hfcsusb.c 55 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185
  1. /* hfcsusb.c
  2. * mISDN driver for Colognechip HFC-S USB chip
  3. *
  4. * Copyright 2001 by Peter Sprenger (sprenger@moving-bytes.de)
  5. * Copyright 2008 by Martin Bachem (info@bachem-it.com)
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2, or (at your option)
  10. * any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  20. *
  21. *
  22. * module params
  23. * debug=<n>, default=0, with n=0xHHHHGGGG
  24. * H - l1 driver flags described in hfcsusb.h
  25. * G - common mISDN debug flags described at mISDNhw.h
  26. *
  27. * poll=<n>, default 128
  28. * n : burst size of PH_DATA_IND at transparent rx data
  29. *
  30. */
  31. #include <linux/module.h>
  32. #include <linux/delay.h>
  33. #include <linux/usb.h>
  34. #include <linux/mISDNhw.h>
  35. #include <linux/slab.h>
  36. #include "hfcsusb.h"
  37. static const char *hfcsusb_rev = "Revision: 0.3.3 (socket), 2008-11-05";
  38. static unsigned int debug;
  39. static int poll = DEFAULT_TRANSP_BURST_SZ;
  40. static LIST_HEAD(HFClist);
  41. static DEFINE_RWLOCK(HFClock);
  42. MODULE_AUTHOR("Martin Bachem");
  43. MODULE_LICENSE("GPL");
  44. module_param(debug, uint, S_IRUGO | S_IWUSR);
  45. module_param(poll, int, 0);
  46. static int hfcsusb_cnt;
  47. /* some function prototypes */
  48. static void hfcsusb_ph_command(struct hfcsusb *hw, u_char command);
  49. static void release_hw(struct hfcsusb *hw);
  50. static void reset_hfcsusb(struct hfcsusb *hw);
  51. static void setPortMode(struct hfcsusb *hw);
  52. static void hfcsusb_start_endpoint(struct hfcsusb *hw, int channel);
  53. static void hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel);
  54. static int hfcsusb_setup_bch(struct bchannel *bch, int protocol);
  55. static void deactivate_bchannel(struct bchannel *bch);
  56. static void hfcsusb_ph_info(struct hfcsusb *hw);
  57. /* start next background transfer for control channel */
  58. static void
  59. ctrl_start_transfer(struct hfcsusb *hw)
  60. {
  61. if (debug & DBG_HFC_CALL_TRACE)
  62. printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
  63. if (hw->ctrl_cnt) {
  64. hw->ctrl_urb->pipe = hw->ctrl_out_pipe;
  65. hw->ctrl_urb->setup_packet = (u_char *)&hw->ctrl_write;
  66. hw->ctrl_urb->transfer_buffer = NULL;
  67. hw->ctrl_urb->transfer_buffer_length = 0;
  68. hw->ctrl_write.wIndex =
  69. cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].hfcs_reg);
  70. hw->ctrl_write.wValue =
  71. cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].reg_val);
  72. usb_submit_urb(hw->ctrl_urb, GFP_ATOMIC);
  73. }
  74. }
  75. /*
  76. * queue a control transfer request to write HFC-S USB
  77. * chip register using CTRL resuest queue
  78. */
  79. static int write_reg(struct hfcsusb *hw, __u8 reg, __u8 val)
  80. {
  81. struct ctrl_buf *buf;
  82. if (debug & DBG_HFC_CALL_TRACE)
  83. printk(KERN_DEBUG "%s: %s reg(0x%02x) val(0x%02x)\n",
  84. hw->name, __func__, reg, val);
  85. spin_lock(&hw->ctrl_lock);
  86. if (hw->ctrl_cnt >= HFC_CTRL_BUFSIZE) {
  87. spin_unlock(&hw->ctrl_lock);
  88. return 1;
  89. }
  90. buf = &hw->ctrl_buff[hw->ctrl_in_idx];
  91. buf->hfcs_reg = reg;
  92. buf->reg_val = val;
  93. if (++hw->ctrl_in_idx >= HFC_CTRL_BUFSIZE)
  94. hw->ctrl_in_idx = 0;
  95. if (++hw->ctrl_cnt == 1)
  96. ctrl_start_transfer(hw);
  97. spin_unlock(&hw->ctrl_lock);
  98. return 0;
  99. }
  100. /* control completion routine handling background control cmds */
  101. static void
  102. ctrl_complete(struct urb *urb)
  103. {
  104. struct hfcsusb *hw = (struct hfcsusb *) urb->context;
  105. struct ctrl_buf *buf;
  106. if (debug & DBG_HFC_CALL_TRACE)
  107. printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
  108. urb->dev = hw->dev;
  109. if (hw->ctrl_cnt) {
  110. buf = &hw->ctrl_buff[hw->ctrl_out_idx];
  111. hw->ctrl_cnt--; /* decrement actual count */
  112. if (++hw->ctrl_out_idx >= HFC_CTRL_BUFSIZE)
  113. hw->ctrl_out_idx = 0; /* pointer wrap */
  114. ctrl_start_transfer(hw); /* start next transfer */
  115. }
  116. }
  117. /* handle LED bits */
  118. static void
  119. set_led_bit(struct hfcsusb *hw, signed short led_bits, int set_on)
  120. {
  121. if (set_on) {
  122. if (led_bits < 0)
  123. hw->led_state &= ~abs(led_bits);
  124. else
  125. hw->led_state |= led_bits;
  126. } else {
  127. if (led_bits < 0)
  128. hw->led_state |= abs(led_bits);
  129. else
  130. hw->led_state &= ~led_bits;
  131. }
  132. }
  133. /* handle LED requests */
  134. static void
  135. handle_led(struct hfcsusb *hw, int event)
  136. {
  137. struct hfcsusb_vdata *driver_info = (struct hfcsusb_vdata *)
  138. hfcsusb_idtab[hw->vend_idx].driver_info;
  139. __u8 tmpled;
  140. if (driver_info->led_scheme == LED_OFF)
  141. return;
  142. tmpled = hw->led_state;
  143. switch (event) {
  144. case LED_POWER_ON:
  145. set_led_bit(hw, driver_info->led_bits[0], 1);
  146. set_led_bit(hw, driver_info->led_bits[1], 0);
  147. set_led_bit(hw, driver_info->led_bits[2], 0);
  148. set_led_bit(hw, driver_info->led_bits[3], 0);
  149. break;
  150. case LED_POWER_OFF:
  151. set_led_bit(hw, driver_info->led_bits[0], 0);
  152. set_led_bit(hw, driver_info->led_bits[1], 0);
  153. set_led_bit(hw, driver_info->led_bits[2], 0);
  154. set_led_bit(hw, driver_info->led_bits[3], 0);
  155. break;
  156. case LED_S0_ON:
  157. set_led_bit(hw, driver_info->led_bits[1], 1);
  158. break;
  159. case LED_S0_OFF:
  160. set_led_bit(hw, driver_info->led_bits[1], 0);
  161. break;
  162. case LED_B1_ON:
  163. set_led_bit(hw, driver_info->led_bits[2], 1);
  164. break;
  165. case LED_B1_OFF:
  166. set_led_bit(hw, driver_info->led_bits[2], 0);
  167. break;
  168. case LED_B2_ON:
  169. set_led_bit(hw, driver_info->led_bits[3], 1);
  170. break;
  171. case LED_B2_OFF:
  172. set_led_bit(hw, driver_info->led_bits[3], 0);
  173. break;
  174. }
  175. if (hw->led_state != tmpled) {
  176. if (debug & DBG_HFC_CALL_TRACE)
  177. printk(KERN_DEBUG "%s: %s reg(0x%02x) val(x%02x)\n",
  178. hw->name, __func__,
  179. HFCUSB_P_DATA, hw->led_state);
  180. write_reg(hw, HFCUSB_P_DATA, hw->led_state);
  181. }
  182. }
  183. /*
  184. * Layer2 -> Layer 1 Bchannel data
  185. */
  186. static int
  187. hfcusb_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
  188. {
  189. struct bchannel *bch = container_of(ch, struct bchannel, ch);
  190. struct hfcsusb *hw = bch->hw;
  191. int ret = -EINVAL;
  192. struct mISDNhead *hh = mISDN_HEAD_P(skb);
  193. u_long flags;
  194. if (debug & DBG_HFC_CALL_TRACE)
  195. printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
  196. switch (hh->prim) {
  197. case PH_DATA_REQ:
  198. spin_lock_irqsave(&hw->lock, flags);
  199. ret = bchannel_senddata(bch, skb);
  200. spin_unlock_irqrestore(&hw->lock, flags);
  201. if (debug & DBG_HFC_CALL_TRACE)
  202. printk(KERN_DEBUG "%s: %s PH_DATA_REQ ret(%i)\n",
  203. hw->name, __func__, ret);
  204. if (ret > 0) {
  205. /*
  206. * other l1 drivers don't send early confirms on
  207. * transp data, but hfcsusb does because tx_next
  208. * skb is needed in tx_iso_complete()
  209. */
  210. queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL);
  211. ret = 0;
  212. }
  213. return ret;
  214. case PH_ACTIVATE_REQ:
  215. if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
  216. hfcsusb_start_endpoint(hw, bch->nr);
  217. ret = hfcsusb_setup_bch(bch, ch->protocol);
  218. } else
  219. ret = 0;
  220. if (!ret)
  221. _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
  222. 0, NULL, GFP_KERNEL);
  223. break;
  224. case PH_DEACTIVATE_REQ:
  225. deactivate_bchannel(bch);
  226. _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY,
  227. 0, NULL, GFP_KERNEL);
  228. ret = 0;
  229. break;
  230. }
  231. if (!ret)
  232. dev_kfree_skb(skb);
  233. return ret;
  234. }
  235. /*
  236. * send full D/B channel status information
  237. * as MPH_INFORMATION_IND
  238. */
  239. static void
  240. hfcsusb_ph_info(struct hfcsusb *hw)
  241. {
  242. struct ph_info *phi;
  243. struct dchannel *dch = &hw->dch;
  244. int i;
  245. phi = kzalloc(sizeof(struct ph_info) +
  246. dch->dev.nrbchan * sizeof(struct ph_info_ch), GFP_ATOMIC);
  247. phi->dch.ch.protocol = hw->protocol;
  248. phi->dch.ch.Flags = dch->Flags;
  249. phi->dch.state = dch->state;
  250. phi->dch.num_bch = dch->dev.nrbchan;
  251. for (i = 0; i < dch->dev.nrbchan; i++) {
  252. phi->bch[i].protocol = hw->bch[i].ch.protocol;
  253. phi->bch[i].Flags = hw->bch[i].Flags;
  254. }
  255. _queue_data(&dch->dev.D, MPH_INFORMATION_IND, MISDN_ID_ANY,
  256. sizeof(struct ph_info_dch) + dch->dev.nrbchan *
  257. sizeof(struct ph_info_ch), phi, GFP_ATOMIC);
  258. }
  259. /*
  260. * Layer2 -> Layer 1 Dchannel data
  261. */
  262. static int
  263. hfcusb_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
  264. {
  265. struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
  266. struct dchannel *dch = container_of(dev, struct dchannel, dev);
  267. struct mISDNhead *hh = mISDN_HEAD_P(skb);
  268. struct hfcsusb *hw = dch->hw;
  269. int ret = -EINVAL;
  270. u_long flags;
  271. switch (hh->prim) {
  272. case PH_DATA_REQ:
  273. if (debug & DBG_HFC_CALL_TRACE)
  274. printk(KERN_DEBUG "%s: %s: PH_DATA_REQ\n",
  275. hw->name, __func__);
  276. spin_lock_irqsave(&hw->lock, flags);
  277. ret = dchannel_senddata(dch, skb);
  278. spin_unlock_irqrestore(&hw->lock, flags);
  279. if (ret > 0) {
  280. ret = 0;
  281. queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL);
  282. }
  283. break;
  284. case PH_ACTIVATE_REQ:
  285. if (debug & DBG_HFC_CALL_TRACE)
  286. printk(KERN_DEBUG "%s: %s: PH_ACTIVATE_REQ %s\n",
  287. hw->name, __func__,
  288. (hw->protocol == ISDN_P_NT_S0) ? "NT" : "TE");
  289. if (hw->protocol == ISDN_P_NT_S0) {
  290. ret = 0;
  291. if (test_bit(FLG_ACTIVE, &dch->Flags)) {
  292. _queue_data(&dch->dev.D,
  293. PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
  294. NULL, GFP_ATOMIC);
  295. } else {
  296. hfcsusb_ph_command(hw,
  297. HFC_L1_ACTIVATE_NT);
  298. test_and_set_bit(FLG_L2_ACTIVATED,
  299. &dch->Flags);
  300. }
  301. } else {
  302. hfcsusb_ph_command(hw, HFC_L1_ACTIVATE_TE);
  303. ret = l1_event(dch->l1, hh->prim);
  304. }
  305. break;
  306. case PH_DEACTIVATE_REQ:
  307. if (debug & DBG_HFC_CALL_TRACE)
  308. printk(KERN_DEBUG "%s: %s: PH_DEACTIVATE_REQ\n",
  309. hw->name, __func__);
  310. test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
  311. if (hw->protocol == ISDN_P_NT_S0) {
  312. hfcsusb_ph_command(hw, HFC_L1_DEACTIVATE_NT);
  313. spin_lock_irqsave(&hw->lock, flags);
  314. skb_queue_purge(&dch->squeue);
  315. if (dch->tx_skb) {
  316. dev_kfree_skb(dch->tx_skb);
  317. dch->tx_skb = NULL;
  318. }
  319. dch->tx_idx = 0;
  320. if (dch->rx_skb) {
  321. dev_kfree_skb(dch->rx_skb);
  322. dch->rx_skb = NULL;
  323. }
  324. test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
  325. spin_unlock_irqrestore(&hw->lock, flags);
  326. #ifdef FIXME
  327. if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
  328. dchannel_sched_event(&hc->dch, D_CLEARBUSY);
  329. #endif
  330. ret = 0;
  331. } else
  332. ret = l1_event(dch->l1, hh->prim);
  333. break;
  334. case MPH_INFORMATION_REQ:
  335. hfcsusb_ph_info(hw);
  336. ret = 0;
  337. break;
  338. }
  339. return ret;
  340. }
  341. /*
  342. * Layer 1 callback function
  343. */
  344. static int
  345. hfc_l1callback(struct dchannel *dch, u_int cmd)
  346. {
  347. struct hfcsusb *hw = dch->hw;
  348. if (debug & DBG_HFC_CALL_TRACE)
  349. printk(KERN_DEBUG "%s: %s cmd 0x%x\n",
  350. hw->name, __func__, cmd);
  351. switch (cmd) {
  352. case INFO3_P8:
  353. case INFO3_P10:
  354. case HW_RESET_REQ:
  355. case HW_POWERUP_REQ:
  356. break;
  357. case HW_DEACT_REQ:
  358. skb_queue_purge(&dch->squeue);
  359. if (dch->tx_skb) {
  360. dev_kfree_skb(dch->tx_skb);
  361. dch->tx_skb = NULL;
  362. }
  363. dch->tx_idx = 0;
  364. if (dch->rx_skb) {
  365. dev_kfree_skb(dch->rx_skb);
  366. dch->rx_skb = NULL;
  367. }
  368. test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
  369. break;
  370. case PH_ACTIVATE_IND:
  371. test_and_set_bit(FLG_ACTIVE, &dch->Flags);
  372. _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
  373. GFP_ATOMIC);
  374. break;
  375. case PH_DEACTIVATE_IND:
  376. test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
  377. _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
  378. GFP_ATOMIC);
  379. break;
  380. default:
  381. if (dch->debug & DEBUG_HW)
  382. printk(KERN_DEBUG "%s: %s: unknown cmd %x\n",
  383. hw->name, __func__, cmd);
  384. return -1;
  385. }
  386. hfcsusb_ph_info(hw);
  387. return 0;
  388. }
  389. static int
  390. open_dchannel(struct hfcsusb *hw, struct mISDNchannel *ch,
  391. struct channel_req *rq)
  392. {
  393. int err = 0;
  394. if (debug & DEBUG_HW_OPEN)
  395. printk(KERN_DEBUG "%s: %s: dev(%d) open addr(%i) from %p\n",
  396. hw->name, __func__, hw->dch.dev.id, rq->adr.channel,
  397. __builtin_return_address(0));
  398. if (rq->protocol == ISDN_P_NONE)
  399. return -EINVAL;
  400. test_and_clear_bit(FLG_ACTIVE, &hw->dch.Flags);
  401. test_and_clear_bit(FLG_ACTIVE, &hw->ech.Flags);
  402. hfcsusb_start_endpoint(hw, HFC_CHAN_D);
  403. /* E-Channel logging */
  404. if (rq->adr.channel == 1) {
  405. if (hw->fifos[HFCUSB_PCM_RX].pipe) {
  406. hfcsusb_start_endpoint(hw, HFC_CHAN_E);
  407. set_bit(FLG_ACTIVE, &hw->ech.Flags);
  408. _queue_data(&hw->ech.dev.D, PH_ACTIVATE_IND,
  409. MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
  410. } else
  411. return -EINVAL;
  412. }
  413. if (!hw->initdone) {
  414. hw->protocol = rq->protocol;
  415. if (rq->protocol == ISDN_P_TE_S0) {
  416. err = create_l1(&hw->dch, hfc_l1callback);
  417. if (err)
  418. return err;
  419. }
  420. setPortMode(hw);
  421. ch->protocol = rq->protocol;
  422. hw->initdone = 1;
  423. } else {
  424. if (rq->protocol != ch->protocol)
  425. return -EPROTONOSUPPORT;
  426. }
  427. if (((ch->protocol == ISDN_P_NT_S0) && (hw->dch.state == 3)) ||
  428. ((ch->protocol == ISDN_P_TE_S0) && (hw->dch.state == 7)))
  429. _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
  430. 0, NULL, GFP_KERNEL);
  431. rq->ch = ch;
  432. if (!try_module_get(THIS_MODULE))
  433. printk(KERN_WARNING "%s: %s: cannot get module\n",
  434. hw->name, __func__);
  435. return 0;
  436. }
  437. static int
  438. open_bchannel(struct hfcsusb *hw, struct channel_req *rq)
  439. {
  440. struct bchannel *bch;
  441. if (rq->adr.channel > 2)
  442. return -EINVAL;
  443. if (rq->protocol == ISDN_P_NONE)
  444. return -EINVAL;
  445. if (debug & DBG_HFC_CALL_TRACE)
  446. printk(KERN_DEBUG "%s: %s B%i\n",
  447. hw->name, __func__, rq->adr.channel);
  448. bch = &hw->bch[rq->adr.channel - 1];
  449. if (test_and_set_bit(FLG_OPEN, &bch->Flags))
  450. return -EBUSY; /* b-channel can be only open once */
  451. test_and_clear_bit(FLG_FILLEMPTY, &bch->Flags);
  452. bch->ch.protocol = rq->protocol;
  453. rq->ch = &bch->ch;
  454. /* start USB endpoint for bchannel */
  455. if (rq->adr.channel == 1)
  456. hfcsusb_start_endpoint(hw, HFC_CHAN_B1);
  457. else
  458. hfcsusb_start_endpoint(hw, HFC_CHAN_B2);
  459. if (!try_module_get(THIS_MODULE))
  460. printk(KERN_WARNING "%s: %s:cannot get module\n",
  461. hw->name, __func__);
  462. return 0;
  463. }
  464. static int
  465. channel_ctrl(struct hfcsusb *hw, struct mISDN_ctrl_req *cq)
  466. {
  467. int ret = 0;
  468. if (debug & DBG_HFC_CALL_TRACE)
  469. printk(KERN_DEBUG "%s: %s op(0x%x) channel(0x%x)\n",
  470. hw->name, __func__, (cq->op), (cq->channel));
  471. switch (cq->op) {
  472. case MISDN_CTRL_GETOP:
  473. cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
  474. MISDN_CTRL_DISCONNECT;
  475. break;
  476. default:
  477. printk(KERN_WARNING "%s: %s: unknown Op %x\n",
  478. hw->name, __func__, cq->op);
  479. ret = -EINVAL;
  480. break;
  481. }
  482. return ret;
  483. }
  484. /*
  485. * device control function
  486. */
  487. static int
  488. hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
  489. {
  490. struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
  491. struct dchannel *dch = container_of(dev, struct dchannel, dev);
  492. struct hfcsusb *hw = dch->hw;
  493. struct channel_req *rq;
  494. int err = 0;
  495. if (dch->debug & DEBUG_HW)
  496. printk(KERN_DEBUG "%s: %s: cmd:%x %p\n",
  497. hw->name, __func__, cmd, arg);
  498. switch (cmd) {
  499. case OPEN_CHANNEL:
  500. rq = arg;
  501. if ((rq->protocol == ISDN_P_TE_S0) ||
  502. (rq->protocol == ISDN_P_NT_S0))
  503. err = open_dchannel(hw, ch, rq);
  504. else
  505. err = open_bchannel(hw, rq);
  506. if (!err)
  507. hw->open++;
  508. break;
  509. case CLOSE_CHANNEL:
  510. hw->open--;
  511. if (debug & DEBUG_HW_OPEN)
  512. printk(KERN_DEBUG
  513. "%s: %s: dev(%d) close from %p (open %d)\n",
  514. hw->name, __func__, hw->dch.dev.id,
  515. __builtin_return_address(0), hw->open);
  516. if (!hw->open) {
  517. hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
  518. if (hw->fifos[HFCUSB_PCM_RX].pipe)
  519. hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
  520. handle_led(hw, LED_POWER_ON);
  521. }
  522. module_put(THIS_MODULE);
  523. break;
  524. case CONTROL_CHANNEL:
  525. err = channel_ctrl(hw, arg);
  526. break;
  527. default:
  528. if (dch->debug & DEBUG_HW)
  529. printk(KERN_DEBUG "%s: %s: unknown command %x\n",
  530. hw->name, __func__, cmd);
  531. return -EINVAL;
  532. }
  533. return err;
  534. }
  535. /*
  536. * S0 TE state change event handler
  537. */
  538. static void
  539. ph_state_te(struct dchannel *dch)
  540. {
  541. struct hfcsusb *hw = dch->hw;
  542. if (debug & DEBUG_HW) {
  543. if (dch->state <= HFC_MAX_TE_LAYER1_STATE)
  544. printk(KERN_DEBUG "%s: %s: %s\n", hw->name, __func__,
  545. HFC_TE_LAYER1_STATES[dch->state]);
  546. else
  547. printk(KERN_DEBUG "%s: %s: TE F%d\n",
  548. hw->name, __func__, dch->state);
  549. }
  550. switch (dch->state) {
  551. case 0:
  552. l1_event(dch->l1, HW_RESET_IND);
  553. break;
  554. case 3:
  555. l1_event(dch->l1, HW_DEACT_IND);
  556. break;
  557. case 5:
  558. case 8:
  559. l1_event(dch->l1, ANYSIGNAL);
  560. break;
  561. case 6:
  562. l1_event(dch->l1, INFO2);
  563. break;
  564. case 7:
  565. l1_event(dch->l1, INFO4_P8);
  566. break;
  567. }
  568. if (dch->state == 7)
  569. handle_led(hw, LED_S0_ON);
  570. else
  571. handle_led(hw, LED_S0_OFF);
  572. }
  573. /*
  574. * S0 NT state change event handler
  575. */
  576. static void
  577. ph_state_nt(struct dchannel *dch)
  578. {
  579. struct hfcsusb *hw = dch->hw;
  580. if (debug & DEBUG_HW) {
  581. if (dch->state <= HFC_MAX_NT_LAYER1_STATE)
  582. printk(KERN_DEBUG "%s: %s: %s\n",
  583. hw->name, __func__,
  584. HFC_NT_LAYER1_STATES[dch->state]);
  585. else
  586. printk(KERN_INFO DRIVER_NAME "%s: %s: NT G%d\n",
  587. hw->name, __func__, dch->state);
  588. }
  589. switch (dch->state) {
  590. case (1):
  591. test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
  592. test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
  593. hw->nt_timer = 0;
  594. hw->timers &= ~NT_ACTIVATION_TIMER;
  595. handle_led(hw, LED_S0_OFF);
  596. break;
  597. case (2):
  598. if (hw->nt_timer < 0) {
  599. hw->nt_timer = 0;
  600. hw->timers &= ~NT_ACTIVATION_TIMER;
  601. hfcsusb_ph_command(dch->hw, HFC_L1_DEACTIVATE_NT);
  602. } else {
  603. hw->timers |= NT_ACTIVATION_TIMER;
  604. hw->nt_timer = NT_T1_COUNT;
  605. /* allow G2 -> G3 transition */
  606. write_reg(hw, HFCUSB_STATES, 2 | HFCUSB_NT_G2_G3);
  607. }
  608. break;
  609. case (3):
  610. hw->nt_timer = 0;
  611. hw->timers &= ~NT_ACTIVATION_TIMER;
  612. test_and_set_bit(FLG_ACTIVE, &dch->Flags);
  613. _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
  614. MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
  615. handle_led(hw, LED_S0_ON);
  616. break;
  617. case (4):
  618. hw->nt_timer = 0;
  619. hw->timers &= ~NT_ACTIVATION_TIMER;
  620. break;
  621. default:
  622. break;
  623. }
  624. hfcsusb_ph_info(hw);
  625. }
  626. static void
  627. ph_state(struct dchannel *dch)
  628. {
  629. struct hfcsusb *hw = dch->hw;
  630. if (hw->protocol == ISDN_P_NT_S0)
  631. ph_state_nt(dch);
  632. else if (hw->protocol == ISDN_P_TE_S0)
  633. ph_state_te(dch);
  634. }
  635. /*
  636. * disable/enable BChannel for desired protocoll
  637. */
  638. static int
  639. hfcsusb_setup_bch(struct bchannel *bch, int protocol)
  640. {
  641. struct hfcsusb *hw = bch->hw;
  642. __u8 conhdlc, sctrl, sctrl_r;
  643. if (debug & DEBUG_HW)
  644. printk(KERN_DEBUG "%s: %s: protocol %x-->%x B%d\n",
  645. hw->name, __func__, bch->state, protocol,
  646. bch->nr);
  647. /* setup val for CON_HDLC */
  648. conhdlc = 0;
  649. if (protocol > ISDN_P_NONE)
  650. conhdlc = 8; /* enable FIFO */
  651. switch (protocol) {
  652. case (-1): /* used for init */
  653. bch->state = -1;
  654. /* fall through */
  655. case (ISDN_P_NONE):
  656. if (bch->state == ISDN_P_NONE)
  657. return 0; /* already in idle state */
  658. bch->state = ISDN_P_NONE;
  659. clear_bit(FLG_HDLC, &bch->Flags);
  660. clear_bit(FLG_TRANSPARENT, &bch->Flags);
  661. break;
  662. case (ISDN_P_B_RAW):
  663. conhdlc |= 2;
  664. bch->state = protocol;
  665. set_bit(FLG_TRANSPARENT, &bch->Flags);
  666. break;
  667. case (ISDN_P_B_HDLC):
  668. bch->state = protocol;
  669. set_bit(FLG_HDLC, &bch->Flags);
  670. break;
  671. default:
  672. if (debug & DEBUG_HW)
  673. printk(KERN_DEBUG "%s: %s: prot not known %x\n",
  674. hw->name, __func__, protocol);
  675. return -ENOPROTOOPT;
  676. }
  677. if (protocol >= ISDN_P_NONE) {
  678. write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 0 : 2);
  679. write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
  680. write_reg(hw, HFCUSB_INC_RES_F, 2);
  681. write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 1 : 3);
  682. write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
  683. write_reg(hw, HFCUSB_INC_RES_F, 2);
  684. sctrl = 0x40 + ((hw->protocol == ISDN_P_TE_S0) ? 0x00 : 0x04);
  685. sctrl_r = 0x0;
  686. if (test_bit(FLG_ACTIVE, &hw->bch[0].Flags)) {
  687. sctrl |= 1;
  688. sctrl_r |= 1;
  689. }
  690. if (test_bit(FLG_ACTIVE, &hw->bch[1].Flags)) {
  691. sctrl |= 2;
  692. sctrl_r |= 2;
  693. }
  694. write_reg(hw, HFCUSB_SCTRL, sctrl);
  695. write_reg(hw, HFCUSB_SCTRL_R, sctrl_r);
  696. if (protocol > ISDN_P_NONE)
  697. handle_led(hw, (bch->nr == 1) ? LED_B1_ON : LED_B2_ON);
  698. else
  699. handle_led(hw, (bch->nr == 1) ? LED_B1_OFF :
  700. LED_B2_OFF);
  701. }
  702. hfcsusb_ph_info(hw);
  703. return 0;
  704. }
  705. static void
  706. hfcsusb_ph_command(struct hfcsusb *hw, u_char command)
  707. {
  708. if (debug & DEBUG_HW)
  709. printk(KERN_DEBUG "%s: %s: %x\n",
  710. hw->name, __func__, command);
  711. switch (command) {
  712. case HFC_L1_ACTIVATE_TE:
  713. /* force sending sending INFO1 */
  714. write_reg(hw, HFCUSB_STATES, 0x14);
  715. /* start l1 activation */
  716. write_reg(hw, HFCUSB_STATES, 0x04);
  717. break;
  718. case HFC_L1_FORCE_DEACTIVATE_TE:
  719. write_reg(hw, HFCUSB_STATES, 0x10);
  720. write_reg(hw, HFCUSB_STATES, 0x03);
  721. break;
  722. case HFC_L1_ACTIVATE_NT:
  723. if (hw->dch.state == 3)
  724. _queue_data(&hw->dch.dev.D, PH_ACTIVATE_IND,
  725. MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
  726. else
  727. write_reg(hw, HFCUSB_STATES, HFCUSB_ACTIVATE |
  728. HFCUSB_DO_ACTION | HFCUSB_NT_G2_G3);
  729. break;
  730. case HFC_L1_DEACTIVATE_NT:
  731. write_reg(hw, HFCUSB_STATES,
  732. HFCUSB_DO_ACTION);
  733. break;
  734. }
  735. }
  736. /*
  737. * Layer 1 B-channel hardware access
  738. */
  739. static int
  740. channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
  741. {
  742. int ret = 0;
  743. switch (cq->op) {
  744. case MISDN_CTRL_GETOP:
  745. cq->op = MISDN_CTRL_FILL_EMPTY;
  746. break;
  747. case MISDN_CTRL_FILL_EMPTY: /* fill fifo, if empty */
  748. test_and_set_bit(FLG_FILLEMPTY, &bch->Flags);
  749. if (debug & DEBUG_HW_OPEN)
  750. printk(KERN_DEBUG "%s: FILL_EMPTY request (nr=%d "
  751. "off=%d)\n", __func__, bch->nr, !!cq->p1);
  752. break;
  753. default:
  754. printk(KERN_WARNING "%s: unknown Op %x\n", __func__, cq->op);
  755. ret = -EINVAL;
  756. break;
  757. }
  758. return ret;
  759. }
  760. /* collect data from incoming interrupt or isochron USB data */
  761. static void
  762. hfcsusb_rx_frame(struct usb_fifo *fifo, __u8 *data, unsigned int len,
  763. int finish)
  764. {
  765. struct hfcsusb *hw = fifo->hw;
  766. struct sk_buff *rx_skb = NULL;
  767. int maxlen = 0;
  768. int fifon = fifo->fifonum;
  769. int i;
  770. int hdlc = 0;
  771. if (debug & DBG_HFC_CALL_TRACE)
  772. printk(KERN_DEBUG "%s: %s: fifo(%i) len(%i) "
  773. "dch(%p) bch(%p) ech(%p)\n",
  774. hw->name, __func__, fifon, len,
  775. fifo->dch, fifo->bch, fifo->ech);
  776. if (!len)
  777. return;
  778. if ((!!fifo->dch + !!fifo->bch + !!fifo->ech) != 1) {
  779. printk(KERN_DEBUG "%s: %s: undefined channel\n",
  780. hw->name, __func__);
  781. return;
  782. }
  783. spin_lock(&hw->lock);
  784. if (fifo->dch) {
  785. rx_skb = fifo->dch->rx_skb;
  786. maxlen = fifo->dch->maxlen;
  787. hdlc = 1;
  788. }
  789. if (fifo->bch) {
  790. rx_skb = fifo->bch->rx_skb;
  791. maxlen = fifo->bch->maxlen;
  792. hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
  793. }
  794. if (fifo->ech) {
  795. rx_skb = fifo->ech->rx_skb;
  796. maxlen = fifo->ech->maxlen;
  797. hdlc = 1;
  798. }
  799. if (!rx_skb) {
  800. rx_skb = mI_alloc_skb(maxlen, GFP_ATOMIC);
  801. if (rx_skb) {
  802. if (fifo->dch)
  803. fifo->dch->rx_skb = rx_skb;
  804. if (fifo->bch)
  805. fifo->bch->rx_skb = rx_skb;
  806. if (fifo->ech)
  807. fifo->ech->rx_skb = rx_skb;
  808. skb_trim(rx_skb, 0);
  809. } else {
  810. printk(KERN_DEBUG "%s: %s: No mem for rx_skb\n",
  811. hw->name, __func__);
  812. spin_unlock(&hw->lock);
  813. return;
  814. }
  815. }
  816. if (fifo->dch || fifo->ech) {
  817. /* D/E-Channel SKB range check */
  818. if ((rx_skb->len + len) >= MAX_DFRAME_LEN_L1) {
  819. printk(KERN_DEBUG "%s: %s: sbk mem exceeded "
  820. "for fifo(%d) HFCUSB_D_RX\n",
  821. hw->name, __func__, fifon);
  822. skb_trim(rx_skb, 0);
  823. spin_unlock(&hw->lock);
  824. return;
  825. }
  826. } else if (fifo->bch) {
  827. /* B-Channel SKB range check */
  828. if ((rx_skb->len + len) >= (MAX_BCH_SIZE + 3)) {
  829. printk(KERN_DEBUG "%s: %s: sbk mem exceeded "
  830. "for fifo(%d) HFCUSB_B_RX\n",
  831. hw->name, __func__, fifon);
  832. skb_trim(rx_skb, 0);
  833. spin_unlock(&hw->lock);
  834. return;
  835. }
  836. }
  837. memcpy(skb_put(rx_skb, len), data, len);
  838. if (hdlc) {
  839. /* we have a complete hdlc packet */
  840. if (finish) {
  841. if ((rx_skb->len > 3) &&
  842. (!(rx_skb->data[rx_skb->len - 1]))) {
  843. if (debug & DBG_HFC_FIFO_VERBOSE) {
  844. printk(KERN_DEBUG "%s: %s: fifon(%i)"
  845. " new RX len(%i): ",
  846. hw->name, __func__, fifon,
  847. rx_skb->len);
  848. i = 0;
  849. while (i < rx_skb->len)
  850. printk("%02x ",
  851. rx_skb->data[i++]);
  852. printk("\n");
  853. }
  854. /* remove CRC & status */
  855. skb_trim(rx_skb, rx_skb->len - 3);
  856. if (fifo->dch)
  857. recv_Dchannel(fifo->dch);
  858. if (fifo->bch)
  859. recv_Bchannel(fifo->bch, MISDN_ID_ANY);
  860. if (fifo->ech)
  861. recv_Echannel(fifo->ech,
  862. &hw->dch);
  863. } else {
  864. if (debug & DBG_HFC_FIFO_VERBOSE) {
  865. printk(KERN_DEBUG
  866. "%s: CRC or minlen ERROR fifon(%i) "
  867. "RX len(%i): ",
  868. hw->name, fifon, rx_skb->len);
  869. i = 0;
  870. while (i < rx_skb->len)
  871. printk("%02x ",
  872. rx_skb->data[i++]);
  873. printk("\n");
  874. }
  875. skb_trim(rx_skb, 0);
  876. }
  877. }
  878. } else {
  879. /* deliver transparent data to layer2 */
  880. if (rx_skb->len >= poll)
  881. recv_Bchannel(fifo->bch, MISDN_ID_ANY);
  882. }
  883. spin_unlock(&hw->lock);
  884. }
  885. static void
  886. fill_isoc_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,
  887. void *buf, int num_packets, int packet_size, int interval,
  888. usb_complete_t complete, void *context)
  889. {
  890. int k;
  891. usb_fill_bulk_urb(urb, dev, pipe, buf, packet_size * num_packets,
  892. complete, context);
  893. urb->number_of_packets = num_packets;
  894. urb->transfer_flags = URB_ISO_ASAP;
  895. urb->actual_length = 0;
  896. urb->interval = interval;
  897. for (k = 0; k < num_packets; k++) {
  898. urb->iso_frame_desc[k].offset = packet_size * k;
  899. urb->iso_frame_desc[k].length = packet_size;
  900. urb->iso_frame_desc[k].actual_length = 0;
  901. }
  902. }
  903. /* receive completion routine for all ISO tx fifos */
  904. static void
  905. rx_iso_complete(struct urb *urb)
  906. {
  907. struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
  908. struct usb_fifo *fifo = context_iso_urb->owner_fifo;
  909. struct hfcsusb *hw = fifo->hw;
  910. int k, len, errcode, offset, num_isoc_packets, fifon, maxlen,
  911. status, iso_status, i;
  912. __u8 *buf;
  913. static __u8 eof[8];
  914. __u8 s0_state;
  915. fifon = fifo->fifonum;
  916. status = urb->status;
  917. spin_lock(&hw->lock);
  918. if (fifo->stop_gracefull) {
  919. fifo->stop_gracefull = 0;
  920. fifo->active = 0;
  921. spin_unlock(&hw->lock);
  922. return;
  923. }
  924. spin_unlock(&hw->lock);
  925. /*
  926. * ISO transfer only partially completed,
  927. * look at individual frame status for details
  928. */
  929. if (status == -EXDEV) {
  930. if (debug & DEBUG_HW)
  931. printk(KERN_DEBUG "%s: %s: with -EXDEV "
  932. "urb->status %d, fifonum %d\n",
  933. hw->name, __func__, status, fifon);
  934. /* clear status, so go on with ISO transfers */
  935. status = 0;
  936. }
  937. s0_state = 0;
  938. if (fifo->active && !status) {
  939. num_isoc_packets = iso_packets[fifon];
  940. maxlen = fifo->usb_packet_maxlen;
  941. for (k = 0; k < num_isoc_packets; ++k) {
  942. len = urb->iso_frame_desc[k].actual_length;
  943. offset = urb->iso_frame_desc[k].offset;
  944. buf = context_iso_urb->buffer + offset;
  945. iso_status = urb->iso_frame_desc[k].status;
  946. if (iso_status && (debug & DBG_HFC_FIFO_VERBOSE)) {
  947. printk(KERN_DEBUG "%s: %s: "
  948. "ISO packet %i, status: %i\n",
  949. hw->name, __func__, k, iso_status);
  950. }
  951. /* USB data log for every D ISO in */
  952. if ((fifon == HFCUSB_D_RX) &&
  953. (debug & DBG_HFC_USB_VERBOSE)) {
  954. printk(KERN_DEBUG
  955. "%s: %s: %d (%d/%d) len(%d) ",
  956. hw->name, __func__, urb->start_frame,
  957. k, num_isoc_packets-1,
  958. len);
  959. for (i = 0; i < len; i++)
  960. printk("%x ", buf[i]);
  961. printk("\n");
  962. }
  963. if (!iso_status) {
  964. if (fifo->last_urblen != maxlen) {
  965. /*
  966. * save fifo fill-level threshold bits
  967. * to use them later in TX ISO URB
  968. * completions
  969. */
  970. hw->threshold_mask = buf[1];
  971. if (fifon == HFCUSB_D_RX)
  972. s0_state = (buf[0] >> 4);
  973. eof[fifon] = buf[0] & 1;
  974. if (len > 2)
  975. hfcsusb_rx_frame(fifo, buf + 2,
  976. len - 2, (len < maxlen)
  977. ? eof[fifon] : 0);
  978. } else
  979. hfcsusb_rx_frame(fifo, buf, len,
  980. (len < maxlen) ?
  981. eof[fifon] : 0);
  982. fifo->last_urblen = len;
  983. }
  984. }
  985. /* signal S0 layer1 state change */
  986. if ((s0_state) && (hw->initdone) &&
  987. (s0_state != hw->dch.state)) {
  988. hw->dch.state = s0_state;
  989. schedule_event(&hw->dch, FLG_PHCHANGE);
  990. }
  991. fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
  992. context_iso_urb->buffer, num_isoc_packets,
  993. fifo->usb_packet_maxlen, fifo->intervall,
  994. (usb_complete_t)rx_iso_complete, urb->context);
  995. errcode = usb_submit_urb(urb, GFP_ATOMIC);
  996. if (errcode < 0) {
  997. if (debug & DEBUG_HW)
  998. printk(KERN_DEBUG "%s: %s: error submitting "
  999. "ISO URB: %d\n",
  1000. hw->name, __func__, errcode);
  1001. }
  1002. } else {
  1003. if (status && (debug & DBG_HFC_URB_INFO))
  1004. printk(KERN_DEBUG "%s: %s: rx_iso_complete : "
  1005. "urb->status %d, fifonum %d\n",
  1006. hw->name, __func__, status, fifon);
  1007. }
  1008. }
  1009. /* receive completion routine for all interrupt rx fifos */
  1010. static void
  1011. rx_int_complete(struct urb *urb)
  1012. {
  1013. int len, status, i;
  1014. __u8 *buf, maxlen, fifon;
  1015. struct usb_fifo *fifo = (struct usb_fifo *) urb->context;
  1016. struct hfcsusb *hw = fifo->hw;
  1017. static __u8 eof[8];
  1018. spin_lock(&hw->lock);
  1019. if (fifo->stop_gracefull) {
  1020. fifo->stop_gracefull = 0;
  1021. fifo->active = 0;
  1022. spin_unlock(&hw->lock);
  1023. return;
  1024. }
  1025. spin_unlock(&hw->lock);
  1026. fifon = fifo->fifonum;
  1027. if ((!fifo->active) || (urb->status)) {
  1028. if (debug & DBG_HFC_URB_ERROR)
  1029. printk(KERN_DEBUG
  1030. "%s: %s: RX-Fifo %i is going down (%i)\n",
  1031. hw->name, __func__, fifon, urb->status);
  1032. fifo->urb->interval = 0; /* cancel automatic rescheduling */
  1033. return;
  1034. }
  1035. len = urb->actual_length;
  1036. buf = fifo->buffer;
  1037. maxlen = fifo->usb_packet_maxlen;
  1038. /* USB data log for every D INT in */
  1039. if ((fifon == HFCUSB_D_RX) && (debug & DBG_HFC_USB_VERBOSE)) {
  1040. printk(KERN_DEBUG "%s: %s: D RX INT len(%d) ",
  1041. hw->name, __func__, len);
  1042. for (i = 0; i < len; i++)
  1043. printk("%02x ", buf[i]);
  1044. printk("\n");
  1045. }
  1046. if (fifo->last_urblen != fifo->usb_packet_maxlen) {
  1047. /* the threshold mask is in the 2nd status byte */
  1048. hw->threshold_mask = buf[1];
  1049. /* signal S0 layer1 state change */
  1050. if (hw->initdone && ((buf[0] >> 4) != hw->dch.state)) {
  1051. hw->dch.state = (buf[0] >> 4);
  1052. schedule_event(&hw->dch, FLG_PHCHANGE);
  1053. }
  1054. eof[fifon] = buf[0] & 1;
  1055. /* if we have more than the 2 status bytes -> collect data */
  1056. if (len > 2)
  1057. hfcsusb_rx_frame(fifo, buf + 2,
  1058. urb->actual_length - 2,
  1059. (len < maxlen) ? eof[fifon] : 0);
  1060. } else {
  1061. hfcsusb_rx_frame(fifo, buf, urb->actual_length,
  1062. (len < maxlen) ? eof[fifon] : 0);
  1063. }
  1064. fifo->last_urblen = urb->actual_length;
  1065. status = usb_submit_urb(urb, GFP_ATOMIC);
  1066. if (status) {
  1067. if (debug & DEBUG_HW)
  1068. printk(KERN_DEBUG "%s: %s: error resubmitting USB\n",
  1069. hw->name, __func__);
  1070. }
  1071. }
  1072. /* transmit completion routine for all ISO tx fifos */
  1073. static void
  1074. tx_iso_complete(struct urb *urb)
  1075. {
  1076. struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
  1077. struct usb_fifo *fifo = context_iso_urb->owner_fifo;
  1078. struct hfcsusb *hw = fifo->hw;
  1079. struct sk_buff *tx_skb;
  1080. int k, tx_offset, num_isoc_packets, sink, remain, current_len,
  1081. errcode, hdlc, i;
  1082. int *tx_idx;
  1083. int frame_complete, fifon, status;
  1084. __u8 threshbit;
  1085. spin_lock(&hw->lock);
  1086. if (fifo->stop_gracefull) {
  1087. fifo->stop_gracefull = 0;
  1088. fifo->active = 0;
  1089. spin_unlock(&hw->lock);
  1090. return;
  1091. }
  1092. if (fifo->dch) {
  1093. tx_skb = fifo->dch->tx_skb;
  1094. tx_idx = &fifo->dch->tx_idx;
  1095. hdlc = 1;
  1096. } else if (fifo->bch) {
  1097. tx_skb = fifo->bch->tx_skb;
  1098. tx_idx = &fifo->bch->tx_idx;
  1099. hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
  1100. } else {
  1101. printk(KERN_DEBUG "%s: %s: neither BCH nor DCH\n",
  1102. hw->name, __func__);
  1103. spin_unlock(&hw->lock);
  1104. return;
  1105. }
  1106. fifon = fifo->fifonum;
  1107. status = urb->status;
  1108. tx_offset = 0;
  1109. /*
  1110. * ISO transfer only partially completed,
  1111. * look at individual frame status for details
  1112. */
  1113. if (status == -EXDEV) {
  1114. if (debug & DBG_HFC_URB_ERROR)
  1115. printk(KERN_DEBUG "%s: %s: "
  1116. "-EXDEV (%i) fifon (%d)\n",
  1117. hw->name, __func__, status, fifon);
  1118. /* clear status, so go on with ISO transfers */
  1119. status = 0;
  1120. }
  1121. if (fifo->active && !status) {
  1122. /* is FifoFull-threshold set for our channel? */
  1123. threshbit = (hw->threshold_mask & (1 << fifon));
  1124. num_isoc_packets = iso_packets[fifon];
  1125. /* predict dataflow to avoid fifo overflow */
  1126. if (fifon >= HFCUSB_D_TX)
  1127. sink = (threshbit) ? SINK_DMIN : SINK_DMAX;
  1128. else
  1129. sink = (threshbit) ? SINK_MIN : SINK_MAX;
  1130. fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
  1131. context_iso_urb->buffer, num_isoc_packets,
  1132. fifo->usb_packet_maxlen, fifo->intervall,
  1133. (usb_complete_t)tx_iso_complete, urb->context);
  1134. memset(context_iso_urb->buffer, 0,
  1135. sizeof(context_iso_urb->buffer));
  1136. frame_complete = 0;
  1137. for (k = 0; k < num_isoc_packets; ++k) {
  1138. /* analyze tx success of previous ISO packets */
  1139. if (debug & DBG_HFC_URB_ERROR) {
  1140. errcode = urb->iso_frame_desc[k].status;
  1141. if (errcode) {
  1142. printk(KERN_DEBUG "%s: %s: "
  1143. "ISO packet %i, status: %i\n",
  1144. hw->name, __func__, k, errcode);
  1145. }
  1146. }
  1147. /* Generate next ISO Packets */
  1148. if (tx_skb)
  1149. remain = tx_skb->len - *tx_idx;
  1150. else
  1151. remain = 0;
  1152. if (remain > 0) {
  1153. fifo->bit_line -= sink;
  1154. current_len = (0 - fifo->bit_line) / 8;
  1155. if (current_len > 14)
  1156. current_len = 14;
  1157. if (current_len < 0)
  1158. current_len = 0;
  1159. if (remain < current_len)
  1160. current_len = remain;
  1161. /* how much bit do we put on the line? */
  1162. fifo->bit_line += current_len * 8;
  1163. context_iso_urb->buffer[tx_offset] = 0;
  1164. if (current_len == remain) {
  1165. if (hdlc) {
  1166. /* signal frame completion */
  1167. context_iso_urb->
  1168. buffer[tx_offset] = 1;
  1169. /* add 2 byte flags and 16bit
  1170. * CRC at end of ISDN frame */
  1171. fifo->bit_line += 32;
  1172. }
  1173. frame_complete = 1;
  1174. }
  1175. /* copy tx data to iso-urb buffer */
  1176. memcpy(context_iso_urb->buffer + tx_offset + 1,
  1177. (tx_skb->data + *tx_idx), current_len);
  1178. *tx_idx += current_len;
  1179. urb->iso_frame_desc[k].offset = tx_offset;
  1180. urb->iso_frame_desc[k].length = current_len + 1;
  1181. /* USB data log for every D ISO out */
  1182. if ((fifon == HFCUSB_D_RX) &&
  1183. (debug & DBG_HFC_USB_VERBOSE)) {
  1184. printk(KERN_DEBUG
  1185. "%s: %s (%d/%d) offs(%d) len(%d) ",
  1186. hw->name, __func__,
  1187. k, num_isoc_packets-1,
  1188. urb->iso_frame_desc[k].offset,
  1189. urb->iso_frame_desc[k].length);
  1190. for (i = urb->iso_frame_desc[k].offset;
  1191. i < (urb->iso_frame_desc[k].offset
  1192. + urb->iso_frame_desc[k].length);
  1193. i++)
  1194. printk("%x ",
  1195. context_iso_urb->buffer[i]);
  1196. printk(" skb->len(%i) tx-idx(%d)\n",
  1197. tx_skb->len, *tx_idx);
  1198. }
  1199. tx_offset += (current_len + 1);
  1200. } else {
  1201. urb->iso_frame_desc[k].offset = tx_offset++;
  1202. urb->iso_frame_desc[k].length = 1;
  1203. /* we lower data margin every msec */
  1204. fifo->bit_line -= sink;
  1205. if (fifo->bit_line < BITLINE_INF)
  1206. fifo->bit_line = BITLINE_INF;
  1207. }
  1208. if (frame_complete) {
  1209. frame_complete = 0;
  1210. if (debug & DBG_HFC_FIFO_VERBOSE) {
  1211. printk(KERN_DEBUG "%s: %s: "
  1212. "fifon(%i) new TX len(%i): ",
  1213. hw->name, __func__,
  1214. fifon, tx_skb->len);
  1215. i = 0;
  1216. while (i < tx_skb->len)
  1217. printk("%02x ",
  1218. tx_skb->data[i++]);
  1219. printk("\n");
  1220. }
  1221. dev_kfree_skb(tx_skb);
  1222. tx_skb = NULL;
  1223. if (fifo->dch && get_next_dframe(fifo->dch))
  1224. tx_skb = fifo->dch->tx_skb;
  1225. else if (fifo->bch &&
  1226. get_next_bframe(fifo->bch)) {
  1227. if (test_bit(FLG_TRANSPARENT,
  1228. &fifo->bch->Flags))
  1229. confirm_Bsend(fifo->bch);
  1230. tx_skb = fifo->bch->tx_skb;
  1231. }
  1232. }
  1233. }
  1234. errcode = usb_submit_urb(urb, GFP_ATOMIC);
  1235. if (errcode < 0) {
  1236. if (debug & DEBUG_HW)
  1237. printk(KERN_DEBUG
  1238. "%s: %s: error submitting ISO URB: %d \n",
  1239. hw->name, __func__, errcode);
  1240. }
  1241. /*
  1242. * abuse DChannel tx iso completion to trigger NT mode state
  1243. * changes tx_iso_complete is assumed to be called every
  1244. * fifo->intervall (ms)
  1245. */
  1246. if ((fifon == HFCUSB_D_TX) && (hw->protocol == ISDN_P_NT_S0)
  1247. && (hw->timers & NT_ACTIVATION_TIMER)) {
  1248. if ((--hw->nt_timer) < 0)
  1249. schedule_event(&hw->dch, FLG_PHCHANGE);
  1250. }
  1251. } else {
  1252. if (status && (debug & DBG_HFC_URB_ERROR))
  1253. printk(KERN_DEBUG "%s: %s: urb->status %s (%i)"
  1254. "fifonum=%d\n",
  1255. hw->name, __func__,
  1256. symbolic(urb_errlist, status), status, fifon);
  1257. }
  1258. spin_unlock(&hw->lock);
  1259. }
  1260. /*
  1261. * allocs urbs and start isoc transfer with two pending urbs to avoid
  1262. * gaps in the transfer chain
  1263. */
  1264. static int
  1265. start_isoc_chain(struct usb_fifo *fifo, int num_packets_per_urb,
  1266. usb_complete_t complete, int packet_size)
  1267. {
  1268. struct hfcsusb *hw = fifo->hw;
  1269. int i, k, errcode;
  1270. if (debug)
  1271. printk(KERN_DEBUG "%s: %s: fifo %i\n",
  1272. hw->name, __func__, fifo->fifonum);
  1273. /* allocate Memory for Iso out Urbs */
  1274. for (i = 0; i < 2; i++) {
  1275. if (!(fifo->iso[i].urb)) {
  1276. fifo->iso[i].urb =
  1277. usb_alloc_urb(num_packets_per_urb, GFP_KERNEL);
  1278. if (!(fifo->iso[i].urb)) {
  1279. printk(KERN_DEBUG
  1280. "%s: %s: alloc urb for fifo %i failed",
  1281. hw->name, __func__, fifo->fifonum);
  1282. }
  1283. fifo->iso[i].owner_fifo = (struct usb_fifo *) fifo;
  1284. fifo->iso[i].indx = i;
  1285. /* Init the first iso */
  1286. if (ISO_BUFFER_SIZE >=
  1287. (fifo->usb_packet_maxlen *
  1288. num_packets_per_urb)) {
  1289. fill_isoc_urb(fifo->iso[i].urb,
  1290. fifo->hw->dev, fifo->pipe,
  1291. fifo->iso[i].buffer,
  1292. num_packets_per_urb,
  1293. fifo->usb_packet_maxlen,
  1294. fifo->intervall, complete,
  1295. &fifo->iso[i]);
  1296. memset(fifo->iso[i].buffer, 0,
  1297. sizeof(fifo->iso[i].buffer));
  1298. for (k = 0; k < num_packets_per_urb; k++) {
  1299. fifo->iso[i].urb->
  1300. iso_frame_desc[k].offset =
  1301. k * packet_size;
  1302. fifo->iso[i].urb->
  1303. iso_frame_desc[k].length =
  1304. packet_size;
  1305. }
  1306. } else {
  1307. printk(KERN_DEBUG
  1308. "%s: %s: ISO Buffer size to small!\n",
  1309. hw->name, __func__);
  1310. }
  1311. }
  1312. fifo->bit_line = BITLINE_INF;
  1313. errcode = usb_submit_urb(fifo->iso[i].urb, GFP_KERNEL);
  1314. fifo->active = (errcode >= 0) ? 1 : 0;
  1315. fifo->stop_gracefull = 0;
  1316. if (errcode < 0) {
  1317. printk(KERN_DEBUG "%s: %s: %s URB nr:%d\n",
  1318. hw->name, __func__,
  1319. symbolic(urb_errlist, errcode), i);
  1320. }
  1321. }
  1322. return fifo->active;
  1323. }
  1324. static void
  1325. stop_iso_gracefull(struct usb_fifo *fifo)
  1326. {
  1327. struct hfcsusb *hw = fifo->hw;
  1328. int i, timeout;
  1329. u_long flags;
  1330. for (i = 0; i < 2; i++) {
  1331. spin_lock_irqsave(&hw->lock, flags);
  1332. if (debug)
  1333. printk(KERN_DEBUG "%s: %s for fifo %i.%i\n",
  1334. hw->name, __func__, fifo->fifonum, i);
  1335. fifo->stop_gracefull = 1;
  1336. spin_unlock_irqrestore(&hw->lock, flags);
  1337. }
  1338. for (i = 0; i < 2; i++) {
  1339. timeout = 3;
  1340. while (fifo->stop_gracefull && timeout--)
  1341. schedule_timeout_interruptible((HZ/1000)*16);
  1342. if (debug && fifo->stop_gracefull)
  1343. printk(KERN_DEBUG "%s: ERROR %s for fifo %i.%i\n",
  1344. hw->name, __func__, fifo->fifonum, i);
  1345. }
  1346. }
  1347. static void
  1348. stop_int_gracefull(struct usb_fifo *fifo)
  1349. {
  1350. struct hfcsusb *hw = fifo->hw;
  1351. int timeout;
  1352. u_long flags;
  1353. spin_lock_irqsave(&hw->lock, flags);
  1354. if (debug)
  1355. printk(KERN_DEBUG "%s: %s for fifo %i\n",
  1356. hw->name, __func__, fifo->fifonum);
  1357. fifo->stop_gracefull = 1;
  1358. spin_unlock_irqrestore(&hw->lock, flags);
  1359. timeout = 3;
  1360. while (fifo->stop_gracefull && timeout--)
  1361. schedule_timeout_interruptible((HZ/1000)*3);
  1362. if (debug && fifo->stop_gracefull)
  1363. printk(KERN_DEBUG "%s: ERROR %s for fifo %i\n",
  1364. hw->name, __func__, fifo->fifonum);
  1365. }
  1366. /* start the interrupt transfer for the given fifo */
  1367. static void
  1368. start_int_fifo(struct usb_fifo *fifo)
  1369. {
  1370. struct hfcsusb *hw = fifo->hw;
  1371. int errcode;
  1372. if (debug)
  1373. printk(KERN_DEBUG "%s: %s: INT IN fifo:%d\n",
  1374. hw->name, __func__, fifo->fifonum);
  1375. if (!fifo->urb) {
  1376. fifo->urb = usb_alloc_urb(0, GFP_KERNEL);
  1377. if (!fifo->urb)
  1378. return;
  1379. }
  1380. usb_fill_int_urb(fifo->urb, fifo->hw->dev, fifo->pipe,
  1381. fifo->buffer, fifo->usb_packet_maxlen,
  1382. (usb_complete_t)rx_int_complete, fifo, fifo->intervall);
  1383. fifo->active = 1;
  1384. fifo->stop_gracefull = 0;
  1385. errcode = usb_submit_urb(fifo->urb, GFP_KERNEL);
  1386. if (errcode) {
  1387. printk(KERN_DEBUG "%s: %s: submit URB: status:%i\n",
  1388. hw->name, __func__, errcode);
  1389. fifo->active = 0;
  1390. }
  1391. }
  1392. static void
  1393. setPortMode(struct hfcsusb *hw)
  1394. {
  1395. if (debug & DEBUG_HW)
  1396. printk(KERN_DEBUG "%s: %s %s\n", hw->name, __func__,
  1397. (hw->protocol == ISDN_P_TE_S0) ? "TE" : "NT");
  1398. if (hw->protocol == ISDN_P_TE_S0) {
  1399. write_reg(hw, HFCUSB_SCTRL, 0x40);
  1400. write_reg(hw, HFCUSB_SCTRL_E, 0x00);
  1401. write_reg(hw, HFCUSB_CLKDEL, CLKDEL_TE);
  1402. write_reg(hw, HFCUSB_STATES, 3 | 0x10);
  1403. write_reg(hw, HFCUSB_STATES, 3);
  1404. } else {
  1405. write_reg(hw, HFCUSB_SCTRL, 0x44);
  1406. write_reg(hw, HFCUSB_SCTRL_E, 0x09);
  1407. write_reg(hw, HFCUSB_CLKDEL, CLKDEL_NT);
  1408. write_reg(hw, HFCUSB_STATES, 1 | 0x10);
  1409. write_reg(hw, HFCUSB_STATES, 1);
  1410. }
  1411. }
  1412. static void
  1413. reset_hfcsusb(struct hfcsusb *hw)
  1414. {
  1415. struct usb_fifo *fifo;
  1416. int i;
  1417. if (debug & DEBUG_HW)
  1418. printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
  1419. /* do Chip reset */
  1420. write_reg(hw, HFCUSB_CIRM, 8);
  1421. /* aux = output, reset off */
  1422. write_reg(hw, HFCUSB_CIRM, 0x10);
  1423. /* set USB_SIZE to match the wMaxPacketSize for INT or BULK transfers */
  1424. write_reg(hw, HFCUSB_USB_SIZE, (hw->packet_size / 8) |
  1425. ((hw->packet_size / 8) << 4));
  1426. /* set USB_SIZE_I to match the the wMaxPacketSize for ISO transfers */
  1427. write_reg(hw, HFCUSB_USB_SIZE_I, hw->iso_packet_size);
  1428. /* enable PCM/GCI master mode */
  1429. write_reg(hw, HFCUSB_MST_MODE1, 0); /* set default values */
  1430. write_reg(hw, HFCUSB_MST_MODE0, 1); /* enable master mode */
  1431. /* init the fifos */
  1432. write_reg(hw, HFCUSB_F_THRES,
  1433. (HFCUSB_TX_THRESHOLD / 8) | ((HFCUSB_RX_THRESHOLD / 8) << 4));
  1434. fifo = hw->fifos;
  1435. for (i = 0; i < HFCUSB_NUM_FIFOS; i++) {
  1436. write_reg(hw, HFCUSB_FIFO, i); /* select the desired fifo */
  1437. fifo[i].max_size =
  1438. (i <= HFCUSB_B2_RX) ? MAX_BCH_SIZE : MAX_DFRAME_LEN;
  1439. fifo[i].last_urblen = 0;
  1440. /* set 2 bit for D- & E-channel */
  1441. write_reg(hw, HFCUSB_HDLC_PAR, ((i <= HFCUSB_B2_RX) ? 0 : 2));
  1442. /* enable all fifos */
  1443. if (i == HFCUSB_D_TX)
  1444. write_reg(hw, HFCUSB_CON_HDLC,
  1445. (hw->protocol == ISDN_P_NT_S0) ? 0x08 : 0x09);
  1446. else
  1447. write_reg(hw, HFCUSB_CON_HDLC, 0x08);
  1448. write_reg(hw, HFCUSB_INC_RES_F, 2); /* reset the fifo */
  1449. }
  1450. write_reg(hw, HFCUSB_SCTRL_R, 0); /* disable both B receivers */
  1451. handle_led(hw, LED_POWER_ON);
  1452. }
  1453. /* start USB data pipes dependand on device's endpoint configuration */
  1454. static void
  1455. hfcsusb_start_endpoint(struct hfcsusb *hw, int channel)
  1456. {
  1457. /* quick check if endpoint already running */
  1458. if ((channel == HFC_CHAN_D) && (hw->fifos[HFCUSB_D_RX].active))
  1459. return;
  1460. if ((channel == HFC_CHAN_B1) && (hw->fifos[HFCUSB_B1_RX].active))
  1461. return;
  1462. if ((channel == HFC_CHAN_B2) && (hw->fifos[HFCUSB_B2_RX].active))
  1463. return;
  1464. if ((channel == HFC_CHAN_E) && (hw->fifos[HFCUSB_PCM_RX].active))
  1465. return;
  1466. /* start rx endpoints using USB INT IN method */
  1467. if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
  1468. start_int_fifo(hw->fifos + channel*2 + 1);
  1469. /* start rx endpoints using USB ISO IN method */
  1470. if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO) {
  1471. switch (channel) {
  1472. case HFC_CHAN_D:
  1473. start_isoc_chain(hw->fifos + HFCUSB_D_RX,
  1474. ISOC_PACKETS_D,
  1475. (usb_complete_t)rx_iso_complete,
  1476. 16);
  1477. break;
  1478. case HFC_CHAN_E:
  1479. start_isoc_chain(hw->fifos + HFCUSB_PCM_RX,
  1480. ISOC_PACKETS_D,
  1481. (usb_complete_t)rx_iso_complete,
  1482. 16);
  1483. break;
  1484. case HFC_CHAN_B1:
  1485. start_isoc_chain(hw->fifos + HFCUSB_B1_RX,
  1486. ISOC_PACKETS_B,
  1487. (usb_complete_t)rx_iso_complete,
  1488. 16);
  1489. break;
  1490. case HFC_CHAN_B2:
  1491. start_isoc_chain(hw->fifos + HFCUSB_B2_RX,
  1492. ISOC_PACKETS_B,
  1493. (usb_complete_t)rx_iso_complete,
  1494. 16);
  1495. break;
  1496. }
  1497. }
  1498. /* start tx endpoints using USB ISO OUT method */
  1499. switch (channel) {
  1500. case HFC_CHAN_D:
  1501. start_isoc_chain(hw->fifos + HFCUSB_D_TX,
  1502. ISOC_PACKETS_B,
  1503. (usb_complete_t)tx_iso_complete, 1);
  1504. break;
  1505. case HFC_CHAN_B1:
  1506. start_isoc_chain(hw->fifos + HFCUSB_B1_TX,
  1507. ISOC_PACKETS_D,
  1508. (usb_complete_t)tx_iso_complete, 1);
  1509. break;
  1510. case HFC_CHAN_B2:
  1511. start_isoc_chain(hw->fifos + HFCUSB_B2_TX,
  1512. ISOC_PACKETS_B,
  1513. (usb_complete_t)tx_iso_complete, 1);
  1514. break;
  1515. }
  1516. }
  1517. /* stop USB data pipes dependand on device's endpoint configuration */
  1518. static void
  1519. hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel)
  1520. {
  1521. /* quick check if endpoint currently running */
  1522. if ((channel == HFC_CHAN_D) && (!hw->fifos[HFCUSB_D_RX].active))
  1523. return;
  1524. if ((channel == HFC_CHAN_B1) && (!hw->fifos[HFCUSB_B1_RX].active))
  1525. return;
  1526. if ((channel == HFC_CHAN_B2) && (!hw->fifos[HFCUSB_B2_RX].active))
  1527. return;
  1528. if ((channel == HFC_CHAN_E) && (!hw->fifos[HFCUSB_PCM_RX].active))
  1529. return;
  1530. /* rx endpoints using USB INT IN method */
  1531. if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
  1532. stop_int_gracefull(hw->fifos + channel*2 + 1);
  1533. /* rx endpoints using USB ISO IN method */
  1534. if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO)
  1535. stop_iso_gracefull(hw->fifos + channel*2 + 1);
  1536. /* tx endpoints using USB ISO OUT method */
  1537. if (channel != HFC_CHAN_E)
  1538. stop_iso_gracefull(hw->fifos + channel*2);
  1539. }
  1540. /* Hardware Initialization */
  1541. static int
  1542. setup_hfcsusb(struct hfcsusb *hw)
  1543. {
  1544. int err;
  1545. u_char b;
  1546. if (debug & DBG_HFC_CALL_TRACE)
  1547. printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
  1548. /* check the chip id */
  1549. if (read_reg_atomic(hw, HFCUSB_CHIP_ID, &b) != 1) {
  1550. printk(KERN_DEBUG "%s: %s: cannot read chip id\n",
  1551. hw->name, __func__);
  1552. return 1;
  1553. }
  1554. if (b != HFCUSB_CHIPID) {
  1555. printk(KERN_DEBUG "%s: %s: Invalid chip id 0x%02x\n",
  1556. hw->name, __func__, b);
  1557. return 1;
  1558. }
  1559. /* first set the needed config, interface and alternate */
  1560. err = usb_set_interface(hw->dev, hw->if_used, hw->alt_used);
  1561. hw->led_state = 0;
  1562. /* init the background machinery for control requests */
  1563. hw->ctrl_read.bRequestType = 0xc0;
  1564. hw->ctrl_read.bRequest = 1;
  1565. hw->ctrl_read.wLength = cpu_to_le16(1);
  1566. hw->ctrl_write.bRequestType = 0x40;
  1567. hw->ctrl_write.bRequest = 0;
  1568. hw->ctrl_write.wLength = 0;
  1569. usb_fill_control_urb(hw->ctrl_urb, hw->dev, hw->ctrl_out_pipe,
  1570. (u_char *)&hw->ctrl_write, NULL, 0,
  1571. (usb_complete_t)ctrl_complete, hw);
  1572. reset_hfcsusb(hw);
  1573. return 0;
  1574. }
  1575. static void
  1576. release_hw(struct hfcsusb *hw)
  1577. {
  1578. if (debug & DBG_HFC_CALL_TRACE)
  1579. printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
  1580. /*
  1581. * stop all endpoints gracefully
  1582. * TODO: mISDN_core should generate CLOSE_CHANNEL
  1583. * signals after calling mISDN_unregister_device()
  1584. */
  1585. hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
  1586. hfcsusb_stop_endpoint(hw, HFC_CHAN_B1);
  1587. hfcsusb_stop_endpoint(hw, HFC_CHAN_B2);
  1588. if (hw->fifos[HFCUSB_PCM_RX].pipe)
  1589. hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
  1590. if (hw->protocol == ISDN_P_TE_S0)
  1591. l1_event(hw->dch.l1, CLOSE_CHANNEL);
  1592. mISDN_unregister_device(&hw->dch.dev);
  1593. mISDN_freebchannel(&hw->bch[1]);
  1594. mISDN_freebchannel(&hw->bch[0]);
  1595. mISDN_freedchannel(&hw->dch);
  1596. if (hw->ctrl_urb) {
  1597. usb_kill_urb(hw->ctrl_urb);
  1598. usb_free_urb(hw->ctrl_urb);
  1599. hw->ctrl_urb = NULL;
  1600. }
  1601. if (hw->intf)
  1602. usb_set_intfdata(hw->intf, NULL);
  1603. list_del(&hw->list);
  1604. kfree(hw);
  1605. hw = NULL;
  1606. }
  1607. static void
  1608. deactivate_bchannel(struct bchannel *bch)
  1609. {
  1610. struct hfcsusb *hw = bch->hw;
  1611. u_long flags;
  1612. if (bch->debug & DEBUG_HW)
  1613. printk(KERN_DEBUG "%s: %s: bch->nr(%i)\n",
  1614. hw->name, __func__, bch->nr);
  1615. spin_lock_irqsave(&hw->lock, flags);
  1616. mISDN_clear_bchannel(bch);
  1617. spin_unlock_irqrestore(&hw->lock, flags);
  1618. hfcsusb_setup_bch(bch, ISDN_P_NONE);
  1619. hfcsusb_stop_endpoint(hw, bch->nr);
  1620. }
  1621. /*
  1622. * Layer 1 B-channel hardware access
  1623. */
  1624. static int
  1625. hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
  1626. {
  1627. struct bchannel *bch = container_of(ch, struct bchannel, ch);
  1628. int ret = -EINVAL;
  1629. if (bch->debug & DEBUG_HW)
  1630. printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
  1631. switch (cmd) {
  1632. case HW_TESTRX_RAW:
  1633. case HW_TESTRX_HDLC:
  1634. case HW_TESTRX_OFF:
  1635. ret = -EINVAL;
  1636. break;
  1637. case CLOSE_CHANNEL:
  1638. test_and_clear_bit(FLG_OPEN, &bch->Flags);
  1639. if (test_bit(FLG_ACTIVE, &bch->Flags))
  1640. deactivate_bchannel(bch);
  1641. ch->protocol = ISDN_P_NONE;
  1642. ch->peer = NULL;
  1643. module_put(THIS_MODULE);
  1644. ret = 0;
  1645. break;
  1646. case CONTROL_CHANNEL:
  1647. ret = channel_bctrl(bch, arg);
  1648. break;
  1649. default:
  1650. printk(KERN_WARNING "%s: unknown prim(%x)\n",
  1651. __func__, cmd);
  1652. }
  1653. return ret;
  1654. }
  1655. static int
  1656. setup_instance(struct hfcsusb *hw, struct device *parent)
  1657. {
  1658. u_long flags;
  1659. int err, i;
  1660. if (debug & DBG_HFC_CALL_TRACE)
  1661. printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
  1662. spin_lock_init(&hw->ctrl_lock);
  1663. spin_lock_init(&hw->lock);
  1664. mISDN_initdchannel(&hw->dch, MAX_DFRAME_LEN_L1, ph_state);
  1665. hw->dch.debug = debug & 0xFFFF;
  1666. hw->dch.hw = hw;
  1667. hw->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
  1668. hw->dch.dev.D.send = hfcusb_l2l1D;
  1669. hw->dch.dev.D.ctrl = hfc_dctrl;
  1670. /* enable E-Channel logging */
  1671. if (hw->fifos[HFCUSB_PCM_RX].pipe)
  1672. mISDN_initdchannel(&hw->ech, MAX_DFRAME_LEN_L1, NULL);
  1673. hw->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
  1674. (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
  1675. hw->dch.dev.nrbchan = 2;
  1676. for (i = 0; i < 2; i++) {
  1677. hw->bch[i].nr = i + 1;
  1678. set_channelmap(i + 1, hw->dch.dev.channelmap);
  1679. hw->bch[i].debug = debug;
  1680. mISDN_initbchannel(&hw->bch[i], MAX_DATA_MEM);
  1681. hw->bch[i].hw = hw;
  1682. hw->bch[i].ch.send = hfcusb_l2l1B;
  1683. hw->bch[i].ch.ctrl = hfc_bctrl;
  1684. hw->bch[i].ch.nr = i + 1;
  1685. list_add(&hw->bch[i].ch.list, &hw->dch.dev.bchannels);
  1686. }
  1687. hw->fifos[HFCUSB_B1_TX].bch = &hw->bch[0];
  1688. hw->fifos[HFCUSB_B1_RX].bch = &hw->bch[0];
  1689. hw->fifos[HFCUSB_B2_TX].bch = &hw->bch[1];
  1690. hw->fifos[HFCUSB_B2_RX].bch = &hw->bch[1];
  1691. hw->fifos[HFCUSB_D_TX].dch = &hw->dch;
  1692. hw->fifos[HFCUSB_D_RX].dch = &hw->dch;
  1693. hw->fifos[HFCUSB_PCM_RX].ech = &hw->ech;
  1694. hw->fifos[HFCUSB_PCM_TX].ech = &hw->ech;
  1695. err = setup_hfcsusb(hw);
  1696. if (err)
  1697. goto out;
  1698. snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s.%d", DRIVER_NAME,
  1699. hfcsusb_cnt + 1);
  1700. printk(KERN_INFO "%s: registered as '%s'\n",
  1701. DRIVER_NAME, hw->name);
  1702. err = mISDN_register_device(&hw->dch.dev, parent, hw->name);
  1703. if (err)
  1704. goto out;
  1705. hfcsusb_cnt++;
  1706. write_lock_irqsave(&HFClock, flags);
  1707. list_add_tail(&hw->list, &HFClist);
  1708. write_unlock_irqrestore(&HFClock, flags);
  1709. return 0;
  1710. out:
  1711. mISDN_freebchannel(&hw->bch[1]);
  1712. mISDN_freebchannel(&hw->bch[0]);
  1713. mISDN_freedchannel(&hw->dch);
  1714. kfree(hw);
  1715. return err;
  1716. }
  1717. static int
  1718. hfcsusb_probe(struct usb_interface *intf, const struct usb_device_id *id)
  1719. {
  1720. struct hfcsusb *hw;
  1721. struct usb_device *dev = interface_to_usbdev(intf);
  1722. struct usb_host_interface *iface = intf->cur_altsetting;
  1723. struct usb_host_interface *iface_used = NULL;
  1724. struct usb_host_endpoint *ep;
  1725. struct hfcsusb_vdata *driver_info;
  1726. int ifnum = iface->desc.bInterfaceNumber, i, idx, alt_idx,
  1727. probe_alt_setting, vend_idx, cfg_used, *vcf, attr, cfg_found,
  1728. ep_addr, cmptbl[16], small_match, iso_packet_size, packet_size,
  1729. alt_used = 0;
  1730. vend_idx = 0xffff;
  1731. for (i = 0; hfcsusb_idtab[i].idVendor; i++) {
  1732. if ((le16_to_cpu(dev->descriptor.idVendor)
  1733. == hfcsusb_idtab[i].idVendor) &&
  1734. (le16_to_cpu(dev->descriptor.idProduct)
  1735. == hfcsusb_idtab[i].idProduct)) {
  1736. vend_idx = i;
  1737. continue;
  1738. }
  1739. }
  1740. printk(KERN_DEBUG
  1741. "%s: interface(%d) actalt(%d) minor(%d) vend_idx(%d)\n",
  1742. __func__, ifnum, iface->desc.bAlternateSetting,
  1743. intf->minor, vend_idx);
  1744. if (vend_idx == 0xffff) {
  1745. printk(KERN_WARNING
  1746. "%s: no valid vendor found in USB descriptor\n",
  1747. __func__);
  1748. return -EIO;
  1749. }
  1750. /* if vendor and product ID is OK, start probing alternate settings */
  1751. alt_idx = 0;
  1752. small_match = -1;
  1753. /* default settings */
  1754. iso_packet_size = 16;
  1755. packet_size = 64;
  1756. while (alt_idx < intf->num_altsetting) {
  1757. iface = intf->altsetting + alt_idx;
  1758. probe_alt_setting = iface->desc.bAlternateSetting;
  1759. cfg_used = 0;
  1760. while (validconf[cfg_used][0]) {
  1761. cfg_found = 1;
  1762. vcf = validconf[cfg_used];
  1763. ep = iface->endpoint;
  1764. memcpy(cmptbl, vcf, 16 * sizeof(int));
  1765. /* check for all endpoints in this alternate setting */
  1766. for (i = 0; i < iface->desc.bNumEndpoints; i++) {
  1767. ep_addr = ep->desc.bEndpointAddress;
  1768. /* get endpoint base */
  1769. idx = ((ep_addr & 0x7f) - 1) * 2;
  1770. if (ep_addr & 0x80)
  1771. idx++;
  1772. attr = ep->desc.bmAttributes;
  1773. if (cmptbl[idx] != EP_NOP) {
  1774. if (cmptbl[idx] == EP_NUL)
  1775. cfg_found = 0;
  1776. if (attr == USB_ENDPOINT_XFER_INT
  1777. && cmptbl[idx] == EP_INT)
  1778. cmptbl[idx] = EP_NUL;
  1779. if (attr == USB_ENDPOINT_XFER_BULK
  1780. && cmptbl[idx] == EP_BLK)
  1781. cmptbl[idx] = EP_NUL;
  1782. if (attr == USB_ENDPOINT_XFER_ISOC
  1783. && cmptbl[idx] == EP_ISO)
  1784. cmptbl[idx] = EP_NUL;
  1785. if (attr == USB_ENDPOINT_XFER_INT &&
  1786. ep->desc.bInterval < vcf[17]) {
  1787. cfg_found = 0;
  1788. }
  1789. }
  1790. ep++;
  1791. }
  1792. for (i = 0; i < 16; i++)
  1793. if (cmptbl[i] != EP_NOP && cmptbl[i] != EP_NUL)
  1794. cfg_found = 0;
  1795. if (cfg_found) {
  1796. if (small_match < cfg_used) {
  1797. small_match = cfg_used;
  1798. alt_used = probe_alt_setting;
  1799. iface_used = iface;
  1800. }
  1801. }
  1802. cfg_used++;
  1803. }
  1804. alt_idx++;
  1805. } /* (alt_idx < intf->num_altsetting) */
  1806. /* not found a valid USB Ta Endpoint config */
  1807. if (small_match == -1)
  1808. return -EIO;
  1809. iface = iface_used;
  1810. hw = kzalloc(sizeof(struct hfcsusb), GFP_KERNEL);
  1811. if (!hw)
  1812. return -ENOMEM; /* got no mem */
  1813. snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s", DRIVER_NAME);
  1814. ep = iface->endpoint;
  1815. vcf = validconf[small_match];
  1816. for (i = 0; i < iface->desc.bNumEndpoints; i++) {
  1817. struct usb_fifo *f;
  1818. ep_addr = ep->desc.bEndpointAddress;
  1819. /* get endpoint base */
  1820. idx = ((ep_addr & 0x7f) - 1) * 2;
  1821. if (ep_addr & 0x80)
  1822. idx++;
  1823. f = &hw->fifos[idx & 7];
  1824. /* init Endpoints */
  1825. if (vcf[idx] == EP_NOP || vcf[idx] == EP_NUL) {
  1826. ep++;
  1827. continue;
  1828. }
  1829. switch (ep->desc.bmAttributes) {
  1830. case USB_ENDPOINT_XFER_INT:
  1831. f->pipe = usb_rcvintpipe(dev,
  1832. ep->desc.bEndpointAddress);
  1833. f->usb_transfer_mode = USB_INT;
  1834. packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
  1835. break;
  1836. case USB_ENDPOINT_XFER_BULK:
  1837. if (ep_addr & 0x80)
  1838. f->pipe = usb_rcvbulkpipe(dev,
  1839. ep->desc.bEndpointAddress);
  1840. else
  1841. f->pipe = usb_sndbulkpipe(dev,
  1842. ep->desc.bEndpointAddress);
  1843. f->usb_transfer_mode = USB_BULK;
  1844. packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
  1845. break;
  1846. case USB_ENDPOINT_XFER_ISOC:
  1847. if (ep_addr & 0x80)
  1848. f->pipe = usb_rcvisocpipe(dev,
  1849. ep->desc.bEndpointAddress);
  1850. else
  1851. f->pipe = usb_sndisocpipe(dev,
  1852. ep->desc.bEndpointAddress);
  1853. f->usb_transfer_mode = USB_ISOC;
  1854. iso_packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
  1855. break;
  1856. default:
  1857. f->pipe = 0;
  1858. }
  1859. if (f->pipe) {
  1860. f->fifonum = idx & 7;
  1861. f->hw = hw;
  1862. f->usb_packet_maxlen =
  1863. le16_to_cpu(ep->desc.wMaxPacketSize);
  1864. f->intervall = ep->desc.bInterval;
  1865. }
  1866. ep++;
  1867. }
  1868. hw->dev = dev; /* save device */
  1869. hw->if_used = ifnum; /* save used interface */
  1870. hw->alt_used = alt_used; /* and alternate config */
  1871. hw->ctrl_paksize = dev->descriptor.bMaxPacketSize0; /* control size */
  1872. hw->cfg_used = vcf[16]; /* store used config */
  1873. hw->vend_idx = vend_idx; /* store found vendor */
  1874. hw->packet_size = packet_size;
  1875. hw->iso_packet_size = iso_packet_size;
  1876. /* create the control pipes needed for register access */
  1877. hw->ctrl_in_pipe = usb_rcvctrlpipe(hw->dev, 0);
  1878. hw->ctrl_out_pipe = usb_sndctrlpipe(hw->dev, 0);
  1879. hw->ctrl_urb = usb_alloc_urb(0, GFP_KERNEL);
  1880. driver_info =
  1881. (struct hfcsusb_vdata *)hfcsusb_idtab[vend_idx].driver_info;
  1882. printk(KERN_DEBUG "%s: %s: detected \"%s\" (%s, if=%d alt=%d)\n",
  1883. hw->name, __func__, driver_info->vend_name,
  1884. conf_str[small_match], ifnum, alt_used);
  1885. if (setup_instance(hw, dev->dev.parent))
  1886. return -EIO;
  1887. hw->intf = intf;
  1888. usb_set_intfdata(hw->intf, hw);
  1889. return 0;
  1890. }
  1891. /* function called when an active device is removed */
  1892. static void
  1893. hfcsusb_disconnect(struct usb_interface *intf)
  1894. {
  1895. struct hfcsusb *hw = usb_get_intfdata(intf);
  1896. struct hfcsusb *next;
  1897. int cnt = 0;
  1898. printk(KERN_INFO "%s: device disconnected\n", hw->name);
  1899. handle_led(hw, LED_POWER_OFF);
  1900. release_hw(hw);
  1901. list_for_each_entry_safe(hw, next, &HFClist, list)
  1902. cnt++;
  1903. if (!cnt)
  1904. hfcsusb_cnt = 0;
  1905. usb_set_intfdata(intf, NULL);
  1906. }
  1907. static struct usb_driver hfcsusb_drv = {
  1908. .name = DRIVER_NAME,
  1909. .id_table = hfcsusb_idtab,
  1910. .probe = hfcsusb_probe,
  1911. .disconnect = hfcsusb_disconnect,
  1912. };
  1913. static int __init
  1914. hfcsusb_init(void)
  1915. {
  1916. printk(KERN_INFO DRIVER_NAME " driver Rev. %s debug(0x%x) poll(%i)\n",
  1917. hfcsusb_rev, debug, poll);
  1918. if (usb_register(&hfcsusb_drv)) {
  1919. printk(KERN_INFO DRIVER_NAME
  1920. ": Unable to register hfcsusb module at usb stack\n");
  1921. return -ENODEV;
  1922. }
  1923. return 0;
  1924. }
  1925. static void __exit
  1926. hfcsusb_cleanup(void)
  1927. {
  1928. if (debug & DBG_HFC_CALL_TRACE)
  1929. printk(KERN_INFO DRIVER_NAME ": %s\n", __func__);
  1930. /* unregister Hardware */
  1931. usb_deregister(&hfcsusb_drv); /* release our driver */
  1932. }
  1933. module_init(hfcsusb_init);
  1934. module_exit(hfcsusb_cleanup);