mtdpart.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756
  1. /*
  2. * Simple MTD partitioning layer
  3. *
  4. * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
  5. * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
  6. * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  21. *
  22. */
  23. #include <linux/module.h>
  24. #include <linux/types.h>
  25. #include <linux/kernel.h>
  26. #include <linux/slab.h>
  27. #include <linux/list.h>
  28. #include <linux/kmod.h>
  29. #include <linux/mtd/mtd.h>
  30. #include <linux/mtd/partitions.h>
  31. #include <linux/err.h>
  32. /* Our partition linked list */
  33. static LIST_HEAD(mtd_partitions);
  34. static DEFINE_MUTEX(mtd_partitions_mutex);
  35. /* Our partition node structure */
  36. struct mtd_part {
  37. struct mtd_info mtd;
  38. struct mtd_info *master;
  39. uint64_t offset;
  40. struct list_head list;
  41. };
  42. /*
  43. * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
  44. * the pointer to that structure with this macro.
  45. */
  46. #define PART(x) ((struct mtd_part *)(x))
  47. /*
  48. * MTD methods which simply translate the effective address and pass through
  49. * to the _real_ device.
  50. */
  51. static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
  52. size_t *retlen, u_char *buf)
  53. {
  54. struct mtd_part *part = PART(mtd);
  55. struct mtd_ecc_stats stats;
  56. int res;
  57. stats = part->master->ecc_stats;
  58. if (from >= mtd->size)
  59. len = 0;
  60. else if (from + len > mtd->size)
  61. len = mtd->size - from;
  62. res = part->master->read(part->master, from + part->offset,
  63. len, retlen, buf);
  64. if (unlikely(res)) {
  65. if (res == -EUCLEAN)
  66. mtd->ecc_stats.corrected += part->master->ecc_stats.corrected - stats.corrected;
  67. if (res == -EBADMSG)
  68. mtd->ecc_stats.failed += part->master->ecc_stats.failed - stats.failed;
  69. }
  70. return res;
  71. }
  72. static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
  73. size_t *retlen, void **virt, resource_size_t *phys)
  74. {
  75. struct mtd_part *part = PART(mtd);
  76. if (from >= mtd->size)
  77. len = 0;
  78. else if (from + len > mtd->size)
  79. len = mtd->size - from;
  80. return part->master->point (part->master, from + part->offset,
  81. len, retlen, virt, phys);
  82. }
  83. static void part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
  84. {
  85. struct mtd_part *part = PART(mtd);
  86. part->master->unpoint(part->master, from + part->offset, len);
  87. }
  88. static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
  89. unsigned long len,
  90. unsigned long offset,
  91. unsigned long flags)
  92. {
  93. struct mtd_part *part = PART(mtd);
  94. offset += part->offset;
  95. return part->master->get_unmapped_area(part->master, len, offset,
  96. flags);
  97. }
  98. static int part_read_oob(struct mtd_info *mtd, loff_t from,
  99. struct mtd_oob_ops *ops)
  100. {
  101. struct mtd_part *part = PART(mtd);
  102. int res;
  103. if (from >= mtd->size)
  104. return -EINVAL;
  105. if (ops->datbuf && from + ops->len > mtd->size)
  106. return -EINVAL;
  107. /*
  108. * If OOB is also requested, make sure that we do not read past the end
  109. * of this partition.
  110. */
  111. if (ops->oobbuf) {
  112. size_t len, pages;
  113. if (ops->mode == MTD_OOB_AUTO)
  114. len = mtd->oobavail;
  115. else
  116. len = mtd->oobsize;
  117. pages = mtd_div_by_ws(mtd->size, mtd);
  118. pages -= mtd_div_by_ws(from, mtd);
  119. if (ops->ooboffs + ops->ooblen > pages * len)
  120. return -EINVAL;
  121. }
  122. res = part->master->read_oob(part->master, from + part->offset, ops);
  123. if (unlikely(res)) {
  124. if (res == -EUCLEAN)
  125. mtd->ecc_stats.corrected++;
  126. if (res == -EBADMSG)
  127. mtd->ecc_stats.failed++;
  128. }
  129. return res;
  130. }
  131. static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
  132. size_t len, size_t *retlen, u_char *buf)
  133. {
  134. struct mtd_part *part = PART(mtd);
  135. return part->master->read_user_prot_reg(part->master, from,
  136. len, retlen, buf);
  137. }
  138. static int part_get_user_prot_info(struct mtd_info *mtd,
  139. struct otp_info *buf, size_t len)
  140. {
  141. struct mtd_part *part = PART(mtd);
  142. return part->master->get_user_prot_info(part->master, buf, len);
  143. }
  144. static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
  145. size_t len, size_t *retlen, u_char *buf)
  146. {
  147. struct mtd_part *part = PART(mtd);
  148. return part->master->read_fact_prot_reg(part->master, from,
  149. len, retlen, buf);
  150. }
  151. static int part_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
  152. size_t len)
  153. {
  154. struct mtd_part *part = PART(mtd);
  155. return part->master->get_fact_prot_info(part->master, buf, len);
  156. }
  157. static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
  158. size_t *retlen, const u_char *buf)
  159. {
  160. struct mtd_part *part = PART(mtd);
  161. if (!(mtd->flags & MTD_WRITEABLE))
  162. return -EROFS;
  163. if (to >= mtd->size)
  164. len = 0;
  165. else if (to + len > mtd->size)
  166. len = mtd->size - to;
  167. return part->master->write(part->master, to + part->offset,
  168. len, retlen, buf);
  169. }
  170. static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
  171. size_t *retlen, const u_char *buf)
  172. {
  173. struct mtd_part *part = PART(mtd);
  174. if (!(mtd->flags & MTD_WRITEABLE))
  175. return -EROFS;
  176. if (to >= mtd->size)
  177. len = 0;
  178. else if (to + len > mtd->size)
  179. len = mtd->size - to;
  180. return part->master->panic_write(part->master, to + part->offset,
  181. len, retlen, buf);
  182. }
  183. static int part_write_oob(struct mtd_info *mtd, loff_t to,
  184. struct mtd_oob_ops *ops)
  185. {
  186. struct mtd_part *part = PART(mtd);
  187. if (!(mtd->flags & MTD_WRITEABLE))
  188. return -EROFS;
  189. if (to >= mtd->size)
  190. return -EINVAL;
  191. if (ops->datbuf && to + ops->len > mtd->size)
  192. return -EINVAL;
  193. return part->master->write_oob(part->master, to + part->offset, ops);
  194. }
  195. static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
  196. size_t len, size_t *retlen, u_char *buf)
  197. {
  198. struct mtd_part *part = PART(mtd);
  199. return part->master->write_user_prot_reg(part->master, from,
  200. len, retlen, buf);
  201. }
  202. static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
  203. size_t len)
  204. {
  205. struct mtd_part *part = PART(mtd);
  206. return part->master->lock_user_prot_reg(part->master, from, len);
  207. }
  208. static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
  209. unsigned long count, loff_t to, size_t *retlen)
  210. {
  211. struct mtd_part *part = PART(mtd);
  212. if (!(mtd->flags & MTD_WRITEABLE))
  213. return -EROFS;
  214. return part->master->writev(part->master, vecs, count,
  215. to + part->offset, retlen);
  216. }
  217. static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
  218. {
  219. struct mtd_part *part = PART(mtd);
  220. int ret;
  221. if (!(mtd->flags & MTD_WRITEABLE))
  222. return -EROFS;
  223. if (instr->addr >= mtd->size)
  224. return -EINVAL;
  225. instr->addr += part->offset;
  226. ret = part->master->erase(part->master, instr);
  227. if (ret) {
  228. if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
  229. instr->fail_addr -= part->offset;
  230. instr->addr -= part->offset;
  231. }
  232. return ret;
  233. }
  234. void mtd_erase_callback(struct erase_info *instr)
  235. {
  236. if (instr->mtd->erase == part_erase) {
  237. struct mtd_part *part = PART(instr->mtd);
  238. if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
  239. instr->fail_addr -= part->offset;
  240. instr->addr -= part->offset;
  241. }
  242. if (instr->callback)
  243. instr->callback(instr);
  244. }
  245. EXPORT_SYMBOL_GPL(mtd_erase_callback);
  246. static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  247. {
  248. struct mtd_part *part = PART(mtd);
  249. if ((len + ofs) > mtd->size)
  250. return -EINVAL;
  251. return part->master->lock(part->master, ofs + part->offset, len);
  252. }
  253. static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  254. {
  255. struct mtd_part *part = PART(mtd);
  256. if ((len + ofs) > mtd->size)
  257. return -EINVAL;
  258. return part->master->unlock(part->master, ofs + part->offset, len);
  259. }
  260. static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
  261. {
  262. struct mtd_part *part = PART(mtd);
  263. if ((len + ofs) > mtd->size)
  264. return -EINVAL;
  265. return part->master->is_locked(part->master, ofs + part->offset, len);
  266. }
  267. static void part_sync(struct mtd_info *mtd)
  268. {
  269. struct mtd_part *part = PART(mtd);
  270. part->master->sync(part->master);
  271. }
  272. static int part_suspend(struct mtd_info *mtd)
  273. {
  274. struct mtd_part *part = PART(mtd);
  275. return part->master->suspend(part->master);
  276. }
  277. static void part_resume(struct mtd_info *mtd)
  278. {
  279. struct mtd_part *part = PART(mtd);
  280. part->master->resume(part->master);
  281. }
  282. static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
  283. {
  284. struct mtd_part *part = PART(mtd);
  285. if (ofs >= mtd->size)
  286. return -EINVAL;
  287. ofs += part->offset;
  288. return part->master->block_isbad(part->master, ofs);
  289. }
  290. static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
  291. {
  292. struct mtd_part *part = PART(mtd);
  293. int res;
  294. if (!(mtd->flags & MTD_WRITEABLE))
  295. return -EROFS;
  296. if (ofs >= mtd->size)
  297. return -EINVAL;
  298. ofs += part->offset;
  299. res = part->master->block_markbad(part->master, ofs);
  300. if (!res)
  301. mtd->ecc_stats.badblocks++;
  302. return res;
  303. }
  304. static inline void free_partition(struct mtd_part *p)
  305. {
  306. kfree(p->mtd.name);
  307. kfree(p);
  308. }
  309. /*
  310. * This function unregisters and destroy all slave MTD objects which are
  311. * attached to the given master MTD object.
  312. */
  313. int del_mtd_partitions(struct mtd_info *master)
  314. {
  315. struct mtd_part *slave, *next;
  316. int ret, err = 0;
  317. mutex_lock(&mtd_partitions_mutex);
  318. list_for_each_entry_safe(slave, next, &mtd_partitions, list)
  319. if (slave->master == master) {
  320. ret = del_mtd_device(&slave->mtd);
  321. if (ret < 0) {
  322. err = ret;
  323. continue;
  324. }
  325. list_del(&slave->list);
  326. free_partition(slave);
  327. }
  328. mutex_unlock(&mtd_partitions_mutex);
  329. return err;
  330. }
  331. EXPORT_SYMBOL(del_mtd_partitions);
  332. static struct mtd_part *allocate_partition(struct mtd_info *master,
  333. const struct mtd_partition *part, int partno,
  334. uint64_t cur_offset)
  335. {
  336. struct mtd_part *slave;
  337. char *name;
  338. /* allocate the partition structure */
  339. slave = kzalloc(sizeof(*slave), GFP_KERNEL);
  340. name = kstrdup(part->name, GFP_KERNEL);
  341. if (!name || !slave) {
  342. printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
  343. master->name);
  344. kfree(name);
  345. kfree(slave);
  346. return ERR_PTR(-ENOMEM);
  347. }
  348. /* set up the MTD object for this partition */
  349. slave->mtd.type = master->type;
  350. slave->mtd.flags = master->flags & ~part->mask_flags;
  351. slave->mtd.size = part->size;
  352. slave->mtd.writesize = master->writesize;
  353. slave->mtd.writebufsize = master->writebufsize;
  354. slave->mtd.oobsize = master->oobsize;
  355. slave->mtd.oobavail = master->oobavail;
  356. slave->mtd.subpage_sft = master->subpage_sft;
  357. slave->mtd.name = name;
  358. slave->mtd.owner = master->owner;
  359. slave->mtd.backing_dev_info = master->backing_dev_info;
  360. /* NOTE: we don't arrange MTDs as a tree; it'd be error-prone
  361. * to have the same data be in two different partitions.
  362. */
  363. slave->mtd.dev.parent = master->dev.parent;
  364. slave->mtd.read = part_read;
  365. slave->mtd.write = part_write;
  366. if (master->panic_write)
  367. slave->mtd.panic_write = part_panic_write;
  368. if (master->point && master->unpoint) {
  369. slave->mtd.point = part_point;
  370. slave->mtd.unpoint = part_unpoint;
  371. }
  372. if (master->get_unmapped_area)
  373. slave->mtd.get_unmapped_area = part_get_unmapped_area;
  374. if (master->read_oob)
  375. slave->mtd.read_oob = part_read_oob;
  376. if (master->write_oob)
  377. slave->mtd.write_oob = part_write_oob;
  378. if (master->read_user_prot_reg)
  379. slave->mtd.read_user_prot_reg = part_read_user_prot_reg;
  380. if (master->read_fact_prot_reg)
  381. slave->mtd.read_fact_prot_reg = part_read_fact_prot_reg;
  382. if (master->write_user_prot_reg)
  383. slave->mtd.write_user_prot_reg = part_write_user_prot_reg;
  384. if (master->lock_user_prot_reg)
  385. slave->mtd.lock_user_prot_reg = part_lock_user_prot_reg;
  386. if (master->get_user_prot_info)
  387. slave->mtd.get_user_prot_info = part_get_user_prot_info;
  388. if (master->get_fact_prot_info)
  389. slave->mtd.get_fact_prot_info = part_get_fact_prot_info;
  390. if (master->sync)
  391. slave->mtd.sync = part_sync;
  392. if (!partno && !master->dev.class && master->suspend && master->resume) {
  393. slave->mtd.suspend = part_suspend;
  394. slave->mtd.resume = part_resume;
  395. }
  396. if (master->writev)
  397. slave->mtd.writev = part_writev;
  398. if (master->lock)
  399. slave->mtd.lock = part_lock;
  400. if (master->unlock)
  401. slave->mtd.unlock = part_unlock;
  402. if (master->is_locked)
  403. slave->mtd.is_locked = part_is_locked;
  404. if (master->block_isbad)
  405. slave->mtd.block_isbad = part_block_isbad;
  406. if (master->block_markbad)
  407. slave->mtd.block_markbad = part_block_markbad;
  408. slave->mtd.erase = part_erase;
  409. slave->master = master;
  410. slave->offset = part->offset;
  411. if (slave->offset == MTDPART_OFS_APPEND)
  412. slave->offset = cur_offset;
  413. if (slave->offset == MTDPART_OFS_NXTBLK) {
  414. slave->offset = cur_offset;
  415. if (mtd_mod_by_eb(cur_offset, master) != 0) {
  416. /* Round up to next erasesize */
  417. slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
  418. printk(KERN_NOTICE "Moving partition %d: "
  419. "0x%012llx -> 0x%012llx\n", partno,
  420. (unsigned long long)cur_offset, (unsigned long long)slave->offset);
  421. }
  422. }
  423. if (slave->mtd.size == MTDPART_SIZ_FULL)
  424. slave->mtd.size = master->size - slave->offset;
  425. printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
  426. (unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
  427. /* let's do some sanity checks */
  428. if (slave->offset >= master->size) {
  429. /* let's register it anyway to preserve ordering */
  430. slave->offset = 0;
  431. slave->mtd.size = 0;
  432. printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
  433. part->name);
  434. goto out_register;
  435. }
  436. if (slave->offset + slave->mtd.size > master->size) {
  437. slave->mtd.size = master->size - slave->offset;
  438. printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
  439. part->name, master->name, (unsigned long long)slave->mtd.size);
  440. }
  441. if (master->numeraseregions > 1) {
  442. /* Deal with variable erase size stuff */
  443. int i, max = master->numeraseregions;
  444. u64 end = slave->offset + slave->mtd.size;
  445. struct mtd_erase_region_info *regions = master->eraseregions;
  446. /* Find the first erase regions which is part of this
  447. * partition. */
  448. for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
  449. ;
  450. /* The loop searched for the region _behind_ the first one */
  451. if (i > 0)
  452. i--;
  453. /* Pick biggest erasesize */
  454. for (; i < max && regions[i].offset < end; i++) {
  455. if (slave->mtd.erasesize < regions[i].erasesize) {
  456. slave->mtd.erasesize = regions[i].erasesize;
  457. }
  458. }
  459. BUG_ON(slave->mtd.erasesize == 0);
  460. } else {
  461. /* Single erase size */
  462. slave->mtd.erasesize = master->erasesize;
  463. }
  464. if ((slave->mtd.flags & MTD_WRITEABLE) &&
  465. mtd_mod_by_eb(slave->offset, &slave->mtd)) {
  466. /* Doesn't start on a boundary of major erase size */
  467. /* FIXME: Let it be writable if it is on a boundary of
  468. * _minor_ erase size though */
  469. slave->mtd.flags &= ~MTD_WRITEABLE;
  470. printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
  471. part->name);
  472. }
  473. if ((slave->mtd.flags & MTD_WRITEABLE) &&
  474. mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) {
  475. slave->mtd.flags &= ~MTD_WRITEABLE;
  476. printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
  477. part->name);
  478. }
  479. slave->mtd.ecclayout = master->ecclayout;
  480. if (master->block_isbad) {
  481. uint64_t offs = 0;
  482. while (offs < slave->mtd.size) {
  483. if (master->block_isbad(master,
  484. offs + slave->offset))
  485. slave->mtd.ecc_stats.badblocks++;
  486. offs += slave->mtd.erasesize;
  487. }
  488. }
  489. out_register:
  490. return slave;
  491. }
  492. int mtd_add_partition(struct mtd_info *master, char *name,
  493. long long offset, long long length)
  494. {
  495. struct mtd_partition part;
  496. struct mtd_part *p, *new;
  497. uint64_t start, end;
  498. int ret = 0;
  499. /* the direct offset is expected */
  500. if (offset == MTDPART_OFS_APPEND ||
  501. offset == MTDPART_OFS_NXTBLK)
  502. return -EINVAL;
  503. if (length == MTDPART_SIZ_FULL)
  504. length = master->size - offset;
  505. if (length <= 0)
  506. return -EINVAL;
  507. part.name = name;
  508. part.size = length;
  509. part.offset = offset;
  510. part.mask_flags = 0;
  511. part.ecclayout = NULL;
  512. new = allocate_partition(master, &part, -1, offset);
  513. if (IS_ERR(new))
  514. return PTR_ERR(new);
  515. start = offset;
  516. end = offset + length;
  517. mutex_lock(&mtd_partitions_mutex);
  518. list_for_each_entry(p, &mtd_partitions, list)
  519. if (p->master == master) {
  520. if ((start >= p->offset) &&
  521. (start < (p->offset + p->mtd.size)))
  522. goto err_inv;
  523. if ((end >= p->offset) &&
  524. (end < (p->offset + p->mtd.size)))
  525. goto err_inv;
  526. }
  527. list_add(&new->list, &mtd_partitions);
  528. mutex_unlock(&mtd_partitions_mutex);
  529. add_mtd_device(&new->mtd);
  530. return ret;
  531. err_inv:
  532. mutex_unlock(&mtd_partitions_mutex);
  533. free_partition(new);
  534. return -EINVAL;
  535. }
  536. EXPORT_SYMBOL_GPL(mtd_add_partition);
  537. int mtd_del_partition(struct mtd_info *master, int partno)
  538. {
  539. struct mtd_part *slave, *next;
  540. int ret = -EINVAL;
  541. mutex_lock(&mtd_partitions_mutex);
  542. list_for_each_entry_safe(slave, next, &mtd_partitions, list)
  543. if ((slave->master == master) &&
  544. (slave->mtd.index == partno)) {
  545. ret = del_mtd_device(&slave->mtd);
  546. if (ret < 0)
  547. break;
  548. list_del(&slave->list);
  549. free_partition(slave);
  550. break;
  551. }
  552. mutex_unlock(&mtd_partitions_mutex);
  553. return ret;
  554. }
  555. EXPORT_SYMBOL_GPL(mtd_del_partition);
  556. /*
  557. * This function, given a master MTD object and a partition table, creates
  558. * and registers slave MTD objects which are bound to the master according to
  559. * the partition definitions.
  560. *
  561. * We don't register the master, or expect the caller to have done so,
  562. * for reasons of data integrity.
  563. */
  564. int add_mtd_partitions(struct mtd_info *master,
  565. const struct mtd_partition *parts,
  566. int nbparts)
  567. {
  568. struct mtd_part *slave;
  569. uint64_t cur_offset = 0;
  570. int i;
  571. printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
  572. for (i = 0; i < nbparts; i++) {
  573. slave = allocate_partition(master, parts + i, i, cur_offset);
  574. if (IS_ERR(slave))
  575. return PTR_ERR(slave);
  576. mutex_lock(&mtd_partitions_mutex);
  577. list_add(&slave->list, &mtd_partitions);
  578. mutex_unlock(&mtd_partitions_mutex);
  579. add_mtd_device(&slave->mtd);
  580. cur_offset = slave->offset + slave->mtd.size;
  581. }
  582. return 0;
  583. }
  584. EXPORT_SYMBOL(add_mtd_partitions);
  585. static DEFINE_SPINLOCK(part_parser_lock);
  586. static LIST_HEAD(part_parsers);
  587. static struct mtd_part_parser *get_partition_parser(const char *name)
  588. {
  589. struct mtd_part_parser *p, *ret = NULL;
  590. spin_lock(&part_parser_lock);
  591. list_for_each_entry(p, &part_parsers, list)
  592. if (!strcmp(p->name, name) && try_module_get(p->owner)) {
  593. ret = p;
  594. break;
  595. }
  596. spin_unlock(&part_parser_lock);
  597. return ret;
  598. }
  599. int register_mtd_parser(struct mtd_part_parser *p)
  600. {
  601. spin_lock(&part_parser_lock);
  602. list_add(&p->list, &part_parsers);
  603. spin_unlock(&part_parser_lock);
  604. return 0;
  605. }
  606. EXPORT_SYMBOL_GPL(register_mtd_parser);
  607. int deregister_mtd_parser(struct mtd_part_parser *p)
  608. {
  609. spin_lock(&part_parser_lock);
  610. list_del(&p->list);
  611. spin_unlock(&part_parser_lock);
  612. return 0;
  613. }
  614. EXPORT_SYMBOL_GPL(deregister_mtd_parser);
  615. int parse_mtd_partitions(struct mtd_info *master, const char **types,
  616. struct mtd_partition **pparts, unsigned long origin)
  617. {
  618. struct mtd_part_parser *parser;
  619. int ret = 0;
  620. for ( ; ret <= 0 && *types; types++) {
  621. parser = get_partition_parser(*types);
  622. if (!parser && !request_module("%s", *types))
  623. parser = get_partition_parser(*types);
  624. if (!parser) {
  625. printk(KERN_NOTICE "%s partition parsing not available\n",
  626. *types);
  627. continue;
  628. }
  629. ret = (*parser->parse_fn)(master, pparts, origin);
  630. if (ret > 0) {
  631. printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
  632. ret, parser->name, master->name);
  633. }
  634. put_partition_parser(parser);
  635. }
  636. return ret;
  637. }
  638. EXPORT_SYMBOL_GPL(parse_mtd_partitions);
  639. int mtd_is_partition(struct mtd_info *mtd)
  640. {
  641. struct mtd_part *part;
  642. int ispart = 0;
  643. mutex_lock(&mtd_partitions_mutex);
  644. list_for_each_entry(part, &mtd_partitions, list)
  645. if (&part->mtd == mtd) {
  646. ispart = 1;
  647. break;
  648. }
  649. mutex_unlock(&mtd_partitions_mutex);
  650. return ispart;
  651. }
  652. EXPORT_SYMBOL_GPL(mtd_is_partition);