlags;
  172. case EEP_RF_SILENT:
  173. return pBase->rfSilent;
  174. case EEP_MINOR_REV:
  175. return ver_minor;
  176. case EEP_TX_MASK:
  177. return pBase->txMask;
  178. case EEP_RX_MASK:
  179. return pBase->rxMask;
  180. case EEP_DEV_TYPE:
  181. return pBase->deviceType;
  182. case EEP_OL_PWRCTRL:
  183. return pBase->openLoopPwrCntl;
  184. case EEP_TEMPSENSE_SLOPE:
  185. if (ver_minor >= AR9287_EEP_MINOR_VER_2)
  186. return pBase->tempSensSlope;
  187. else
  188. return 0;
  189. case EEP_TEMPSENSE_SLOPE_PAL_ON:
  190. if (ver_minor >= AR9287_EEP_MINOR_VER_3)
  191. return pBase->tempSensSlopePalOn;
  192. else
  193. return 0;
  194. default:
  195. return 0;
  196. }
  197. }
  198. static void ar9287_eeprom_get_tx_gain_index(struct ath_hw *ah,
  199. struct ath9k_channel *chan,
  200. struct cal_data_op_loop_ar9287 *pRawDatasetOpLoop,
  201. u8 *pCalChans, u16 availPiers, int8_t *pPwr)
  202. {
  203. u16 idxL = 0, idxR = 0, numPiers;
  204. bool match;
  205. struct chan_centers centers;
  206. ath9k_hw_get_channel_centers(ah, chan, &centers);
  207. for (numPiers = 0; numPiers < availPiers; numPiers++) {
  208. if (pCalChans[numPiers] == AR5416_BCHAN_UNUSED)
  209. break;
  210. }
  211. match = ath9k_hw_get_lower_upper_index(
  212. (u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
  213. pCalChans, numPiers, &idxL, &idxR);
  214. if (match) {
  215. *pPwr = (int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0];
  216. } else {
  217. *pPwr = ((int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0] +
  218. (int8_t) pRawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
  219. }
  220. }
  221. static void ar9287_eeprom_olpc_set_pdadcs(struct ath_hw *ah,
  222. int32_t txPower, u16 chain)
  223. {
  224. u32 tmpVal;
  225. u32 a;
  226. /* Enable OLPC for chain 0 */
  227. tmpVal = REG_READ(ah, 0xa270);
  228. tmpVal = tmpVal & 0xFCFFFFFF;
  229. tmpVal = tmpVal | (0x3 << 24);
  230. REG_WRITE(ah, 0xa270, tmpVal);
  231. /* Enable OLPC for chain 1 */
  232. tmpVal = REG_READ(ah, 0xb270);
  233. tmpVal = tmpVal & 0xFCFFFFFF;
  234. tmpVal = tmpVal | (0x3 << 24);
  235. REG_WRITE(ah, 0xb270, tmpVal);
  236. /* Write the OLPC ref power for chain 0 */
  237. if (chain == 0) {
  238. tmpVal = REG_READ(ah, 0xa398);
  239. tmpVal = tmpVal & 0xff00ffff;
  240. a = (txPower)&0xff;
  241. tmpVal = tmpVal | (a << 16);
  242. REG_WRITE(ah, 0xa398, tmpVal);
  243. }
  244. /* Write the OLPC ref power for chain 1 */
  245. if (chain == 1) {
  246. tmpVal = REG_READ(ah, 0xb398);
  247. tmpVal = tmpVal & 0xff00ffff;
  248. a = (txPower)&0xff;
  249. tmpVal = tmpVal | (a << 16);
  250. REG_WRITE(ah, 0xb398, tmpVal);
  251. }
  252. }
  253. static void ath9k_hw_set_ar9287_power_cal_table(struct ath_hw *ah,
  254. struct ath9k_channel *chan,
  255. int16_t *pTxPowerIndexOffset)
  256. {
  257. struct cal_data_per_freq_ar9287 *pRawDataset;
  258. struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop;
  259. u8 *pCalBChans = NULL;
  260. u16 pdGainOverlap_t2;
  261. u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
  262. u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
  263. u16 numPiers = 0, i, j;
  264. u16 numXpdGain, xpdMask;
  265. u16 xpdGainValues[AR5416_NUM_PD_GAINS] = {0, 0, 0, 0};
  266. u32 reg32, regOffset, regChainOffset, regval;
  267. int16_t diff = 0;
  268. struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
  269. xpdMask = pEepData->modalHeader.xpdGain;
  270. if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
  271. AR9287_EEP_MINOR_VER_2)
  272. pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
  273. else
  274. pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
  275. AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
  276. if (IS_CHAN_2GHZ(chan)) {
  277. pCalBChans = pEepData->calFreqPier2G;
  278. numPiers = AR9287_NUM_2G_CAL_PIERS;
  279. if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
  280. pRawDatasetOpenLoop =
  281. (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[0];
  282. ah->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0];
  283. }
  284. }
  285. numXpdGain = 0;
  286. /* Calculate the value of xpdgains from the xpdGain Mask */
  287. for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
  288. if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
  289. if (numXpdGain >= AR5416_NUM_PD_GAINS)
  290. break;
  291. xpdGainValues[numXpdGain] =
  292. (u16)(AR5416_PD_GAINS_IN_MASK-i);
  293. numXpdGain++;
  294. }
  295. }
  296. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
  297. (numXpdGain - 1) & 0x3);
  298. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
  299. xpdGainValues[0]);
  300. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
  301. xpdGainValues[1]);
  302. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
  303. xpdGainValues[2]);
  304. for (i = 0; i < AR9287_MAX_CHAINS; i++) {
  305. regChainOffset = i * 0x1000;
  306. if (pEepData->baseEepHeader.txMask & (1 << i)) {
  307. pRawDatasetOpenLoop =
  308. (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[i];
  309. if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
  310. int8_t txPower;
  311. ar9287_eeprom_get_tx_gain_index(ah, chan,
  312. pRawDatasetOpenLoop,
  313. pCalBChans, numPiers,
  314. &txPower);
  315. ar9287_eeprom_olpc_set_pdadcs(ah, txPower, i);
  316. } else {
  317. pRawDataset =
  318. (struct cal_data_per_freq_ar9287 *)
  319. pEepData->calPierData2G[i];
  320. ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
  321. pRawDataset,
  322. pCalBChans, numPiers,
  323. pdGainOverlap_t2,
  324. gainBoundaries,
  325. pdadcValues,
  326. numXpdGain);
  327. }
  328. ENABLE_REGWRITE_BUFFER(ah);
  329. if (i == 0) {
  330. if (!ath9k_hw_ar9287_get_eeprom(ah,
  331. EEP_OL_PWRCTRL)) {
  332. regval = SM(pdGainOverlap_t2,
  333. AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
  334. | SM(gainBoundaries[0],
  335. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
  336. | SM(gainBoundaries[1],
  337. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
  338. | SM(gainBoundaries[2],
  339. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
  340. | SM(gainBoundaries[3],
  341. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4);
  342. REG_WRITE(ah,
  343. AR_PHY_TPCRG5 + regChainOffset,
  344. regval);
  345. }
  346. }
  347. if ((int32_t)AR9287_PWR_TABLE_OFFSET_DB !=
  348. pEepData->baseEepHeader.pwrTableOffset) {
  349. diff = (u16)(pEepData->baseEepHeader.pwrTableOffset -
  350. (int32_t)AR9287_PWR_TABLE_OFFSET_DB);
  351. diff *= 2;
  352. for (j = 0; j < ((u16)AR5416_NUM_PDADC_VALUES-diff); j++)
  353. pdadcValues[j] = pdadcValues[j+diff];
  354. for (j = (u16)(AR5416_NUM_PDADC_VALUES-diff);
  355. j < AR5416_NUM_PDADC_VALUES; j++)
  356. pdadcValues[j] =
  357. pdadcValues[AR5416_NUM_PDADC_VALUES-diff];
  358. }
  359. if (!ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
  360. regOffset = AR_PHY_BASE +
  361. (672 << 2) + regChainOffset;
  362. for (j = 0; j < 32; j++) {
  363. reg32 = ((pdadcValues[4*j + 0] & 0xFF) << 0)
  364. | ((pdadcValues[4*j + 1] & 0xFF) << 8)
  365. | ((pdadcValues[4*j + 2] & 0xFF) << 16)
  366. | ((pdadcValues[4*j + 3] & 0xFF) << 24);
  367. REG_WRITE(ah, regOffset, reg32);
  368. regOffset += 4;
  369. }
  370. }
  371. REGWRITE_BUFFER_FLUSH(ah);
  372. }
  373. }
  374. *pTxPowerIndexOffset = 0;
  375. }
  376. static void ath9k_hw_set_ar9287_power_per_rate_table(struct ath_hw *ah,
  377. struct ath9k_channel *chan,
  378. int16_t *ratesArray,
  379. u16 cfgCtl,
  380. u16 AntennaReduction,
  381. u16 twiceMaxRegulatoryPower,
  382. u16 powerLimit)
  383. {
  384. #define CMP_CTL \
  385. (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
  386. pEepData->ctlIndex[i])
  387. #define CMP_NO_CTL \
  388. (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
  389. ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
  390. #define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6
  391. #define REDUCE_SCALED_POWER_BY_THREE_CHAIN 10
  392. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  393. u16 twiceMaxEdgePower = MAX_RATE_POWER;
  394. static const u16 tpScaleReductionTable[5] =
  395. { 0, 3, 6, 9, MAX_RATE_POWER };
  396. int i;
  397. int16_t twiceLargestAntenna;
  398. struct cal_ctl_data_ar9287 *rep;
  399. struct cal_target_power_leg targetPowerOfdm = {0, {0, 0, 0, 0} },
  400. targetPowerCck = {0, {0, 0, 0, 0} };
  401. struct cal_target_power_leg targetPowerOfdmExt = {0, {0, 0, 0, 0} },
  402. targetPowerCckExt = {0, {0, 0, 0, 0} };
  403. struct cal_target_power_ht targetPowerHt20,
  404. targetPowerHt40 = {0, {0, 0, 0, 0} };
  405. u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
  406. static const u16 ctlModesFor11g[] = {
  407. CTL_11B, CTL_11G, CTL_2GHT20,
  408. CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
  409. };
  410. u16 numCtlModes = 0;
  411. const u16 *pCtlMode = NULL;
  412. u16 ctlMode, freq;
  413. struct chan_centers centers;
  414. int tx_chainmask;
  415. u16 twiceMinEdgePower;
  416. struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
  417. tx_chainmask = ah->txchainmask;
  418. ath9k_hw_get_channel_centers(ah, chan, &centers);
  419. /* Compute TxPower reduction due to Antenna Gain */
  420. twiceLargestAntenna = max(pEepData->modalHeader.antennaGainCh[0],
  421. pEepData->modalHeader.antennaGainCh[1]);
  422. twiceLargestAntenna = (int16_t)min((AntennaReduction) -
  423. twiceLargestAntenna, 0);
  424. /*
  425. * scaledPower is the minimum of the user input power level
  426. * and the regulatory allowed power level.
  427. */
  428. maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
  429. if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX)
  430. maxRegAllowedPower -=
  431. (tpScaleReductionTable[(regulatory->tp_scale)] * 2);
  432. scaledPower = min(powerLimit, maxRegAllowedPower);
  433. /*
  434. * Reduce scaled Power by number of chains active
  435. * to get the per chain tx power level.
  436. */
  437. switch (ar5416_get_ntxchains(tx_chainmask)) {
  438. case 1:
  439. break;
  440. case 2:
  441. scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
  442. break;
  443. case 3:
  444. scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
  445. break;
  446. }
  447. scaledPower = max((u16)0, scaledPower);
  448. /*
  449. * Get TX power from EEPROM.
  450. */
  451. if (IS_CHAN_2GHZ(chan)) {
  452. /* CTL_11B, CTL_11G, CTL_2GHT20 */
  453. numCtlModes =
  454. ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
  455. pCtlMode = ctlModesFor11g;
  456. ath9k_hw_get_legacy_target_powers(ah, chan,
  457. pEepData->calTargetPowerCck,
  458. AR9287_NUM_2G_CCK_TARGET_POWERS,
  459. &targetPowerCck, 4, false);
  460. ath9k_hw_get_legacy_target_powers(ah, chan,
  461. pEepData->calTargetPower2G,
  462. AR9287_NUM_2G_20_TARGET_POWERS,
  463. &targetPowerOfdm, 4, false);
  464. ath9k_hw_get_target_powers(ah, chan,
  465. pEepData->calTargetPower2GHT20,
  466. AR9287_NUM_2G_20_TARGET_POWERS,
  467. &targetPowerHt20, 8, false);
  468. if (IS_CHAN_HT40(chan)) {
  469. /* All 2G CTLs */
  470. numCtlModes = ARRAY_SIZE(ctlModesFor11g);
  471. ath9k_hw_get_target_powers(ah, chan,
  472. pEepData->calTargetPower2GHT40,
  473. AR9287_NUM_2G_40_TARGET_POWERS,
  474. &targetPowerHt40, 8, true);
  475. ath9k_hw_get_legacy_target_powers(ah, chan,
  476. pEepData->calTargetPowerCck,
  477. AR9287_NUM_2G_CCK_TARGET_POWERS,
  478. &targetPowerCckExt, 4, true);
  479. ath9k_hw_get_legacy_target_powers(ah, chan,
  480. pEepData->calTargetPower2G,
  481. AR9287_NUM_2G_20_TARGET_POWERS,
  482. &targetPowerOfdmExt, 4, true);
  483. }
  484. }
  485. for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
  486. bool isHt40CtlMode =
  487. (pCtlMode[ctlMode] == CTL_2GHT40) ? true : false;
  488. if (isHt40CtlMode)
  489. freq = centers.synth_center;
  490. else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
  491. freq = centers.ext_center;
  492. else
  493. freq = centers.ctl_center;
  494. /* Walk through the CTL indices stored in EEPROM */
  495. for (i = 0; (i < AR9287_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
  496. struct cal_ctl_edges *pRdEdgesPower;
  497. /*
  498. * Compare test group from regulatory channel list
  499. * with test mode from pCtlMode list
  500. */
  501. if (CMP_CTL || CMP_NO_CTL) {
  502. rep = &(pEepData->ctlData[i]);
  503. pRdEdgesPower =
  504. rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1];
  505. twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
  506. pRdEdgesPower,
  507. IS_CHAN_2GHZ(chan),
  508. AR5416_NUM_BAND_EDGES);
  509. if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
  510. twiceMaxEdgePower = min(twiceMaxEdgePower,
  511. twiceMinEdgePower);
  512. } else {
  513. twiceMaxEdgePower = twiceMinEdgePower;
  514. break;
  515. }
  516. }
  517. }
  518. minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
  519. /* Apply ctl mode to correct target power set */
  520. switch (pCtlMode[ctlMode]) {
  521. case CTL_11B:
  522. for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
  523. targetPowerCck.tPow2x[i] =
  524. (u8)min((u16)targetPowerCck.tPow2x[i],
  525. minCtlPower);
  526. }
  527. break;
  528. case CTL_11A:
  529. case CTL_11G:
  530. for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
  531. targetPowerOfdm.tPow2x[i] =
  532. (u8)min((u16)targetPowerOfdm.tPow2x[i],
  533. minCtlPower);
  534. }
  535. break;
  536. case CTL_5GHT20:
  537. case CTL_2GHT20:
  538. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
  539. targetPowerHt20.tPow2x[i] =
  540. (u8)min((u16)targetPowerHt20.tPow2x[i],
  541. minCtlPower);
  542. }
  543. break;
  544. case CTL_11B_EXT:
  545. targetPowerCckExt.tPow2x[0] =
  546. (u8)min((u16)targetPowerCckExt.tPow2x[0],
  547. minCtlPower);
  548. break;
  549. case CTL_11A_EXT:
  550. case CTL_11G_EXT:
  551. targetPowerOfdmExt.tPow2x[0] =
  552. (u8)min((u16)targetPowerOfdmExt.tPow2x[0],
  553. minCtlPower);
  554. break;
  555. case CTL_5GHT40:
  556. case CTL_2GHT40:
  557. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
  558. targetPowerHt40.tPow2x[i] =
  559. (u8)min((u16)targetPowerHt40.tPow2x[i],
  560. minCtlPower);
  561. }
  562. break;
  563. default:
  564. break;
  565. }
  566. }
  567. /* Now set the rates array */
  568. ratesArray[rate6mb] =
  569. ratesArray[rate9mb] =
  570. ratesArray[rate12mb] =
  571. ratesArray[rate18mb] =
  572. ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0];
  573. ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
  574. ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
  575. ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
  576. ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
  577. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
  578. ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
  579. if (IS_CHAN_2GHZ(chan)) {
  580. ratesArray[rate1l] = targetPowerCck.tPow2x[0];
  581. ratesArray[rate2s] =
  582. ratesArray[rate2l] = targetPowerCck.tPow2x[1];
  583. ratesArray[rate5_5s] =
  584. ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
  585. ratesArray[rate11s] =
  586. ratesArray[rate11l] = targetPowerCck.tPow2x[3];
  587. }
  588. if (IS_CHAN_HT40(chan)) {
  589. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++)
  590. ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];
  591. ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
  592. ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
  593. ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
  594. if (IS_CHAN_2GHZ(chan))
  595. ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
  596. }
  597. #undef CMP_CTL
  598. #undef CMP_NO_CTL
  599. #undef REDUCE_SCALED_POWER_BY_TWO_CHAIN
  600. #undef REDUCE_SCALED_POWER_BY_THREE_CHAIN
  601. }
  602. static void ath9k_hw_ar9287_set_txpower(struct ath_hw *ah,
  603. struct ath9k_channel *chan, u16 cfgCtl,
  604. u8 twiceAntennaReduction,
  605. u8 twiceMaxRegulatoryPower,
  606. u8 powerLimit, bool test)
  607. {
  608. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  609. struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
  610. struct modal_eep_ar9287_header *pModal = &pEepData->modalHeader;
  611. int16_t ratesArray[Ar5416RateSize];
  612. int16_t txPowerIndexOffset = 0;
  613. u8 ht40PowerIncForPdadc = 2;
  614. int i;
  615. memset(ratesArray, 0, sizeof(ratesArray));
  616. if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
  617. AR9287_EEP_MINOR_VER_2)
  618. ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
  619. ath9k_hw_set_ar9287_power_per_rate_table(ah, chan,
  620. &ratesArray[0], cfgCtl,
  621. twiceAntennaReduction,
  622. twiceMaxRegulatoryPower,
  623. powerLimit);
  624. ath9k_hw_set_ar9287_power_cal_table(ah, chan, &txPowerIndexOffset);
  625. regulatory->max_power_level = 0;
  626. for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
  627. ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
  628. if (ratesArray[i] > MAX_RATE_POWER)
  629. ratesArray[i] = MAX_RATE_POWER;
  630. if (ratesArray[i] > regulatory->max_power_level)
  631. regulatory->max_power_level = ratesArray[i];
  632. }
  633. if (test)
  634. return;
  635. if (IS_CHAN_2GHZ(chan))
  636. i = rate1l;
  637. else
  638. i = rate6mb;
  639. regulatory->max_power_level = ratesArray[i];
  640. if (AR_SREV_9280_20_OR_LATER(ah)) {
  641. for (i = 0; i < Ar5416RateSize; i++)
  642. ratesArray[i] -= AR9287_PWR_TABLE_OFFSET_DB * 2;
  643. }
  644. ENABLE_REGWRITE_BUFFER(ah);
  645. /* OFDM power per rate */
  646. REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
  647. ATH9K_POW_SM(ratesArray[rate18mb], 24)
  648. | ATH9K_POW_SM(ratesArray[rate12mb], 16)
  649. | ATH9K_POW_SM(ratesArray[rate9mb], 8)
  650. | ATH9K_POW_SM(ratesArray[rate6mb], 0));
  651. REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
  652. ATH9K_POW_SM(ratesArray[rate54mb], 24)
  653. | ATH9K_POW_SM(ratesArray[rate48mb], 16)
  654. | ATH9K_POW_SM(ratesArray[rate36mb], 8)
  655. | ATH9K_POW_SM(ratesArray[rate24mb], 0));
  656. /* CCK power per rate */
  657. if (IS_CHAN_2GHZ(chan)) {
  658. REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
  659. ATH9K_POW_SM(ratesArray[rate2s], 24)
  660. | ATH9K_POW_SM(ratesArray[rate2l], 16)
  661. | ATH9K_POW_SM(ratesArray[rateXr], 8)
  662. | ATH9K_POW_SM(ratesArray[rate1l], 0));
  663. REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
  664. ATH9K_POW_SM(ratesArray[rate11s], 24)
  665. | ATH9K_POW_SM(ratesArray[rate11l], 16)
  666. | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
  667. | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
  668. }
  669. /* HT20 power per rate */
  670. REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
  671. ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
  672. | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
  673. | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
  674. | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
  675. REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
  676. ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
  677. | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
  678. | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
  679. | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
  680. /* HT40 power per rate */
  681. if (IS_CHAN_HT40(chan)) {
  682. if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
  683. REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
  684. ATH9K_POW_SM(ratesArray[rateHt40_3], 24)
  685. | ATH9K_POW_SM(ratesArray[rateHt40_2], 16)
  686. | ATH9K_POW_SM(ratesArray[rateHt40_1], 8)
  687. | ATH9K_POW_SM(ratesArray[rateHt40_0], 0));
  688. REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
  689. ATH9K_POW_SM(ratesArray[rateHt40_7], 24)
  690. | ATH9K_POW_SM(ratesArray[rateHt40_6], 16)
  691. | ATH9K_POW_SM(ratesArray[rateHt40_5], 8)
  692. | ATH9K_POW_SM(ratesArray[rateHt40_4], 0));
  693. } else {
  694. REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
  695. ATH9K_POW_SM(ratesArray[rateHt40_3] +
  696. ht40PowerIncForPdadc, 24)
  697. | ATH9K_POW_SM(ratesArray[rateHt40_2] +
  698. ht40PowerIncForPdadc, 16)
  699. | ATH9K_POW_SM(ratesArray[rateHt40_1] +
  700. ht40PowerIncForPdadc, 8)
  701. | ATH9K_POW_SM(ratesArray[rateHt40_0] +
  702. ht40PowerIncForPdadc, 0));
  703. REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
  704. ATH9K_POW_SM(ratesArray[rateHt40_7] +
  705. ht40PowerIncForPdadc, 24)
  706. | ATH9K_POW_SM(ratesArray[rateHt40_6] +
  707. ht40PowerIncForPdadc, 16)
  708. | ATH9K_POW_SM(ratesArray[rateHt40_5] +
  709. ht40PowerIncForPdadc, 8)
  710. | ATH9K_POW_SM(ratesArray[rateHt40_4] +
  711. ht40PowerIncForPdadc, 0));
  712. }
  713. /* Dup/Ext power per rate */
  714. REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
  715. ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
  716. | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
  717. | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
  718. | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
  719. }
  720. REGWRITE_BUFFER_FLUSH(ah);
  721. }
  722. static void ath9k_hw_ar9287_set_addac(struct ath_hw *ah,
  723. struct ath9k_channel *chan)
  724. {
  725. }
  726. static void ath9k_hw_ar9287_set_board_values(struct ath_hw *ah,
  727. struct ath9k_channel *chan)
  728. {
  729. struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  730. struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
  731. u32 regChainOffset, regval;
  732. u8 txRxAttenLocal;
  733. int i;
  734. pModal = &eep->modalHeader;
  735. REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
  736. for (i = 0; i < AR9287_MAX_CHAINS; i++) {
  737. regChainOffset = i * 0x1000;
  738. REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
  739. pModal->antCtrlChain[i]);
  740. REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
  741. (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset)
  742. & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
  743. AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
  744. SM(pModal->iqCalICh[i],
  745. AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
  746. SM(pModal->iqCalQCh[i],
  747. AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
  748. txRxAttenLocal = pModal->txRxAttenCh[i];
  749. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
  750. AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
  751. pModal->bswMargin[i]);
  752. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
  753. AR_PHY_GAIN_2GHZ_XATTEN1_DB,
  754. pModal->bswAtten[i]);
  755. REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
  756. AR9280_PHY_RXGAIN_TXRX_ATTEN,
  757. txRxAttenLocal);
  758. REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
  759. AR9280_PHY_RXGAIN_TXRX_MARGIN,
  760. pModal->rxTxMarginCh[i]);
  761. }
  762. if (IS_CHAN_HT40(chan))
  763. REG_RMW_FIELD(ah, AR_PHY_SETTLING,
  764. AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
  765. else
  766. REG_RMW_FIELD(ah, AR_PHY_SETTLING,
  767. AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
  768. REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
  769. AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
  770. REG_WRITE(ah, AR_PHY_RF_CTL4,
  771. SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
  772. | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
  773. | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
  774. | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
  775. REG_RMW_FIELD(ah, AR_PHY_RF_CTL3,
  776. AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
  777. REG_RMW_FIELD(ah, AR_PHY_CCA,
  778. AR9280_PHY_CCA_THRESH62, pModal->thresh62);
  779. REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
  780. AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62);
  781. regval = REG_READ(ah, AR9287_AN_RF2G3_CH0);
  782. regval &= ~(AR9287_AN_RF2G3_DB1 |
  783. AR9287_AN_RF2G3_DB2 |
  784. AR9287_AN_RF2G3_OB_CCK |
  785. AR9287_AN_RF2G3_OB_PSK |
  786. AR9287_AN_RF2G3_OB_QAM |
  787. AR9287_AN_RF2G3_OB_PAL_OFF);
  788. regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
  789. SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
  790. SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
  791. SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
  792. SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
  793. SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
  794. ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH0, regval);
  795. regval = REG_READ(ah, AR9287_AN_RF2G3_CH1);
  796. regval &= ~(AR9287_AN_RF2G3_DB1 |
  797. AR9287_AN_RF2G3_DB2 |
  798. AR9287_AN_RF2G3_OB_CCK |
  799. AR9287_AN_RF2G3_OB_PSK |
  800. AR9287_AN_RF2G3_OB_QAM |
  801. AR9287_AN_RF2G3_OB_PAL_OFF);
  802. regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
  803. SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
  804. SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
  805. SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
  806. SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
  807. SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
  808. ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH1, regval);
  809. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
  810. AR_PHY_TX_END_DATA_START, pModal->txFrameToDataStart);
  811. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
  812. AR_PHY_TX_END_PA_ON, pModal->txFrameToPaOn);
  813. ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TOP2,
  814. AR9287_AN_TOP2_XPABIAS_LVL,
  815. AR9287_AN_TOP2_XPABIAS_LVL_S,
  816. pModal->xpaBiasLvl);
  817. }
  818. static u16 ath9k_hw_ar9287_get_spur_channel(struct ath_hw *ah,
  819. u16 i, bool is2GHz)
  820. {
  821. #define EEP_MAP9287_SPURCHAN \
  822. (ah->eeprom.map9287.modalHeader.spurChans[i].spurChan)
  823. struct ath_common *common = ath9k_hw_common(ah);
  824. u16 spur_val = AR_NO_SPUR;
  825. ath_dbg(common, ATH_DBG_ANI,
  826. "Getting spur idx:%d is2Ghz:%d val:%x\n",
  827. i, is2GHz, ah->config.spurchans[i][is2GHz]);
  828. switch (ah->config.spurmode) {
  829. case SPUR_DISABLE:
  830. break;
  831. case SPUR_ENABLE_IOCTL:
  832. spur_val = ah->config.spurchans[i][is2GHz];
  833. ath_dbg(common, ATH_DBG_ANI,
  834. "Getting spur val from new loc. %d\n", spur_val);
  835. break;
  836. case SPUR_ENABLE_EEPROM:
  837. spur_val = EEP_MAP9287_SPURCHAN;
  838. break;
  839. }
  840. return spur_val;
  841. #undef EEP_MAP9287_SPURCHAN
  842. }
  843. const struct eeprom_ops eep_ar9287_ops = {
  844. .check_eeprom = ath9k_hw_ar9287_check_eeprom,
  845. .get_eeprom = ath9k_hw_ar9287_get_eeprom,
  846. .fill_eeprom = ath9k_hw_ar9287_fill_eeprom,
  847. .get_eeprom_ver = ath9k_hw_ar9287_get_eeprom_ver,
  848. .get_eeprom_rev = ath9k_hw_ar9287_get_eeprom_rev,
  849. .set_board_values = ath9k_hw_ar9287_set_board_values,
  850. .set_addac = ath9k_hw_ar9287_set_addac,
  851. .set_txpower = ath9k_hw_ar9287_set_txpower,
  852. .get_spur_channel = ath9k_hw_ar9287_get_spur_channel
  853. };