io.c 42 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446
  1. /*
  2. * Copyright (c) International Business Machines Corp., 2006
  3. * Copyright (c) Nokia Corporation, 2006, 2007
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  13. * the GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. *
  19. * Author: Artem Bityutskiy (Битюцкий Артём)
  20. */
  21. /*
  22. * UBI input/output sub-system.
  23. *
  24. * This sub-system provides a uniform way to work with all kinds of the
  25. * underlying MTD devices. It also implements handy functions for reading and
  26. * writing UBI headers.
  27. *
  28. * We are trying to have a paranoid mindset and not to trust to what we read
  29. * from the flash media in order to be more secure and robust. So this
  30. * sub-system validates every single header it reads from the flash media.
  31. *
  32. * Some words about how the eraseblock headers are stored.
  33. *
  34. * The erase counter header is always stored at offset zero. By default, the
  35. * VID header is stored after the EC header at the closest aligned offset
  36. * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
  37. * header at the closest aligned offset. But this default layout may be
  38. * changed. For example, for different reasons (e.g., optimization) UBI may be
  39. * asked to put the VID header at further offset, and even at an unaligned
  40. * offset. Of course, if the offset of the VID header is unaligned, UBI adds
  41. * proper padding in front of it. Data offset may also be changed but it has to
  42. * be aligned.
  43. *
  44. * About minimal I/O units. In general, UBI assumes flash device model where
  45. * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
  46. * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
  47. * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
  48. * (smaller) minimal I/O unit size for EC and VID headers to make it possible
  49. * to do different optimizations.
  50. *
  51. * This is extremely useful in case of NAND flashes which admit of several
  52. * write operations to one NAND page. In this case UBI can fit EC and VID
  53. * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
  54. * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
  55. * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
  56. * users.
  57. *
  58. * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
  59. * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
  60. * headers.
  61. *
  62. * Q: why not just to treat sub-page as a minimal I/O unit of this flash
  63. * device, e.g., make @ubi->min_io_size = 512 in the example above?
  64. *
  65. * A: because when writing a sub-page, MTD still writes a full 2K page but the
  66. * bytes which are not relevant to the sub-page are 0xFF. So, basically,
  67. * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
  68. * Thus, we prefer to use sub-pages only for EC and VID headers.
  69. *
  70. * As it was noted above, the VID header may start at a non-aligned offset.
  71. * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
  72. * the VID header may reside at offset 1984 which is the last 64 bytes of the
  73. * last sub-page (EC header is always at offset zero). This causes some
  74. * difficulties when reading and writing VID headers.
  75. *
  76. * Suppose we have a 64-byte buffer and we read a VID header at it. We change
  77. * the data and want to write this VID header out. As we can only write in
  78. * 512-byte chunks, we have to allocate one more buffer and copy our VID header
  79. * to offset 448 of this buffer.
  80. *
  81. * The I/O sub-system does the following trick in order to avoid this extra
  82. * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
  83. * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
  84. * When the VID header is being written out, it shifts the VID header pointer
  85. * back and writes the whole sub-page.
  86. */
  87. #include <linux/crc32.h>
  88. #include <linux/err.h>
  89. #include <linux/slab.h>
  90. #include "ubi.h"
  91. #ifdef CONFIG_MTD_UBI_DEBUG
  92. static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum);
  93. static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
  94. static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
  95. const struct ubi_ec_hdr *ec_hdr);
  96. static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
  97. static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
  98. const struct ubi_vid_hdr *vid_hdr);
  99. #else
  100. #define paranoid_check_not_bad(ubi, pnum) 0
  101. #define paranoid_check_peb_ec_hdr(ubi, pnum) 0
  102. #define paranoid_check_ec_hdr(ubi, pnum, ec_hdr) 0
  103. #define paranoid_check_peb_vid_hdr(ubi, pnum) 0
  104. #define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0
  105. #endif
  106. /**
  107. * ubi_io_read - read data from a physical eraseblock.
  108. * @ubi: UBI device description object
  109. * @buf: buffer where to store the read data
  110. * @pnum: physical eraseblock number to read from
  111. * @offset: offset within the physical eraseblock from where to read
  112. * @len: how many bytes to read
  113. *
  114. * This function reads data from offset @offset of physical eraseblock @pnum
  115. * and stores the read data in the @buf buffer. The following return codes are
  116. * possible:
  117. *
  118. * o %0 if all the requested data were successfully read;
  119. * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
  120. * correctable bit-flips were detected; this is harmless but may indicate
  121. * that this eraseblock may become bad soon (but do not have to);
  122. * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
  123. * example it can be an ECC error in case of NAND; this most probably means
  124. * that the data is corrupted;
  125. * o %-EIO if some I/O error occurred;
  126. * o other negative error codes in case of other errors.
  127. */
  128. int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
  129. int len)
  130. {
  131. int err, retries = 0;
  132. size_t read;
  133. loff_t addr;
  134. dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
  135. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  136. ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
  137. ubi_assert(len > 0);
  138. err = paranoid_check_not_bad(ubi, pnum);
  139. if (err)
  140. return err;
  141. /*
  142. * Deliberately corrupt the buffer to improve robustness. Indeed, if we
  143. * do not do this, the following may happen:
  144. * 1. The buffer contains data from previous operation, e.g., read from
  145. * another PEB previously. The data looks like expected, e.g., if we
  146. * just do not read anything and return - the caller would not
  147. * notice this. E.g., if we are reading a VID header, the buffer may
  148. * contain a valid VID header from another PEB.
  149. * 2. The driver is buggy and returns us success or -EBADMSG or
  150. * -EUCLEAN, but it does not actually put any data to the buffer.
  151. *
  152. * This may confuse UBI or upper layers - they may think the buffer
  153. * contains valid data while in fact it is just old data. This is
  154. * especially possible because UBI (and UBIFS) relies on CRC, and
  155. * treats data as correct even in case of ECC errors if the CRC is
  156. * correct.
  157. *
  158. * Try to prevent this situation by changing the first byte of the
  159. * buffer.
  160. */
  161. *((uint8_t *)buf) ^= 0xFF;
  162. addr = (loff_t)pnum * ubi->peb_size + offset;
  163. retry:
  164. err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf);
  165. if (err) {
  166. const char *errstr = (err == -EBADMSG) ? " (ECC error)" : "";
  167. if (err == -EUCLEAN) {
  168. /*
  169. * -EUCLEAN is reported if there was a bit-flip which
  170. * was corrected, so this is harmless.
  171. *
  172. * We do not report about it here unless debugging is
  173. * enabled. A corresponding message will be printed
  174. * later, when it is has been scrubbed.
  175. */
  176. dbg_msg("fixable bit-flip detected at PEB %d", pnum);
  177. ubi_assert(len == read);
  178. return UBI_IO_BITFLIPS;
  179. }
  180. if (retries++ < UBI_IO_RETRIES) {
  181. dbg_io("error %d%s while reading %d bytes from PEB %d:%d,"
  182. " read only %zd bytes, retry",
  183. err, errstr, len, pnum, offset, read);
  184. yield();
  185. goto retry;
  186. }
  187. ubi_err("error %d%s while reading %d bytes from PEB %d:%d, "
  188. "read %zd bytes", err, errstr, len, pnum, offset, read);
  189. ubi_dbg_dump_stack();
  190. /*
  191. * The driver should never return -EBADMSG if it failed to read
  192. * all the requested data. But some buggy drivers might do
  193. * this, so we change it to -EIO.
  194. */
  195. if (read != len && err == -EBADMSG) {
  196. ubi_assert(0);
  197. err = -EIO;
  198. }
  199. } else {
  200. ubi_assert(len == read);
  201. if (ubi_dbg_is_bitflip()) {
  202. dbg_gen("bit-flip (emulated)");
  203. err = UBI_IO_BITFLIPS;
  204. }
  205. }
  206. return err;
  207. }
  208. /**
  209. * ubi_io_write - write data to a physical eraseblock.
  210. * @ubi: UBI device description object
  211. * @buf: buffer with the data to write
  212. * @pnum: physical eraseblock number to write to
  213. * @offset: offset within the physical eraseblock where to write
  214. * @len: how many bytes to write
  215. *
  216. * This function writes @len bytes of data from buffer @buf to offset @offset
  217. * of physical eraseblock @pnum. If all the data were successfully written,
  218. * zero is returned. If an error occurred, this function returns a negative
  219. * error code. If %-EIO is returned, the physical eraseblock most probably went
  220. * bad.
  221. *
  222. * Note, in case of an error, it is possible that something was still written
  223. * to the flash media, but may be some garbage.
  224. */
  225. int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
  226. int len)
  227. {
  228. int err;
  229. size_t written;
  230. loff_t addr;
  231. dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
  232. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  233. ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
  234. ubi_assert(offset % ubi->hdrs_min_io_size == 0);
  235. ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
  236. if (ubi->ro_mode) {
  237. ubi_err("read-only mode");
  238. return -EROFS;
  239. }
  240. /* The below has to be compiled out if paranoid checks are disabled */
  241. err = paranoid_check_not_bad(ubi, pnum);
  242. if (err)
  243. return err;
  244. /* The area we are writing to has to contain all 0xFF bytes */
  245. err = ubi_dbg_check_all_ff(ubi, pnum, offset, len);
  246. if (err)
  247. return err;
  248. if (offset >= ubi->leb_start) {
  249. /*
  250. * We write to the data area of the physical eraseblock. Make
  251. * sure it has valid EC and VID headers.
  252. */
  253. err = paranoid_check_peb_ec_hdr(ubi, pnum);
  254. if (err)
  255. return err;
  256. err = paranoid_check_peb_vid_hdr(ubi, pnum);
  257. if (err)
  258. return err;
  259. }
  260. if (ubi_dbg_is_write_failure()) {
  261. dbg_err("cannot write %d bytes to PEB %d:%d "
  262. "(emulated)", len, pnum, offset);
  263. ubi_dbg_dump_stack();
  264. return -EIO;
  265. }
  266. addr = (loff_t)pnum * ubi->peb_size + offset;
  267. err = ubi->mtd->write(ubi->mtd, addr, len, &written, buf);
  268. if (err) {
  269. ubi_err("error %d while writing %d bytes to PEB %d:%d, written "
  270. "%zd bytes", err, len, pnum, offset, written);
  271. ubi_dbg_dump_stack();
  272. ubi_dbg_dump_flash(ubi, pnum, offset, len);
  273. } else
  274. ubi_assert(written == len);
  275. if (!err) {
  276. err = ubi_dbg_check_write(ubi, buf, pnum, offset, len);
  277. if (err)
  278. return err;
  279. /*
  280. * Since we always write sequentially, the rest of the PEB has
  281. * to contain only 0xFF bytes.
  282. */
  283. offset += len;
  284. len = ubi->peb_size - offset;
  285. if (len)
  286. err = ubi_dbg_check_all_ff(ubi, pnum, offset, len);
  287. }
  288. return err;
  289. }
  290. /**
  291. * erase_callback - MTD erasure call-back.
  292. * @ei: MTD erase information object.
  293. *
  294. * Note, even though MTD erase interface is asynchronous, all the current
  295. * implementations are synchronous anyway.
  296. */
  297. static void erase_callback(struct erase_info *ei)
  298. {
  299. wake_up_interruptible((wait_queue_head_t *)ei->priv);
  300. }
  301. /**
  302. * do_sync_erase - synchronously erase a physical eraseblock.
  303. * @ubi: UBI device description object
  304. * @pnum: the physical eraseblock number to erase
  305. *
  306. * This function synchronously erases physical eraseblock @pnum and returns
  307. * zero in case of success and a negative error code in case of failure. If
  308. * %-EIO is returned, the physical eraseblock most probably went bad.
  309. */
  310. static int do_sync_erase(struct ubi_device *ubi, int pnum)
  311. {
  312. int err, retries = 0;
  313. struct erase_info ei;
  314. wait_queue_head_t wq;
  315. dbg_io("erase PEB %d", pnum);
  316. retry:
  317. init_waitqueue_head(&wq);
  318. memset(&ei, 0, sizeof(struct erase_info));
  319. ei.mtd = ubi->mtd;
  320. ei.addr = (loff_t)pnum * ubi->peb_size;
  321. ei.len = ubi->peb_size;
  322. ei.callback = erase_callback;
  323. ei.priv = (unsigned long)&wq;
  324. err = ubi->mtd->erase(ubi->mtd, &ei);
  325. if (err) {
  326. if (retries++ < UBI_IO_RETRIES) {
  327. dbg_io("error %d while erasing PEB %d, retry",
  328. err, pnum);
  329. yield();
  330. goto retry;
  331. }
  332. ubi_err("cannot erase PEB %d, error %d", pnum, err);
  333. ubi_dbg_dump_stack();
  334. return err;
  335. }
  336. err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
  337. ei.state == MTD_ERASE_FAILED);
  338. if (err) {
  339. ubi_err("interrupted PEB %d erasure", pnum);
  340. return -EINTR;
  341. }
  342. if (ei.state == MTD_ERASE_FAILED) {
  343. if (retries++ < UBI_IO_RETRIES) {
  344. dbg_io("error while erasing PEB %d, retry", pnum);
  345. yield();
  346. goto retry;
  347. }
  348. ubi_err("cannot erase PEB %d", pnum);
  349. ubi_dbg_dump_stack();
  350. return -EIO;
  351. }
  352. err = ubi_dbg_check_all_ff(ubi, pnum, 0, ubi->peb_size);
  353. if (err)
  354. return err;
  355. if (ubi_dbg_is_erase_failure() && !err) {
  356. dbg_err("cannot erase PEB %d (emulated)", pnum);
  357. return -EIO;
  358. }
  359. return 0;
  360. }
  361. /* Patterns to write to a physical eraseblock when torturing it */
  362. static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
  363. /**
  364. * torture_peb - test a supposedly bad physical eraseblock.
  365. * @ubi: UBI device description object
  366. * @pnum: the physical eraseblock number to test
  367. *
  368. * This function returns %-EIO if the physical eraseblock did not pass the
  369. * test, a positive number of erase operations done if the test was
  370. * successfully passed, and other negative error codes in case of other errors.
  371. */
  372. static int torture_peb(struct ubi_device *ubi, int pnum)
  373. {
  374. int err, i, patt_count;
  375. ubi_msg("run torture test for PEB %d", pnum);
  376. patt_count = ARRAY_SIZE(patterns);
  377. ubi_assert(patt_count > 0);
  378. mutex_lock(&ubi->buf_mutex);
  379. for (i = 0; i < patt_count; i++) {
  380. err = do_sync_erase(ubi, pnum);
  381. if (err)
  382. goto out;
  383. /* Make sure the PEB contains only 0xFF bytes */
  384. err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
  385. if (err)
  386. goto out;
  387. err = ubi_check_pattern(ubi->peb_buf1, 0xFF, ubi->peb_size);
  388. if (err == 0) {
  389. ubi_err("erased PEB %d, but a non-0xFF byte found",
  390. pnum);
  391. err = -EIO;
  392. goto out;
  393. }
  394. /* Write a pattern and check it */
  395. memset(ubi->peb_buf1, patterns[i], ubi->peb_size);
  396. err = ubi_io_write(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
  397. if (err)
  398. goto out;
  399. memset(ubi->peb_buf1, ~patterns[i], ubi->peb_size);
  400. err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
  401. if (err)
  402. goto out;
  403. err = ubi_check_pattern(ubi->peb_buf1, patterns[i],
  404. ubi->peb_size);
  405. if (err == 0) {
  406. ubi_err("pattern %x checking failed for PEB %d",
  407. patterns[i], pnum);
  408. err = -EIO;
  409. goto out;
  410. }
  411. }
  412. err = patt_count;
  413. ubi_msg("PEB %d passed torture test, do not mark it a bad", pnum);
  414. out:
  415. mutex_unlock(&ubi->buf_mutex);
  416. if (err == UBI_IO_BITFLIPS || err == -EBADMSG) {
  417. /*
  418. * If a bit-flip or data integrity error was detected, the test
  419. * has not passed because it happened on a freshly erased
  420. * physical eraseblock which means something is wrong with it.
  421. */
  422. ubi_err("read problems on freshly erased PEB %d, must be bad",
  423. pnum);
  424. err = -EIO;
  425. }
  426. return err;
  427. }
  428. /**
  429. * nor_erase_prepare - prepare a NOR flash PEB for erasure.
  430. * @ubi: UBI device description object
  431. * @pnum: physical eraseblock number to prepare
  432. *
  433. * NOR flash, or at least some of them, have peculiar embedded PEB erasure
  434. * algorithm: the PEB is first filled with zeroes, then it is erased. And
  435. * filling with zeroes starts from the end of the PEB. This was observed with
  436. * Spansion S29GL512N NOR flash.
  437. *
  438. * This means that in case of a power cut we may end up with intact data at the
  439. * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
  440. * EC and VID headers are OK, but a large chunk of data at the end of PEB is
  441. * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
  442. * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
  443. *
  444. * This function is called before erasing NOR PEBs and it zeroes out EC and VID
  445. * magic numbers in order to invalidate them and prevent the failures. Returns
  446. * zero in case of success and a negative error code in case of failure.
  447. */
  448. static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
  449. {
  450. int err, err1;
  451. size_t written;
  452. loff_t addr;
  453. uint32_t data = 0;
  454. /*
  455. * Note, we cannot generally define VID header buffers on stack,
  456. * because of the way we deal with these buffers (see the header
  457. * comment in this file). But we know this is a NOR-specific piece of
  458. * code, so we can do this. But yes, this is error-prone and we should
  459. * (pre-)allocate VID header buffer instead.
  460. */
  461. struct ubi_vid_hdr vid_hdr;
  462. /*
  463. * It is important to first invalidate the EC header, and then the VID
  464. * header. Otherwise a power cut may lead to valid EC header and
  465. * invalid VID header, in which case UBI will treat this PEB as
  466. * corrupted and will try to preserve it, and print scary warnings (see
  467. * the header comment in scan.c for more information).
  468. */
  469. addr = (loff_t)pnum * ubi->peb_size;
  470. err = ubi->mtd->write(ubi->mtd, addr, 4, &written, (void *)&data);
  471. if (!err) {
  472. addr += ubi->vid_hdr_aloffset;
  473. err = ubi->mtd->write(ubi->mtd, addr, 4, &written,
  474. (void *)&data);
  475. if (!err)
  476. return 0;
  477. }
  478. /*
  479. * We failed to write to the media. This was observed with Spansion
  480. * S29GL512N NOR flash. Most probably the previously eraseblock erasure
  481. * was interrupted at a very inappropriate moment, so it became
  482. * unwritable. In this case we probably anyway have garbage in this
  483. * PEB.
  484. */
  485. err1 = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0);
  486. if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR ||
  487. err1 == UBI_IO_FF) {
  488. struct ubi_ec_hdr ec_hdr;
  489. err1 = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0);
  490. if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR ||
  491. err1 == UBI_IO_FF)
  492. /*
  493. * Both VID and EC headers are corrupted, so we can
  494. * safely erase this PEB and not afraid that it will be
  495. * treated as a valid PEB in case of an unclean reboot.
  496. */
  497. return 0;
  498. }
  499. /*
  500. * The PEB contains a valid VID header, but we cannot invalidate it.
  501. * Supposedly the flash media or the driver is screwed up, so return an
  502. * error.
  503. */
  504. ubi_err("cannot invalidate PEB %d, write returned %d read returned %d",
  505. pnum, err, err1);
  506. ubi_dbg_dump_flash(ubi, pnum, 0, ubi->peb_size);
  507. return -EIO;
  508. }
  509. /**
  510. * ubi_io_sync_erase - synchronously erase a physical eraseblock.
  511. * @ubi: UBI device description object
  512. * @pnum: physical eraseblock number to erase
  513. * @torture: if this physical eraseblock has to be tortured
  514. *
  515. * This function synchronously erases physical eraseblock @pnum. If @torture
  516. * flag is not zero, the physical eraseblock is checked by means of writing
  517. * different patterns to it and reading them back. If the torturing is enabled,
  518. * the physical eraseblock is erased more than once.
  519. *
  520. * This function returns the number of erasures made in case of success, %-EIO
  521. * if the erasure failed or the torturing test failed, and other negative error
  522. * codes in case of other errors. Note, %-EIO means that the physical
  523. * eraseblock is bad.
  524. */
  525. int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
  526. {
  527. int err, ret = 0;
  528. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  529. err = paranoid_check_not_bad(ubi, pnum);
  530. if (err != 0)
  531. return err;
  532. if (ubi->ro_mode) {
  533. ubi_err("read-only mode");
  534. return -EROFS;
  535. }
  536. if (ubi->nor_flash) {
  537. err = nor_erase_prepare(ubi, pnum);
  538. if (err)
  539. return err;
  540. }
  541. if (torture) {
  542. ret = torture_peb(ubi, pnum);
  543. if (ret < 0)
  544. return ret;
  545. }
  546. err = do_sync_erase(ubi, pnum);
  547. if (err)
  548. return err;
  549. return ret + 1;
  550. }
  551. /**
  552. * ubi_io_is_bad - check if a physical eraseblock is bad.
  553. * @ubi: UBI device description object
  554. * @pnum: the physical eraseblock number to check
  555. *
  556. * This function returns a positive number if the physical eraseblock is bad,
  557. * zero if not, and a negative error code if an error occurred.
  558. */
  559. int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
  560. {
  561. struct mtd_info *mtd = ubi->mtd;
  562. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  563. if (ubi->bad_allowed) {
  564. int ret;
  565. ret = mtd->block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
  566. if (ret < 0)
  567. ubi_err("error %d while checking if PEB %d is bad",
  568. ret, pnum);
  569. else if (ret)
  570. dbg_io("PEB %d is bad", pnum);
  571. return ret;
  572. }
  573. return 0;
  574. }
  575. /**
  576. * ubi_io_mark_bad - mark a physical eraseblock as bad.
  577. * @ubi: UBI device description object
  578. * @pnum: the physical eraseblock number to mark
  579. *
  580. * This function returns zero in case of success and a negative error code in
  581. * case of failure.
  582. */
  583. int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
  584. {
  585. int err;
  586. struct mtd_info *mtd = ubi->mtd;
  587. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  588. if (ubi->ro_mode) {
  589. ubi_err("read-only mode");
  590. return -EROFS;
  591. }
  592. if (!ubi->bad_allowed)
  593. return 0;
  594. err = mtd->block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
  595. if (err)
  596. ubi_err("cannot mark PEB %d bad, error %d", pnum, err);
  597. return err;
  598. }
  599. /**
  600. * validate_ec_hdr - validate an erase counter header.
  601. * @ubi: UBI device description object
  602. * @ec_hdr: the erase counter header to check
  603. *
  604. * This function returns zero if the erase counter header is OK, and %1 if
  605. * not.
  606. */
  607. static int validate_ec_hdr(const struct ubi_device *ubi,
  608. const struct ubi_ec_hdr *ec_hdr)
  609. {
  610. long long ec;
  611. int vid_hdr_offset, leb_start;
  612. ec = be64_to_cpu(ec_hdr->ec);
  613. vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
  614. leb_start = be32_to_cpu(ec_hdr->data_offset);
  615. if (ec_hdr->version != UBI_VERSION) {
  616. ubi_err("node with incompatible UBI version found: "
  617. "this UBI version is %d, image version is %d",
  618. UBI_VERSION, (int)ec_hdr->version);
  619. goto bad;
  620. }
  621. if (vid_hdr_offset != ubi->vid_hdr_offset) {
  622. ubi_err("bad VID header offset %d, expected %d",
  623. vid_hdr_offset, ubi->vid_hdr_offset);
  624. goto bad;
  625. }
  626. if (leb_start != ubi->leb_start) {
  627. ubi_err("bad data offset %d, expected %d",
  628. leb_start, ubi->leb_start);
  629. goto bad;
  630. }
  631. if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
  632. ubi_err("bad erase counter %lld", ec);
  633. goto bad;
  634. }
  635. return 0;
  636. bad:
  637. ubi_err("bad EC header");
  638. ubi_dbg_dump_ec_hdr(ec_hdr);
  639. ubi_dbg_dump_stack();
  640. return 1;
  641. }
  642. /**
  643. * ubi_io_read_ec_hdr - read and check an erase counter header.
  644. * @ubi: UBI device description object
  645. * @pnum: physical eraseblock to read from
  646. * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
  647. * header
  648. * @verbose: be verbose if the header is corrupted or was not found
  649. *
  650. * This function reads erase counter header from physical eraseblock @pnum and
  651. * stores it in @ec_hdr. This function also checks CRC checksum of the read
  652. * erase counter header. The following codes may be returned:
  653. *
  654. * o %0 if the CRC checksum is correct and the header was successfully read;
  655. * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
  656. * and corrected by the flash driver; this is harmless but may indicate that
  657. * this eraseblock may become bad soon (but may be not);
  658. * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
  659. * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
  660. * a data integrity error (uncorrectable ECC error in case of NAND);
  661. * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty)
  662. * o a negative error code in case of failure.
  663. */
  664. int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
  665. struct ubi_ec_hdr *ec_hdr, int verbose)
  666. {
  667. int err, read_err;
  668. uint32_t crc, magic, hdr_crc;
  669. dbg_io("read EC header from PEB %d", pnum);
  670. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  671. read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
  672. if (read_err) {
  673. if (read_err != UBI_IO_BITFLIPS && read_err != -EBADMSG)
  674. return read_err;
  675. /*
  676. * We read all the data, but either a correctable bit-flip
  677. * occurred, or MTD reported a data integrity error
  678. * (uncorrectable ECC error in case of NAND). The former is
  679. * harmless, the later may mean that the read data is
  680. * corrupted. But we have a CRC check-sum and we will detect
  681. * this. If the EC header is still OK, we just report this as
  682. * there was a bit-flip, to force scrubbing.
  683. */
  684. }
  685. magic = be32_to_cpu(ec_hdr->magic);
  686. if (magic != UBI_EC_HDR_MAGIC) {
  687. if (read_err == -EBADMSG)
  688. return UBI_IO_BAD_HDR_EBADMSG;
  689. /*
  690. * The magic field is wrong. Let's check if we have read all
  691. * 0xFF. If yes, this physical eraseblock is assumed to be
  692. * empty.
  693. */
  694. if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
  695. /* The physical eraseblock is supposedly empty */
  696. if (verbose)
  697. ubi_warn("no EC header found at PEB %d, "
  698. "only 0xFF bytes", pnum);
  699. dbg_bld("no EC header found at PEB %d, "
  700. "only 0xFF bytes", pnum);
  701. if (!read_err)
  702. return UBI_IO_FF;
  703. else
  704. return UBI_IO_FF_BITFLIPS;
  705. }
  706. /*
  707. * This is not a valid erase counter header, and these are not
  708. * 0xFF bytes. Report that the header is corrupted.
  709. */
  710. if (verbose) {
  711. ubi_warn("bad magic number at PEB %d: %08x instead of "
  712. "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
  713. ubi_dbg_dump_ec_hdr(ec_hdr);
  714. }
  715. dbg_bld("bad magic number at PEB %d: %08x instead of "
  716. "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
  717. return UBI_IO_BAD_HDR;
  718. }
  719. crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
  720. hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
  721. if (hdr_crc != crc) {
  722. if (verbose) {
  723. ubi_warn("bad EC header CRC at PEB %d, calculated "
  724. "%#08x, read %#08x", pnum, crc, hdr_crc);
  725. ubi_dbg_dump_ec_hdr(ec_hdr);
  726. }
  727. dbg_bld("bad EC header CRC at PEB %d, calculated "
  728. "%#08x, read %#08x", pnum, crc, hdr_crc);
  729. if (!read_err)
  730. return UBI_IO_BAD_HDR;
  731. else
  732. return UBI_IO_BAD_HDR_EBADMSG;
  733. }
  734. /* And of course validate what has just been read from the media */
  735. err = validate_ec_hdr(ubi, ec_hdr);
  736. if (err) {
  737. ubi_err("validation failed for PEB %d", pnum);
  738. return -EINVAL;
  739. }
  740. /*
  741. * If there was %-EBADMSG, but the header CRC is still OK, report about
  742. * a bit-flip to force scrubbing on this PEB.
  743. */
  744. return read_err ? UBI_IO_BITFLIPS : 0;
  745. }
  746. /**
  747. * ubi_io_write_ec_hdr - write an erase counter header.
  748. * @ubi: UBI device description object
  749. * @pnum: physical eraseblock to write to
  750. * @ec_hdr: the erase counter header to write
  751. *
  752. * This function writes erase counter header described by @ec_hdr to physical
  753. * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
  754. * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
  755. * field.
  756. *
  757. * This function returns zero in case of success and a negative error code in
  758. * case of failure. If %-EIO is returned, the physical eraseblock most probably
  759. * went bad.
  760. */
  761. int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
  762. struct ubi_ec_hdr *ec_hdr)
  763. {
  764. int err;
  765. uint32_t crc;
  766. dbg_io("write EC header to PEB %d", pnum);
  767. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  768. ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
  769. ec_hdr->version = UBI_VERSION;
  770. ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
  771. ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
  772. ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
  773. crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
  774. ec_hdr->hdr_crc = cpu_to_be32(crc);
  775. err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
  776. if (err)
  777. return err;
  778. err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
  779. return err;
  780. }
  781. /**
  782. * validate_vid_hdr - validate a volume identifier header.
  783. * @ubi: UBI device description object
  784. * @vid_hdr: the volume identifier header to check
  785. *
  786. * This function checks that data stored in the volume identifier header
  787. * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
  788. */
  789. static int validate_vid_hdr(const struct ubi_device *ubi,
  790. const struct ubi_vid_hdr *vid_hdr)
  791. {
  792. int vol_type = vid_hdr->vol_type;
  793. int copy_flag = vid_hdr->copy_flag;
  794. int vol_id = be32_to_cpu(vid_hdr->vol_id);
  795. int lnum = be32_to_cpu(vid_hdr->lnum);
  796. int compat = vid_hdr->compat;
  797. int data_size = be32_to_cpu(vid_hdr->data_size);
  798. int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
  799. int data_pad = be32_to_cpu(vid_hdr->data_pad);
  800. int data_crc = be32_to_cpu(vid_hdr->data_crc);
  801. int usable_leb_size = ubi->leb_size - data_pad;
  802. if (copy_flag != 0 && copy_flag != 1) {
  803. dbg_err("bad copy_flag");
  804. goto bad;
  805. }
  806. if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
  807. data_pad < 0) {
  808. dbg_err("negative values");
  809. goto bad;
  810. }
  811. if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
  812. dbg_err("bad vol_id");
  813. goto bad;
  814. }
  815. if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
  816. dbg_err("bad compat");
  817. goto bad;
  818. }
  819. if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
  820. compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
  821. compat != UBI_COMPAT_REJECT) {
  822. dbg_err("bad compat");
  823. goto bad;
  824. }
  825. if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
  826. dbg_err("bad vol_type");
  827. goto bad;
  828. }
  829. if (data_pad >= ubi->leb_size / 2) {
  830. dbg_err("bad data_pad");
  831. goto bad;
  832. }
  833. if (vol_type == UBI_VID_STATIC) {
  834. /*
  835. * Although from high-level point of view static volumes may
  836. * contain zero bytes of data, but no VID headers can contain
  837. * zero at these fields, because they empty volumes do not have
  838. * mapped logical eraseblocks.
  839. */
  840. if (used_ebs == 0) {
  841. dbg_err("zero used_ebs");
  842. goto bad;
  843. }
  844. if (data_size == 0) {
  845. dbg_err("zero data_size");
  846. goto bad;
  847. }
  848. if (lnum < used_ebs - 1) {
  849. if (data_size != usable_leb_size) {
  850. dbg_err("bad data_size");
  851. goto bad;
  852. }
  853. } else if (lnum == used_ebs - 1) {
  854. if (data_size == 0) {
  855. dbg_err("bad data_size at last LEB");
  856. goto bad;
  857. }
  858. } else {
  859. dbg_err("too high lnum");
  860. goto bad;
  861. }
  862. } else {
  863. if (copy_flag == 0) {
  864. if (data_crc != 0) {
  865. dbg_err("non-zero data CRC");
  866. goto bad;
  867. }
  868. if (data_size != 0) {
  869. dbg_err("non-zero data_size");
  870. goto bad;
  871. }
  872. } else {
  873. if (data_size == 0) {
  874. dbg_err("zero data_size of copy");
  875. goto bad;
  876. }
  877. }
  878. if (used_ebs != 0) {
  879. dbg_err("bad used_ebs");
  880. goto bad;
  881. }
  882. }
  883. return 0;
  884. bad:
  885. ubi_err("bad VID header");
  886. ubi_dbg_dump_vid_hdr(vid_hdr);
  887. ubi_dbg_dump_stack();
  888. return 1;
  889. }
  890. /**
  891. * ubi_io_read_vid_hdr - read and check a volume identifier header.
  892. * @ubi: UBI device description object
  893. * @pnum: physical eraseblock number to read from
  894. * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
  895. * identifier header
  896. * @verbose: be verbose if the header is corrupted or wasn't found
  897. *
  898. * This function reads the volume identifier header from physical eraseblock
  899. * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
  900. * volume identifier header. The error codes are the same as in
  901. * 'ubi_io_read_ec_hdr()'.
  902. *
  903. * Note, the implementation of this function is also very similar to
  904. * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'.
  905. */
  906. int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
  907. struct ubi_vid_hdr *vid_hdr, int verbose)
  908. {
  909. int err, read_err;
  910. uint32_t crc, magic, hdr_crc;
  911. void *p;
  912. dbg_io("read VID header from PEB %d", pnum);
  913. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  914. p = (char *)vid_hdr - ubi->vid_hdr_shift;
  915. read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
  916. ubi->vid_hdr_alsize);
  917. if (read_err && read_err != UBI_IO_BITFLIPS && read_err != -EBADMSG)
  918. return read_err;
  919. magic = be32_to_cpu(vid_hdr->magic);
  920. if (magic != UBI_VID_HDR_MAGIC) {
  921. if (read_err == -EBADMSG)
  922. return UBI_IO_BAD_HDR_EBADMSG;
  923. if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
  924. if (verbose)
  925. ubi_warn("no VID header found at PEB %d, "
  926. "only 0xFF bytes", pnum);
  927. dbg_bld("no VID header found at PEB %d, "
  928. "only 0xFF bytes", pnum);
  929. if (!read_err)
  930. return UBI_IO_FF;
  931. else
  932. return UBI_IO_FF_BITFLIPS;
  933. }
  934. if (verbose) {
  935. ubi_warn("bad magic number at PEB %d: %08x instead of "
  936. "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
  937. ubi_dbg_dump_vid_hdr(vid_hdr);
  938. }
  939. dbg_bld("bad magic number at PEB %d: %08x instead of "
  940. "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
  941. return UBI_IO_BAD_HDR;
  942. }
  943. crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
  944. hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
  945. if (hdr_crc != crc) {
  946. if (verbose) {
  947. ubi_warn("bad CRC at PEB %d, calculated %#08x, "
  948. "read %#08x", pnum, crc, hdr_crc);
  949. ubi_dbg_dump_vid_hdr(vid_hdr);
  950. }
  951. dbg_bld("bad CRC at PEB %d, calculated %#08x, "
  952. "read %#08x", pnum, crc, hdr_crc);
  953. if (!read_err)
  954. return UBI_IO_BAD_HDR;
  955. else
  956. return UBI_IO_BAD_HDR_EBADMSG;
  957. }
  958. err = validate_vid_hdr(ubi, vid_hdr);
  959. if (err) {
  960. ubi_err("validation failed for PEB %d", pnum);
  961. return -EINVAL;
  962. }
  963. return read_err ? UBI_IO_BITFLIPS : 0;
  964. }
  965. /**
  966. * ubi_io_write_vid_hdr - write a volume identifier header.
  967. * @ubi: UBI device description object
  968. * @pnum: the physical eraseblock number to write to
  969. * @vid_hdr: the volume identifier header to write
  970. *
  971. * This function writes the volume identifier header described by @vid_hdr to
  972. * physical eraseblock @pnum. This function automatically fills the
  973. * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
  974. * header CRC checksum and stores it at vid_hdr->hdr_crc.
  975. *
  976. * This function returns zero in case of success and a negative error code in
  977. * case of failure. If %-EIO is returned, the physical eraseblock probably went
  978. * bad.
  979. */
  980. int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
  981. struct ubi_vid_hdr *vid_hdr)
  982. {
  983. int err;
  984. uint32_t crc;
  985. void *p;
  986. dbg_io("write VID header to PEB %d", pnum);
  987. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  988. err = paranoid_check_peb_ec_hdr(ubi, pnum);
  989. if (err)
  990. return err;
  991. vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
  992. vid_hdr->version = UBI_VERSION;
  993. crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
  994. vid_hdr->hdr_crc = cpu_to_be32(crc);
  995. err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
  996. if (err)
  997. return err;
  998. p = (char *)vid_hdr - ubi->vid_hdr_shift;
  999. err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
  1000. ubi->vid_hdr_alsize);
  1001. return err;
  1002. }
  1003. #ifdef CONFIG_MTD_UBI_DEBUG
  1004. /**
  1005. * paranoid_check_not_bad - ensure that a physical eraseblock is not bad.
  1006. * @ubi: UBI device description object
  1007. * @pnum: physical eraseblock number to check
  1008. *
  1009. * This function returns zero if the physical eraseblock is good, %-EINVAL if
  1010. * it is bad and a negative error code if an error occurred.
  1011. */
  1012. static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum)
  1013. {
  1014. int err;
  1015. if (!(ubi_chk_flags & UBI_CHK_IO))
  1016. return 0;
  1017. err = ubi_io_is_bad(ubi, pnum);
  1018. if (!err)
  1019. return err;
  1020. ubi_err("paranoid check failed for PEB %d", pnum);
  1021. ubi_dbg_dump_stack();
  1022. return err > 0 ? -EINVAL : err;
  1023. }
  1024. /**
  1025. * paranoid_check_ec_hdr - check if an erase counter header is all right.
  1026. * @ubi: UBI device description object
  1027. * @pnum: physical eraseblock number the erase counter header belongs to
  1028. * @ec_hdr: the erase counter header to check
  1029. *
  1030. * This function returns zero if the erase counter header contains valid
  1031. * values, and %-EINVAL if not.
  1032. */
  1033. static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
  1034. const struct ubi_ec_hdr *ec_hdr)
  1035. {
  1036. int err;
  1037. uint32_t magic;
  1038. if (!(ubi_chk_flags & UBI_CHK_IO))
  1039. return 0;
  1040. magic = be32_to_cpu(ec_hdr->magic);
  1041. if (magic != UBI_EC_HDR_MAGIC) {
  1042. ubi_err("bad magic %#08x, must be %#08x",
  1043. magic, UBI_EC_HDR_MAGIC);
  1044. goto fail;
  1045. }
  1046. err = validate_ec_hdr(ubi, ec_hdr);
  1047. if (err) {
  1048. ubi_err("paranoid check failed for PEB %d", pnum);
  1049. goto fail;
  1050. }
  1051. return 0;
  1052. fail:
  1053. ubi_dbg_dump_ec_hdr(ec_hdr);
  1054. ubi_dbg_dump_stack();
  1055. return -EINVAL;
  1056. }
  1057. /**
  1058. * paranoid_check_peb_ec_hdr - check erase counter header.
  1059. * @ubi: UBI device description object
  1060. * @pnum: the physical eraseblock number to check
  1061. *
  1062. * This function returns zero if the erase counter header is all right and and
  1063. * a negative error code if not or if an error occurred.
  1064. */
  1065. static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
  1066. {
  1067. int err;
  1068. uint32_t crc, hdr_crc;
  1069. struct ubi_ec_hdr *ec_hdr;
  1070. if (!(ubi_chk_flags & UBI_CHK_IO))
  1071. return 0;
  1072. ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
  1073. if (!ec_hdr)
  1074. return -ENOMEM;
  1075. err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
  1076. if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
  1077. goto exit;
  1078. crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
  1079. hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
  1080. if (hdr_crc != crc) {
  1081. ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc);
  1082. ubi_err("paranoid check failed for PEB %d", pnum);
  1083. ubi_dbg_dump_ec_hdr(ec_hdr);
  1084. ubi_dbg_dump_stack();
  1085. err = -EINVAL;
  1086. goto exit;
  1087. }
  1088. err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
  1089. exit:
  1090. kfree(ec_hdr);
  1091. return err;
  1092. }
  1093. /**
  1094. * paranoid_check_vid_hdr - check that a volume identifier header is all right.
  1095. * @ubi: UBI device description object
  1096. * @pnum: physical eraseblock number the volume identifier header belongs to
  1097. * @vid_hdr: the volume identifier header to check
  1098. *
  1099. * This function returns zero if the volume identifier header is all right, and
  1100. * %-EINVAL if not.
  1101. */
  1102. static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
  1103. const struct ubi_vid_hdr *vid_hdr)
  1104. {
  1105. int err;
  1106. uint32_t magic;
  1107. if (!(ubi_chk_flags & UBI_CHK_IO))
  1108. return 0;
  1109. magic = be32_to_cpu(vid_hdr->magic);
  1110. if (magic != UBI_VID_HDR_MAGIC) {
  1111. ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
  1112. magic, pnum, UBI_VID_HDR_MAGIC);
  1113. goto fail;
  1114. }
  1115. err = validate_vid_hdr(ubi, vid_hdr);
  1116. if (err) {
  1117. ubi_err("paranoid check failed for PEB %d", pnum);
  1118. goto fail;
  1119. }
  1120. return err;
  1121. fail:
  1122. ubi_err("paranoid check failed for PEB %d", pnum);
  1123. ubi_dbg_dump_vid_hdr(vid_hdr);
  1124. ubi_dbg_dump_stack();
  1125. return -EINVAL;
  1126. }
  1127. /**
  1128. * paranoid_check_peb_vid_hdr - check volume identifier header.
  1129. * @ubi: UBI device description object
  1130. * @pnum: the physical eraseblock number to check
  1131. *
  1132. * This function returns zero if the volume identifier header is all right,
  1133. * and a negative error code if not or if an error occurred.
  1134. */
  1135. static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
  1136. {
  1137. int err;
  1138. uint32_t crc, hdr_crc;
  1139. struct ubi_vid_hdr *vid_hdr;
  1140. void *p;
  1141. if (!(ubi_chk_flags & UBI_CHK_IO))
  1142. return 0;
  1143. vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
  1144. if (!vid_hdr)
  1145. return -ENOMEM;
  1146. p = (char *)vid_hdr - ubi->vid_hdr_shift;
  1147. err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
  1148. ubi->vid_hdr_alsize);
  1149. if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
  1150. goto exit;
  1151. crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
  1152. hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
  1153. if (hdr_crc != crc) {
  1154. ubi_err("bad VID header CRC at PEB %d, calculated %#08x, "
  1155. "read %#08x", pnum, crc, hdr_crc);
  1156. ubi_err("paranoid check failed for PEB %d", pnum);
  1157. ubi_dbg_dump_vid_hdr(vid_hdr);
  1158. ubi_dbg_dump_stack();
  1159. err = -EINVAL;
  1160. goto exit;
  1161. }
  1162. err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
  1163. exit:
  1164. ubi_free_vid_hdr(ubi, vid_hdr);
  1165. return err;
  1166. }
  1167. /**
  1168. * ubi_dbg_check_write - make sure write succeeded.
  1169. * @ubi: UBI device description object
  1170. * @buf: buffer with data which were written
  1171. * @pnum: physical eraseblock number the data were written to
  1172. * @offset: offset within the physical eraseblock the data were written to
  1173. * @len: how many bytes were written
  1174. *
  1175. * This functions reads data which were recently written and compares it with
  1176. * the original data buffer - the data have to match. Returns zero if the data
  1177. * match and a negative error code if not or in case of failure.
  1178. */
  1179. int ubi_dbg_check_write(struct ubi_device *ubi, const void *buf, int pnum,
  1180. int offset, int len)
  1181. {
  1182. int err, i;
  1183. size_t read;
  1184. void *buf1;
  1185. loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
  1186. if (!(ubi_chk_flags & UBI_CHK_IO))
  1187. return 0;
  1188. buf1 = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
  1189. if (!buf1) {
  1190. ubi_err("cannot allocate memory to check writes");
  1191. return 0;
  1192. }
  1193. err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf1);
  1194. if (err && err != -EUCLEAN)
  1195. goto out_free;
  1196. for (i = 0; i < len; i++) {
  1197. uint8_t c = ((uint8_t *)buf)[i];
  1198. uint8_t c1 = ((uint8_t *)buf1)[i];
  1199. int dump_len;
  1200. if (c == c1)
  1201. continue;
  1202. ubi_err("paranoid check failed for PEB %d:%d, len %d",
  1203. pnum, offset, len);
  1204. ubi_msg("data differ at position %d", i);
  1205. dump_len = max_t(int, 128, len - i);
  1206. ubi_msg("hex dump of the original buffer from %d to %d",
  1207. i, i + dump_len);
  1208. print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
  1209. buf + i, dump_len, 1);
  1210. ubi_msg("hex dump of the read buffer from %d to %d",
  1211. i, i + dump_len);
  1212. print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
  1213. buf1 + i, dump_len, 1);
  1214. ubi_dbg_dump_stack();
  1215. err = -EINVAL;
  1216. goto out_free;
  1217. }
  1218. vfree(buf1);
  1219. return 0;
  1220. out_free:
  1221. vfree(buf1);
  1222. return err;
  1223. }
  1224. /**
  1225. * ubi_dbg_check_all_ff - check that a region of flash is empty.
  1226. * @ubi: UBI device description object
  1227. * @pnum: the physical eraseblock number to check
  1228. * @offset: the starting offset within the physical eraseblock to check
  1229. * @len: the length of the region to check
  1230. *
  1231. * This function returns zero if only 0xFF bytes are present at offset
  1232. * @offset of the physical eraseblock @pnum, and a negative error code if not
  1233. * or if an error occurred.
  1234. */
  1235. int ubi_dbg_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
  1236. {
  1237. size_t read;
  1238. int err;
  1239. void *buf;
  1240. loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
  1241. if (!(ubi_chk_flags & UBI_CHK_IO))
  1242. return 0;
  1243. buf = __vmalloc(len, GFP_NOFS, PAGE_KERNEL);
  1244. if (!buf) {
  1245. ubi_err("cannot allocate memory to check for 0xFFs");
  1246. return 0;
  1247. }
  1248. err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf);
  1249. if (err && err != -EUCLEAN) {
  1250. ubi_err("error %d while reading %d bytes from PEB %d:%d, "
  1251. "read %zd bytes", err, len, pnum, offset, read);
  1252. goto error;
  1253. }
  1254. err = ubi_check_pattern(buf, 0xFF, len);
  1255. if (err == 0) {
  1256. ubi_err("flash region at PEB %d:%d, length %d does not "
  1257. "contain all 0xFF bytes", pnum, offset, len);
  1258. goto fail;
  1259. }
  1260. vfree(buf);
  1261. return 0;
  1262. fail:
  1263. ubi_err("paranoid check failed for PEB %d", pnum);
  1264. ubi_msg("hex dump of the %d-%d region", offset, offset + len);
  1265. print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, buf, len, 1);
  1266. err = -EINVAL;
  1267. error:
  1268. ubi_dbg_dump_stack();
  1269. vfree(buf);
  1270. return err;
  1271. }
  1272. #endif /* CONFIG_MTD_UBI_DEBUG */