12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172 |
- /*
- * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
- * Copyright © 2004 Micron Technology Inc.
- * Copyright © 2004 David Brownell
- *
- * This program is free software; you can redistribute it and/or modify
- * it under the terms of the GNU General Public License version 2 as
- * published by the Free Software Foundation.
- */
- #include <linux/platform_device.h>
- #include <linux/dma-mapping.h>
- #include <linux/delay.h>
- #include <linux/interrupt.h>
- #include <linux/jiffies.h>
- #include <linux/sched.h>
- #include <linux/mtd/mtd.h>
- #include <linux/mtd/nand.h>
- #include <linux/mtd/partitions.h>
- #include <linux/io.h>
- #include <linux/slab.h>
- #include <plat/dma.h>
- #include <plat/gpmc.h>
- #include <plat/nand.h>
- #define DRIVER_NAME "omap2-nand"
- #define OMAP_NAND_TIMEOUT_MS 5000
- #define NAND_Ecc_P1e (1 << 0)
- #define NAND_Ecc_P2e (1 << 1)
- #define NAND_Ecc_P4e (1 << 2)
- #define NAND_Ecc_P8e (1 << 3)
- #define NAND_Ecc_P16e (1 << 4)
- #define NAND_Ecc_P32e (1 << 5)
- #define NAND_Ecc_P64e (1 << 6)
- #define NAND_Ecc_P128e (1 << 7)
- #define NAND_Ecc_P256e (1 << 8)
- #define NAND_Ecc_P512e (1 << 9)
- #define NAND_Ecc_P1024e (1 << 10)
- #define NAND_Ecc_P2048e (1 << 11)
- #define NAND_Ecc_P1o (1 << 16)
- #define NAND_Ecc_P2o (1 << 17)
- #define NAND_Ecc_P4o (1 << 18)
- #define NAND_Ecc_P8o (1 << 19)
- #define NAND_Ecc_P16o (1 << 20)
- #define NAND_Ecc_P32o (1 << 21)
- #define NAND_Ecc_P64o (1 << 22)
- #define NAND_Ecc_P128o (1 << 23)
- #define NAND_Ecc_P256o (1 << 24)
- #define NAND_Ecc_P512o (1 << 25)
- #define NAND_Ecc_P1024o (1 << 26)
- #define NAND_Ecc_P2048o (1 << 27)
- #define TF(value) (value ? 1 : 0)
- #define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
- #define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
- #define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
- #define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
- #define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
- #define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
- #define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
- #define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
- #define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
- #define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
- #define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
- #define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
- #define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
- #define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
- #define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
- #define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
- #define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
- #define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
- #define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
- #define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
- #define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
- #define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
- #define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
- #define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
- #define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
- #define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
- #define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
- #define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
- #define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
- #define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
- #define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
- #define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
- #define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
- #define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
- #ifdef CONFIG_MTD_PARTITIONS
- static const char *part_probes[] = { "cmdlinepart", NULL };
- #endif
- /* oob info generated runtime depending on ecc algorithm and layout selected */
- static struct nand_ecclayout omap_oobinfo;
- /* Define some generic bad / good block scan pattern which are used
- * while scanning a device for factory marked good / bad blocks
- */
- static uint8_t scan_ff_pattern[] = { 0xff };
- static struct nand_bbt_descr bb_descrip_flashbased = {
- .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES,
- .offs = 0,
- .len = 1,
- .pattern = scan_ff_pattern,
- };
- struct omap_nand_info {
- struct nand_hw_control controller;
- struct omap_nand_platform_data *pdata;
- struct mtd_info mtd;
- struct mtd_partition *parts;
- struct nand_chip nand;
- struct platform_device *pdev;
- int gpmc_cs;
- unsigned long phys_base;
- struct completion comp;
- int dma_ch;
- int gpmc_irq;
- enum {
- OMAP_NAND_IO_READ = 0, /* read */
- OMAP_NAND_IO_WRITE, /* write */
- } iomode;
- u_char *buf;
- int buf_len;
- };
- /**
- * omap_hwcontrol - hardware specific access to control-lines
- * @mtd: MTD device structure
- * @cmd: command to device
- * @ctrl:
- * NAND_NCE: bit 0 -> don't care
- * NAND_CLE: bit 1 -> Command Latch
- * NAND_ALE: bit 2 -> Address Latch
- *
- * NOTE: boards may use different bits for these!!
- */
- static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
- {
- struct omap_nand_info *info = container_of(mtd,
- struct omap_nand_info, mtd);
- if (cmd != NAND_CMD_NONE) {
- if (ctrl & NAND_CLE)
- gpmc_nand_write(info->gpmc_cs, GPMC_NAND_COMMAND, cmd);
- else if (ctrl & NAND_ALE)
- gpmc_nand_write(info->gpmc_cs, GPMC_NAND_ADDRESS, cmd);
- else /* NAND_NCE */
- gpmc_nand_write(info->gpmc_cs, GPMC_NAND_DATA, cmd);
- }
- }
- /**
- * omap_read_buf8 - read data from NAND controller into buffer
- * @mtd: MTD device structure
- * @buf: buffer to store date
- * @len: number of bytes to read
- */
- static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
- {
- struct nand_chip *nand = mtd->priv;
- ioread8_rep(nand->IO_ADDR_R, buf, len);
- }
- /**
- * omap_write_buf8 - write buffer to NAND controller
- * @mtd: MTD device structure
- * @buf: data buffer
- * @len: number of bytes to write
- */
- static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
- {
- struct omap_nand_info *info = container_of(mtd,
- struct omap_nand_info, mtd);
- u_char *p = (u_char *)buf;
- u32 status = 0;
- while (len--) {
- iowrite8(*p++, info->nand.IO_ADDR_W);
- /* wait until buffer is available for write */
- do {
- status = gpmc_read_status(GPMC_STATUS_BUFFER);
- } while (!status);
- }
- }
- /**
- * omap_read_buf16 - read data from NAND controller into buffer
- * @mtd: MTD device structure
- * @buf: buffer to store date
- * @len: number of bytes to read
- */
- static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
- {
- struct nand_chip *nand = mtd->priv;
- ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
- }
- /**
- * omap_write_buf16 - write buffer to NAND controller
- * @mtd: MTD device structure
- * @buf: data buffer
- * @len: number of bytes to write
- */
- static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
- {
- struct omap_nand_info *info = container_of(mtd,
- struct omap_nand_info, mtd);
- u16 *p = (u16 *) buf;
- u32 status = 0;
- /* FIXME try bursts of writesw() or DMA ... */
- len >>= 1;
- while (len--) {
- iowrite16(*p++, info->nand.IO_ADDR_W);
- /* wait until buffer is available for write */
- do {
- status = gpmc_read_status(GPMC_STATUS_BUFFER);
- } while (!status);
- }
- }
- /**
- * omap_read_buf_pref - read data from NAND controller into buffer
- * @mtd: MTD device structure
- * @buf: buffer to store date
- * @len: number of bytes to read
- */
- static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
- {
- struct omap_nand_info *info = container_of(mtd,
- struct omap_nand_info, mtd);
- uint32_t r_count = 0;
- int ret = 0;
- u32 *p = (u32 *)buf;
- /* take care of subpage reads */
- if (len % 4) {
- if (info->nand.options & NAND_BUSWIDTH_16)
- omap_read_buf16(mtd, buf, len % 4);
- else
- omap_read_buf8(mtd, buf, len % 4);
- p = (u32 *) (buf + len % 4);
- len -= len % 4;
- }
- /* configure and start prefetch transfer */
- ret = gpmc_prefetch_enable(info->gpmc_cs,
- PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0);
- if (ret) {
- /* PFPW engine is busy, use cpu copy method */
- if (info->nand.options & NAND_BUSWIDTH_16)
- omap_read_buf16(mtd, buf, len);
- else
- omap_read_buf8(mtd, buf, len);
- } else {
- p = (u32 *) buf;
- do {
- r_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
- r_count = r_count >> 2;
- ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
- p += r_count;
- len -= r_count << 2;
- } while (len);
- /* disable and stop the PFPW engine */
- gpmc_prefetch_reset(info->gpmc_cs);
- }
- }
- /**
- * omap_write_buf_pref - write buffer to NAND controller
- * @mtd: MTD device structure
- * @buf: data buffer
- * @len: number of bytes to write
- */
- static void omap_write_buf_pref(struct mtd_info *mtd,
- const u_char *buf, int len)
- {
- struct omap_nand_info *info = container_of(mtd,
- struct omap_nand_info, mtd);
- uint32_t w_count = 0;
- int i = 0, ret = 0;
- u16 *p;
- unsigned long tim, limit;
- /* take care of subpage writes */
- if (len % 2 != 0) {
- writeb(*buf, info->nand.IO_ADDR_W);
- p = (u16 *)(buf + 1);
- len--;
- }
- /* configure and start prefetch transfer */
- ret = gpmc_prefetch_enable(info->gpmc_cs,
- PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1);
- if (ret) {
- /* PFPW engine is busy, use cpu copy method */
- if (info->nand.options & NAND_BUSWIDTH_16)
- omap_write_buf16(mtd, buf, len);
- else
- omap_write_buf8(mtd, buf, len);
- } else {
- p = (u16 *) buf;
- while (len) {
- w_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
- w_count = w_count >> 1;
- for (i = 0; (i < w_count) && len; i++, len -= 2)
- iowrite16(*p++, info->nand.IO_ADDR_W);
- }
- /* wait for data to flushed-out before reset the prefetch */
- tim = 0;
- limit = (loops_per_jiffy *
- msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
- while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
- cpu_relax();
- /* disable and stop the PFPW engine */
- gpmc_prefetch_reset(info->gpmc_cs);
- }
- }
- /*
- * omap_nand_dma_cb: callback on the completion of dma transfer
- * @lch: logical channel
- * @ch_satuts: channel status
- * @data: pointer to completion data structure
- */
- static void omap_nand_dma_cb(int lch, u16 ch_status, void *data)
- {
- complete((struct completion *) data);
- }
- /*
- * omap_nand_dma_transfer: configer and start dma transfer
- * @mtd: MTD device structure
- * @addr: virtual address in RAM of source/destination
- * @len: number of data bytes to be transferred
- * @is_write: flag for read/write operation
- */
- static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
- unsigned int len, int is_write)
- {
- struct omap_nand_info *info = container_of(mtd,
- struct omap_nand_info, mtd);
- enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
- DMA_FROM_DEVICE;
- dma_addr_t dma_addr;
- int ret;
- unsigned long tim, limit;
- /* The fifo depth is 64 bytes max.
- * But configure the FIFO-threahold to 32 to get a sync at each frame
- * and frame length is 32 bytes.
- */
- int buf_len = len >> 6;
- if (addr >= high_memory) {
- struct page *p1;
- if (((size_t)addr & PAGE_MASK) !=
- ((size_t)(addr + len - 1) & PAGE_MASK))
- goto out_copy;
- p1 = vmalloc_to_page(addr);
- if (!p1)
- goto out_copy;
- addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
- }
- dma_addr = dma_map_single(&info->pdev->dev, addr, len, dir);
- if (dma_mapping_error(&info->pdev->dev, dma_addr)) {
- dev_err(&info->pdev->dev,
- "Couldn't DMA map a %d byte buffer\n", len);
- goto out_copy;
- }
- if (is_write) {
- omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
- info->phys_base, 0, 0);
- omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
- dma_addr, 0, 0);
- omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
- 0x10, buf_len, OMAP_DMA_SYNC_FRAME,
- OMAP24XX_DMA_GPMC, OMAP_DMA_DST_SYNC);
- } else {
- omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
- info->phys_base, 0, 0);
- omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
- dma_addr, 0, 0);
- omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
- 0x10, buf_len, OMAP_DMA_SYNC_FRAME,
- OMAP24XX_DMA_GPMC, OMAP_DMA_SRC_SYNC);
- }
- /* configure and start prefetch transfer */
- ret = gpmc_prefetch_enable(info->gpmc_cs,
- PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write);
- if (ret)
- /* PFPW engine is busy, use cpu copy method */
- goto out_copy;
- init_completion(&info->comp);
- omap_start_dma(info->dma_ch);
- /* setup and start DMA using dma_addr */
- wait_for_completion(&info->comp);
- tim = 0;
- limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
- while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
- cpu_relax();
- /* disable and stop the PFPW engine */
- gpmc_prefetch_reset(info->gpmc_cs);
- dma_unmap_single(&info->pdev->dev, dma_addr, len, dir);
- return 0;
- out_copy:
- if (info->nand.options & NAND_BUSWIDTH_16)
- is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
- : omap_write_buf16(mtd, (u_char *) addr, len);
- else
- is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
- : omap_write_buf8(mtd, (u_char *) addr, len);
- return 0;
- }
- /**
- * omap_read_buf_dma_pref - read data from NAND controller into buffer
- * @mtd: MTD device structure
- * @buf: buffer to store date
- * @len: number of bytes to read
- */
- static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
- {
- if (len <= mtd->oobsize)
- omap_read_buf_pref(mtd, buf, len);
- else
- /* start transfer in DMA mode */
- omap_nand_dma_transfer(mtd, buf, len, 0x0);
- }
- /**
- * omap_write_buf_dma_pref - write buffer to NAND controller
- * @mtd: MTD device structure
- * @buf: data buffer
- * @len: number of bytes to write
- */
- static void omap_write_buf_dma_pref(struct mtd_info *mtd,
- const u_char *buf, int len)
- {
- if (len <= mtd->oobsize)
- omap_write_buf_pref(mtd, buf, len);
- else
- /* start transfer in DMA mode */
- omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
- }
- /*
- * omap_nand_irq - GMPC irq handler
- * @this_irq: gpmc irq number
- * @dev: omap_nand_info structure pointer is passed here
- */
- static irqreturn_t omap_nand_irq(int this_irq, void *dev)
- {
- struct omap_nand_info *info = (struct omap_nand_info *) dev;
- u32 bytes;
- u32 irq_stat;
- irq_stat = gpmc_read_status(GPMC_GET_IRQ_STATUS);
- bytes = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
- bytes = bytes & 0xFFFC; /* io in multiple of 4 bytes */
- if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
- if (irq_stat & 0x2)
- goto done;
- if (info->buf_len && (info->buf_len < bytes))
- bytes = info->buf_len;
- else if (!info->buf_len)
- bytes = 0;
- iowrite32_rep(info->nand.IO_ADDR_W,
- (u32 *)info->buf, bytes >> 2);
- info->buf = info->buf + bytes;
- info->buf_len -= bytes;
- } else {
- ioread32_rep(info->nand.IO_ADDR_R,
- (u32 *)info->buf, bytes >> 2);
- info->buf = info->buf + bytes;
- if (irq_stat & 0x2)
- goto done;
- }
- gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat);
- return IRQ_HANDLED;
- done:
- complete(&info->comp);
- /* disable irq */
- gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ, 0);
- /* clear status */
- gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat);
- return IRQ_HANDLED;
- }
- /*
- * omap_read_buf_irq_pref - read data from NAND controller into buffer
- * @mtd: MTD device structure
- * @buf: buffer to store date
- * @len: number of bytes to read
- */
- static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
- {
- struct omap_nand_info *info = container_of(mtd,
- struct omap_nand_info, mtd);
- int ret = 0;
- if (len <= mtd->oobsize) {
- omap_read_buf_pref(mtd, buf, len);
- return;
- }
- info->iomode = OMAP_NAND_IO_READ;
- info->buf = buf;
- init_completion(&info->comp);
- /* configure and start prefetch transfer */
- ret = gpmc_prefetch_enable(info->gpmc_cs,
- PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0);
- if (ret)
- /* PFPW engine is busy, use cpu copy method */
- goto out_copy;
- info->buf_len = len;
- /* enable irq */
- gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ,
- (GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT));
- /* waiting for read to complete */
- wait_for_completion(&info->comp);
- /* disable and stop the PFPW engine */
- gpmc_prefetch_reset(info->gpmc_cs);
- return;
- out_copy:
- if (info->nand.options & NAND_BUSWIDTH_16)
- omap_read_buf16(mtd, buf, len);
- else
- omap_read_buf8(mtd, buf, len);
- }
- /*
- * omap_write_buf_irq_pref - write buffer to NAND controller
- * @mtd: MTD device structure
- * @buf: data buffer
- * @len: number of bytes to write
- */
- static void omap_write_buf_irq_pref(struct mtd_info *mtd,
- const u_char *buf, int len)
- {
- struct omap_nand_info *info = container_of(mtd,
- struct omap_nand_info, mtd);
- int ret = 0;
- unsigned long tim, limit;
- if (len <= mtd->oobsize) {
- omap_write_buf_pref(mtd, buf, len);
- return;
- }
- info->iomode = OMAP_NAND_IO_WRITE;
- info->buf = (u_char *) buf;
- init_completion(&info->comp);
- /* configure and start prefetch transfer : size=24 */
- ret = gpmc_prefetch_enable(info->gpmc_cs,
- (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1);
- if (ret)
- /* PFPW engine is busy, use cpu copy method */
- goto out_copy;
- info->buf_len = len;
- /* enable irq */
- gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ,
- (GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT));
- /* waiting for write to complete */
- wait_for_completion(&info->comp);
- /* wait for data to flushed-out before reset the prefetch */
- tim = 0;
- limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
- while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
- cpu_relax();
- /* disable and stop the PFPW engine */
- gpmc_prefetch_reset(info->gpmc_cs);
- return;
- out_copy:
- if (info->nand.options & NAND_BUSWIDTH_16)
- omap_write_buf16(mtd, buf, len);
- else
- omap_write_buf8(mtd, buf, len);
- }
- /**
- * omap_verify_buf - Verify chip data against buffer
- * @mtd: MTD device structure
- * @buf: buffer containing the data to compare
- * @len: number of bytes to compare
- */
- static int omap_verify_buf(struct mtd_info *mtd, const u_char * buf, int len)
- {
- struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
- mtd);
- u16 *p = (u16 *) buf;
- len >>= 1;
- while (len--) {
- if (*p++ != cpu_to_le16(readw(info->nand.IO_ADDR_R)))
- return -EFAULT;
- }
- return 0;
- }
- /**
- * gen_true_ecc - This function will generate true ECC value
- * @ecc_buf: buffer to store ecc code
- *
- * This generated true ECC value can be used when correcting
- * data read from NAND flash memory core
- */
- static void gen_true_ecc(u8 *ecc_buf)
- {
- u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
- ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
- ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
- P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
- ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
- P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
- ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
- P1e(tmp) | P2048o(tmp) | P2048e(tmp));
- }
- /**
- * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
- * @ecc_data1: ecc code from nand spare area
- * @ecc_data2: ecc code from hardware register obtained from hardware ecc
- * @page_data: page data
- *
- * This function compares two ECC's and indicates if there is an error.
- * If the error can be corrected it will be corrected to the buffer.
- * If there is no error, %0 is returned. If there is an error but it
- * was corrected, %1 is returned. Otherwise, %-1 is returned.
- */
- static int omap_compare_ecc(u8 *ecc_data1, /* read from NAND memory */
- u8 *ecc_data2, /* read from register */
- u8 *page_data)
- {
- uint i;
- u8 tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
- u8 comp0_bit[8], comp1_bit[8], comp2_bit[8];
- u8 ecc_bit[24];
- u8 ecc_sum = 0;
- u8 find_bit = 0;
- uint find_byte = 0;
- int isEccFF;
- isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
- gen_true_ecc(ecc_data1);
- gen_true_ecc(ecc_data2);
- for (i = 0; i <= 2; i++) {
- *(ecc_data1 + i) = ~(*(ecc_data1 + i));
- *(ecc_data2 + i) = ~(*(ecc_data2 + i));
- }
- for (i = 0; i < 8; i++) {
- tmp0_bit[i] = *ecc_data1 % 2;
- *ecc_data1 = *ecc_data1 / 2;
- }
- for (i = 0; i < 8; i++) {
- tmp1_bit[i] = *(ecc_data1 + 1) % 2;
- *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
- }
- for (i = 0; i < 8; i++) {
- tmp2_bit[i] = *(ecc_data1 + 2) % 2;
- *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
- }
- for (i = 0; i < 8; i++) {
- comp0_bit[i] = *ecc_data2 % 2;
- *ecc_data2 = *ecc_data2 / 2;
- }
- for (i = 0; i < 8; i++) {
- comp1_bit[i] = *(ecc_data2 + 1) % 2;
- *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
- }
- for (i = 0; i < 8; i++) {
- comp2_bit[i] = *(ecc_data2 + 2) % 2;
- *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
- }
- for (i = 0; i < 6; i++)
- ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
- for (i = 0; i < 8; i++)
- ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
- for (i = 0; i < 8; i++)
- ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
- ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
- ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
- for (i = 0; i < 24; i++)
- ecc_sum += ecc_bit[i];
- switch (ecc_sum) {
- case 0:
- /* Not reached because this function is not called if
- * ECC values are equal
- */
- return 0;
- case 1:
- /* Uncorrectable error */
- DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n");
- return -1;
- case 11:
- /* UN-Correctable error */
- DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR B\n");
- return -1;
- case 12:
- /* Correctable error */
- find_byte = (ecc_bit[23] << 8) +
- (ecc_bit[21] << 7) +
- (ecc_bit[19] << 6) +
- (ecc_bit[17] << 5) +
- (ecc_bit[15] << 4) +
- (ecc_bit[13] << 3) +
- (ecc_bit[11] << 2) +
- (ecc_bit[9] << 1) +
- ecc_bit[7];
- find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
- DEBUG(MTD_DEBUG_LEVEL0, "Correcting single bit ECC error at "
- "offset: %d, bit: %d\n", find_byte, find_bit);
- page_data[find_byte] ^= (1 << find_bit);
- return 1;
- default:
- if (isEccFF) {
- if (ecc_data2[0] == 0 &&
- ecc_data2[1] == 0 &&
- ecc_data2[2] == 0)
- return 0;
- }
- DEBUG(MTD_DEBUG_LEVEL0, "UNCORRECTED_ERROR default\n");
- return -1;
- }
- }
- /**
- * omap_correct_data - Compares the ECC read with HW generated ECC
- * @mtd: MTD device structure
- * @dat: page data
- * @read_ecc: ecc read from nand flash
- * @calc_ecc: ecc read from HW ECC registers
- *
- * Compares the ecc read from nand spare area with ECC registers values
- * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
- * detection and correction. If there are no errors, %0 is returned. If
- * there were errors and all of the errors were corrected, the number of
- * corrected errors is returned. If uncorrectable errors exist, %-1 is
- * returned.
- */
- static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
- u_char *read_ecc, u_char *calc_ecc)
- {
- struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
- mtd);
- int blockCnt = 0, i = 0, ret = 0;
- int stat = 0;
- /* Ex NAND_ECC_HW12_2048 */
- if ((info->nand.ecc.mode == NAND_ECC_HW) &&
- (info->nand.ecc.size == 2048))
- blockCnt = 4;
- else
- blockCnt = 1;
- for (i = 0; i < blockCnt; i++) {
- if (memcmp(read_ecc, calc_ecc, 3) != 0) {
- ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
- if (ret < 0)
- return ret;
- /* keep track of the number of corrected errors */
- stat += ret;
- }
- read_ecc += 3;
- calc_ecc += 3;
- dat += 512;
- }
- return stat;
- }
- /**
- * omap_calcuate_ecc - Generate non-inverted ECC bytes.
- * @mtd: MTD device structure
- * @dat: The pointer to data on which ecc is computed
- * @ecc_code: The ecc_code buffer
- *
- * Using noninverted ECC can be considered ugly since writing a blank
- * page ie. padding will clear the ECC bytes. This is no problem as long
- * nobody is trying to write data on the seemingly unused page. Reading
- * an erased page will produce an ECC mismatch between generated and read
- * ECC bytes that has to be dealt with separately.
- */
- static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
- u_char *ecc_code)
- {
- struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
- mtd);
- return gpmc_calculate_ecc(info->gpmc_cs, dat, ecc_code);
- }
- /**
- * omap_enable_hwecc - This function enables the hardware ecc functionality
- * @mtd: MTD device structure
- * @mode: Read/Write mode
- */
- static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
- {
- struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
- mtd);
- struct nand_chip *chip = mtd->priv;
- unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
- gpmc_enable_hwecc(info->gpmc_cs, mode, dev_width, info->nand.ecc.size);
- }
- /**
- * omap_wait - wait until the command is done
- * @mtd: MTD device structure
- * @chip: NAND Chip structure
- *
- * Wait function is called during Program and erase operations and
- * the way it is called from MTD layer, we should wait till the NAND
- * chip is ready after the programming/erase operation has completed.
- *
- * Erase can take up to 400ms and program up to 20ms according to
- * general NAND and SmartMedia specs
- */
- static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
- {
- struct nand_chip *this = mtd->priv;
- struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
- mtd);
- unsigned long timeo = jiffies;
- int status = NAND_STATUS_FAIL, state = this->state;
- if (state == FL_ERASING)
- timeo += (HZ * 400) / 1000;
- else
- timeo += (HZ * 20) / 1000;
- gpmc_nand_write(info->gpmc_cs,
- GPMC_NAND_COMMAND, (NAND_CMD_STATUS & 0xFF));
- while (time_before(jiffies, timeo)) {
- status = gpmc_nand_read(info->gpmc_cs, GPMC_NAND_DATA);
- if (status & NAND_STATUS_READY)
- break;
- cond_resched();
- }
- return status;
- }
- /**
- * omap_dev_ready - calls the platform specific dev_ready function
- * @mtd: MTD device structure
- */
- static int omap_dev_ready(struct mtd_info *mtd)
- {
- unsigned int val = 0;
- struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
- mtd);
- val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
- if ((val & 0x100) == 0x100) {
- /* Clear IRQ Interrupt */
- val |= 0x100;
- val &= ~(0x0);
- gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, val);
- } else {
- unsigned int cnt = 0;
- while (cnt++ < 0x1FF) {
- if ((val & 0x100) == 0x100)
- return 0;
- val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
- }
- }
- return 1;
- }
- static int __devinit omap_nand_probe(struct platform_device *pdev)
- {
- struct omap_nand_info *info;
- struct omap_nand_platform_data *pdata;
- int err;
- int i, offset;
- pdata = pdev->dev.platform_data;
- if (pdata == NULL) {
- dev_err(&pdev->dev, "platform data missing\n");
- return -ENODEV;
- }
- info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL);
- if (!info)
- return -ENOMEM;
- platform_set_drvdata(pdev, info);
- spin_lock_init(&info->controller.lock);
- init_waitqueue_head(&info->controller.wq);
- info->pdev = pdev;
- info->gpmc_cs = pdata->cs;
- info->phys_base = pdata->phys_base;
- info->mtd.priv = &info->nand;
- info->mtd.name = dev_name(&pdev->dev);
- info->mtd.owner = THIS_MODULE;
- info->nand.options = pdata->devsize;
- info->nand.options |= NAND_SKIP_BBTSCAN;
- /* NAND write protect off */
- gpmc_cs_configure(info->gpmc_cs, GPMC_CONFIG_WP, 0);
- if (!request_mem_region(info->phys_base, NAND_IO_SIZE,
- pdev->dev.driver->name)) {
- err = -EBUSY;
- goto out_free_info;
- }
- info->nand.IO_ADDR_R = ioremap(info->phys_base, NAND_IO_SIZE);
- if (!info->nand.IO_ADDR_R) {
- err = -ENOMEM;
- goto out_release_mem_region;
- }
- info->nand.controller = &info->controller;
- info->nand.IO_ADDR_W = info->nand.IO_ADDR_R;
- info->nand.cmd_ctrl = omap_hwcontrol;
- /*
- * If RDY/BSY line is connected to OMAP then use the omap ready
- * funcrtion and the generic nand_wait function which reads the status
- * register after monitoring the RDY/BSY line.Otherwise use a standard
- * chip delay which is slightly more than tR (AC Timing) of the NAND
- * device and read status register until you get a failure or success
- */
- if (pdata->dev_ready) {
- info->nand.dev_ready = omap_dev_ready;
- info->nand.chip_delay = 0;
- } else {
- info->nand.waitfunc = omap_wait;
- info->nand.chip_delay = 50;
- }
- switch (pdata->xfer_type) {
- case NAND_OMAP_PREFETCH_POLLED:
- info->nand.read_buf = omap_read_buf_pref;
- info->nand.write_buf = omap_write_buf_pref;
- break;
- case NAND_OMAP_POLLED:
- if (info->nand.options & NAND_BUSWIDTH_16) {
- info->nand.read_buf = omap_read_buf16;
- info->nand.write_buf = omap_write_buf16;
- } else {
- info->nand.read_buf = omap_read_buf8;
- info->nand.write_buf = omap_write_buf8;
- }
- break;
- case NAND_OMAP_PREFETCH_DMA:
- err = omap_request_dma(OMAP24XX_DMA_GPMC, "NAND",
- omap_nand_dma_cb, &info->comp, &info->dma_ch);
- if (err < 0) {
- info->dma_ch = -1;
- dev_err(&pdev->dev, "DMA request failed!\n");
- goto out_release_mem_region;
- } else {
- omap_set_dma_dest_burst_mode(info->dma_ch,
- OMAP_DMA_DATA_BURST_16);
- omap_set_dma_src_burst_mode(info->dma_ch,
- OMAP_DMA_DATA_BURST_16);
- info->nand.read_buf = omap_read_buf_dma_pref;
- info->nand.write_buf = omap_write_buf_dma_pref;
- }
- break;
- case NAND_OMAP_PREFETCH_IRQ:
- err = request_irq(pdata->gpmc_irq,
- omap_nand_irq, IRQF_SHARED, "gpmc-nand", info);
- if (err) {
- dev_err(&pdev->dev, "requesting irq(%d) error:%d",
- pdata->gpmc_irq, err);
- goto out_release_mem_region;
- } else {
- info->gpmc_irq = pdata->gpmc_irq;
- info->nand.read_buf = omap_read_buf_irq_pref;
- info->nand.write_buf = omap_write_buf_irq_pref;
- }
- break;
- default:
- dev_err(&pdev->dev,
- "xfer_type(%d) not supported!\n", pdata->xfer_type);
- err = -EINVAL;
- goto out_release_mem_region;
- }
- info->nand.verify_buf = omap_verify_buf;
- /* selsect the ecc type */
- if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_DEFAULT)
- info->nand.ecc.mode = NAND_ECC_SOFT;
- else if ((pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW) ||
- (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE)) {
- info->nand.ecc.bytes = 3;
- info->nand.ecc.size = 512;
- info->nand.ecc.calculate = omap_calculate_ecc;
- info->nand.ecc.hwctl = omap_enable_hwecc;
- info->nand.ecc.correct = omap_correct_data;
- info->nand.ecc.mode = NAND_ECC_HW;
- }
- /* DIP switches on some boards change between 8 and 16 bit
- * bus widths for flash. Try the other width if the first try fails.
- */
- if (nand_scan(&info->mtd, 1)) {
- info->nand.options ^= NAND_BUSWIDTH_16;
- if (nand_scan(&info->mtd, 1)) {
- err = -ENXIO;
- goto out_release_mem_region;
- }
- }
- /* rom code layout */
- if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE) {
- if (info->nand.options & NAND_BUSWIDTH_16)
- offset = 2;
- else {
- offset = 1;
- info->nand.badblock_pattern = &bb_descrip_flashbased;
- }
- omap_oobinfo.eccbytes = 3 * (info->mtd.oobsize/16);
- for (i = 0; i < omap_oobinfo.eccbytes; i++)
- omap_oobinfo.eccpos[i] = i+offset;
- omap_oobinfo.oobfree->offset = offset + omap_oobinfo.eccbytes;
- omap_oobinfo.oobfree->length = info->mtd.oobsize -
- (offset + omap_oobinfo.eccbytes);
- info->nand.ecc.layout = &omap_oobinfo;
- }
- #ifdef CONFIG_MTD_PARTITIONS
- err = parse_mtd_partitions(&info->mtd, part_probes, &info->parts, 0);
- if (err > 0)
- add_mtd_partitions(&info->mtd, info->parts, err);
- else if (pdata->parts)
- add_mtd_partitions(&info->mtd, pdata->parts, pdata->nr_parts);
- else
- #endif
- add_mtd_device(&info->mtd);
- platform_set_drvdata(pdev, &info->mtd);
- return 0;
- out_release_mem_region:
- release_mem_region(info->phys_base, NAND_IO_SIZE);
- out_free_info:
- kfree(info);
- return err;
- }
- static int omap_nand_remove(struct platform_device *pdev)
- {
- struct mtd_info *mtd = platform_get_drvdata(pdev);
- struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
- mtd);
- platform_set_drvdata(pdev, NULL);
- if (info->dma_ch != -1)
- omap_free_dma(info->dma_ch);
- if (info->gpmc_irq)
- free_irq(info->gpmc_irq, info);
- /* Release NAND device, its internal structures and partitions */
- nand_release(&info->mtd);
- iounmap(info->nand.IO_ADDR_R);
- kfree(&info->mtd);
- return 0;
- }
- static struct platform_driver omap_nand_driver = {
- .probe = omap_nand_probe,
- .remove = omap_nand_remove,
- .driver = {
- .name = DRIVER_NAME,
- .owner = THIS_MODULE,
- },
- };
- static int __init omap_nand_init(void)
- {
- pr_info("%s driver initializing\n", DRIVER_NAME);
- return platform_driver_register(&omap_nand_driver);
- }
- static void __exit omap_nand_exit(void)
- {
- platform_driver_unregister(&omap_nand_driver);
- }
- module_init(omap_nand_init);
- module_exit(omap_nand_exit);
- MODULE_ALIAS("platform:" DRIVER_NAME);
- MODULE_LICENSE("GPL");
- MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");
|